2019年湖南省高考数学试卷(理科)

合集下载

2019年普通高等学校招生全国统一考试数学及详细解析(湖南卷·理)

2019年普通高等学校招生全国统一考试数学及详细解析(湖南卷·理)

2019年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题)一、选择题:本大题共10小,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =i +i 2+i 3+i 4的值是 ( ) A .-1 B .0 C .1 D .i2.函数f (x )=x21-的定义域是( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)3.已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 2=5,则nn n a a a a a a -++-+-+∞→12312lim111(= ( )A .2B .23C .1D .21 4.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]5.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AB C 1D 1的距离为 ( ) A .21 B .42C .22D .23 6.设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2019(x )=( ) A .sinxB .-sinxC .cos xD .-cosx7.已知双曲线22a x -22by =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( )A .30ºB .45ºC .60ºD .90º8.集合A ={x |11+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是( )A .-2≤b <0B .0<b ≤2C .-3<b <-1D .-1≤b <29.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是 ( )A .48B .36C .24D .1810.设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABc PBC S S ∆∆, λ2=ABCPCAS S ∆∆, λ3=ABC PAB S S ∆∆,定义f (P)=(λ1, λ, λ3),若G 是△ABC 的重心,f (Q)=(21,31,61),则( )A .点Q 在△GAB 内 B .点Q 在△GBC 内C .点Q 在△GCA 内D .点Q 与点G 重合第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题4分(第15小题每空2分),共20分,把答案填在答题卡中对应题号后的横线上. 11.一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 件产品.12.在(1+x )+(1+x )2+……+(1+x )6的展开式中,x 2项的系数是 .(用数字作答)13.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则⋅= .14.设函数f (x )的图象关于点(1,2)对称,且存在反函数f -1(x ),f (4)=0,则f -1(4)= .15.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上的面积,已知函数y =sinn x 在[0,nπ]上的面积为n 2(n ∈N *),(i )y =sin3x 在[0,32π]上的面积为 ;(ii )y =sin (3x -π)+1在[3π,34π]上的面积为 .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小. 17.(本题满分12分) 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2. (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.18.(本小题满分14分) 某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(Ⅰ)求ξ的分布及数学期望;(Ⅱ)记“函数f (x )=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A的概率.图1 图219.(本小题满分14分)已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形. 20.(本小题满分14分)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用x n 表示某鱼群在第n 年年初的总量,n ∈N *,且x 1>0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x n 2成正比,这些比例系数依次为正常数a ,b ,c. (Ⅰ)求x n+1与x n 的关系式;(Ⅱ)猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)(Ⅱ)设a =2,b =1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *,则捕捞强度b 的 最大允许值是多少?证明你的结论.21.(本小题满分14分) 已知函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. (Ⅰ)若b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(Ⅱ)设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.2019年普通高等学校招生统一考试(湖南,理科)解析第Ⅰ卷1.[答案]:B [评述[:本题考查复数,复数的意义及其运算。

2019年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2019年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2019年全国统一高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1A =-,0,1,2},2{|1}B x x =…,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}2.若(1)2z i i +=,则(z = )A .1i --B .1i -+C .1i -D .1i +3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.8 4.24(12)(1)x x ++的展开式中3x 的系数为( )A .12B .16C .20D .24 5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a = ) A .16B .8C .4D .26.已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则( )A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-7.函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线9.执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于( )A .4122-B .5122-C .6122-D .7122-10.双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若||||PO PF =,则PFO ∆的面积为( )A .4 B .2C .D .11.设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->>B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>12.设函数()sin()(0)5f x x πωω=+>,已知()f x 在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增④ω的取值范围是12[5,29)10其中所有正确结论的编号是( )A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分。

