等差数列的性质优质课
等差数列教案市公开课一等奖省优质课获奖课件
第11页
已知{an}为等差数列 且 a4+a5+a6+a7=56,a4a7=187,求公差d.
三数成等差数列,它们和为12,首尾二数 积为12,求此三数.
已知数列an中,a1
3,
1 an
1 an1
5(n
2),则an
____ .
第12页
第13页
知识回顾
定义 — 假如一个数列从第2项起,每一项与
㈠等差数列公差 —
它前一项差 d =an+1-an
.
等于同. 一. 个. 常. 数. .
几通何项意—义a—n=a等同1+(差一n-数条1)d列直各线项上.对应点都在
【说明】 ①数列{ an }为等差数列
an+1-an=d 或an+1=an+d
;
②公差是 唯一 常数;
m n p q,am an ap aq.
第9页
等差数列性质1
1. {an}为等差数列
an+1- an=d
an+1=an+d
an= a1+(n-1) d an= kn + b(k、b为常数)
2. a、b、c成等差数列 b为a、c 等差中项AA
b a c 2b= a+c
③推导等差数列通项公式方法叫做 递推法.
第2页
由定义归纳通项公式
a2 - a1=d,
等差数列的性质 课件
类型 1 利用等差数列的通项公式或性质解题 [典例 1] 在等差数列{an}中: (1)若 a2+a4+a6+a8+a10=80,求 a7-12a8; (2)已知 a1+2a8+a15=96,求 2a9-a10. 解:(1)a2+a4+a6+a8+a10=5a6=80, 所以 a6=16, 所以 a7-12a8=12(2a7-a8)=12(a6+a8-a8)=12a6=8. (2)因为 a1+2a8+a15=4a8=96, 所以 a8=24.所以 2a9-a10=a10+a8-a10=a8=24.
数列 {c+an} {can} {an+an+k}
{pan+qbn}
结论
公差为d的等差数列(c为常数)
公差为cd的等差数列(c为常数)
公差为2d的等差数列(k为常数, k∈N*)
公差为pd+qd′的等差数列(p,q为 常数)
(3){an}的公差为 d,则 d>0⇔{an}为递增数列;d<0 ⇔{an}为递减数列;d=0⇔{an}为常数列.
等差数列的性质
1.等差数列的图象 等差数列的通项公式 an=a1+(n-1)d,当 d=0 时, an 是关于 n 的常数函数;当 d≠0 时,an 是关于 n 的一次 函数;点(n,an)分布在以 d 为斜率的直线上,是这条直 线上的一系列孤立的点. 2.等差数列的项与序号的关系 (1)等差数列通项公式的推广:在等差数列{an}中,已 知 a1,d,am,an(m≠n),则 d=ann--a11=ann--mam,从而有 an=am+(n-m)d.
又因为是递增数列,所以 d>0,
所以解得 a=±72,d=32, 所以此等差数列为-1,2,5,8 或-8,-5,-2,1.
[迁移探究] 若将典例 2 改为:已知三个数成等差数 列并且数列是递增的,它们的和为 18,平方和为 116,求 这三个数.
