数学分析21.5三重积分(含习题及参考答案)

合集下载

三重积分习题课(一)

三重积分习题课(一)
r2 : z 2, 0 r 2, 0 2 2 2 2 2 2 2 2 故有 ( x y )dv 0 d 0 dr r r dz
2

z

2
x
y
16 3
【例5】计算三重积分 zdxdydz .其中 是由锥面 z 与平面 z h ( R 0, h 0) 所围成的闭区域。
解法二:利用球面坐标计算
zdxdydz

d sin cos d r 3dr 0
4 0

R
1 R 4 8
注:从上面两种解法的过程来看,虽然本题可用两种方法 来计算,但利用柱面坐标计算相对简便。
2 2 2 I ( x y z )dxdydz,其中 是由球面 【例7】求
0
R
59 R 5 480
解法2:利用柱面坐标计算。
2 3 R 2 2 由于 在 xoy 平面的投影区域 D xy : x y 4

故在柱面坐标下,
3R : R R r z R r , 0 r , 0 2 2
2 2 2 2
于是有
z

2
dxdydz
D xy : 0 y x , 0 x 1
z
x+ y=1
z=xy
y
1
o
z =0
1

x
1 : z xy (2) 确定上顶曲面 1 及下顶曲面 2 。
2: z 0
(3) 转化为先对
z 后对 x, y
D xy
的三次积分计算:
1 5 6 x y dxdy 4 D xy
xy z dxdydz

三重积分、重积分习题(供参考)

三重积分、重积分习题(供参考)

三重积分1.将I=zdvΩ⎰⎰⎰分别表示成直角坐标,柱面坐标和球面坐标下的三次积分,并选择其中一种计算出结果.其中Ω是由曲面z=222y x --及z=x 2+y 2所围成的闭区域.分析 为计算该三重积分,我们先把积分区域投影到某坐标平面上,由于是由两张曲面222y x z --=及22y x z +=,而由这两个方程所组成的方程组22222,z x y z x y ⎧=--⎨=+⎩极易消去z ,我们把它投影到xoy 面上.然后,为在指定的坐标系下计算之,还应该先把Ω的边界曲面用相应的坐标表示,并找出各种坐标系下各个变量的取值范围,最后作代换即可.解 将Ω投影到xoy 平面上,由22222,z x y z x y ⎧=--⎨=+⎩消去z 得 (x 2+y 2)2=2-(x 2+y 2),或(x 2+y 2+2)(x 2+y 2-1)=0,于是有 x 2+y 2=1.即知,Ω在xoy 平面上的投影为圆域D :x 2+y 2≤1 .为此在D 内任取一点Q(x ,y),过Q 作平行于z 轴的直线自下而上穿过Ω.穿入时碰到的曲面为22y x z +=,离开时碰到的曲面为222y x z --=(不画图,仅用代数方法也易判断22y x z +=≤222y x z --=),这是因为x 2+y 2≤1)(1) 直角坐标系下,我们分直角坐标及柱面坐标,下边找z 的变化范围从而化为三重积分.因此再由D :x 2+y 2≤1,有22y x z +=≤222y x z --=,于是在直角坐标下,Ω可表示为Ω :2222221111,2,x x y x x y z x y -≤≤⎧⎪--≤≤-⎨⎪+≤≤--⎩,于是有I=⎰⎰----221111x x dy dx ⎰--+22222y x y x zdz.(2) 柱面坐标下首先把Ω的表面方程用柱面坐标表示,这时z=x 2+y 2表示为z= 2ρ,z=222y x --表示为z=22ρ-.再由投影区域D 为x 2+y 2≤1.故0ρ≤≤1,0≤θ≤2π.于是Ω可表示为Ω:⎪⎪⎩⎪⎪⎨⎧-≤≤≤≤≤≤.2,10,2022ρρρπθz将所给三重积分中的体积元素υd 用υd =dz d d θρρ去替换,有I=Ω⎰⎰⎰υzd =Ω⎰⎰⎰dzd d z θρρ=⎰πθ20d ⎰1ρd ⎰-2222ρρρdz.(3) 球面坐标下用球面坐标代换两曲面的方程,得曲面z=x2+y2变为ρ=φφ2sin cos ;曲面z=222y x --变为ρ=2.由Ω在xoy 平面上的投影为x 2+y 2≤1知0θ≤≤2π,下边找φ的变化范围.正z 轴在Ω内,即Ω内有点P ,使→op 与→oz 夹角为零,即φ的下界为零.又曲面z=x 2+y2与xoy 平面相切,故φ的上界为2π,于是0≤φ≤2π再找ρ的变化范围.原点在Ω的表面上,故ρ取到最小值为零.为找ρ的上界,从原点出发作射线穿过Ω,由于Ω的表面由两张曲面所组成,因而ρ的上界随相应的φ的不同而不同.为此在两曲面的交线⎪⎩⎪⎨⎧--=+=22222y x z y x z ,上取一点A(0,1,1),故A 所对应的4πφ=.当24πφπ≤≤时,r 的上界由曲面r=φφ2sin cos 所给,故这时r φφφφcsc cot sin cos 2≤≤.即r 的变化范围为0⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤时。

三重积分重积分习题(供参考)

三重积分重积分习题(供参考)

三重积分1.将I=zdvΩ⎰⎰⎰分别表示成直角坐标,柱面坐标和球面坐标下的三次积分,并选择其中一种计算出结果.其中Ω是由曲面z=222y x --及z=x 2+y 2所围成的闭区域.分析 为计算该三重积分,我们先把积分区域投影到某坐标平面上,由于是由两张曲面222y x z --=及22y x z +=,而由这两个方程所组成的方程组22222,z x y z x y ⎧=--⎨=+⎩极易消去z ,我们把它投影到xoy 面上.然后,为在指定的坐标系下计算之,还应该先把Ω的边界曲面用相应的坐标表示,并找出各种坐标系下各个变量的取值范围,最后作代换即可.解 将Ω投影到xoy 平面上,由22222,z x y z x y ⎧=--⎨=+⎩消去z 得 (x 2+y 2)2=2-(x 2+y 2),或(x 2+y 2+2)(x 2+y 2-1)=0,于是有 x 2+y 2=1.即知,Ω在xoy 平面上的投影为圆域D :x 2+y 2≤1 .为此在D 内任取一点Q(x ,y),过Q 作平行于z 轴的直线自下而上穿过Ω.穿入时碰到的曲面为22y x z +=,离开时碰到的曲面为222y x z --=(不画图,仅用代数方法也易判断22y x z +=≤222y x z --=),这是因为x 2+y 2≤1)(1) 直角坐标系下,我们分直角坐标及柱面坐标,下边找z 的变化范围从而化为三重积分.因此再由D :x 2+y 2≤1,有22y x z +=≤222y x z --=,于是在直角坐标下,Ω可表示为Ω :2222221111,2,x x y x x y z x y -≤≤⎧⎪--≤≤-⎨⎪+≤≤--⎩,于是有I=⎰⎰----221111x x dy dx ⎰--+22222y x y x zdz.(2) 柱面坐标下首先把Ω的表面方程用柱面坐标表示,这时z=x 2+y 2表示为z= 2ρ,z=222y x --表示为z=22ρ-.再由投影区域D 为x 2+y 2≤1.故0ρ≤≤1,0≤θ≤2π.于是Ω可表示为Ω:⎪⎪⎩⎪⎪⎨⎧-≤≤≤≤≤≤.2,10,2022ρρρπθz将所给三重积分中的体积元素υd 用υd =dz d d θρρ去替换,有I=Ω⎰⎰⎰υzd =Ω⎰⎰⎰dzd d z θρρ=⎰πθ20d ⎰1ρd ⎰-2222ρρρdz.(3) 球面坐标下用球面坐标代换两曲面的方程,得曲面z=x2+y2变为ρ=φφ2sin cos ;曲面z=222y x --变为ρ=2.由Ω在xoy 平面上的投影为x 2+y 2≤1知0θ≤≤2π,下边找φ的变化范围.正z 轴在Ω内,即Ω内有点P ,使→op 与→oz 夹角为零,即φ的下界为零.又曲面z=x 2+y2与xoy 平面相切,故φ的上界为2π,于是0≤φ≤2π再找ρ的变化范围.原点在Ω的表面上,故ρ取到最小值为零.为找ρ的上界,从原点出发作射线穿过Ω,由于Ω的表面由两张曲面所组成,因而ρ的上界随相应的φ的不同而不同.为此在两曲面的交线⎪⎩⎪⎨⎧--=+=22222y x z y x z ,上取一点A(0,1,1),故A 所对应的4πφ=.当24πφπ≤≤时,r 的上界由曲面r=φφ2sin cos 所给,故这时r φφφφcsc cot sin cos 2≤≤.即r 的变化范围为0⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤时。