普通高等学校招生全国统一考试湖南卷理科数学试题及答案

普通高等学校招生全国统一考试湖南卷理科数学试题及答案

2019年一般高等学校招生湖南卷理工农医类数学试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项切合要求的.1.复数(11)4的值是()iA.4ix2y2B.-4i C.4D.-41上一点P到右焦点的距离等于13,那么点P到右准线的距离2.假如双曲线1213是()13B.13C.55A.D.5133.设f1(x)是函数f(x)log2(x1)的反函数,若[1f1(a)][1f1(b)]8,则f(a b)的值为()A.1B.2C.3D.log234.把正方形ABCD沿对角线AC折起,当A、B C、D四点为极点的三棱锥体积最大时,直线BD与平面ABC所成的角的大小为()A.90°B.60°C.45°D.30°5.某企业甲、乙、丙、丁四个地域分别有150个、120个、180个、150个销售点企业为了检查产品销售的状况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地域中有20个特大型销售点,要从中抽取7个检查其收入和售后服务等状况,记这项检查为②则达成①、②这两项检查宜采纳的抽样方法挨次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法6.设函数f(x)x2bx c,x0,若f(4)f(0),f(2)2,则对于x的方程2,x0.f(x)x解的个数为()A.1B.2C.3D.47.设a0,b0,则以下不等式中不恒成立的是()....A.(a b)(11)4B.a3b32ab2a bC.a2b222a2b D.|ab|a b8.数列a n中,a116,n N*,则lim(a1a2a n),a n a n1n1()55x n2B.214A.7C.D.54259.会合U{(x,y)|x R,yR},A{(x,y)|2x ym0},B{(x,y)|x y n0},那么点P(2,3)A(C U B)的充要条件是()A.m1,n5B.m1,n5C.m1,n5D.m1,n510.从正方体的八个点中任取三个点点作三角形,此中直角三角形的个数()A.56B.52C.48D.4011.民收入由工性收入和其余收入两部分组成2003年某地域民人均收入3150元(其中工性收入1800元,其余收入1350元),地域自2019年起的5年内,民的工性收入将以每年6%的年增率增,其余收入每年增添160元依据以上数据,2008年地域民人均收入介于()A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元12.f(x),g(x)分是定在R上的奇函数和偶函数,当x0,f(x)g(x) f(x)g(x)0,且g(3)0,不等式f(x)g(x)0的解集是()A.(3,0)(3,)B.(3,0)(0,3)C.(,3)(3,)D.(,3)(0,3)第Ⅱ卷(非共90分)二、填空:本大共4小,每小4分,共16分,把答案填在中横上13.已知向量a=(cos,sin),向量b=(3,1),|2a-的最大是.b|14.同抛物两枚同样的平均硬,随机量ξ=1表示果中有正面向上,ξ=0表示果中没有正面向上,Eξ=.15.若(x31)n的睁开式中的常数84,n=.x x16.F是x2y21的右焦点,且上起码有21个不一样的点P(i=1,2,3,⋯),76i使|FP1|,|FP2|,|FP3|,⋯成公差d的等差数列,d的取范.三、解答题:本大题共6小题,共74分.解答应写出必需的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知sin(2)sin(2)1,(,),求2sin2tancot1的值.4444218.(本小题满分12分)甲、乙、丙三台机床各自独立地加工同一种部件,已知甲机床加工的部件是一等品而乙机床加工的部件不是一等品的概率为1,乙机床加工的部件是一等品而丙机床加工的部件不142是一等品的概率为,甲、丙两台机床加工的部件都是一等品的概率为.129(Ⅰ)分别求甲、乙、丙三台机床各自加工部件是一等品的概率;(Ⅱ)从甲、乙、丙加工的部件中各取一个查验,求起码有一个一等品的概率.19.(本小题满分12分)如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=2a,(点E在PD上,且PE:ED=2:1.I)证明PA⊥平面ABCD;(II)求以AC为棱,EAC与DAC为面的二面角的大小;(Ⅲ)在棱PC上能否存在一点F,使BF//平面AEC?证明你的结论.PEA DB C20.(本小分12分)已知函数f( x x 2e ax ,此中 a 0, e 自然数的底数.)(Ⅰ)函数 f(x)的性;(Ⅱ)求函数f(x)在区[0,1]上的最大.21.(本小分12分)如,抛物x 2 =4y 的称上任一点P (0,m )(m>0)作直与抛物交于A ,B 两点,点Q 是点P 对于原点的称点.(I )点P 分有向段AB 所成的比,明:QP(QAQB);II )直AB 的方程是x-2y+12=0,A 、B 两点的C 与抛物在点A 有共同的切,求C 的方程.22.(本小分14分)如,直l 1:ykx1k(k0,k 1)与l 2 :y1x 1 订交于点P.直l 1与x222交于点P 1,点P 1作x 的垂交直 l 2于点Q 1,点Q 1作y 的垂交直 l 1于点P 2,点P 2作x 的垂交直l 2于点Q 2,⋯,向来作下去,可获得一系列点 P 1、Q 1、P 2、Q 2,⋯,点P n (n=1,2,⋯)的横坐组成数列x n .(Ⅰ)明x n111(x n 1),nN*;(Ⅱ)求数列x n2k的通公式;(Ⅲ)比2|PP n|2与4k 2|PP 1|25的大小.2019年一般高等学校招生湖南卷理工农医类数学试题参照答案13.414.15.916.[1 ,0) (0, 1 ]101017.解:由sin(2)sin(2 )sin(2 ) cos(2)444 414 ) 11sin( 2 cos4,22 4得cos41. 又(,),因此 5.24 212222cos2于是2tan cot1cos2sincos2sinsincos2sin2cos(cos2 2cot2 )(cos 55 ) 3 2 3) 5 3.2cot ( 26 6 2 18.解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的部件是一等品的事件.P(A B) 1P(A) (1 P(B))1, ,①44由题设条件有P(B C)1 ,即P(B) (1 P(C))1, ②1212P(AC) 2.P(A)P(C)2.③99由①、③得P(B)19P(C)代入②得27[P(C)]2-51P(C)+22=0.8解得P(C) 2或11 (舍去).2 391,P(B)1.将P(C)分别代入 ③、②可得P(A)334即甲、乙、丙三台机床各加工的部件是一等品的概率分别是1,1,2.3 4 3(Ⅱ)记D 为从甲、乙、丙加工的部件中各取一个查验,起码有一个一等品的事件,则P(D) 1P(D) 1 (1 P(A))(1 P(B))(1P(C))12 3 1 5.3 4 36 故从甲、乙、丙加工的部件中各取一个查验,起码有一个一等品的概率为5.619.(Ⅰ)证明 由于底面 ABCD 是菱形,∠ABC=60°,因此AB=AD=AC= a , 在△PAB 中,2222知PA ⊥AB. 由PA+AB=2a=PB同理,PA ⊥AD ,因此PA ⊥平面ABCD.(Ⅱ)解 作EG//PA 交AD 于G ,由PA ⊥平面ABCD.知EG ⊥平面ABCD.作GH ⊥AC 于H ,连接EH , 则EH ⊥AC ,∠EHG 即为二面角的平面角.BPE A G DHC又PE:ED=2:1,因此EG1a,AG2a,GHAGsin603a.3 33进而tanEG 3, 30.GH3(Ⅲ)解法一 以A 为坐标原点,直线 AD 、AP 分别为y 轴、z 轴,过A 点垂直平面PAD 的直线为x 轴,成立空间直角坐标系如图.由题设条件,有关各点的坐标分别为31 3 1 a,0).zA(0,0,0),B(a,a,0),C(a,2222PD(0,a,0),P(0,0,a),E(0,2 1a, a).3 3因此AE(0,2a,1a),AC(3a,1a,0). FE3 32 2AP(0,0,a),PC ( 3a,1a, a).AD2 2ByBP(31x Ca,a,a).22设点F 是棱PC 上的点,PFPC3 a 1, a ),此中0 1,则( , a 2 2BF BP PF ( 3 1 a,a) ( 3 , 1 , a )2 a, a a2 2 23 a( 1), 1 ),a(1 )). 令BF 1AC2 AE 得( a(1 2 23a(1) 3a 1,11,221a(1)1a12a 2, 即114 2,2233a(1)1a 2.11 2.33解得1, 11, 23.即1时,BF1AC3AE.222222亦即,F 是PC 的中点时, BF 、AC 、AE 共面.又BF 平面AEC ,因此当F 是棱PC 的中点时,BF//平面AEC.解法二 当F 是棱PC 的中点时,BF//平面AEC ,证明以下, 证法一 取PE 的中点M ,连接FM ,则FM//CE. ① 由EM1PEED, 知E 是MD 的中点.P2M连接BM 、BD ,设BD AC=O ,则O 为BD 的中点.因此 BM//OE. ②FE由①、②知,平面 BFM//平面AEC.又BF 平面BFM ,因此BF//平面AEC. 证法二AD由于1 1 DP)BOCBFBCCPAD(CD22AD1CD3DEAD1(ADAC)3(AEAD)2 2223 1AE AC.22因此BF 、AE 、AC 共面.又BF 平面ABC ,进而BF//平面AEC.20.解:(Ⅰ)f(x)x(ax2)e ax .(i )当a=0 时,令 f(x) 0,得x 0.若x 0,则f (x) 0,进而f (x)在(0, )上单一递加; 若x0,则f (x)0,进而f (x)在(,0)上单一递减.(ii )当a<0时,令f(x) 0,得x(ax2)0,故x0或x2. 若x 0,则f (x) 0,进而f(x)在(,0)上单一递减;a若0x2 ,则f (x)0,进而f(x)在(0, 2)上单一递加;aa若x2,则f(x)0,进而f(x)在(2, )上单一递减.aa(Ⅱ)(i )当a=0时,f(x)在区间[0,1]上的最大值是 f(1) 1.( )当2 a 0 时,f(x)在区间, 上的最大值是f(1)e aii[01].(iii )当a2时,f(x)在区间[0,1]上的最大值是f(2 ) 4 .aa 2e 2 x 221.解:(Ⅰ)依题意,可设直线 AB 的方程为ykxm,代入抛物线方程4y 得x 2 4kx4m0.①设A 、B 两点的坐标分别是 (x 1,y 1)、(x 2,y 2),则x 1、x 2是方程①的两根.因此 x 1x 2 4m.由点P (0,m )分有向线段AB 所成的比为 ,得x1x 20,即x1.1x 2又点Q 是点P 对于原点的对称点,故点Q 的坐标是(0,-m ),进而QP (0,2m).QA QB(x 1,y 1m) (x 2,y 2 m)(x 1 x 2,y 1y 2(1 )m).QP(QAQB)2m[y 1y 2(1)m]2m[x 12x 1 x 22 (1 x 1)n] 2m(x 1x 2) x 1x 2 4m4x 2 4x 24x 22m(x 1x 2)4m4m4x 2 0.因此QP(QA QB). x 2y 120,(Ⅱ)由 2得点A 、B 的坐标分别是(6,9)、(-4,4).x 4y,由x 2y得y1x 2,y1x,4 2因此抛物线x24y在点A处切线的斜率为y x63设圆C的方程是(xa)2(yb)2r2,b91,则a b3(a6)2(b9)2(a解之得a3,b23,r2223)2因此圆C的方程是(x即x2y223x23y724)2(b4)2.(a4)2(b4)2125.2(y2321252),0.2。

2018-2019年湖南高中理科数学高考精品试卷含答案

2018-2019年湖南高中理科数学高考精品试卷含答案

2018-2019年湖南高中理科数学高考精品试卷含答案解析(时间:60分钟 满分100分)班级__________ ___________ 学号___________注意事项:本试卷分选择题和非选择题,满分120分,考试时间120分钟。