等差数列的概念、性质(优质课)教案
等差数列的概念、性质(优质课)教案教学目标:教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系; 教学难点: 通项公式的求解及等差数列的判定。
教学过程:1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++−=∈或()12,n n a a d n n N −+−=≥∈2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+− 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+−()11q a a q d =+− 两式相减,得()p q a a p q d =+− 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+−可得()1n a dn a d =+−,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =−=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a −−+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+−(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =−,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+−=−+−⨯=−令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =−,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥<所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d −≤<−∈∴=− 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==−其中n N +∈设221n n b a =−(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式 解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++−−=−=−==−−−−− 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+−=−+∴==−答案:(1)略 (2)12n n a n+=练习5.已知数列{}n a 满足()1114,21n n n a a a n a −−==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =− ,34n b n =− 练习6.在等差数列{}n a 中,已知581,2,a a =−= 求1,a d 答案:15,1a d =−=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =−;由b 为2与c 的等差数列,得4c =− 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a −的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==−则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =−=∴=−+∴=−+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =−+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =−,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+−−=− 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==−==− (2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n −=+−=−∴===−−=− 则1320n b n =−(3)503132*********b=−⨯=−,设它是{}n a中的第m项,则1004785m−=−,则2011m=,即{}n b中的第503项是{}n a中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A.11 B.12 C.13 D.14答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______.答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项.(3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项? 答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项. 24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n}是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1, ∴a 6=13,∴a 3+a 9=2a 6=23.27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3.∵lgsin A ,lgsin B ,lgsin C 成等差数列, ∴2lgsin B =lgsin A +lgsin C , 即sin 2B =sin A ·sin C , ∴sin A sin C =34.又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C , ∴sin A sin C =cos (A -C )-cos (A +C )2,∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0, 即A =C =π3,A =B =C .故△ABC 为等边三角形.。
《等差数列的性质》课件
等差数列的性质
公差定义
等差数列中,相邻两项之间的差值称为公差。
性质2:中间项等于前后两项之和的一 半
等差数列的中间项等于前ห้องสมุดไป่ตู้两项之和的一半。
性质1:差是固定值
任意两项的差是一个固定值。
性质3:前n项和公式
等差数列前n项和的公式是Sn = (n/2)(2a1 + (n 1)d)。
等差数列的应用
等差中数的求解
通过等差数列的中项公式,可以求解等差数列中任 意位置的值。
等差数列和的应用
等差数列的求和公式可以在金融领域中使用,计算 利息和投资回报等。
总结
1 等差数列是什么?
等差数列指的是每个相邻项之间的差值是恒定的数列。
2 等差数列有哪些性质?
等差数列具有固定公差、任意两项的差为固定值,中间项等于前后两项之和的一半等性 质。
3 等差数列有什么应用?
等差数列的应用包括求解等差中数和计算等差数列的前n项和,还可在金融领域中进行利 息和投资回报的计算。
《等差数列的性质》PPT 课件
欢迎来到《等差数列的性质》PPT课件!本课程将带您深入了解等差数列的基 本概念和重要性质,以及其在数学和实际生活中的应用。
什么是等差数列
等差数列是一种数学序列,其中每个相邻的项之间的差值是恒定的。 等差数列的通项公式是:an = a1 + (n - 1)d,其中a1为首项,d为公差。
等差数列说课稿公开课优质课获奖版
等差数列说课稿公开课优质课获奖版概述本文档是关于等差数列的公开课说课稿,是获奖版的优质课内容。
本文档将介绍等差数列的基本概念、性质以及相关问题的解决方法,帮助学生更好地理解和掌握等差数列的知识。
内容1. 等差数列的定义- 等差数列的概念- 等差数列的符号表示- 等差数列的性质2. 等差数列的通项公式- 介绍等差数列的通项公式的推导过程- 说明通项公式的意义和应用3. 等差数列的求和公式- 推导等差数列的求和公式- 解释求和公式的应用场景4. 等差数列的常见问题- 如何判断一个数列是否是等差数列- 如何确定等差数列的公差- 如何求等差数列的前n项和教学目标通过本次公开课,学生可以达到以下教学目标:1. 理解等差数列的定义和基本性质;2. 了解等差数列的通项公式和求和公式,掌握其应用;3. 掌握判断数列是否为等差数列的方法;4. 能够解决等差数列相关问题,特别是求前n项和的问题。
教学方法本课程将采用多种教学方法,包括讲解、举例说明和练。
通过多种方式引导学生主动参与,提高他们的研究兴趣和动手能力。
教学准备为了保证公开课的顺利进行,教师需要做好以下准备工作:1. 准备教案和课件,包含等差数列的相关内容;2. 准备适当的例题和练题,用于课堂互动;3. 提前检查教室设备,确保投影仪、电脑等设备正常工作。
教学步骤本课程将分为以下几个步骤进行:1. 导入:通过一个生活实例引入等差数列的概念,激发学生的兴趣;2. 概念讲解:讲解等差数列的定义、符号表示和基本性质;3. 推导与应用:推导等差数列的通项公式和求和公式,并讲解其应用;4. 问题解决:讲解如何判断数列是否为等差数列,如何确定公差,以及如何求前n项的和;5. 总结:对本节课的内容进行总结,并提出一些题供学生练。
教学评价为了评价学生的研究效果,本课程将采用以下方式进行评价:1. 课堂互动:教师通过课堂提问和学生间的互动,观察学生对等差数列的理解程度;2. 练评价:通过布置练题并批改,评价学生对等差数列的应用能力;3. 反馈与回顾:及时给予学生反馈,并对课堂内容进行回顾,帮助学生巩固所学知识。
等差数列优质说课稿公开课一等奖课件省赛课获奖课件
课前自主学习 课堂讲练互动 课后智能提升
题型二 等差数列的综合应用
【例
2】
等差数列an
的第
5 项为
5,第
10 项
为-5,问此数列中第一个负数项是第几项?