三重积分题

三重积分题

三重积分题一、计算三重积分∫∫∫_V (x2 + y2 + z2) dV,其中V是由x2 + y2 ≤ 1, 0 ≤ z ≤ 1定义的圆柱体。

A. π/2B. πC. 3π/2D. 2π(答案:D)二、三重积分∫∫∫_V xyz dV,在区域V: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1内的值为?A. 0B. 1/2C. 1D. 3/2(答案:A)三、计算三重积分∫∫∫_V (x + y + z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1定义的立方体。

A. 0B. 1C. 3/2D. 2(答案:C)四、三重积分∫∫∫_V (sin(x)cos(y)z) dV,在区域V: 0 ≤ x ≤π, 0 ≤ y ≤π, 0 ≤ z ≤ 1内的值为?A. 0B. 1C. -1D. 2(答案:A)五、计算三重积分∫∫∫_V e(x+y+z) dV,其中V是由0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤z ≤ 1定义的立方体,并假设e的近似值为2.718。

A. e - 1B. e2 - 1C. e3 - 1D. e4 - 1(答案:C)注:此题需要用到e的幂次性质进行积分。

六、三重积分∫∫∫_V (x2y2z2) dV,在区域V: -1 ≤ x ≤ 1, -1 ≤ y ≤ 1, -1 ≤ z ≤ 1内的值为?A. 0B. 1/8C. 1/4D. 1(答案:A)七、计算三重积分∫∫∫_V (1/(1+x2+y2+z2)) dV,其中V是由x2 + y2 + z2 ≤ 1定义的球体。

A. π2/2B. π2C. 2π2D. 4π2(答案:A)注:此题需要用到球坐标变换进行积分。

八、三重积分∫∫∫_V (cos(x2+y2+z2)) dV,在区域V: 0 ≤ x ≤√π, 0 ≤ y ≤√π, 0 ≤ z ≤√π,且假设cos的近似值在积分中可直接使用,其值为?A. 0B. (π(3/2))/2 * (sin(π) - sin(0))C. π(3/2) * (cos(π) - cos(0))D. -π(3/2) * (sin(π) - sin(0))(答案:B)注:此题需要注意到cos函数的周期性,并正确计算积分上下限。

数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

三重积分的计算方法及经典例题

三重积分的计算方法及经典例题

三重积分的计算方法:三重积分的计算是化为三次积分进行的。

其实质是计算一个定积分〔一重积分〕和一个二重积分。

从顺序看:如果先做定积分⎰21),,(z z dz z y x f ,再做二重积分⎰⎰Dd y x F σ),(,就是“投影法〞,也即“先一后二〞。

步骤为:找Ω及在xoy 面投影域D 。

多D 上一点〔x,y 〕“穿线〞确定z 的积分限,完成了“先一〞这一步〔定积分〕;进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二〞这一步。

σd dz z y x f dv z y x f Dz z ⎰⎰⎰⎰⎰⎰Ω=21]),,([),,(如果先做二重积分⎰⎰zD d z y x f σ),,(再做定积分⎰21)(c c dz z F ,就是“截面法〞,也即“先二后一〞。

步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。

区域z D 的边界曲面都是z 的函数。

计算区域z D 上的二重积分⎰⎰zD d z y x f σ),,(,完成了“先二〞这一步〔二重积分〕;进而计算定积分⎰21)(c c dz z F ,完成“后一〞这一步。

dz d z y x f dv z y x f c c D z]),,([),,(21σ⎰⎰⎰⎰⎰⎰Ω=当被积函数f 〔z 〕仅为z 的函数〔与x,y 无关〕,且z D 的面积)(z σ容易求出时,“截面法〞尤为方便。

为了简化积分的计算,还有如何选择适当的坐标系计算的问题。

可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面)(1) D 是X 型或Y 型,可选择直角坐标系计算〔当Ω的边界曲面中有较多的平面时,常用直角坐标系计算〕(2) D 是圆域〔或其局部〕,且被积函数形如)(),(22xyf y x f +时,可选择柱面坐标系计算〔当Ω为圆柱体或圆锥体时,常用柱面坐标计算〕〔3〕Ω是球体或球顶锥体,且被积函数形如)(222z y x f ++时,可选择球面坐标系计算以上是一般常见的三重积分的计算方法。

微积分习题课参考答案(三重积分概念、性质、计算,重积分应用)_883402960

微积分习题课参考答案(三重积分概念、性质、计算,重积分应用)_883402960
3
2 2

2 2
2 2
2
2
I = ∫∫∫ f ( x, y, z )dV =

x2 + y 2 1
∫∫

dx ∫ 2
2 − x2 + y 2
x + y2
f ( x, y, z )dz
= ∫ dx ∫
−1
1
1− x 2
− 1− x
dy ∫ 2 2
2 − x2 + y 2
x + y2
f ( x, y, z )dz
Ω1 Ω2
, w( x, − y, z) = w( x, y, z) ,
2 2
.(化三重积分为累次积分) 设函数 f ( x, y, z) 连续, Ω 由曲面 z = x + y 和曲面 z = 2 − x + y 围成,将三重积分 I = ∫∫∫ f ( x, y, z )dV 分别在直角坐标系、柱坐标系和球坐 标系下化为累次积分. x + y ≤ z ≤ 2 − x + y , 解:在直角坐标系中,积分域 Ω 可以表示为 Ω : 所以 x + y ≤1,
4

2z
0
( r 2 + z ) ⋅ rd r 256π 3
= 4π ∫ z 2 dz =

9
. (交换积分次序) 设 D = {( x, y) 1≤ x
u
0 2
+ y2
sin( z x + y ) 1 ≤ 4} ,求极限 I = lim 2π ∫ dz ∫∫ x + y dxdy .
u
2 2
u →+∞
Ω Ω

3重积分答案

3重积分答案

重积分考试要求:1. 理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。

2. 掌握二重积分的(直角坐标、极坐标)计算方法。

3. 掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。

8、会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。

复习重点:1、 二重积分的计算(直角坐标、极坐标);2、 三重积分的(直角坐标、柱面坐标、球面坐标)计算。

3、二、三重积分的几何应用及物理应用。

复习题:1. 计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .方法一. 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][x D dx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x .注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211x x D ydy xdx xydy dx d xy σ.解法2. 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是 ⎰⎰⎰⎰=212][y D dy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y .2. 计算σd y x yD ⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.3.计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解 积分区域可以表示为D =D 1+D 2, 其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210x x x x D xydy dx xydy dx d xy σ. 积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是 ⎰⎰⎰⎰-+=2122y y D xydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y . 讨论积分次序的选择.4. 计算⎰⎰--D y xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解 在极坐标系中, 闭区域D 可表示为0≤ρ≤a , 0≤θ ≤2π .于是 ⎰⎰⎰⎰---=D D y x d d e dxdy eθρρρ222θθρρπρπρd e d d e a a 020200]21[ ][22⎰⎰⎰---== )1()1(212220a a e d e ---=-=⎰πθπ. 5.求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积. 解 由对称性, 立体体积为第一卦限部分的四倍.⎰⎰--=D dxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域.在极坐标系中D 可表示为0≤ρ≤2a cos θ , 2 0πθ≤≤. 于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa D d a d d d a V )322(332)sin 1(33222032-=-=⎰πθθπa d a . 6.计算⎰⎰+D d y x σ22sin 其中D 为22224ππ≤+≤y x解 在极坐标系中, 闭区域D 可表示为π≤ρ ≤ 2π, 0≤θ ≤2π . 于是⎰⎰+D d y x σ22sin =22206sin πρρρθπππ-=⋅⎰⎰d d 7.计算三重积分dxdydz x ⎰⎰⎰Ω, 其中Ω为三个坐标面及平面x +2y +z =1所围成的闭区域.解 作图, 区域Ω可表示为:0≤z ≤1-x -2y , )1(210x y -≤≤, 0≤x ≤1.于是 ⎰⎰⎰⎰⎰⎰---Ω=10210210 x y x xdz dy dx dxdydz x ⎰⎰---=10210)21(x dy y x xdx⎰=+-=1032481)2(41dx x x x . 8.求由122=+y x ,z =0,z =x (x>0)所围立体的体积V 。