一、选择题(每小题5分,共50分)1.设x ,y 是两个实数,则“x ,y 中至少有一个数大于1”是“x 2+y 2>2”成立的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件【答案解析】D【详解】若x ,y 中至少有一个数大于1(如x=1.1,y=0.1),则x 2+y 2>2不成立 若x 2+y 2>2(如x=-2,y=-2)则x ,y 中至少有一个数大于1不成立所以“x ,y 中至少有一个数大于1”是“x 2+y 2>2”成立的既非充分又非必要条件 2.函数的图像大致是A B C D【答案解析】A3.设等差数列的前项和为,且满足,,对任意正整数,都有,则的值为( )A .1006B .1007C .1008D .1009【答案解析】C4.计算的结果为( )A.B. C. D.【答案解析】B5.已知非零向量,,满足,,若对每个确定的,的最大值和最小值分别为,,则的值()A.随增大而大 B.随增大小而变小C.等于2 D.等于4【答案解析】D6.已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.-B.C.D.【答案解析】B【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========7.曲线x=|y﹣1|与y=2x﹣5围成封闭区域(含边界)为Ω,直线y=3x+b与区域Ω有公共点,则b的最小值为()A.1 B.﹣1 C.﹣7 D.﹣11【答案解析】D【分析】由约束条件画出平面区域,由y=3x+b得y=3x+B,然后平移直线,利用z的几何意义确定目标函数的最小值即可.【解答】解:x=|y﹣1|与y=2x﹣5围成的平面区域如图,由,解得A(6,7)由y=3x+b,平移直线y=3x+b,则由图象可知当直线经过点A时,直线y=3x+b的截距最小,此时b最小.∴b=﹣3x+y的最小值为﹣18+7=﹣11.故选:D.8.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90°B.60°C.45°D.30°【答案解析】C如图,当平面BAC⊥平面DAC时,三棱锥体积最大取AC的中点E,则BE⊥平面DAC,故直线BD和平面ABC所成的角为∠DBE,∴∠DBE=.故选C.9.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6,在x=﹣4时,v2的值为()A.﹣4 B.1 C.17 D.22【答案解析】D【考点】秦九韶算法.【分析】先将多项式改写成如下形式:f(x)=(((((x)x+6)x)x+9)x)x+208,将x=﹣4代入并依次计算v0,v1,v2的值,即可得到答案.【解答】解:∵f(x)=208+9x2+6x4+x6=(((((x)x+6)x)x+9)x)x+208,当x=﹣4时,v0=1,v1=1×(﹣4)=﹣4,v2=﹣4×(﹣4)+6=2210.过点A(1,2)且与原点距离最大的直线方程为()A.2x+y﹣4=0 B.x+2y﹣5=0 C.x+3y﹣7=0 D.3x+y﹣5=0【答案解析】B【分析】过点A(1,2)且与原点距离最大的直线与OA垂直,再用点斜式方程求解.【解答】解:根据题意得,当与直线OA垂直时距离最大,因直线OA的斜率为2,所以所求直线斜率为﹣,所以由点斜式方程得:y﹣2=﹣(x﹣1),化简得:x+2y﹣5=0,故选:B二.填空题:(每小题5分,共25分)1.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为.【答案解析】﹣=1【考点】圆锥曲线的轨迹问题.【分析】利用点差法求出直线AB的斜率,再根据F(3,0)是E的焦点,过F的直线l 与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),可建立方程组,从而可求双曲线的方程.【解答】解:由题意,不妨设双曲线的方程为∵F(3,0)是E的焦点,∴c=3,∴a2+b2=9.设A(x1,y1),B(x2,y2)则有:①;②由①﹣②得:=∵AB的中点为N(﹣12,﹣15),∴又AB的斜率是∴,即4b2=5a2将4b2=5a2代入a2+b2=9,可得a2=4,b2=5∴双曲线标准方程是故答案为:2.一物体在力F(x)=,(单位:N)的作用下沿与力F相同的方向,从x=0处运动到x=4(单位:m)处,则力F(x)做的功为焦.【分析】本题是一个求变力做功的问题,可以利用积分求解,由题意,其积分区间是[0,1],被积函数是力的函数表达式,由积分公式进行计算即可得到答案【解答】解:W===36.故答案为:363.若x10-x5=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a5=.【答案解析】251【分析】根据x10﹣x5=[(x﹣1)+1]10﹣[(x﹣1)+1]5,利用二项式展开式的通项公式,求得a5的值.【解答】解:∵x10﹣x5=[(x﹣1)+1]10﹣[(x﹣1)+1]5,﹣=251,∴a5=故答案为:2514.取一根长度为3米的绳子,拉直后在任意位置剪断,则剪出的两段的长都不小于1米(记为事件A)的概率为【答案解析】试题分析:记“两段的长都不小于1m”为事件A,则只能在中间1m的绳子上剪断,剪得两段的长都不小于1m,所以事件A发生的概率 P(A)=5.如图1是某高三学生进入高中﹣二年来的数学考试成绩茎叶图,第1次到第 14次.考试成绩依次记为A1,A2,…,A14.如图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是.【分析】该程序的作用是累加12次考试成绩超过90分的人数,由此利用茎叶图能求出结果.【解答】解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知:该程序的作用是累加12次考试成绩超过90分的人数; 根据茎叶图的含义可得超过90分的人数为10个. 故答案为:10三、解答题(共25分)1.已知四棱锥P ﹣ABCD 的底面ABCD 为直角梯形,AB ∥CD ,∠DAB=90°,PA ⊥底面ABCD ,且PA=AD=DC=AB=1,M 是PB 的中点.(1)求异面直线AC 与PB 所成的角的余弦值; (2)求直线BC 与平面ACM 所成角的正弦值.【答案解析】【分析】(1)建立空间直角坐标系,利用空间向量的数量积,求AC 与PB 所成的角的余弦值,(2)设=(x ,y ,z )为平面的ACM 的一个法向量,求出法向量,利用空间向量的数量积,直线BC 与平面ACM 所成角的正弦值.【解答】解:(1)以A 为坐标原点,分别以AD 、AB 、AP 为x 、y 、z 轴,建立空间直角坐标系,则A (0,0,0),P (0,0,1),C (1,1,0),B (0,2,0),M (0,1,), 所以=(1,1,0),=(0,2,﹣1),||=,||=,=2,cos(,)==,(2)=(1,﹣1,0),=(1,1,0),=(0,1,),设=(x,y,z)为平面的ACM的一个法向量,则,即,令x=1,则y=﹣1,z=2,所以=(1,﹣1,2),则cos<,>===,设直线BC与平面ACM所成的角为α,则sinα=sin[﹣<,>]=cos<,>=2.(1)已知圆(x+2)2+y2=1过椭圆C的一个顶点和焦点,求椭圆C标准方程.(2)已知椭圆的离心率为,求k的值.【答案解析】解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.考点:椭圆的简单性质.专题:计算题;方程思想;分类法;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求出圆与x轴的交点,可得椭圆的一个焦点和一个顶点,再由a,b,c的关系可得椭圆方程;(2)讨论焦点在x,y轴上,求得a,b,c,e,解方程可得k的值.解答:解:(1)圆(x+2)2+y2=1与x轴的交点为(﹣1,0),(﹣3,0),由题意可得椭圆的一个焦点为(﹣1,0),一个顶点为(﹣3,0),设椭圆方程为+=1(a>b>0),可得a=3,c=1,b==2,即有椭圆的方程为+=1;(2)当焦点在x轴上时,椭圆+=1的a2=8+k,b2=9,c2=k﹣1,e2===,解得k=4;当焦点在y轴上时,椭圆+=1的b2=8+k,a2=9,c2=1﹣k,e2===,解得k=﹣.综上可得k=4或﹣.。

2019高考数学(理)试题精校精析(湖南卷)(纯word书稿)

2019高考数学(理)试题精校精析(湖南卷)(纯word书稿)

