高三数学平面向量专题复习
高中数学-平面向量专题
第一部分:平面对量的概念及线性运算一.基础学问 自主学习1.向量的有关概念名称定义备注向量 既有 又有 的量;向量的大小叫做向量的 (或称 )平面对量是自由向量零向量 长度为 的向量;其方向是随意的 记作0单位向量 长度等于 的 向量非零向量a 的单位向量为±a|a |平行向量 方向 或 的非零向量0与任一向量 或共线 共线向量 的非零向量又叫做共线向量 相等向量长度 且方向 的向量 两向量只有相等或不等,不能比较大小相反向量长度 且方向 的向量 0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法 求两个向量和的运算(1)交换律: a +b =b +a . (2)结合律:(a +b )+c =a +(b +c ).减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则 a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向 ;当λ=0时,λa =0.λ(μa )=λμa ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb .3.共线向量定理 向量a (a ≠0)与b 共线的 条件是存在唯一一个实数λ,使得b =λa .二.难点正本 疑点清源1.向量的两要素向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区分向量平行包括向量共线(或重合)的状况,而直线平行不包括共线的状况.因而要利用向量平行证明向量所在直线平行,必需说明这两条直线不重合.三.基础自测1.化简OP →-QP →+MS →-MQ →的结果等于________.2.下列命题:①平行向量肯定相等;②不相等的向量肯定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量肯定共线.其中不正确命题的序号是_______.3.在△ABC 中,AB →=c ,AC →=b .若点D 满意BD →=2DC →,则AD →=________(用b 、c 表示).4.如图,向量a -b 等于( ) A .-4e 1-2e 2 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 25.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则肯定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D四.题型分类 深度剖析题型一 平面对量的有关概念 例1 给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c .其中正确的序号是________.变式训练1 推断下列命题是否正确,不正确的请说明理由.(1)若向量a 与b 同向,且|a |=|b |,则a>b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)若|a |=|b |,且a 与b 方向相同,则a =b ;(4)由于零向量的方向不确定,故零向量不与随意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反;(6)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等题型二 平面对量的线性运算例2 如图,以向量OA →=a ,OB →=b 为边作▱OADB ,BM →=13BC →,CN →=13CD →,用a 、b 表示OM →、ON →、MN →.变式训练2 △ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N .设AB →=a ,AC →=b ,用a 、b表示向量AE →、BC →、DE →、DN →、AM →、AN →.题型三 平面对量的共线问题例3 设e 1,e 2是两个不共线向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2.(1)求证:A 、B 、D 三点共线;(2)若BF →=3e 1-ke 2,且B 、D 、F 三点共线,求k 的值.变式训练3 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.五.思想与方法5.用方程思想解决平面对量的线性运算问题试题:如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b表示向量OM →.六.思想方法 感悟提高方法与技巧1.将向量用其它向量(特殊是基向量)线性表示,是非常重要的技能,也是向量坐标形式的基础.2.可以运用向量共线证明线段平行或三点共线问题.如AB →∥CD →且AB 与CD 不共线,则AB ∥CD ;若AB →∥BC →,则A 、B 、C 三点共线. 失误与防范1.解决向量的概念问题要留意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满意条件.要特殊留意零向量的特殊性.2.在利用向量减法时,易弄错两向量的依次,从而求得所求向量的相反向量,导致错误.七.课后练习1.给出下列命题:①两个具有公共终点的向量,肯定是共线向量;②两个向量不能比较大小,但它们的模能比较大小; ③λa =0 (λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( ) A .1 B .2 C .3 D .42.若A 、B 、C 、D 是平面内随意四点,给出下列式子:AB +CD →=BC +DA →;②AC +BD →=AD BC +;③AC -BD →=DC →+AB .其中正确的有( ) A .0个 B .1个 C .2个 D .3个 3. 已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满意CB AC +2=0,则OC 等于( )A.OA 2-OB →B.OA -+2OB →C.OA 32-13OB →D.OA 31-+23OB →4.如图所示,在△ABC 中,BD =12DC →,AE →=3ED →,若AB =a ,AC =b ,则BE →等于( )A.13a +13b B .-12a +14b C.12a +14b D .-13a +13b 5. 在四边形ABCD 中,AB =a +2b,BC =-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形态是( )A .矩形B .平行四边形C .梯形D .以上都不对 6. AB =8,AC =5,则BC 的取值范围是__________. 7.给出下列命题:①向量AB 的长度与向量BA →的长度与向量BA →的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个有公共终点的向量,肯定是共线向量;⑤向量AB 与向量CD →与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上. 其中不正确的个数为____________.8.如图,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N.若AB =mAM →,AC =nAN →,则m +n 的值为________.9.设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a)共线,则λ=________.10.在正六边形ABCDEF 中,AB =a ,AF →=b ,求AD AC ,,AE →.11.如图所示,△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM的值.12.已知点G 是△ABO 的重心,M 是AB 边的中点.(1)求GA +GB →+GO →;(2)若PQ 过△ABO 的重心G,且AO =a, OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n=3.其次部分:平面对量的基本定理及坐标表示一.基础学问 自主学习1.两个向量的夹角定义范围已知两个 向量a ,b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角(如图)向量夹角θ的范围是 ,当θ= 时,两向量共线,当θ= 时,两向量垂直,记作a ⊥b .2.