2,3重积分练习题及思考题(含解答)

2,3重积分练习题及思考题(含解答)
1 1 1 1 f ( u)du dv 1 f ( u )du 1 2 1
u
1
1 1 1
o
v
思考题 计算 x[1 yf ( x 2 y 2 )]dxdy , 其中D是由
y x , y 1, x 1所围成的区域, f是连续函数.
3
D
解 由于被积函数含有抽象函数, 故无法直接积出. 因此要采用
z
法二
( x
2
0
2
y )dv
2
8
2
d d 2
0 2
4
8
1024 dz 3
O
x
y
如此题改为:
这个旋转曲面与平面 2, z 8所围区域 z .
9、练习:被积函数改为e^z, 下题作为思考题!
思考题 计算

2 2
e
2
z2 2
x y
b
x
思考题 设函数f (u)连续,证明 1 f ( x y )dxdy f (u)du
x y 1 1
y o
1 1
证 法一
x y 1
f ( x y )dxdy
f ( x y )dy dx
0 1 1 x x 1
1
x
1
dx
1
0
1
1 2
y x
y y
e dx .
y x
解 e dx 不能用初等函数表示
先改变积分次序.
原式 I 1dx
2
y x
y x2

1
x
2
x
e dy
y x

1

三重积分

三重积分

§5.三重积分数学分析中常用的曲面和它对应的方程(温馨提示:请大家务必记住常用结论!) 1.球面:()02222>=++a a z y x 表示以原点为球心,半径为a 的球面。

2.柱面:平行于定直线L 并沿定曲线C 移动的动直线所形成的曲面叫做柱面。

定曲线C 叫做柱面的准线,动直线叫做柱面的母线。

一般地,方程0),(=y x f 表示以曲线⎩⎨⎧==00),(:z y x f C 为准线,母线平行于z 轴的柱面。

类似可以写出方程0),(0),(==x z f z y f 和表示的曲面。

注:当准线是直线时,柱面退化为平面。

几种常用的柱面(柱面名称与准线名称相对应)(1)12222=+by a x 表示母线平行于z 轴的椭圆柱面。

特别地,当b a =时,它表示母线平行于z 轴的圆柱面。

这里的定直线L 就是z 轴。

(2)()022>=p px y 表示母线平行于z 轴的抛物柱面。

(3)1-2222=+bz a x 表示母线平行y 轴的双曲柱面。

3.旋转曲面:平面曲线C 绕该平面上一条定直线L 旋转而形成的曲面,叫做旋转曲面。

其中平面曲线C 叫做旋转曲面的母线,定直线L 叫做旋转曲面的轴。

例如平面曲线,0),(:⎩⎨⎧==x z y f C 绕z 轴旋转一周所得到的旋转曲面的方程为0),(22=+±z y x f 。

记忆口诀:绕谁谁不变,用另外两个变量的平方和的正负算术平方根代替方程中另外一个变量。

如果取旋转曲面的母线为坐标面曲线,旋转轴为坐标轴,则可以得到以下几种常用的旋转曲面。

(旋转曲面的名称与母线名称对应) (1) 旋转椭球面椭圆⎪⎩⎪⎨⎧==+,0,12222z b y a x 绕y 轴旋转而成的曲面方程为122222=++b y a z x ,绕x 轴的旋转曲面方程请大家自行给出。

(2) 旋转双叶双曲面双曲线⎪⎩⎪⎨⎧==-012222z b y a x 绕x 轴旋转而成的曲面方程为122222=+-b z y a x (旋转双叶双曲面)(3) 旋转单叶双曲面双曲线⎪⎩⎪⎨⎧==-012222z b y a x 绕y 轴旋转而成的曲面方程为122222=-+b y a z x (旋转单叶双曲面)(4) 旋转抛物面抛物线⎩⎨⎧=>=0)0(22x p pz y 绕z 轴旋转而成的曲面方程为pz y x 222=+。

三重积分习题课

三重积分习题课
再画出 的图形
x
z
2 2 z x y
y
2 2 x y 1
( 1) 将 投影到 yoz 面
由 z x y
2
2 2 x z y
z
2


o
2 2 z x y
y
2 2 x y 1
x
0z 1 D yz : : z yz 2 2 2 2 z y x z y
2
2
4 5 6 sin cos d r d r R 0 0 5
2 R 4
Ω
0

0 0


一、关于三重积分性质和应用的题类
2 2 2 2 : x y z h 【例2】设
3 22 4 M ( x cos y x y x ) dV
【解Ⅰ】
有 xdv 0 . 奇函数,
利用球面坐标

( x zd r cos r sin dr 0 0
2
4 0

1
. 8
【解Ⅱ】 利用柱面坐标
( x z ) dv zdv
6.三重积分性质的应用题 估计重积分的值 比较重积分的大小 重积分中值定理的应用 (二)、三重积分计算的基本技巧
(1) 交换积分顺序的方法 (2) 利用对称性简化计算 (3) 消去被积函数绝对值符号 分块积分法 利用对称性
(4)被积函数为1时巧用其几何意义
dxdydz 的体积
2 23 3 N ( x sin y x y z ) dV
3 4 2 22 P ( z x cos y x z ) dV

重积分习题(含答案)

重积分习题(含答案)

x 2 y 2 被柱面 z 2 2 x 所割下部分的曲面面积.
2 2 2 2
5.求由曲面 z x 2 y 及 z 6 2 x y 所围成的立体的体积. 6. 计算三重积分 的区域。
x z dv ,其中 是由曲面 z

x 2 y 2 与 z 1 x 2 y 2 所围成

注意到

2 0
cosd 0 ,因此
2
x z dv 0

d 4 d r 3 sin cos dr
0 0

1


2

4 0
sin cos d
sin 2
2 2

4 0


8
1 2 x y 0
xd z dx
1 2 0
1 2 x 0
1 1 2 x1 2 x y dy 2 x1 2 x dx 2 0 96
1
4.求锥面 z
x 2 y 2 被柱面 z 2 2 x 所割下部分的曲面面积.
解 曲面 z x2 y 2 与 z22x 的交线在 xOy 面上的投影为 所求曲面在 xOy 在上的投影区域为 D{(x y)|x2y22x}
2
2
D
D
0
0
=3

2
0
d = 6
6. 计算三重积分 的区域。
x z dv ,其中 是由曲面 z

x 2 y 2 与 z 1 x 2 y 2 所围成
解:由于曲面 z
x 2 y 2 是一个圆锥面,曲面 z 1 x 2 y 2 是上半单位球面,

三重积分习题课优质课件

三重积分习题课优质课件
r=2a cos
M
r
例8
1
Dxy
1
0
x
z
y
【例9】
【解Ⅰ】
1
Dxy
1
0
x
z
y
【解Ⅱ】
1
Dxy
1
0
x
z
y
【解Ⅲ】
1
Dxy
1
0
x
z
y
【解Ⅳ】
【补充:利用对称性化简三重积分计算】
使用对称性时应注意:
1、积分区域关于坐标面的对称性;
2、被积函数在积分区域上的关于三个坐标轴 的
奇偶性.
一般,若在的表达式中,以y代x,以z代y,以x代z
(1) 交换积分顺序的方法
(2) 利用对称性简化计算
(3) 消去被积函数绝对值符号
(4)被积函数为1时巧用其几何意义
【例1 】计算
【解】
由对称性知
(球面坐标)
作业题
一、关于三重积分性质和应用的题类
【例2】