2019高考数学(理)试题精校精析(湖南卷)(纯word书稿)1、[2018·湖南卷] 设集合M={-1,0,1},N={x|x2≤x},那么M∩N=( )A、{0}B、{0,1}C、{-1,1}D、{-1,0,1}1、B [解析] 此题考查集合的运算,意在考查考生对集合交集的简单运算、解得集合N={ x|0≤x≤1},直接运算得M∩N={0,1}、A、假设α≠π4,那么tanα≠1B、假设α=π4,那么tanα≠1C、假设tanα≠1,那么α≠π4D、假设tanα≠1,那么α=π42、C[解析]此题考查命题的逆否命题,意在考查考生对命题的逆否命题的掌握,是基础题;解题思路:根据定义,原命题:假设p那么q,逆否命题:假设綈q那么綈p,从而求解、命题“假设α=π4,那么tanα=1”的逆否命题是“假设tanα≠1,那么α≠π4”,应选C.[易错点]此题易错一:对四种命题的概念不清,导致乱选;易错二:把命题的逆否命题与命题的否定混淆、3、[2018·湖南卷]某几何体的正视图和侧视图均如图1-1所示,那么该几何体的俯视图不可能...是()图1-1图1-23、D[解析]此题考查三视图,意在考查考生三视图的辨析,以及对三视图的理解和掌握、是基础题型.选项A,B,C,都有可能,选项D的正视图应该有看不见的虚线,故D项是不可能的、[易错点]此题由于对三视图的不了解,易错选C,三视图中看不见的棱应该用虚线标出、4、[2018·湖南卷]设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y^=0.85x-85.71,那么以下结论中不.正确的选项是......()A、y与x具有正的线性相关关系B、回归直线过样本点的中心(x,y)C、假设该大学某女生身高增加1cm,那么其体重约增加0.85kgD、假设该大学某女生身高为170cm,那么可断定其体重必为58.79kg4、D[解析]此题考查线性回归方程的特征与性质,意在考查考生对线性回归方程的了解,解题思路:A,B,C均正确,是回归方程的性质,D项是错误的,线性回归方程只能预测学生的体重、选项D应改为“假设该大学某女生身高为170cm ,那么估计其体重大约为58.79kg ”、[易错点]此题易错一:对线性回归方程不了解,无法得出答案;易错二:对回归系数b 不了解,错选C ;易错三:线性回归方程有预测的作用,得出的结果不是准确结果,误以为D 项是对的、5、[2018·湖南卷]双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,那么C 的方程为()A.x 220-y 25=1B.x 25-y 220=1C.x 280-y 220=1D.x 220-y 280=15、A[解析]此题考查双曲线方程和渐近线方程,意在考查考生对双曲线方程和其性质的掌握;解题思路:首先由a ,b ,c 的关系,排除C ,D ,再由渐近线方程得答案A.由可得双曲线的焦距2c =10,a 2+b 2=52=25,排除C ,D ,又由渐近线求得为y =12x =b a x ,得12=ba ,解得a 2=20,b 2=5,所以选A.[易错点]此题易错一:对双曲线的几何性质不清,错以为c =10,错选C ;易错二:渐近线求解错误,错解成12=ab ,从而错选B.6、[2018·湖南卷]函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为()A 、[-2,2]B 、[-3,3]C 、[-1,1]D.⎣⎢⎡⎦⎥⎤-32,326、B[解析]考查三角函数化简求值,关键是三角函数的化简,三角公式的识记、函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6=32sin x -32cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为[-3,3],应选B.7、[2018·湖南卷]在△ABC 中,AB =2,AC =3,AB →·BC →=1,那么BC =() A.3B.7C 、22D.237、A[解析]考查向量的数量积运算和解三角形,主要是余弦定理的运用,是此题的关键、由AB →·BC →=1可得2||BC cos(180°-B )=1,即2|BC |cos B =-1,又由三角形的余弦定理可得32=||BC 2+22-2×2||BC cos B ,把2||BC cos B =-1代入,解得9=||BC 2+4+2,即||BC =3,应选A.8、[2018·湖南卷]两条直线l 1:y =m 和l 2:y =82m +1(m >0),l 1与函数y=|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba 的最小值为()A 、162B 、8 2C 、834D 、4348、B[解析]考查函数的图象变换均值不等式和对数方程,以及数形结合和函数与方程思想,综合程度高,难度也较大,关键是转化为关于m 的代数式最值问题、线段AC 和BD 在x 轴上的投影长度分别为a ,b ,由可求出ABCD 四点的横坐标得a =|x A -x C |=⎪⎪⎪⎪⎪⎪2-m -2-82m +1,b =|x B -x D |=⎪⎪⎪⎪⎪⎪2m -282m +1, 所以b a =⎪⎪⎪⎪⎪⎪2m -282m +1⎪⎪⎪⎪⎪⎪2-m -2-82m +1=2m +82m +1,令t =m +82m +1=⎝ ⎛⎭⎪⎫m +12+4m +12-12≥2⎝ ⎛⎭⎪⎫m +124m +12-12=4-12, b a =2m +82m +1≥24-12=82,所以最小值为8 2.9、[2018·湖南卷]在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎨⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,那么a =________.9.32[解析]考查直线与椭圆的参数方程,此类问题的常规解法是把参数方程转化为普通方程求解,此题的关键是,得出两曲线在x 轴上的一个公共点,即为曲线C 1与x 轴的交点,化难为易、曲线C 1:⎩⎨⎧x =t +1,y =1-2t(t 为参数)的普通方程是2x +y -3=0,曲线C 2的普通方程是x 2a 2+y 29=1,两曲线在x 轴上的一个公共点,即为曲线C 1与x 轴的交点⎝ ⎛⎭⎪⎫32,0,代入曲线C 2,得⎝ ⎛⎭⎪⎫322a 2+029=1,解得a =32.10、[2018·湖南卷]不等式|2x +1|-2|x -1|>0的解集为________、10.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >14[解析]考查解含绝对值不等式,此题的关键是转化为|2x +1|>2|x -1|,再两边平方,轻松求解、不等式转化为|2x +1|>2|x -1|,两边平方得(2x +1)2>4(x -1)2,化简得4x >1,解得x >14,故解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >14. 11、[2018·湖南卷]如图1-3,过点P 的直线与⊙O 相交于A ,B 两点、假设PA =1,AB =2,PO =3,那么⊙O 、11.6[解析]设圆的半径为r ,由圆的割线定理可得,PA ·PB =(PO -r )(PO +r ),把PA =1,PB =1+2=3,PO =3代入求解得3=9-r 2,∴r = 6.12、[2018·湖南卷]复数z =(3+i)2(i 为虚数单位),那么|z |=________. 12、10[解析]复数z =(3+i)2化简得,z =8+6i ,所以|z |=82+62=10.13、[2018·湖南卷]⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为________、(用数字作答)13、-160[解析]由二项式的通项公式得T r +1=C r 6(2x )6-r⎝⎛⎭⎪⎫-1x r =(-1)r 26-r C r6x 3-r ,令3-r =0,∴r =3,所以常数项为T 4=(-1)326-3C 36=-160.14、[2018·湖南卷]如果执行如图1-4所示的程序框图,输入x =-1,n =3,那么输出的数S =________.图1-414、-4[解析]考查程序框图和数列的求和,考查考生的当型循环结构,关键是处理好循环次数,不要多加情况,或者少算次数、解决此类型试题,最好按循环依次写出结果、当i =2时S =-3,当i =1时S =5,当i =0时S =-4,当i =-1时,不满足条件,退出循环,输出结果S =-4.15、[2018·湖南卷]函数f (x )=sin(ωx +φ)的导函数y =f ′(x )的部分图象如图1-5所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点、(1)假设φ=π6,点P 的坐标为⎝ ⎛⎭⎪⎫0,332,那么ω=________;(2)假设在曲线段ABC 与x 轴所围成的区域内随机取一点,那么该点在△ABC 内的概率为________、15、(1)3(2)π4[解析]考查三角函数f (x )=sin(ωx +φ)的图象与解析式,结合导数和几何概型,在陈题上有了不少的创新、作为填空题,第二问可在第一问的特殊情况下求解、(1)函数f (x )=sin(ωx +φ)求导得,f ′(x )=ωcos(ωx +φ),把φ=π6和点⎝ ⎛⎭⎪⎫0,332代入得ωcos ⎝ ⎛⎭⎪⎫0+π6=332解得ω=3.(2)取特殊情况,在(1)的条件下,导函数f ′(x )=3cos ⎝ ⎛⎭⎪⎫3x +π6,求得A ⎝ ⎛⎭⎪⎫π9,0,B ⎝ ⎛⎭⎪⎫5π18,-3,C ⎝ ⎛⎭⎪⎫4π9,0,故△ABC 的面积为S △ABC =12×3π9×3=π2,曲线段与x 轴所围成的区域的面积S =-⎪⎪f x 4π9π9=-sin ⎝ ⎛⎭⎪⎫4π3+π6+sin ⎝ ⎛⎭⎪⎫3π9+π6=2,所以该点在△ABC 内的概率为P =S △ABC S =π4.16、M1[2018·湖南卷]设N =2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N .将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前N 2和后N2个位置,得到排列P 1=x 1x 3…x N -1x 2x 4…x N ,将此操作称为C 变换、将P 1分成两段,每段N2个数,并对每段作C 变换,得到P 2;当2≤i ≤n -2时,将P i 分成2i段,每段N2i 个数,并对每段作C 变换,得到P i +1.例如,当N =8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置、(1)当N =16时,x 7位于P 2中的第________个位置;(2)当N =2n (n ≥8)时,x 173位于P 4中的第________个位置、16、(1)6(2)3×2n -4+11[解析]考查合情推理,以新定义题型为载体,依据排列,考查考生的逻辑推理能力,要求学生的想象能力相当出色、(1)由可得P1=x1x3x5x7x9x11x13x15…,P2=x1x5x9x13x3x7x11x15…,故x7位于P2中的第6个位置;(2)当i=1时,P1的排列中x173的位置是173+12=87位;当i=2时,P2的排列中x173的位置是87+12=44位;当i=3时,P3的排列中x173的位置是2n-22+442=2n-3+22位;当i=4时,P4的排列中x173的位置是2n-3+2n-3+222=2n-3+2n-4+11=3×2n-4+11位、17、K5、K6[2018·湖南卷]某超市为了解顾客的购物量及结算时间等信息,(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)假设某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率、(注:将频率视为概率)17、解:(1)由得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.XXE(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,那么P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1)、由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为9 80.18、G5、G10、G11[2018·湖南卷]如图1-6,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点、(1)证明:CD⊥平面PAE;(2)假设直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积、18、解:解法1:(1)如下图(1),连结AC.由AB=4,BC=3,∠ABC=90°得AC=5.又AD=5,E是CD的中点,所以CD⊥AE.