答案:仍是等差数列
课前自主学习 课堂讲练互动 课后智能提升
预习测评
1.在等差数列an
中,
a3,a9
是方程
2x2-x-7=0
的两根,则 a6=
()
1 A.2
1 B.4
C.-72
D.-74
解析:由韦达定理 a3+a9=12=2a6⇒a6=14,故选 B.
答案:B
课前自主学习 课堂讲练互动 课后智能提升
2.等差数列an中,若 m+n=p+q,则 an+am= ap+aq(n,m,p,q∈N*),特别地,若 m+n=2p,则 an+am=2ap.
特别注意:“数列an中,若 m=p+q,则 am=ap +aq”是不一定成立的.
3.等差数列an中,若公差 d>0,则数列an为递 增数列;等差数列an中,若公差 d<0,则数列an为递 减数列.
()
A.0 B.1 C.2 D.1或2
解析:由于2b=a+c,则4b2-4ac=(a+c)2-4ac
=(a-c)2≥0,故选D.
答案:D
课前自主学习 课堂讲练互动 课后智能提升
误区解密 注意题目中的隐含条件
【例 3】
等差数列an的首项为
1,且an
从第
9
项开始各项均大于 25,求公差 d 的取值范围.
2.2《等差数列》课件(优质课)
解:an an1 (pn q) [p(n 1) q]
pn q ( pn p q) p 为常数
∴{ an }是等差数列 首项 a1 p q ,公差为 p。
反之:等差数列的通项公式可以表示 为an pn q吗?
a4-a3=d
a4=a3+d=(a1+2d)+d=a1+3d
……
由此得到
an=a1+(n-1)d , n∈N+,
例1 等差数列{an}中 ①已知a1 =2,d=3,n=10,求 an ②已知d = - 0.5,a7 =8,求 a1 ③已知a1 = 12,a6 = 27,求 d ④已知a1 = 3,an = 21,d = 2,求n
通项公式an a1 (n 1 )d中 已知a1,an,n,d中任意三个,可求另外一个
⑴求等差数列8,5,2,…的第20项. ⑵- 401是等差数列-5,-9,-13,…的第几项?
解:⑴由a1=8,d=5-8=-3,n=20,得 a20=8+(20-1) ×(-3)=-49.
⑵由a1=-5,d =-9-(-5)=-4,得到这个数列的通项公式为 an= -5+(n-1)x(-4)= -4n-1. 由-401=-4n-1, 得n=100, 即-401是这 个数列的第100项.
解析:由已知,x 是 1 和 y 的等差中项,即 2x=1+y ①
y 是 x 和 10 的等差中项,即 2y=x+10
②
由①、②可解得 x=4,y=7.