比较M,N,P的大小.
【分析】通过计算比较大小很烦琐,注意到积分区域为一以原点为球心的球体,具有对称性,于是想到是否可利用对称性直接作出比较呢?
问高度为130 cm 的雪堆全部融化需要
多少小时? (2001考研)
【例17】——机动备用
[提示]
记雪堆体积为 V, 侧面积为 S ,则
(用极坐标)
由题意知


(小时)
因此高度为130cm的雪堆全部融化所需的时间为100
小时.
【例5】
1
x+ y=1
y
o
z
x
1

数学分析21重积分总练习题

数学分析21重积分总练习题

第二十一章 重积分总练习题1、求下列函数在所指定区域D 内的平均值: (1)f(x,y)=sin 2xcos 2y, D=[0,π]×[0,π];(2)f(x,y,z)=x 2+y 2+z 2, D={(x,y,z)|x 2+y 2+z 2≤x+y+z}. 解:(1)∵D 的面积为:π2, ∴平均值为:⎰⎰πππ02022cos sin 1ydy dx x =41. (2)由x 2+y 2+z 2=x+y+z 得(x-21)2+(y-21)2+(z-21)2=43, ∴V D =34π323⎪⎪⎭⎫ ⎝⎛=23π. 令x=21+rsin φcos θ, y=21+rsin φsin θ, z=21+rcos φ, 则平均值为:⎰⎰⎰++Ddxdydz z y x )(32222π=⎰⎰⎰⎥⎦⎤⎢⎣⎡++++ππϕϕθϕθϕϕθπ02302220sin )cos sin sin cos (sin 4332dr r r r d d =⎰⎰⎰⎥⎦⎤⎢⎣⎡++++ππϕθϕθϕϕϕθπ023043220)cos sin sin cos (sin 43sin 32dr r r r d d =⎰⎰⎥⎦⎤⎢⎣⎡+++ππϕϕϕθθϕϕθπ0220)cos sin )sin (cos sin 649sin 203332d d =⎰⎥⎦⎤⎢⎣⎡++πθθθππ20)sin (cos 1289103332d =53332ππ⋅=56.2、计算下列积分:(1)⎰⎰≤≤≤≤+2020][y x d y x σ;(2)⎰⎰≤++-42222)2sgn(y x d y x σ. 解:(1)如图,被积函数等价于[x+y]= ⎪⎪⎩⎪⎪⎨⎧∈∈∈∈4321),(3),(2),(1),(0D y x ,D y x ,D y x ,D y x ,,⎰⎰≤≤≤≤+2020][y x d y x σ=⎰⎰10D d σ+⎰⎰21D d σ+⎰⎰32D d σ+⎰⎰43D d σ=23+3+23=6. (2)如图被积函数为sgn(x 2-y 2+2)=⎩⎨⎧∈-∈321),(1),(1D D y x ,D y x , ,⎰⎰≤++-42222)2sgn(y x d y xσ=⎰⎰1D dxdy -⎰⎰2D dxdy -⎰⎰3D dxdy . 其中⎰⎰2D dxdy =⎰⎰-+-224211x x dy dx =⎰-+--1122)24(dx x x =32π-2ln 231+=⎰⎰3D dxdy . 又⎰⎰3D dxdy =4π-⎰⎰2D dxdy -⎰⎰3D dxdy ,∴⎰⎰≤++-42222)2sgn(y x d y x σ=4π-4 ⎝⎛32π-2ln ⎪⎪⎭⎫+231=34π+4ln )32(+.3、应用格林公式计算曲线积分:⎰-L ydx x dy xy 22, 其中 L 为上半圆周x 2+y 2=a 2从(a,0)到(-a,0)的一段. 解:由y ∂∂(-x 2y)=-x 2, x∂∂xy 2=y 2, 得 ⎰-Lydx x dy xy22=⎰⎰+Dd x y σ)(22=⎰⎰adr r d 030πθ=44a π.4、求⎰⎰≤+→222),(1lim2ρρσπρy x d y x f , 其中f(x,y)为连续函数.解:由中值定理知,存在(ξ,η), 使得⎰⎰≤+222),(ρσy x d y x f =f(ξ,η)πρ2, 其中(ξ,η)∈D={(x,y)|x 2+y 2≤ρ2}, ∴⎰⎰≤+→222),(1lim 2ρρσπρy x d y x f =22),(lim πρπρηξρf →=),(lim 0ηξρf →. 又f(x,y)为连续函数,∴⎰⎰≤+→222),(1lim2ρρσπρy x d y x f=f(0,0).5、求F ’(t),设(1)F(t)=⎰⎰≤≤≤≤ty t x ytxd e 1.01.02σ,(t>0);(2)F(t)=⎰⎰⎰≤++++2222)(222t z y x dV z y xf ,其中f(u)为可微函数;(3)F(t)=⎰⎰⎰≤≤≤≤≤≤tz t y t x dV xyz f 000)(,其中f(u)为可微函数.解:(1)令x=tu, y=tv, 则|J|=t 2, F(t)=t 2⎰⎰112dv e du v u.∴F ’(t)=2t ⎰⎰10102dv e du v u=t2F(t).(2)令x=rsin φcos θ, y=rsin φsin θ, z=rcos φ, 则F(t)=r d r f r d d t ⎰⎰⎰022020)(sin ϕϕθππ=4πr d r f r t⎰022)(, ∴F ’(t)=4πt 2f(t 2).(3)令x=tu, y=tv, z=tw, 则|J|=t 3,F(t)=⎰⎰⎰10331010)(dw uvw t f t dv du =⎰⎰⎰10310103)(dw uvw t f dv du t , ∴F ’(t)=⎰⎰⎰10310102)(3dw uvw t f dv du t +⎰⎰⎰'10310105)(3dw uvw t f uvw dv du t =)(3t F t+⎰⎰⎰≤≤≤≤≤≤'t z t y tx dV xyz f xyz t 000)(3.6、设f(t)=dx e t x ⎰-221, 求dt t tf ⎰10)(. 解:令dF(t)= 2x e-dx, 则f(t)=dx e t x ⎰-221=F(t 2)-F(1), f ’(t)=2tF ’(t 2)=2t 4t e -.dt t tf ⎰1)(=210)(21dt t f ⎰=21t 2f(t)|10-)(21102t df t ⎰=21f(1) -dt e t t ⎰-1034=-410441dt e t ⎰-=10441te -=41(e -1-1).7、证明:⎰⎰⎰Vdxdydz z y x f ),,(=abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(, 其中V :222222cz b y a x ++≤1;Ω:x 2+y 2+z 2≤1.证法一:若令x=arsin φcos θ, y=brsin φsin θ, z=crcos φ. 则⎰⎰⎰VdV z y x f ),,(=r d cr br ar f abcr d d ⎰⎰⎰12020)cos ,sin sin ,cos sin (sin ϕθϕθϕϕϕθππ;若令x=rsin φcos θ, y=rsin φsin θ, r=rcos φ. 则⎰⎰⎰ΩΩd cz by ax f ),,(=r d cr br ar f r d d ⎰⎰⎰12020)cos ,sin sin ,cos sin (sin ϕθϕθϕϕϕθππ;∴⎰⎰⎰Vdxdydz z y x f ),,(=abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(.证法二:令x=au, y=bv, z=cw, 则|J|=abc,⎰⎰⎰Vdxdydz z y x f ),,(= abc ⎰⎰⎰≤++1222),,(w v u dudvdw cw bv au f = abc ⎰⎰⎰Ωdxdydz cz by ax f ),,(.8、试写出单位立方体为积分区域时,柱面坐标系和球面坐标系下的三重积分的上下限.解:在柱面坐标系下,用z=c 的平面截立方体,截口为正方形,∴单位立方体可表示为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤40cos 1010πθθr z 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤24sin 1010πθπθr z , ⎰⎰⎰11010),,(dzz y x f dy dx=⎰⎰⎰θπθθθcos 14010),sin ,cos (dr z r r rf d dz +⎰⎰⎰θππθθθsin 10241),sin ,cos (dr z r r rf d dz .在球面坐标系下,用θ=c 的平面截立方体,截口为长方形,∴单位立方体可表示为⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤ϕθϕπθcos 10cos tan 040r arcc 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤θϕπϕθπθcos sin 102cos tan 40r arcc 和⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤ϕθϕπθπcos 10sin tan 024r arcc 和⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤θϕπϕθπθπsin sin 102sin tan 24r arcc , ⎰⎰⎰1101),,(dzz y x f dy dx=⎰⎰⎰ϕπθϕθcos 140cos tan 0),,(dr w v u kf d d arcc +⎰⎰⎰θϕππθϕθcos sin 10402cos tan ),,(drw v u kf d d arcc+⎰⎰⎰ϕππθϕθcos 1024cos tan 0),,(dr w v u kf d d arcc +⎰⎰⎰θϕπππθϕθsin sin 10242cos tan ),,(dr w v u kf d d arcc ,其中k=r 2sin φ, u=rsin φcos θ, v=rsin φsin θ, w=rcos φ.9、证明:若函数f(x)和g(x)在[a,b]上可积, 则2)()(⎥⎦⎤⎢⎣⎡⎰b a dx x g x f ≤⎰⎰⋅b a b a dx x g dx x f )()(22.