因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD.而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(2)过点B作BG∥CD,分别与AE、AD相交于点F,G,连结PF.由(1)CD⊥平面PAE知,BG⊥平面PAE.于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA为直线PB与平面ABCD所成的角、由题意∠PBA=∠BPF,因为sin∠PBA=PAPB,sin∠BPF=BFPB,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD,所以四边形BCDG是平行四边形、故GD=BC=3. 于是AG=2.在Rt△BAG中,AB=4,AG=2,BG⊥AF,所以BG=AB2+AG2=25,BF=AB2BG=1625=855.于是PA=BF=85 5.又梯形ABCD的面积为S=12×(5+3)×4=16,所以四棱锥P-ABCD的体积为V=13×S×PA=13×16×855=128515.解法2:如上图(2)x 轴,y 轴,z 轴建立空间直角坐标系、设PA =h ,那么相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h )、(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h )、 因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD →,PA →分别是平面PAE ,平面ABCD 的法向量、而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|.由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.19、D2、D3、M2[2018·湖南卷]数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)假设a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列、19、解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列、 于是a n =1+(n -1)×4=4n -3.(2)①必要性:假设数列{a n }是公比为q 的等比数列,那么对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是B n A n =a 2+a 3+…+a n +1a 1+a 2+…+a n =q a 1+a 2+…+a na 1+a 2+…+a n =q , C n B n =a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q a 2+a 3+…+a n +1a 2+a 3+…+a n +1=q ,即B n A n =C nB n =q .所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列、②充分性:假设对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,那么B (n )=qA (n ),C (n )=qB (n )、于是C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1.由n =1有B (1)=qA (1),即a 2=qa 1, 从而a n +2-qa n +1=0.因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列、综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列、20、B14[2018·湖南卷]某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件)、每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件、该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数)、(1)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案、20、解:(1)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为T 1(x ),T 2(x ),T 3(x ),由题设有T 1(x )=2×30006x =1000x ,T 2(x )=2000kx , T 3(x )=1500200-1+k x ,其中x ,kx,200-(1+k )x 均为1到200之间的正整数、(2)完成订单任务的时间为f (x )=max{T 1(x ),T 2(x ),T 3(x )},其定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <2001+k ,x ∈N *.易知,T 1(x ),T 2(x )为减函数,T 3(x )为增函数、注意到T 2(x )=2k T 1(x ),于是①当k =2时,T 1(x )=T 2(x ),此时f (x )=max{T 1(x ),T 3(x )}=max ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1000x ,1500200-3x .由函数T 1(x ),T 3(x )的单调性知,当1000x =1500200-3x 时f (x )取得最小值,解得x =4009.由于44<4009<45,而f (44)=T 1(44)=25011,f (45)=T 3(45)=30013,f (44)<f (45)、故当x =44时完成订单任务的时间最短,且最短时间为f (44)=25011.②当k >2时,T 1(x )>T 2(x ),由于k 为正整数,故k ≥3,此时1500200-1+k x ≥1500200-1+3x =37550-x .记T (x )=37550-x ,φ(x )=max{T 1(x ),T (x )},易知T (x )是增函数,那么f (x )=max{T 1(x ),T 3(x )}≥max{T 1(x ),T (x )}=φ(x )=max ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1000x ,37550-x . 由函数T 1(x ),T (x )的单调性知,当1000x =37550-x 时φ(x )取最小值,解得x =40011.由于36<40011<37,而φ(36)=T 1(36)=2509>25011,φ(37)=T (37)=37513>25011.此时完成订单任务的最短时间大于25011.③当k <2时,T 1(x )<T 2(x ),由于k 为正整数,故k =1,此时f (x )=max{T 2(x ),T 3(x )}=max ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2000x ,750100-x . 由函数T 2(x ),T 3(x )的单调性知,当2000x =750100-x 时f (x )取最小值,解得x =80011,类似(1)的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当k =2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68.21、H7、H8、H10[2018·湖南卷]在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值、(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值、21、解:(1)解法1:设M 的坐标为(x ,y ),由得|x +2|=x -52+y 2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以x -52+y 2=x +5.化简得曲线C 1的方程为y 2=20x .解法2:由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离、因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线、故其方程为y 2=20x .(2)证明:当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,那么过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,那么k 1,k 2是方程①的两个实根、故k 1+k 2=-18y 072=-y 04.②由⎩⎨⎧k 1x -y +y 0+4k 1=0,y 2=20x得k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,那么y 1,y 2是方程③的两个实根,所以y 1y 2=20y 0+4k 1k 1.④同理可得y 3y 4=20y 0+4k 2k 2.⑤于是由②,④,⑤三式得y 1y 2y 3y 4=400y 0+4k 1y 0+4k 2k 1k 2=400[y 20+4k 1+k 2y 0+16k 1k 2]k 1k 2=400y 20-y 20+16k 1k 2k 1k 2=6400. 所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.22、B14[2018·湖南卷]函数f (x )=e ax -x ,其中a ≠0. (1)假设对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合;(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2))(x 1<x 2),记直线AB 的斜率为k .问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?假设存在,求x 0的取值范围;假设不存在,请说明理由、22、解:(1)假设a <0,那么对一切x >0,f (x )=e ax -x <1, 这与题设矛盾、又a ≠0,故a >0.而f ′(x )=a e ax-1,令f ′(x )=0得x =1a ln 1a .当x <1a ln 1a 时,f ′(x )<0,f (x )单调递减;当x >1a ln 1a 时,f ′(x )>0,f (x )单调递增、故当x =1a ln 1a ,f (x )取最小值f ⎝ ⎛⎭⎪⎫1a ln 1a =1a -1a ln 1a .于是对一切x ∈R ,f (x )≥1恒成立,当且仅当 1a -1a ln 1a ≥1.①令g (t )=t -t ln t ,那么g ′(t )=-ln t .当0<t <1时,g ′(t )>0,g (t )单调递增;当t >1时,g ′(t )<0,g (t )单调递减、故当t =1时,g (t )取最大值g (1)=1.因此,当且仅当1a =1,即a =1时,①式成立、 综上所述,a 的取值集合为{1}、(2)由题意知,k =f x 2-f x 1x 2-x 1=e ax 2-e ax 1x 2-x 1-1. 令φ(x )=f ′(x )-k =a e ax-e ax 2-e ax 1x 2-x 1.那么φ(x 1)=-e ax 1x 2-x 1[e a (x 2-x 1)-a (x 2-x 1)-1],φ(x 2)=e ax 2x 2-x 1[e a (x 1-x 2)-a (x 1-x 2)-1]、 令F (t )=e t -t -1,那么F ′(t )=e t -1. 当t <0时,F ′(t )<0,F (t )单调递减; 当t >0时,F ′(t )>0,F (t )单调递增、故当t ≠0时,F (t )>F (0)=0,即e t -t -1>0. 从而e a (x 2-x 1)-a (x 2-x 1)-1>0, e a (x 1-x 2)-a (x 1-x 2)-1>0, 又e ax 1x 2-x 1>0,e ax 2x 2-x 1>0, 所以φ(x 1)<0,φ(x 2)>0.因为函数y =φ(x )在区间[x 1,x 2]上的图象是连续不断的一条曲线,所以存在c ∈(x 1,x 2),使得φ(c )=0.又φ′(x )=a 2e ax >0,φ(x )单调递增,故这样的c 是唯一的,且c =1a ln e ax 2-e ax 1a x 2-x 1.故当且仅当x ∈⎝ ⎛⎭⎪⎫1a ln e ax 2-e ax 1a x 2-x 1,x 2时,f ′(x )>k .综上所述,存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立,且x 0的取值范围为⎝ ⎛⎭⎪⎫1a ln e ax 2-e ax 1a x 2-x 1,x 2.。