通项公式的推导一:
已知等差数列{an}的首项是a1,公差是d
a2-a1=d a3-a2=d
《等差数列课》课件
当公差d<0时,数列为递减数列,通项公式为 $a_n = a_1 + (n1)d$。
特殊情况
当 $a_1 = 0$ 时,无论公差d取何值,数列均为非负数列。
03
等差数列的求和公式
等差数列求和公式的推导
公式推导
通过等差数列的性质,将等差数列的项进行分组求和,再利用等差 数列的性质简化求和过程,推导出等差数列的求和公式。
实例演示
以数列 3, 7, 11, 15, ... 为例,第 一项 $a_1 = 3$,公差 $d = 4$ ,代入公式得到通项 $a_n = 3 + (n-1) times 4 = 4n - 1$。
等差数列通项公式的应用
求任意项的值
根据通项公式,我们可以求出任意一 项的值,例如第10项 $a_{10} = a_1 + 9d$。
等差数列与函数
等差数列可以看作一种特殊的函数,其图像为直线。理解等差数 列与函数的关系有助于加深对两者概念的理解。
等差数列与几何
在几何学中,等差数列的概念可以应用于图形构造,如等分线段、 等分面积等。
等差数列与三角函数
等差数列的项可以表示为三角函数的值,这为解决一些数学问题提 供了新的思路。
等差数列在实际生活中的应用
等差为0的等差数列
01
对于公差为0的等差数列,其求和公式为Sn = n * a1。
等差为常数的等差数列
02
对于公差为常数的等差数列,可以利用等差数列求和公式进行
求解。
等差数列的变种
03
对于一些特殊的等差数列,如等比数列、等积数列等,需要采
用其他方法进行求解。
04
等差数列的综合应用
等差数列性质总结复习公开课一等奖优质课大赛微课获奖课件
14)
2 3
(1)n
(an
3n
21)
2 3
bn
又 b1 ( 18) ,因此
当 18 时,bn 0(n N ) ,则{bn} 不是等比数列
当 18
时,b1
(
18)
0
,则
bn1 bn
2 3
故当 18时,{bn} 是等比数列
首项、公比含有参数,还要考虑是否为0.
第11页
热身训练 题型归纳 典例分析 练习反馈 小结提升
数列小结
第1页
热身训练 题型归纳 典例分析 练习反馈 小结提升
1、已知 an n2 n ,若数列 an 是递增数列,则实数
取值范围为
2、已知
f1 ( x)
2, 1 x
f n1 ( x)
f1
fn ( x),
且
an
fn (0) 1 , fn (0) 2
a 则 2012 ( )
A.
1 2
③前n项和这法不:也Sn许 , a故1(11{qaqnn)n}a1不A(也qn许1为) 等((qq比数11))列A,。q为常数,且q 0
④等差中项法:
a2 n 1
an
an2
第10页
热身训练 题型归纳 典例分析 练习反馈 小结提升
(2)解:bn1
(1)n1[an1
3(n
1)
21]
(1)n1(
2 3
(1)求{an }通项公式;
(2)当 n
2
时,求证: 1 a1
1 a2
1 an
3
变式:当 n 2 时,求证:1 1 1 3
a1 a2
an 2
解:(1)an1 an 2(an an1) an1 an 2n1
等差数列教案第一课时市公开课一等奖教案省赛课金奖教案
等差数列教案第一课时一、教学目标:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和;3. 能够应用等差数列的概念和公式解决实际问题。
二、教学重点:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和。
三、教学难点:能够应用等差数列的概念和公式解决实际问题。
四、教学过程:1. 导入(5分钟)教师可以通过提问的方式导入,例如:“小明种植了一排树木,第一棵树距离大门10米,第二棵树距离第一棵树20米,第三棵树距离第二棵树30米,以此类推,你能发现什么规律?这些数之间有什么特点?”2. 概念解释(15分钟)引导学生讨论并总结出等差数列的概念:“等差数列是指数之间的差值相等的数列。
在等差数列中,我们称这个差值为公差,用d表示。
”教师可以给出示例,如1, 3, 5, 7, ...等,并解释数列中的每个数依次加上公差d就可以得到下一个数。
3. 列出通项公式(15分钟)通过示例引导学生找出等差数列的通项公式。
以示例1, 3, 5, 7, ...为例,学生可以发现每个数都可以表示为a + (n-1)d的形式,其中a为第一个数,n为项数,d为公差。
因此,该等差数列的通项公式为an = a + (n-1)d。
4. 使用通项公式求值(15分钟)教师通过例题演示如何使用通项公式求等差数列中的某一项的值。
例如:“求等差数列1, 3, 5, 7, ...中第10项的值。
”学生可以利用通项公式an = a + (n-1)d,将a设为1,d设为2,n设为10,代入公式计算得到an的值为...5. 求等差数列的和(15分钟)引导学生思考如何求等差数列的和,并给出等差数列求和的公式:Sn = n/2 (2a + (n-1)d),其中Sn表示等差数列的和。
教师通过例题演示如何使用求和公式计算等差数列的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
型
an=3n+5 a1=8,d=3
17 14 11 8 1 2 3
y=3x+5
an=12-2n a1=10,d=-2
1 0 8 6 4
y=12-2x
4
1 2
3
4
等差数列的性质(二)
如果a,A,b成等差数列,那么A叫a 与b的等差中项.