证:构造函数φ(t)=t2⎰badx x f )(2+2t ⎰b a dx x g x f )()(+⎰badxx g )(2=[⎰ba dx x f )(t 22+2tf(x)g(x)+]dx x g )(2=[]⎰+ba dx x g x f 2)()(t ≥0.∴函数φ(t)的图象与x 轴至多有一个交点,即△=2)()(2⎪⎭⎫ ⎝⎛⎰b a dx x g x f -4⎰⎰⋅ba b a dx x g dx x f )()(22≤0.∴2)()(⎥⎦⎤⎢⎣⎡⎰ba dx x g x f ≤⎰⎰⋅b a b a dx x g dx x f )()(22.注:当且仅当f(x)与g(x)线性相关时等号成立.10、设f(x,y)在[0,π]×[0,π]上连续,且恒取正值,试求:⎰⎰≤≤≤≤∞→ππσy x nn d y x f x00),(sin lim.解:∵f(x,y)在[0,π]×[0,π]上连续,∴存在最大值M 和最小值m ,即 0<m ≤f(x,y)≤M, (x,y)∈[0,π]×[0,π]. 从而⎰πdy m n≤⎰π),(dy y x f n≤⎰πdy M n→π (n →∞).∴⎰⎰≤≤≤≤∞→ππσy x n n d y x f x 00),(sin lim =⎰⎰∞→ππ00),(sin lim dy y x f xdx nn =2π.11、求由椭圆(a 1x+b 1y+c 1)2+(a 2x+b 2y+c 2)2=1所界面积, a 1b 2-a 2b 1≠0. 解1:令x=12212112)sin ()cos (b a b a c r b c r b ----θθ,y=12211221)cos ()sin (b a b a c r a c r a ----θθ,则J=122121122121122112122112sin cos cos sin cos sin sin cos b a b a r a r a b a b a a a b a b a r b r b b a b a b b -+-------θθθθθθθθ=1221b a b a r -.∴⎰⎰Dd σ=⎰⎰-⋅1122120dr b a b a rd πθ=1221b a b a -π. 解2:令u= a 1x+b 1y+c 1, v=a 2x+b 2y+c 2, 则),(),(v u y x ∂∂=),(),(/1y x v u ∂∂=12211b a b a -. ∴S=⎰⎰Dd σ=⎰⎰≤+-1122122v u b a b a dudv=1221b a b a -π.12、设△=333222111c b a c b a c b a ≠0, 求由平面a 1x+b 1y+c 1z=±h 1, a 2x+b 2y+c 2z=±h 2, a 3x+b 3y+c 3z=±h 3,所界平行六面体的体积.解:令u=a 1x+b 1y+c 1z, v=a 2x+b 2y+c 2z, w=a 3x+b 3y+c 3z, 则J=∆1. ∴V=⎰⎰⎰Ωdxdydz =⎰⎰⎰Ω∆dudvdw ||1=⎰⎰⎰---∆332211||1h h h h h h dw dv du =||8∆h 1h 2h 3.13、设有一质量分布不均匀的半圆弧x=rcos θ, y=rsin θ (0≤θ≤π), 其线密度为ρ=a θ(a 为常数), 求它对原点(0,0)处质量为m 的质点的引力. 解:r=(x,y), dF=k r r r ds m ⋅2ρ=km ⎪⎭⎫ ⎝⎛33,r y r x ρρds, (k 为引力常数) ∴dF x =3r x km ρds, dF y =3rykm ρds. F x =ds r x km L ⎰3ρ=θθθπd r ra km ⎰022cos =r amk 2-; F y =ds ry km L ⎰3ρ=θθθπd r a km ⎰0sin =r amkπ; ∴F=(F x ,F y )=⎪⎭⎫ ⎝⎛-r amk r amk π,2, 且|F|=24π+r amk .14、求螺旋线x=acost, y=asint, z=bt (0≤t ≤2π)对z 轴的转动惯量,设曲线的密度为1.解:ds=)()()(222t z t y t x '+'+'dt=22b a +dt. J z =ds y x L ⎰+)(22=dt b a a 22202+⎰π=2πa 222b a +.15、求摆线x=a(t-sint), y=a(1-cost) (0≤t ≤π)的质心,质量分布均匀. 解:由ds=)()(22t y t x '+'dt=t a t a 2222sin )cos 1(+-dt=2sin2ta dt ,得 ⎰L ds =2a dt t ⎰π02sin =4a;⎰L xds =2a 2dt t t t ⎰-π02sin )sin (=316a 2;∴⎰⎰=L L ds xds x /=34a .又⎰L yds =2a2dt t t ⎰-π2sin )cos 1(=316a 2;∴⎰⎰=L L ds yds y /=34a. ∴摆线质心的为⎪⎭⎫⎝⎛34,34a a .16、设u(x,y), v(x,y)是具有二阶连续偏导数的函数,证明:(1)⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v σ2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D d y v y u x v x u σ+ds n uv L ∂∂⎰; (2)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v y v x v u σ22222222=ds n u v n v u L ⎰⎪⎭⎫ ⎝⎛∂∂-∂∂, 其中D 为光滑曲线L 所围的平面区域,而n u ∂∂=),cos(∧∂∂x n x u +),sin(∧∂∂x n y u , n v ∂∂=),cos(∧∂∂x n xv+),sin(∧∂∂x n y v是u(x,y), v(x,y)沿曲线L 的外法线n 的方向导数. 证:在格林公式中,以P 代替Q ,-Q 代替P 得⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂D dxdy y Q x P =⎰-L Qdx Pdy =⎰∧∧+L ds x n Q x n P )],sin(),cos([. a 式(1)令P=vxu∂∂, Q=v y u ∂∂, 则由a 式有⎰⎰⎥⎦⎤⎢⎣⎡∂∂∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y v y u x v x u y u x u v 2222=⎰∧∧∂∂+∂∂L ds x n y uv x n x u v )],sin(),cos([,即⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y u x u v 2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D dxdy y v y u x v x u +⎰∂∂L ds n u v . b 式 (2)令P=uxu∂∂, Q=u y u ∂∂, 则由a 式有⎰⎰⎥⎦⎤⎢⎣⎡∂∂∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y v y u x v x u y u x u u 2222=⎰∧∧∂∂+∂∂L ds x n y uu x n x u u )],sin(),cos([,即⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D dxdy y u x u u 2222=-⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂D dxdy y v y u x v x u +⎰∂∂L ds n u u . c 式由c 式-b 式得:⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂D d y u x u v y v x v u σ22222222=ds n u v n vu L ⎰⎪⎭⎫ ⎝⎛∂∂-∂∂.17、求指数λ, 使得曲线积分k=dy r yx dx r y x y x y x λλ22),(),(0-⎰与路线无关(r 2=x 2+y 2), 并求k.解:设P=λr yx , Q=λr y x 22-, 则y P ∂∂=])([2222x y x y x r λλ++--, x Q ∂∂=-])(2[232222λλy x y x y x r ++-,由y P ∂∂=x Q ∂∂得 x y x yx λ++-)(222=λ23222)(2y x y x y x ++, 得λ=-1. 这时k 与路径无关,且P=22yx y x +, Q=2222y x y x +-. d(y y x 22+)=22yx y x+dx-2222y x y x +dy. ∴k=dy y x y xdx yx y xy x y x 2222),(),(220+-+⎰=()),(,2200y x y x y yx +=yy x 22++C.。