2019年湖南高考数学(理科)试题(word版)和答案详细解析及备考策略

2019年湖南高考数学(理科)试题(word版)和答案详细解析及备考策略

不要让关心成为孩子甜蜜负担北京市第三十五中学教师郝乐奇案例鑫新进入高三已三月有余。

除了日渐繁重的学习任务给她带来很大压力,父母也一直困扰着她。

自高三开始,父母每天都早起为她准备营养早餐;中午打电话提醒她吃好午饭、注意午休;晚上回到家,隔一会儿就往她屋里端水果和夜宵。

鑫新虽然理解父母的良苦用心,但家人的举动也让她感受到前所未有的压力。

分析很多父母在孩子步入高三后过度关心其状态:担心孩子的营养跟不上高强度的学习,购买各种保健品;担心孩子独自上下学浪费时间,想为他们争取更多休息的时间,自己起早贪黑承担接送工作;担心孩子功课复习不扎实,额外请老师补课等。

父母都希望在高三一年中成为合格的后勤保障工作者,让孩子在高考的跑道上安心冲刺。

殊不知,正是这些无微不至的关心和不同常态的变化,成了孩子甜蜜的负担,变为孩子的精神压力。

孩子害怕自己成绩不理想而辜负了父母的关爱。

建议父母的关爱是必不可少的,它是孩子前进中的重要动力和保障,但过犹不及。

如何在其中找到平衡?这就需要父母对自己的角色定位有更清晰的认识。

生涯路途的参谋者高三学习中,孩子不仅要提高现有的学习水平,更重要的是找到发展目标。

孩子在学校里参加社会实践的机会较少,对自我能力的判断、如何选择合适的专业等缺少客观性。

父母可给予孩子建议,共同探索感兴趣的专业、职业,分析其能力和素养需求及今后的发展路径。

父母也可给孩子讲述自己的职业生涯路程,分析工作中可能遇到的困难或机遇,帮助孩子思考、规划,为其日后的社会实践做准备。

学习历程的陪伴者父母都经历过学生时代,体验过失利时的挫败和收获时的欣喜。

面对孩子,父母除了感同身受,更多的是对孩子的担忧和关切。

但这不能是对孩子不分缘由的责怪和寸步不离的看守。

很多父母说起晚上的“陪读”经历都感觉“委屈”:明明牺牲了自己的休息时间,坐在旁边也没有对孩子指手画脚,还能起到监督效果,怎么就引起了孩子的反感呢?换个角度,在孩子看来,“陪读”是对其学习的干扰,更像变相监视。

2019年湖南理数高考试题文档版(含答案解析)

2019年湖南理数高考试题文档版(含答案解析)

绝密★启用前2019年普通高等学校招生全国统一考试(湖南卷)理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。

湖南省2019年高考理科数学试题及答案

湖南省2019年高考理科数学试题及答案

湖南省2019年高考理科数学试题及答案(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知集合}242{60{}M x x N x x x =-<<=--<,,则MN =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y += B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之 比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便 是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子 下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A +B .A =12A +C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题(本题共4小题,每小题5分,共20分。

2019年高考数学湖南(理科卷)(解析版)

2019年高考数学湖南(理科卷)(解析版)

2019年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。

参考公式:(1)()()()P AB P B A P A =,其中,A B 为两个事件,且()0P A >, (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高。

(3)球的体积公式343V R π=,其中R 为求的半径。

一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若,a b R ∈,i 为虚数单位,且()a i i b i +=+则A .1a =,1b = B. 1,1a b =-= C.1,1a b =-=- D. 1,1a b ==- 2.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的 A.充分不必要条件 B.必要不充分条件 C. 充分必要条件 D. 既不充分又不必要条件 3.设图1是某几何体的三视图,则该几何体的体积为A. 9122π+B. 9182π+C. 942π+D. 3618π+4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由()()()()()22n ad bc k a b c d a c b d -=++++算得,()22110403020207.860506050k ⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是A . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关”5.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A.4 B.3 C.2 D.1 6.由直线,,033x x y ππ=-==与曲线cos y x =所围成的封闭图形的面积为A.12B.1C.7.设m >1,在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数Z=x+my 的最大值小于2,则m 的取值范围为A.(1,1 B.(1+∞) C.(1,3 ) D.(3,+∞)8.设直线x=t 与函数2()f x x = ()ln g x x = 的图像分别交于点M,N,则当MN 达到最小时t 的值为A.1B. 12C. 2D. 2填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡...中对应号后的横线上。

湖南2019年高考理科数学试卷及答案-6页文档资料

湖南2019年高考理科数学试卷及答案-6页文档资料

湖南2019年高考理科数学试卷2019年普通高等学校招生全国统一考试数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}(二)必做题(12~16题)12.已知复数z=(3+i)2(i为虚数单位),则|z|=_____.13.的二项展开式中的常数项为。

(用数字作答)14.如果执行如图3所示的程序框图,输入x=-1,n=3,则输入的数S=(1)当N=16时,x7位于P2中的第___个位置;(2)当N=2n(n≥8)时,x173位于P4中的第___个位置。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。

已知这100位顾客中的一次购物量超过8件的顾客占55%。

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率。

(注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。

(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

19.(本小题满分12分)已知数列{an的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……。

1若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式。

2019年高考数学真题试卷 理科数学 (全国 III 卷) (含答案)

2019年高考数学真题试卷 理科数学 (全国 III 卷) (含答案)

2019年普通高等学校招生全国统一考试(全国III 卷)理科数学一、 选择题1.已知集合}1|{},2,1,0,1{2≤=-=x x B A ,则=⋂B A ( ) A. }1,0,1{- B. B.{0,1} C. C.}1,1{- D. D.}2,1,0{2.若i i z 2)1(=+,则=z ( )A.i --1B.i +-1C.i -1D.i +13.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.5.0 B.6.0 C.7.0 D.8.04.42)1)(21(x x ++的展开式中3x 的系数为( ) A.12 B.16 C.20 D.245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =() A. 16 B. 8 C. 4 D.26.已知曲线x x ae y xln +=在点)1(ae ,处的切线方程为b x y +=2,则( )A.e a =,1-=bB.e a =,1=bC.1-=e a ,1=bD.1-=e a ,1-=b7.函数3222x xx y -=+在[6,6]-的图像大致为( ) A.B.C.D.8.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面⊥ECD 平面ABCD ,M 是线段ED 的中点,则( )A.EN BM =,且直线EN BM ,是相交直线B.EN BM ≠,且直线EN BM ,是相交直线C.EN BM =,且直线EN BM ,是异面直线D.EN BM ≠,且直线EN BM ,是异面直线9.执行右边的程序框图,如果输出ε为01.0,则输出s 的值等于( )A.4212-B.5212- C.6212-D.7212-10.双曲线C :22142x y -=的右焦点为F ,点P 为C 的一条渐近线的点,O 为坐标原点.若||||PO PF =则PFO ∆的面积为( )A: 324 B:322C: 22 D:3211.若()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A. 233231(log )(2)(2)4f f f -->> B. 233231(log )(2)(2)4f f f -->>C. 233231(2)(2)(log )4f f f -->>D.233231(2)(2)(log )4f f f -->>12.设函数()()sin 05f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[]02π,有且仅有5个零点,下述四个结论:○1()f x 在()0,2π有且仅有3个极大值点 ○2()f x 在()0,2π有且仅有2个极小值点 ○3()f x 在0,10π⎛⎫⎪⎝⎭单调递增 ○4ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是A. ○1○4B.○2○3C.○1○2○3D.○1○3○4 二.填空题13.已知a r ,b r 为单位向量,且0a b ⋅=r r,若2c a =r r ,则cos ,a c =r r.答案:23解析:∵()22222459c a a b b =-=+-⋅=r r r r r ,∴3c =r,∵()2222a c a a a b ⋅=⋅=⋅=r r r r r r ,∴22cos ,133a c a c a c ⋅===⨯⋅r rr r r r . 14.记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S S = . 15.设1F 、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________.16.学生到工厂劳动实践,利用3D 打印技术制作模型。

2019年全国统一高考数学试卷(理科)(新课标ⅲ)-解析版

2019年全国统一高考数学试卷(理科)(新课标ⅲ)-解析版

2019年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合{1A =-,0,1,2},2{|1}B x x = ,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}【解答】解:因为{1A =-,0,1,2},2{|1}{|11}B x x x x ==- ,所以{1A B =- ,0,1},故选:A .2.(5分)若(1)2z i i +=,则(z =)A .1i--B .1i-+C .1i -D .1i+【解答】解:由(1)2z i i +=,得22(1)12i i i z i -==+1i =+.故选:D .3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.8【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出韦恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:700.7100=.故选:C .4.(5分)24(12)(1)x x ++的展开式中3x 的系数为()A .12B .16C .20D .24【解答】解:24(12)(1)x x ++的展开式中3x 的系数为:3311133414311121112C C C C ⨯⨯⨯⨯+⨯⨯⨯⨯=.故选:A .5.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =)A .16B .8C .4D .2【解答】解:设等比数列{}n a 的公比为(0)q q >,则由前4项和为15,且53134a a a =+,有231111421111534a a q a q a q a q a q a ⎧+++=⎪⎨=+⎪⎩,∴112a q =⎧⎨=⎩,∴2324a ==,故选:C .6.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则()A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-【解答】解:x y ae xlnx =+的导数为1x y ae lnx '=++,由在点(1,)ae 处的切线方程为2y x b =+,可得102ae ++=,解得1a e -=,又切点为(1,1),可得12b =+,即1b =-,故选:D .7.(5分)函数3222x xx y -=+在[6-,6]的图象大致为()A .B .C .D .【解答】解:由32()22x x x y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则()A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线【解答】解: 点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,BM ∴⊂平面BDE ,EN ⊂平面BDE ,BM 是BDE ∆中DE 边上的中线,EN 是BDE ∆中BD 边上的中线,∴直线BM ,EN 是相交直线,设DE a =,则2BD a =,2235244BE a a a =+=,62BM a ∴=,223144EN a a a =+=,BM EN ∴≠,故选:B .9.(5分)执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于()A .4122-B .5122-C .6122-D .7122-【解答】解:第一次执行循环体后,1s =,12x =,不满足退出循环的条件0.01x <;再次执行循环体后,112s =+,212x =,不满足退出循环的条件0.01x <;再次执行循环体后,211122s =++,312x =,不满足退出循环的条件0.01x <;⋯由于610.012>,而710.012<,可得:当261111222s =++++⋯,712x =,此时,满足退出循环的条件0.01x <,输出2661111122222s =+++⋯=-.故选:C .10.(5分)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若||||PO PF =,则PFO ∆的面积为()A .4B .2C .D .【解答】解:双曲线22:142x y C -=的右焦点为F 0),渐近线方程为:y =,不妨P 在第一象限,可得2tan 2POF ∠=,P ,所以PFO ∆的面积为:1224=.故选:A .11.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则()A .233231(log )(2)(2)4f f f -->>B .233231(log (2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>【解答】解:()f x 是定义域为R 的偶函数∴331(log )(log 4)4f f =,33log 4log 31>= ,2303202221--<<<<=,23323022log 4--∴<<<()f x 在(0,)+∞上单调递减,∴233231(2)(2)()4f f f log -->>,故选:C .12.(5分)设函数()sin(0)5f x x πωω=+>,已知()f x 在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点②()f x 在(0,2)π有且仅有2个极小值点③()f x 在(0,)10π单调递增④ω的取值范围是12[5,29)10其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④【解答】解:当[0x ∈,2]π时,[55x ππω+∈,25ππω+,()f x 在[0,2]π有且仅有5个零点,5265πππωπ∴+< ,∴1229510ω<,故④正确,因此由选项可知只需判断③是否正确即可得到答案,下面判断③是否正确,当(0,10x π∈时,[55x ππω+∈,(2)]10ωπ+,若()f x 在(0,)10π单调递增,则(2)102ωππ+<,即3ω<,1229510ω<,故③正确.故选:D .二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)