在一个数列中,从第2项起,每一项(有穷数列的 末项除外)都是它前一项与后一项的等差中项. 如:数列:1,3,5,7,9,11,13,…中,
等差数列重要拓展课题:
导航:等差数列的定义和通项公式是处理等差数 列问题的出发点,化基本量进行计算是基本方法, 但充分利用性质总可以使问题更加简便,事实上, 学习任何数列都应当充分重视其性质的研究,我 们对函数研究时何尝不是同样的道理,Let’s go!
知识回顾
AAAAAAAAAAAAA 如果一个数列从第2项起, 每一项与 定 义 — 它前一项的差 等于同一个常数. . . . . . .
四个数怎么设?
等差数列的设法及求解
(1)若有三个数成等差数列,则一般设为a-d,a,
a+ d;
(2)若有四个数成等差数列,则一般设为a-3d,a
- d, a+ d, a + 3d;
(3)若有五个数成等差数列,则一般设为a-2d,a
- d, a, a+ d , a+ 2d.
如何判断一个数列为等差数列
2
等差数列。 (2)数列{an }的前n项和为S n n 2n 1, 求该数列的
2
通项。
等差数列的性质(一)
1、若一个数列的通项公式为n的一次 函数 an=pn+q,则这个数列为等差数列,公差为p .
2、非常数列的等差数列通项公式是关于n的一次函数. 常数列的等差数列通项公式为常值函数。
等差数列的性质(三)
数列{an}是等差数列,m、n、p、q∈N+, 且m+n=p+q,,则am+an=ap+aq。
判断: (1)a3 a 5 a1 a 7
(2)a1 a 4 a 6 a 3 a 8 (3)a1 a 5 a 6 a 2 a 3 a 7 注意:等式两 (4)a3 a 4 a 5 3a4 边作和的项数 必须一样多 (5)a3 a 4 a 5 4a3 (6)a8 a13 a 21
等差数列的性质(四)
已知一个等差数列的首项为a1,公差为d a1,a2,a3,……an
(1)将前m项去掉,其余各项组成的数列是等差数 列吗?如果是,他的首项与公差分别是多少?
am+1,am+2,……an是等差数列 首项为am+1,公差为d,项数为n-m
等差数列的性质(四) 已知一个等差数列的首项为a1,公差为d, a1,a2,a3,……an
(3)取出数列中所有项是7的倍数的各项,组成一个数 列,是等差数列吗?如果是,他的首项与公差是多少?
a7,a14,a21,……是等差数列
首项为a7,公差为7d
取出的是所有k倍数的项呢?
ak,a2k,a3k,……是等差数列 首项为ak,公差为kd
等差数列的性质(四) 已知一个等差数列的首项为a1,公差为d,
等差数列的性质(一) 例1 已知数列的通项公式为an=pn+q,其中p,q 是常数,且p≠0,那么这个数列一定是等差数 列吗?如果是,其首项与公差是什么?
分析:由等差数列的定义,要判定是不是等差数列,只 要看an-an-1(n≥2)是不是一个与n无关的常数就行了 解:取数列中的任意相邻两项an-1与an(n≥2) an-an-1=(pn+q)-[p(n-1)+q]
等差数列的性质(四) 1、若数列{an}为等差数列,公差为d,则{kan} kd 。 也为等差数列,公差为 ____
d 的等差数列; 2、{c+an}(c为任一常数)是公差为__
cd 的等差数列. 3、{c· an}(c为任一常数)是公差为____
4、若数列{an}与{bn}分别是公差为d1、d2等差 数列,则{an+bn}也为等差数列,{an-bn}也为等 差数列,{pan+qbn}也为等差数列。
例题分析
(2)[解]
1 ∵{ }是等差数列, an-2
1 1 1 n ∴ = +(n-1)·= , 2 2 an-2 a1-2 2 2 ∴an-2=n,∴an=2+n.