三重积分、应用习题

三重积分、应用习题
一、三重积分的计算 1、直角坐标(投影法、截面法) 2、柱面坐标 投影:圆或圆的一部分,被积函数
3、球面坐标 立体:球或圆锥,被积函数
例1
解 1、直角坐标: 投影法:
o
z
y
x
例1
解 1、直角坐标:截面法:
z
o
y
x
例1
解 2、柱面坐标: 投影法:
z
o
y
x
例1
解 3、球面坐标:
z
oyx源自2解zyx
例3
解 对称性=0
轮换对称性
例4

设立体密度均匀, 则立体质心在
.
1、求曲面 x y z 包含在 x y 2 x内的那部分面积 .
2 2 2 2 2
2、曲面x 2 y 2 3 z与z 4 x 2 y 2 所围均匀立体,求立体质量.
3、:2( x y ) z 6 x y ,
D xy : x y 2 2 x
2

2 1 zx z2 y d
2 2d
D xy
2 2
2、曲面x 2 y 2 3 z与z 4 x 2 y 2 所围均匀立体 ,求立体质量 .
3、:2( x 2 y 2 ) z 6 x 2 y 2 ,
( x, y , z ) f ( x 2 y 2 z 2 ) 求对z轴的转动惯量的柱面坐 标、球面坐标下累次积 分.
4、

z
o
y
x
2 2 2 2
( x, y, z ) f ( x 2 y 2 z 2 ) 求 对 z轴 的 转 动 惯 量 的 柱 面 标 坐、 球 面 坐 标 下 累 次分 积.

数学分析三重积分

数学分析三重积分

b
y2 ( x )
z2 ( x , y )
f ( x , y , z )dz .
注意
(1) 平行于 z 轴且穿过闭区域 内部的直线与闭 区域 的边界曲面 S 相交不多于两点情形.
( 2) 若平行于 z 轴且穿过闭区域 内部的直线与 闭区域 的边界曲面 S 相交多于两点时,把 分若干个小区域来讨论 .


f ( x , y , z )dxdydz 为三次积分,
2 2
其中积分区域 为由曲面 z x 2 y
z 2 x
2

所围成的闭区域.

z x2 2 y2 由 , 2 z 2 x
得交线投影区域 x y 1,
1 x 1 2 2 故 : 1 x y 1 x , 2 2 2 x 2y z 2 x
2
2
1 x 1 2 2 故 : 1 x y 1 x , 2 2 2 x 2y z 2 x
因此, I
1 dx
1
1 x
2 2
1 x
dy
2 x
2
2 2
x 2 y
f ( x , y , z )dz .
例3
计算三重积分 z dxdydz 。
y b
2 2

z c
2 2
1 所成的空间闭区域.