2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)

2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)1.设集合A={x|x^2-5x+6>0},B={x|x-1<0},则A∩B=()A。

(-∞,1) B。

(-2,1) C。

(-3,-1) D。

(3,+∞)解析:将x^2-5x+6=0化为(x-2)(x-3)>0,得到x∈(-∞,2)∪(3,+∞),将x-1<0化为x<1,得到B={x|x<1},所以A∩B=(-∞,1)。

2.设z=-3+2i,则在复平面内对应的点位于()A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限解析:实部为-3,虚部为2,所以该点位于第二象限。

3.已知|z-3|=2,|z+(3+ti)|=1,则|z|=()A。

-3 B。

-2 C。

2 D。

3解析:将|z-3|=2化为|z-3|^2=4,得到(z-3)(z-3*)=4,其中z*为z的共轭复数,将|z+(3+ti)|=1化为|z+(3+ti)|^2=1,得到(z+(3+ti))(z*+(3-ti))=1,将z展开得到z=x+yi,代入两式,化简得到x^2+y^2-6x+4=0和x^2+(y+t)^2=4,联立两式,解得x=1,y=-2-t,代入|z|^2=x^2+y^2,得到|z|=2.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。

实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。

为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行。

L2点是平衡点,位于地月连线的延长线上。

设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1M2/(M1+M2)(R+r)^2=G(M1+M2)/r^2.设α=GM2/R^2,由于α的值很小,因此在近似计算中α≈3α^3,则r的近似值为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年湖南省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法3.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.4.(5分)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0 C.D.5.(5分)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.06.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.7.(5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1 B.C.D.8.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.10.(5分)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为.11.(5分)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.12.(5分)若x2dx=9,则常数T的值为.13.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为.15.(5分)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.16.(5分)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为.(2)若a,b,c是△ABC的三条边长,则下列结论正确的是.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.19.(12分)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.20.(13分)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N 的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x 轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.21.(13分)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(Ⅰ)若k1>0,k2>0,证明:;(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.22.(13分)已知a>0,函数.(Ⅰ)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(Ⅱ)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数z,根据复数与复平面内点的对应关系可得答案.【解答】解:z=i•(1+i)=﹣1+i,故复数z对应的点为(﹣1,1),在复平面的第二象限,故选:B.【点评】本题考查复数的代数表示法及其几何意义,属基础题.2.(5分)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:总体由男生和女生组成,比例为500:500=1:1,所抽取的比例也是1:1.故拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样法.故选:D.【点评】本小题主要考查抽样方法,属基本题.3.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.【分析】利用正弦定理可求得sinA,结合题意可求得角A.【解答】解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选:A.【点评】本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.4.(5分)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0 C.D.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x=,y=时,x+2y取得最大值为.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(﹣,﹣1),B(,),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点B时,目标函数z达到最大值=F(,)=∴z最大值故选:C.【点评】本题给出二元一次不等式组,求目标函数z的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.5.(5分)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.0【分析】本题考查的知识点是指数函数的图象,要求函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案.【解答】解:在同一坐标系下,画出函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象如图:由图可知,两个函数图象共有2个交点故选:B.【点评】求两个函数图象的交点个数,我们可以使用数形结合的思想,在同一坐标系中,做出两个函数的图象,分析图象后,即可等到答案.6.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.【分析】令,,,作出图象,根据图象可求出的最大值、最小值.【解答】解:令,,,如图所示:则,又,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时达到最值,最大值为+1,最小值为﹣1,所以的取值范围为[﹣1,+1].故选:A.【点评】本题考查平面向量的数量积运算,根据题意作出图象,数形结合是解决本题的有力工具.7.(5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1 B.C.D.【分析】求出满足条件的该正方体的正视图的面积的范围为即可得出.【解答】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选:C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.8.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.【分析】建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P的坐标,进而可得AP的值.【解答】解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k==,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=故选:D.【点评】本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为3.【分析】直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.【解答】解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.【点评】本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.10.(5分)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为12.【分析】根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化简得a2+4b2+9c2≥12,由此可得当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12.【解答】解:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=时等号成立由此可得:当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12故答案为:12【点评】本题给出等式a+2b+3c=6,求式子a2+4b2+9c2的最小值.着重考查了运用柯西不等式求最值与柯西不等式的等号成立的条件等知识,属于中档题.11.(5分)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.【分析】首先利用相交弦定理求出CD的长,再利用勾股定理求出圆心O到弦CD 的距离,注意计算的正确率.【解答】解:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为,则圆心O到弦CD的距离为d===.故答案为:.【点评】此题主要考查了相交弦定理,垂径定理,勾股定理等知识,题目有一定综合性,是中、高考题的热点问题.12.(5分)若x2dx=9,则常数T的值为3.【分析】利用微积分基本定理即可求得.【解答】解:==9,解得T=3,故答案为:3.【点评】本题考查定积分、微积分基本定理,属基础题.13.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为32.【分析】模拟执行程序,依次写出每次循环得到的a的值,当a=32时,满足条件a>31,退出循环,输出a的值为32.【解答】解:模拟执行程序,可得a=1,b=2不满足条件a>31,a=2不满足条件a>31,a=4不满足条件a>31,a=8不满足条件a>31,a=16不满足条件a>31,a=32满足条件a>31,退出循环,输出a的值为32.故答案为:32.【点评】本题主要考查了程序框图和算法,正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为.【分析】利用双曲线的定义求出|PF1|,|F1F2|,|PF2|,然后利用最小内角为30°结合余弦定理,求出双曲线的离心率.