中国传统数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论中国传统数学
向婷毅
摘要:中国传统数学对古代人民有着重要的作用,对现代社会的发展也起着不可忽视的作用,中国传统数学体系可以称为筹算制度;主要用于社会实践中,从而实用化了,同算法化了;古代中国数学与其它古代民族的数学相比较是很值得骄傲的;现代数古代学家们从古代数学思想中汲取灵感创造新的方法。
关键词:中国古代数学;数学的成就;数学的特点
在世界四大文明古国中,中国数学的持续繁荣时期最为长久,作为古代科学中的一门重要的学科。在中国古代科技文化中,能够称得上独立而系统的“文化”,恐怕没有中国传统数学更具有代表性了。深入思考中国传统数学,对于促进当今中国数学甚至整个科学技术良性发展不无裨益。对以后我们在教育界得提升有很大的帮助,传统数学很有重要。
1什么是中国传统数学
从远古到明代,在中国独立产生和发展起来的数学知识体系,称为中国传统数学。它以筹算为基础,以算法为主,寓理于算,广泛应用。它大致经历了初创(秦汉及以前,约公元前 2700 年到公元前200 年)、理论体系的形成( 三国两晋) 、缓慢发展与数学普及时期( 隋唐前后) 、理论的充实与发展(宋元) 、衰退与转型( 明及以后) 五个阶段,形成了独具特色的思想体系.中国传统数学初以算筹为主要算具,从计算方法、研究方法到基本理论独具一格、自成体系,因此也简称中国传统数学为“中算”。不过,现今“中算”一词还包括用中国传统数学的手段来处理从外国引见的数学新知识和新理论。这样,“中算”包括的范围要比中国传统数学广而大,明清时期的许多数学家所做的工作大多属于这样情况。因此,中算不等于中国传统数学, 中算家也不一定是中国传统数学家。
2中国传统数学的特点
中国传统数学重应用与计算,其成果往往以算法的形式表达,思维方式是构造性和机械化的,这正好切合计算机出现以后的时代要还求。中国古算的传统特点与其思想体系,对未来数学的发展应起巨大的指导与推动作用。另外,中国自战国时期起使用筹算,宋元时代发明珠算以后,以珠算代替筹算,笔算是 17世纪初从外国传进来的,所以要了解中国传统数学应该了解中国的筹算和珠算。中国古代数学与天文、历法紧密相联,不少数学家也是天文学家。综合中国传统数学具有明显的算法化、模型化、程序化、机械化等特征以及如下特点:
(1)属于应用数学。中国数学具有浓郁应用色彩,赵爽证明勾股定理后,便用来取某些与历法相关的一元二次方程的跟;祖冲之之所以偏爱用约率和密率来表示圆周率,目的是为了准确地计算闰年
的周期,而秦九韶的大衍术(中国剩余定理)主要用来上元积年得推算,这可以帮助确定知回归年,朔望月等天文常数等等类似例子在中国古代数学着作中非常多,都是与社会生活和生产密切相关而又普遍存在的问题,从以上这些可以说明,中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。
(2)以算法为中心。中国传统数学有着强烈的算法精神,在进行理论建设时常以算法作为考虑问题的基本出发点,力图建立以题解为中心的算法体系。故着重算法的概括,不讲究命题的形式推导。从生活和生产中提出问题,然后用一般性的计算方法解决问题。如《九章算术》中的消元法,虽然问题的提出具体到特殊的“上中下禾实一秉各几何”,但是它的解题方法可以解一般性的方程。
(3)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。
(4)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如平面几何中的“出入相补”原理、曲面体理论中的“截面原理”等等。
但是中国古代数学有一个缺点是:缺少严格求证的思想,为数学而数学的情形极为罕见;如,规矩和欧几里得作图法的差异。
3中国传统数学的成就
中国是世界上四大文明古国之一,中国的四大发明对世界文化的发展,世界的进步作出过重大贡献,中国的传统数学同样也对世界数学作出过重大贡献,古代中国数学与其它古代民族的数学相比较是很值得骄傲的。
(1)商代已经有了完整的十进位值制计数法,这是世界上最早的也是最好的计数法。它便于进行四则运算、学习、普及和应用英国科技史家李约瑟说:“如果没有这种十进位制,就几乎不可能出现我们现在这样统一化的;这与古埃及的累数字计算法、古巴比伦的六十位值制计算法更加方便很多。马克思说过:“这是最妙的发明之一。”如果没有这种十进位值制,数学不可能发展到今日的水平。
(2)《九章算术》中的解题方法具有普遍性,一种方法可以解决一类或几类问题,不象古希腊丢番图(约公元 3 世纪)的《算术》中对问题的解法依靠高度的技巧,缺乏一般性。我国古代最伟大的两数学家刘徽,在世界数学史上占有光辉的地位。他于公元 263 年撰《九章算术注》,书中有刘
微本人的许多创造。其最大的贡献是“割圆术”。这一创造开辟了中国数学发展的新纪元。在他之前人们常以3作为圆周率。他为了科学地计算圆周率的近似值,提出了“割圆术”。他从圆内接正六边形开始,依次将边数加倍,边数扩大得越多,所得到的正多边形和圆的面积差距就越小,即刘徽所谓的:“割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣。”用今日的话说,圆的面积是圆内接正多边形面积序列的极限,也就是说刘徽已有了极限的思想。刘徽在此还构造了三个公式,利用这三个公式可以由内接正 n 边形的边长,算出内接正 2n 边形的边长和面积,还可以得到圆面积的上、下界,这比阿基米德同时使用内接、外切正多边形来得简便。刘徽对体积理论也很有贡献。刘徽利用他所谓的“出入相补”原理和两种无限小方法(极限方法和不可分量法)算出了许多立体的体积。为了计算球的体积,刘徽设计了“牟合方盖”,可惜的是他没有能最终解决这一问题,他说将这一问题留给后来的能人去解决。刘徽着《海岛算经》,发展了我国古代天文测量中的“重差术”。
中国古代另一伟大数学家祖冲之创制了一部《大明历》,是当时最好的历法书。他采用了391年加144个闰月的精密的新闰周,突破沿袭很久额的19年7闰的传统方法,是天文历法史上的一个重大的进步。他对数学的最大贡献是他计算出精度较高的圆周率的近似值和计算体积的“祖氏原理”。祖冲之沿用了刘徽的“割圆术”算出3.1415926