: {( x , y , z ) | c z c ,
原式
x a
2 2

y b
2 2
1
z c
z
2 2
}
c
c
z dz dxdy ,

三重积分习题

三重积分习题

第九章 重积分第二次习题课(三重积分)一.内容:三重积分的概念和性质,二重积分、三重积分的应用 二.重点:三重积分的计算(三种坐标系) 三.难点:三重积分的计算 四.例题与习题: 例一. 已知⎰⎰⎰Ωdxdydz z y x f ),,(,其中Ω为,42222R z y x =++22224)2(R R z y x =-++所围成的区域,将其化为柱面坐标系与球面坐标系的累次积分. 解:积分区域Ω如图:交线:⎩⎨⎧=+=2223R y x Rz 柱面坐标系下:⎪⎩⎪⎨⎧-≤≤--≤≤≤≤Ω22224423020:r R z r R R R r πθ⎰⎰⎰---=∴πθθθ20304422222),sin ,cos (R r R r R R rdz z r r f dr d I 球面坐标系下: ⎪⎩⎪⎨⎧≤≤≤≤≤≤ΩR r 203020:πϕπθ⎪⎩⎪⎨⎧≤≤≤≤≤≤ϕπϕππθcos 402320R r ⎰⎰⎰=∴ππϕϕθϕθϕϕθ202023sin )cos ,sin sin ,cos sin (Rdr r r r r f d d I+⎰⎰⎰πϕππϕϕθϕθϕϕθ20c o s 40223s i n )c o s ,s i n s i n ,c o s s i n (R dr r r r r f d d例二.用最简单的方法计算下列三重积分,并说明理由 (1)⎰⎰⎰Ω+++dv z y x x 2221 0,1:222≥≤++Ωz z y x (2)⎰⎰⎰Ω++dv z y x )( c z b y a x ≤≤≤Ω,,:解 :(1) 被积函数2221z y x x +++是x 的奇函数,又Ω关于yoz 平面对称∴⎰⎰⎰Ω=+++01222dv z y x x(2)=++⎰⎰⎰Ωdv z y x )(⎰⎰⎰Ωxdv ⎰⎰⎰Ω+ydv ⎰⎰⎰Ω+zdv三个积分的被积函数分别为z y x ,,的奇函数,又Ω分别对称于yoz 平面,zox 平面,xoy 平面, 所以三个积分均为0,即0)(=++⎰⎰⎰Ωdv z y x例三.用四种方法写出下述三重积分的形式(不必计算)Ω=⎰⎰⎰ΩxyzdvI 为0,0,0,)0(2222≥≥≥>≤++z y x a a z y x解:(法一)⎪⎩⎪⎨⎧--≤≤-≤≤≤≤Ω22222000:y x a z x a y a x⎰⎰⎰⎰⎰⎰--Ω==Dy x a xyzdz dxdy xyzdv I 2220⎰⎰⎰---=ax a y x a x y z d zdy dx 022222 (法二)⎩⎨⎧≥≥-≤+∈≤≤Ω0,0:),(0:2222y x za y x D y x az z⎰⎰⎰⎰⎰⎰==ΩaD zxyzdxdy dz xyzdv I 0⎰⎰⎰-=a z a dz r d zdz 0322sin cos πθθθ(法三)⎪⎪⎩⎪⎪⎨⎧-≤≤≤≤≤≤Ω220020:r a z a r πθ==⎰⎰⎰Ωx y z d v I ⎰⎰⎰-⋅2220003s i n c o s πθθθar a z d z r dr d(法四)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤Ωa r 02020:πϕπθ==⎰⎰⎰Ωx y z d v I ⎰⎰⎰⋅⋅⋅02s i n c o s s i n s i n c o s s i n ππϕϕθϕθϕϕθadr r r r r d d⎰⎰⎰⋅⋅=22053sin sin cos ππϕϕθθθadr r d d例四.求半球面2223y x a z --=和旋转抛物面0,222>=+a az y x 所围立体的表面积解:所围立体的表面由两部分构成,所围立体的表面积记为S则dxdy z z dxdy z z S Dy x Dy x ⎰⎰⎰⎰+++++=2222212111 其中:D :2222a y x ≤+ y ,3),(2221y x a y x z --=ay x y x z 2),(222+=ay z a x z y x a y z y x a x z y x y x ==---=---=∴2222212221,,3,3 dxdy z z dxdy z z S Dy x Dy x ⎰⎰⎰⎰+++++=∴2222212111⎰⎰++-=a dr r a r a r ra ad 20222220)33(πθ])(31133[22022202223a a r a a r a a +⋅⋅+-⋅-=π3316a π=例五.计算密度为1,半径为R ,圆弧长为l 的扇形的重心解:以扇形的对称轴为x 轴,圆心为坐标原点建立坐标系如图:设扇形重心为),(y x ,由对称性知:0=y 设扇形圆心角为α2,则Rl R l 2,2=∴=αα 扇形质量 Rl dxdy M D⎰⎰==211 则:Rl rdrr d Mdxdy x MM x RDy 21cos 122⎰⎰⎰⎰-⋅=⋅==θθ)sin(3422R l lR =∴ 重心坐标)0),sin(34(22R l lR五.课堂练习: ⒈ 求⎰⎰⎰Ω++dv z y x)(222,Ω是锥面222z y x =+与上半球面2222R z y x =++围成解:⎪⎩⎪⎨⎧≤≤≤≤≤≤ΩRr 04020:πϕπθ⎰⎰⎰⋅=ππϕϕθ200022s i n Rdr r r d d I )221(525)221(255-=⋅-=R R ππ ⒉ 把三重积分⎰⎰⎰Ω=dxdydz z y x f I ),,(化成柱面坐标和球面坐标的三次积分,其中Ω:3=z 及22y x z +=围成.解:柱面坐标:⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω33020:2z r r πθ y=I ⎰⎰⎰πθθθ203032),s i n ,c o s (rr d zz r r f dr d 球面坐标: ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤Ωϕπϕπθcos 306020:r ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤≤≤≤≤ϕϕπϕππθ2sin cos 02620r ⎰⎰⎰=ππϕϕθϕθϕϕθ200023s i n )c o s ,s i n s i n ,c o s s i n (dr r r r r f d d I⎰⎰⎰+πϕϕππϕϕθϕθϕϕθ20csc cos 02262sin )cos ,sin sin ,cos sin (dr r r r r f d d⒊ 求曲面422=++z y x 与224y x z --=解:交线⎩⎨⎧==+⎩⎨⎧==+⇒⎩⎨⎧--==++13044422222222z y x z y x yx z z y x 及⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+==21dv dv dv V ⎪⎩⎪⎨⎧-≤≤-≤≤≤≤Ω221443020:r z r r πθ ⎪⎩⎪⎨⎧-≤≤-≤≤≤≤Ω222442320:r z r r πθ =+=⎰⎰⎰⎰⎰⎰ΩΩ21dv dv V ⎰⎰⎰--+πθ2034422r r dz rdr d ⎰⎰⎰--πθ20234422r r dz rdr d⒋ 求由0,22=-=y x x y 所围均匀平面薄片的重心,平面薄片密度为ρ解:⎪⎩⎪⎨⎧≤≤≤≤θπθcos 2020:r D ∴平面薄片质量⎰⎰⎰⎰==Drdr d d M 20cos 20πθθρσρρπθθρπ⎰==022cos 2dρπθθρσρπθ⎰⎰⎰⎰===Dx dr r d d x M 20cos 2022cosρθθρσρπθ⎰⎰⎰⎰===Dy dr r d d y M 20cos 20232sin π341====∴M M y M M x y x ∴重心坐标为)34,1(π⒌ 已知)(x f 具有连续导数,求dxdydz z y x f t t z y x t ⎰⎰⎰≤++→+++2222)(1lim 2224π解:dxdydz z y x f t tz y x t ⎰⎰⎰≤++→+++2222)(1lim22240π401lim t t π+→=⎰⎰⎰ππϕϕθ202)(sin tdr r r f d d4020)(4l i m t dr r r f tt ⎰+→=3204)(4l i m t t t f t ⋅=+→⎩⎨⎧≠∞='==+→0)0(0)0()0()(lim 0f f f t t f t习题课作业:⒈ 当物体的体密度为),,(z y x ρ时,写出物体质量的表达式,并化成三次积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章 重积分5三重积分一、三重积分的概念引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i ni i i i T V f ∆∑=→10),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i ni V ≤≤.概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i ni V ≤≤.在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i ni i i i V f ∆∑=1),,(ζηξ.定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有J V f i ni iii-∆∑=1),,(ζηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)在V 上的三重积分,记作J=⎰⎰⎰VdV z y x f ),,(或J=⎰⎰⎰Vdxdydz z y x f ),,(,其中f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.注:当f(x,y,z)=1时,⎰⎰⎰VdV 在几何上表示V 的体积.三积重分的条件与性质:1、有界闭域V 上的连续函数必可积;2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.二、化三重积分为累次积分定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=⎰he dz z y xf ),,(存在,则积分⎰⎰Ddxdy y x g ),(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰Dhedz z y x f dxdy ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤⎰-kk z z j i dz z f 1),,(ηξ≤M ijk △z k .现按下标k 相加,有∑⎰-kz z j i kk dz z f 1),,(ηξ=⎰he j i dz zf ),,(ηξ=g(ξi ,ηj ),以及∑∆∆∆kj i k j i ijkz y x m,,≤j i ji j i y x g ∆∆∑,),(ηξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且⎰⎰⎰Dhedz z y x f dxdy ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ⊂[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=⎰),(),(21),,(y x z y x z dz z y x f 亦存在,则积分⎰⎰Ddxdy y x G ),(存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰D dxdy y x G ),(=⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.证:记F(x,y,z)=⎩⎨⎧∈∈V V z y x ,Vz y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].对F(x,y,z)应用定理21.15,(如图)则有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰0),,(V dxdydzz y x F=⎰⎰⎰⨯d][c,b][a,),,(hedz z y x F dxdy =⎰⎰⎰Dy x z y x z dz z y x f dxdy ),(),(21),,(.例1:计算⎰⎰⎰+Vy x dxdydz22,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是⎰⎰⎰+V y x dxdydz 22=⎰⎰⎰+D y y x dz dxdy 022=⎰⎰+D dxdy y x y 22=⎰⎰+21022x dy y x y dx=⎰212ln 21dx =2ln 21.例2:计算⎰⎰⎰++Vdxdydz z y x )(22,其中V 是由⎩⎨⎧==0x y z 绕z 轴旋转一周而成的曲面与z=1所围的区域.解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},⎰⎰⎰++Vdxdydz z y x )(22=⎰⎰⎰+++Dyx dz z y x dxdy 12222)(=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-+Ddxdy y x y x 2121)(2222=⎰⎰⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-πθ201022121rdrr r d=⎰πθ20407d =207π.定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=⎰⎰Ddydz z y x f ),,(存在,则积分⎰⎰⎰baDdydz z y x f dx ),,(也存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰baDdydz z y x f dx ),,(.