【解答】解:因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|+|PF2|=6a,不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|﹣|PF2|=2a所以|F1F2|=2c,|PF1|=4a,|PF2|=2a,∵△PF1F2的最小内角∠PF1F2=30°,由余弦定理,∴|PF2|2=|F1F2|2+|PF1|2﹣2|F1F2||PF1|cos∠PF1F2,即4a2=4c2+16a2﹣2×2c×4a×,∴c2﹣2ca+3a2=0,∴c=a所以e==.故答案为:.【点评】本题考查双曲线的定义,双曲线的离心率的求法,考查计算能力.15.(5分)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.【分析】(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.【解答】解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.【点评】本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.16.(5分)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为{x|0<x≤1} .(2)若a,b,c是△ABC的三条边长,则下列结论正确的是①②③.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.【分析】(1)由集合M中的元素满足的条件,得到c≥a+b=2a,求得的范围,解出函数f(x)=a x+b x﹣c x的零点,利用不等式可得零点x的取值集合;(2)对于①,把函数式f(x)=a x+b x﹣c x变形为,利用指数函数的单调性即可证得结论成立;对于②,利用取特值法说明命题是正确的;对于③,由△ABC为钝角三角形说明f(2)<0,又f(1)>0,由零点的存在性定理可得命题③正确.【解答】解:(1)因为c>a,由a,b,c不能构成一个三角形的三条边长得c≥a+b=2a,所以,则.令f(x)=a x+b x﹣c x=.得,所以.又∵>1,则ln>0,所以x=>0,所以0<x≤1.故答案为{x|0<x≤1};(2)①因为,又,所以对∀x∈(﹣∞,1),.所以命题①正确;②令x=﹣1,a=2,b=4,c=5.则a x=,b x=,c x=.不能构成一个三角形的三条边长.所以命题②正确;③若三角形为钝角三角形,则a2+b2﹣c2<0.f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0.所以∃x∈(1,2),使f(x)=0.所以命题③正确.故答案为①②③.【点评】本题考查了命题真假的判断与应用,考查了函数零点的判断方法,训练了特值化思想方法,解答此题的关键是对题意的正确理解,此题是中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.【分析】(1)利用两角和差的三角公式化简函数f(x)的解析式,可得f(α)的解析式,再根据f(α)=,求得cosα的值,从而求得g(α)=2sin2=1﹣cosα的值.(2)由不等式可得sin(x+)≥,解不等式2kπ+≤x+≤2kπ+,k ∈z,求得x的取值集合.【解答】解:(1)∵f(x)=sinx﹣cosx+cosx+sinx=sinx,所以f(α)=sinα=,所以sinα=.又α∈(0,),所以cosα=,所以g(α)=2sin2=1﹣cosα=.(2)由f(x)≥g(x)得sinx≥1﹣cosx,所以sinx+cosx=sin(x+)≥.解2kπ+≤x+≤2kπ+,k∈z,求得2kπ≤x≤2kπ+,k∈z,所以x的取值范围为〔2kπ,2kπ+〕k∈z.【点评】本题主要考查两角和差的三角公式、二倍角公式的应用,解三角不等式,正弦函数的图象及性质,属于中档题.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P (X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为数学期望为E(Y)=51×+48×+45×+42×=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.19.(12分)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.【分析】(I)根据直棱柱性质,得BB1⊥平面ABCD,从而AC⊥BB1,结合BB1∩BD=B,证出AC⊥平面BB1D,从而得到AC⊥B1D;(II)根据题意得AD∥B1C1,可得直线B1C1与平面ACD1所成的角即为直线AD与平面ACD1所成的角.连接A1D,利用线面垂直的性质与判定证出AD1⊥平面A1B1D,从而可得AD1⊥B1D.由AC⊥B1D,可得B1D⊥平面ACD1,从而得到∠ADB1与AD与平面ACD1所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△AB1D中算出B1D=,可得cos∠ADB1=,由此即可得出直线B1C1与平面ACD1所成的角的正弦值.【解答】解:(I)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵AC⊥BD,BB1、BD是平面BB1D内的相交直线∴AC⊥平面BB1D,∵B1D⊂平面BB1D,∴AC⊥B1D;(II)∵AD∥BC,B1C1∥BC,∴AD∥B1C1,由此可得:直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ),连接A1D,∵直棱柱ABCD﹣A1B1C1D1中,∠BAD=∠B1A1D1=90°,∴B1A1⊥平面A1D1DA,结合AD1⊂平面A1D1DA,得B1A1⊥AD1又∵AD=AA1=3,∴四边形A1D1DA是正方形,可得AD1⊥A1D∵B1A1、A1D是平面A1B1D内的相交直线,∴AD1⊥平面A1B1D,可得AD1⊥B1D,由(I)知AC⊥B1D,结合AD1∩AC=A可得B1D⊥平面ACD1,从而得到∠ADB1=90°﹣θ,∵在直角梯形ABCD中,AC⊥BD,∴∠BAC=∠ADB,从而得到Rt△ABC∽Rt△DAB 因此,,可得AB==连接AB1,可得△AB1D是直角三角形,∴B1D2=B1B2+BD2=B1B2+AB2+BD2=21,B1D=在Rt△AB1D中,cos∠ADB1===,即cos(90°﹣θ)=sinθ=,可得直线B1C1与平面ACD1所成的角的正弦值为.【点评】本题给出直四棱柱,求证异面直线垂直并求直线与平面所成角的正弦之值,着重考查了直四棱柱的性质、线面垂直的判定与性质和直线与平面所成角的定义等知识,属于中档题.20.(13分)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N 的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x 轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.【分析】(I)根据“L路径”的定义,可得点P到居民区A的“L路径”长度最小值;(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值,分类讨论,利用绝对值的几何意义,即可求得点P的坐标.【解答】解:设点P的坐标为(x,y),则(I)点P到居民区A的“L路径”长度最小值为|x﹣3|+|y﹣20|,y∈[0,+∞);(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值①当y≥1时,d=|x+10|+|x﹣14|+|x﹣3|+2|y|+|y﹣20|∵d1(x)=|x+10|+|x﹣14|+|x﹣3|≥|x+10|+|x﹣14|≥24∴当且仅当x=3时,d1(x)=|x+10|+|x﹣14|+|x﹣3|的最小值为24∵d2(y)=2|y|+|y﹣20|≥21∴当且仅当y=1时,d2(y)=2|y|+|y﹣20|的最小值为21∴点P的坐标为(3,1)时,点P到三个居民区的“L路径”长度之和的最小,且最小值为45;②当0≤y≤1时,由于“L路径”不能进入保护区,∴d=|x+10|+|x﹣14|+|x﹣3|+1+|1﹣y|+|y|+|y﹣20|此时d1(x)=|x+10|+|x﹣14|+|x﹣3|,d2(y)=1+|1﹣y|+|y|+|y﹣20|=22﹣y ≥21由①知d1(x)=|x+10|+|x﹣14|+|x﹣3|≥24,∴d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L 路径”长度之和最小.【点评】本题考查新定义,考查分类讨论的数学思想,考查学生建模的能力,同时考查学生的理解能力,属于难题.21.(13分)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(Ⅰ)若k1>0,k2>0,证明:;(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.【分析】(Ⅰ)由抛物线方程求出抛物线的焦点坐标,写出两条直线的方程,由两条直线方程和抛物线方程联立求出圆M和圆N的圆心M和N的坐标,求出向量和的坐标,求出数量积后转化为关于k1和k2的表达式,利用基本不等式放缩后可证得结论;(Ⅱ)利用抛物线的定义求出圆M和圆N的直径,结合(Ⅰ)中求出的圆M和圆N的圆心的坐标,写出两圆的方程,作差后得到两圆的公共弦所在直线方程,由点到直线的距离公式求出点M到直线l的距离,利用k1+k2=2转化为含有一个未知量的代数式,配方后求出最小值,由最小值等于求出p的值,则抛物线E的方程可求.【解答】解:(I)由题意,抛物线E的焦点为,直线l1的方程为.由,得.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,.所以点M的坐标为,.同理可得点N的坐标为,.于是.由题设k1+k2=2,k1>0,k2>0,k1≠k2,所以0<.故.(Ⅱ)由抛物线的定义得,,所以,从而圆M的半径.故圆M的方程为,化简得.同理可得圆N的方程为于是圆M,圆N的公共弦所在的直线l的方程为.又k2﹣k1≠0,k1+k2=2,则l的方程为x+2y=0.因为p>0,所以点M到直线l的距离为=.故当时,d取最小值.由题设,解得p=8.故所求抛物线E的方程为x2=16y.【点评】本题考查了抛物线的标准方程,考查了平面向量数量积的运算,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.22.(13分)已知a>0,函数.(Ⅰ)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(Ⅱ)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.【分析】(I)利用绝对值的几何意义,分类讨论,结合导数确定函数的单调性,从而可得g(a)的表达式;(II)利用曲线y=f(x)在两点处的切线互相垂直,建立方程,从而可转化为集合的运算,即可求得结论.【解答】解:(I)当0≤x≤a时,;当x>a时,∴当0≤x≤a时,,f(x)在(0,a)上单调递减;当x>a时,,f(x)在(a,+∞)上单调递增.①若a≥4,则f(x)在(0,4)上单调递减,g(a)=f(0)=②若0<a<4,则f(x)在(0,a)上单调递减,在(a,4)上单调递增∴g(a)=max{f(0),f(4)}∵f(0)﹣f(4)==∴当0<a≤1时,g(a)=f(4)=;当1<a<4时,g(a)=f(0)=,综上所述,g(a)=;(II)由(I)知,当a≥4时,f(x)在(0,4)上单调递减,故不满足要求;当0<a<4时,f(x)在(0,a)上单调递减,在(a,4)上单调递增,若存在x1,x2∈(0,4)(x1<x2),使曲线y=f(x)在两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且f′(x1)f′(x2)=﹣1∴•=﹣1∴①∵x1∈(0,a),x2∈(a,4),文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. ∴x1+2a∈(2a,3a),∈(,1)∴①成立等价于A=(2a,3a)与B=(,1)的交集非空∵,∴当且仅当0<2a<1,即时,A∩B≠∅综上所述,存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是(0,).【点评】本题考查导数知识的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,正确分类是关键.。

相关文档
最新文档