例题分析
例5:
整体思想
1 1 1 1)数列{a n }中,a1 1 , ,求a n a n+1 a n 3
2 1 1 2)数列{a n }中,a1 2, , an a n+1 a n-1 (n 2)求a n
等差数列 公 差 — d =an+1-an 通 项— a =a +(n-1)d 或an am (n m)d n 1 — 等差数列各项对应的 几 何 意 义 点都在同一条直线上. 【说明】 ①数列{ an }为等差数列 an+1-an=d 或 an+1=an+d ②公差是 唯一 的,是一个常数。
解后反思: 它是一个与n无关的常数,所以是等差数列,且公差是 p 证明一个数列是等 在通项公式中令n=1,得a =p+q, 差数列的方法 所以这个等差数列的首项是 p+q,公差是p,
=pn+q-(pn-p+q) =p
1
作业讲评:
( 1 )数列{an }的前n项和为S n n 2n, 求证该数列是
解 : 设这三个数为a d , a , a d . a d a a d 12 设数技巧 a d a a d 48 已知三个数成等差 数列,且和为已知时 a 4 a 4 常利用对称性设三数 或 为:a-d , a ,a,a7=187 ② , 解 ①、 ② 得 a4= 17 a4= 11 _2或2, 从而a = _3 ∴ d= 或 14 a7= 11 a7= 17 或31
练习
变式1:已知{an }为等差数列, a4 a5 a6 a7 56, a4a7 187, 求a1,d
变式2:已知{an }为等差数列, a2 a5 a8 9, a3a5a7 21, 求数列通项公式
1 5 5 9 3 7 3 7 5 2 2 2 3 7 1 9 5 9 3 11 1 13 5 7 2 2 2 2 2
即: a2 a4 a1 a5 2a3
a3 a5 a2 a6 a1 a7 2a4
思考题:已知三个数成等差数列的和 是12,积是48,求这三个数.
例题分析
例3:等差数列{a n }和{bn }中,a1 34, b1 66, a 98 85, b98 15, 求a 2008 b2008
例题分析
————重点题型:证明一个 数列是等差数列
4 (n≥ 2),
例 4 已知数列 {an}满足 a1=4,an=4- 1 bn= . an-2 (1)求证:数列 {bn}是等差数列; (2)求数列 {bn}的通项公式.
3)数列{a n } 中,a1 1 ,a 2 4, a n+2 2a n+1 a n 2,求a n
(2)取出数列中的所有奇数项,组成一个数列,是等 差数列吗?如果是,他的首项与公差分别是多少?
a1,a3,a5,……是等差数列 首项为a1,公差为2d
取出的是所有偶数项呢?
a2,a4,a6,……是等差数列 首项为a2,公差为2d
等差数列的性质(四) 已知一个等差数列的首项为a1,公差为d, a1,a2,a3,……an
可得a1+a20=10
(2)已知 a3+a11=10,求 a6+a7+a8 分析: a3+a11 =a6+a8 =2a7 ,又已知 a3+a11=10,
∴
3 a6+a7+a8=2 (a3+a11)=15
(3) 已知 a4+a5+a6+a7=56,a4a7=187, 求a14及公差d. 分析: a4+a5+a6+a7=56 a4+a7=28 ①
(1)定义法:a n a n 1 d(常数)(n 1) {a n }为等差数列
(2)递推法: 2an 1 a n a n 2 (常数)(n 1) {a n }为等差数列
(3)通项法:a n为n的一次型函数 {a n }为等差数列
等差数列的性质(三)
d 为公差,若 在等差数列an 中, m, n, p, q N 且 m n p q 则:am an a p aq (常用性质)
an- 1
例题分析
(1)[证明] ∵an=4- 4 an-1 (n≥2),
4 2an-2 ∴an+1-2=2- = , an an 1 an 1 1 ∴ = = + (n≥1). 2 an+1-2 2an-2 an-2 1 1 1 故 - = (n≥1), an+1-2 an-2 2 1 即 bn+1-bn= .∴数列{bn}是等差数列. 2
a1,a2,a3,……an
(4)数列a1+a2,a3+a4,a5+a6,……是等差
数列吗?公差是多少?
a1+a2,a3+a4,a5+a6,……是等差数列,公差为4d 数列a1+a2+a3,a2+a3+a4,a3+a4+a5……是 等差数列吗?公差是多少? a1+a2+a3,a2+a3+a4,a3+a4+a5……是等差数列, 公差为3d。