证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤⎰⎰jkD i dydz z y f ),,(ξ≤M ijk △D jk .现按下标j,k 相加,有∑⎰⎰k j D i jkdydz z y f ,),,(ξ=⎰⎰Di dydz z y f ),,(ξ=I(ξi ),以及∑∆∆∆kj i k j i ijkz y x m,,≤i ii x I ∆∑)(ξ≤∑∆∆∆kj i k j i ijk z y x M ,,.两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且⎰⎰⎰baDdydz z y x f dx ),,(=⎰⎰⎰Vdxdydz z y x f ),,(.推论:(如图)若V ⊂[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=⎰⎰zD dxdy z y x f ),,(存在,其中D z是截面{(x,y)|(x,y,z)∈V}, 则⎰he dz z )(ϕ存在,且⎰⎰⎰Vdxdydz z y x f ),,(=⎰h edz z )(ϕ=⎰⎰⎰heD zdxdy z y x f dz ),,(.证:证法与定理21.16证明过程同理.例3:计算I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222, 其中V 是椭球体222222c z b y a x ++≤1.解:I=⎰⎰⎰⎪⎪⎭⎫ ⎝⎛++V dxdydz c z b y a x 222222=⎰⎰⎰V dxdydz a x 22+⎰⎰⎰V dxdydz b y 22+⎰⎰⎰Vdxdydz c z 22.其中⎰⎰⎰V dxdydz a x 22=⎰⎰⎰-a a V xdydz dx a x 22,V x 表示椭圆面2222c z b y +≤1-22ax 或⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-2222222211a x c z a xb y ≤1. 它的面积为π⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-222211a x c a x b =πbc ⎪⎪⎭⎫⎝⎛-221a x. ∴⎰⎰⎰V dxdydz a x 22=⎰-⎪⎪⎭⎫ ⎝⎛-a a dx a x a bcx 22221π=154πabc. 同理可得:⎰⎰⎰V dxdydz b y 22=⎰⎰⎰V dxdydz cz 22=154πabc.∴I=3(154πabc)=54πabc.三、三重积分换元法规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式J(u,v,w)=wz v z uz w yv y u yw x v x u x ∂∂∂∂∂∂∂∂∂≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.常用变换公式: 1、柱面坐标变换:T :⎪⎩⎪⎨⎧+∞<<∞-=≤≤=+∞<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=100cos sin 0sin cos θθθθr r -=r, 即有 ⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V dz rdrd z r r f θθθ),sin , cos (.V ’为V 在柱面坐标变换下的原象.注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).例4:计算⎰⎰⎰+Vdxdydz y x )(22, 其中V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.⎰⎰⎰+Vdxdydz y x )(22=⎰⎰⎰++4)(22222)(y x Ddzy x dxdy=⎰⎰+-+Ddxdy y x y x )](24)[(2222=⎰⎰-202220)24(rdrr r d πθ=⎰-2053)2(4dr r r π=⎰-2053)2(4dr r r π=38π.解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.∴⎰⎰⎰+V dxdydz y x )(22=⎰⎰⎰'V dz drd r θ2=⎰⎰⎰42320202r dz r dr d πθ=38π.2、球坐标变换:T :⎪⎩⎪⎨⎧≤≤=≤≤=+∞<≤=πθϕπϕθϕθϕ20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,J(r,φ,θ)=0sin cos sin sin cos sin sin sin sin cos cos cos sin ϕϕθϕθϕθϕθϕθϕθϕr co r r r r --=r 2sin φ≥0, 即有⎰⎰⎰Vdxdydz z y x f ),,(=⎰⎰⎰'V d drd rr r r f θϕϕϕθϕθϕsin )cos ,sin sin , cos sin (2,V ’为V 在球坐标变换T 下的原象.注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2所确定的立体体积,其中β∈⎪⎭⎫⎝⎛2,0π和a(>0)为常数.解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴⎰⎰⎰VdV =⎰⎰⎰ϕβπϕϕθcos 202020sin a dr r d d =⎰βϕϕϕπ033sin cos 316d a =343a π(1-cos 4β).例6:求I=⎰⎰⎰Vzdxdydz , 其中V 为由222222c z b y a x ++≤1与z ≥0所围区域.解:作广义球坐标变换:T :⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin cr z br y ar x , 则J=abcr 2sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π} ∴⎰⎰⎰Vzdxdydz =⎰⎰⎰⋅1022020sin cos dr abcr cr d d ϕϕϕθππ=⎰2022sin 4πϕϕπd abc =42abc π.习题1、计算下列积分:(1)⎰⎰⎰+Vdxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];(2)⎰⎰⎰Vzdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2π];(3)⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)⎰⎰⎰+Vdxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2π所围成.解:(1)⎰⎰⎰+VdV z xy )(2=⎰⎰⎰+--1023352)(dz z xy dy dx =⎰⎰--⎪⎭⎫⎝⎛+335231dy xy dx =⎰-522dx =14.(2)⎰⎰⎰VzdV y x cos cos =⎰⎰⎰202010cos cos ππzdz ydy xdx =21.(3)⎰⎰⎰+++Vz y x dxdydz 3)1(=⎰⎰⎰---+++y x x z y x dz dy dx 1031010)1(=⎰⎰-⎥⎦⎤⎢⎣⎡-++x dy y x dx 1021041)1(121=⎰⎪⎭⎫ ⎝⎛-+-+1041211121dx x x =1652ln 21-. (4)⎰⎰⎰+VdV z x y )cos(=⎰⎰⎰-+xxdz z x y dy dx 20020)cos(ππ=⎰⎰-xydydx x 020)sin 1(π=⎰-20)sin 1(21πdx x x =21162-π.2、试改变下列累次积分的顺序: (1)⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(;(2)⎰⎰⎰+220110),,(y x dz z y x f dy dx .解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=⎰⎰⎰+-yx xdz z y x f dy dx 01010),,(=⎰⎰⎰+-yx ydz z y x f dx dy 01010),,(.∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-yydx z y x f dz dy 10010),,(+⎰⎰⎰--yy z y dx z y x f dz dy 1110),,(=⎰⎰⎰--yy z zdx z y x f dy dz 1010),,(+⎰⎰⎰-yz dx z y x f dy dz 10110),,(.∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=⎰⎰⎰-xxdy z y x f dz dx 10010),,(+⎰⎰⎰--xx z x dy z y x f dz dx 1110),,(=⎰⎰⎰--xx z zdy z y x f dx dz 1010),,(+⎰⎰⎰-xz dy z y x f dx dz 10110),,(.(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=⎰⎰⎰+2201010),,(y x dz z y x f dy dx =⎰⎰⎰+220110),,(y x dz z y x f dx dy=⎰⎰⎰10010),,(2dx z y x f dz dy y +⎰⎰⎰-+1110222),,(y z y ydxz y x f dz dy=⎰⎰⎰10110),,(dx z y x f dy dz z +⎰⎰⎰--111212),,(yz z dx z y x f dy dz .=⎰⎰⎰10010),,(2dy z y x f dz dx x +⎰⎰⎰-+1110222),,(x z x x dyz y x f dz dx=⎰⎰⎰10110),,(dy z y x f dx dz z +⎰⎰⎰--111212),,(x z z dy z y x f dx dz .3、计算下列三重积分与累次积分:(1)⎰⎰⎰Vdxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;(2)⎰⎰⎰--+-22222221010y x yx x dz z dy dx .解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,2r≤z ≤r ∴⎰⎰⎰Vdxdydz z 2=⎰⎰⎰Sr dxdy z dz 220+⎰⎰⎰Qrr dxdyz dz 22=⎰-2022)2(r dz z rz z π+⎰-rr dz z r z 2222)(π=480595r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2π}, ∴⎰⎰⎰--+-22222221010y x yx x dz z dy dx =⎰⎰⎰-2221020r rdz z rdr d πθ=⎰---1322]2)2[(6dr r r r r π.=⎰---10322]2)2[(6dr r r r r π=)122(15-π.4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;(2)2⎪⎭⎫ ⎝⎛+b y a x +2⎪⎭⎫ ⎝⎛c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴⎰⎰⎰V dxdydz =⎰⎰+Ddxdy y x )(22=⎰⎰+xx dyy x dx 2)(2210=⎰⎥⎦⎤⎢⎣⎡-+-1063223)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则J=0cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θθθϕϕθϕθϕθϕϕθϕθϕcr c br br b ar ar a ---=2abcr 2cos φsin φcos θ,又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2π}. ∴⎰⎰⎰Vdxdydz =⎰⎰⎰1022020sin cos cos 2dr r d d abc ππϕϕϕθθ=3abc.5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.解:依题意,球体的质量M=⎰⎰⎰≤++++xz y x dV z y x 2222222,应用球面变换得V ’={(r,θ,φ)|-2π≤θ≤2π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=⎰⎰⎰-θϕπππϕϕθcos sin 203022sin dr r d d =⎰⎰-πππϕϕθθ05224sin cos 4d d =58π.6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.7、设V=⎭⎬⎫⎩⎨⎧≤++1),,(222222c z b y a x z y x , 计算下列积分:(1)⎰⎰⎰---Vdxdydz c z b y a x 2222221;(2)⎰⎰⎰++Vc z by ax dxdydz e 222222.解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)⎰⎰⎰---VdV cz b y a x 2222221=⎰⎰⎰-10220201sin dr r abcr d d ϕϕθππ =42πabc . (2)⎰⎰⎰++Vc z b y ax dV e222222=⎰⎰⎰12020sin dr e abcr d d r ϕϕθππ=)2(4-e abc π.。

相关文档
最新文档