平面对量基本定理及坐标表示(1)平面对量基本定理假如e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的随意向量a , 一对实数λ1,λ2,使a = .其中,不共线的向量e 1,e 2叫做表示这一平面内全部向量的一组 . (2)平面对量的正交分解及坐标表示把一个向量分解为两个 的向量,叫做把向量正交分解. (3)平面对量的坐标表示①在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,由平面对量基本定理可知,有且只有一对实数x ,y ,使a =xi +yj ,这样,平面内的任一向量a 都可由x ,y 唯一确定,把有序数对 叫做向量a 的坐标,记作a = ,其中 叫做a 在x 轴上的坐标, 叫做a 在y 轴上的坐标.②设OA →=xi +yj ,则向量OA →的坐标(x ,y )就是 的坐标,即若OA →=(x ,y ),则A 点坐标为 ,反之亦成立.(O 是坐标原点) 3.平面对量坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b = ,a -b = , λa = ,|a |= . (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →= ,|AB →|= . 4.平面对量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔ .二.难点正本 疑点清源1.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内随意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的. 2.向量坐标与点的坐标的区分在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应留意其表示形式的区分,如点A (x ,y ),向量a =OA →=(x ,y ).当平面对量OA →平行移动到O 1A 1→时,向量不变即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了改变.三.基础自测1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.2.已知向量a =(1,2),b =(-3,2),若ka +b 与b 平行,则k =________.3.设向量a =(1,-3),b =(-2,4),c =(-1,-2).若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d =____________.4.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为 ( )A.⎝⎛⎭⎫2,72B.⎝⎛⎭⎫2,-12 C .(3,2) D .(1,3)5.已知平面对量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于y 轴B .平行于第一、三象限的角平分线C .平行于x 轴D .平行于其次、四象限的角平分线四.题型分类 深度剖析题型一 平面对量基本定理的应用例1 如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →,AD →.变式训练1 如图,P 是△ABC 内一点,且满意条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用p 表示CQ →.题型二 向量坐标的基本运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满意a =mb +nc 的实数m ,n ;(3)求M 、N 的坐标及向量MN →的坐标.变式训练2 (1)已知点A 、B 、C 的坐标分别为A (2,-4)、B (0,6)、C (-8,10),求向量AB →+2BC →-12AC →的坐标;(2)已知a =(2,1),b =(-3,4),求:①3a +4b ;②a -3b ;③12a -14b .题型三 平行向量的坐标运算例3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题:(1)求满意a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k ; (3)若d 满意(d -c )∥(a +b ),且|d -c |=5,求d .变式训练3 已知a =(1,0),b =(2,1).(1)求|a +3b |;(2)当k 为何实数时,ka -b 与a +3b 平行,平行时它们是同向还是反向?五.易错警示8.忽视平行四边形的多样性致误试题:已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.六.思想方法 感悟提高方法与技巧1.平面对量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解.2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理,从而向量可以解决平面解析几何中的很多相关问题. 3.在向量的运算中要留意待定系数法、方程思想和数形结合思想的运用. 失误与防范1.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.同时,a ∥b 的充要条件也不能错记为x 1x 2-y 1y 2=0,x 1y 1-x 2y 2=0等.七.课后练习1.已知向量a =(1,-2),b =(1+m,1-m ),若a ∥b ,则实数m 的值为( ) A .3 B .-3 C .2 D .-22.已知平面对量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)3.设向量a =(3,3),b 为单位向量,且a ∥b ,则b 等于( )A.⎝⎛⎭⎫32,-12或⎝⎛⎭⎫-32,12B.⎝⎛⎭⎫32,12C.⎝⎛⎭⎫-32,-12D.⎝⎛⎭⎫32,12或⎝⎛⎭⎫-32,-124.已知向量a =(1,-m ),b =(m 2,m ),则向量a +b 所在的直线可能为( ) A .x 轴 B .第一、三象限的角平分线 C .y 轴 D .其次、四象限的角平分线5.已知A(7,1)、B(1,4),直线ax y 21=与线段AB 交于C ,且=AC 2CB →,则实数a 等于( )A .2B .1C.45D.536.若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b的值等于________.7.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.8.若向量a )43,3(2--+=x x x 与AB 相等,其中A (1,2),B (3,2),则x =________.9.若平面对量a ,b 满意|a +b|=1,a +b 平行于y 轴,a =(2,-1),则b =______________. 10. a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行?平行时它们是同向还是反向?11.三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(3c -b ,a -b ),n =(3a +3b ,c ),m ∥n.(1)求cos A 的值;(2)求sin(A +30°)的值.12.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知向量m =(a ,b ),向量n =(cos A ,cos B ),向量p =⎝⎛⎭⎫22sin B +C2,2sin A ,若m ∥n ,p 2=9,求证:△ABC 为等边三角形.第三部分:平面对量的数量积一.基础学问 自主学习1.平面对量的数量积已知两个非零向量a 和b ,它们的夹角为θ,则数量_______叫做a 和b 的数量积(或内积),记作________________. 规定:零向量与任一向量的数量积为____.两个非零向量a 与b 垂直的充要条件是 ,两个非零向量a 与b 平行的充要条件是 .2.平面对量数量积的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影_________的乘积.3.平面对量数量积的重要性质 (1)e ·a =a ·e = ;(2)非零向量a ,b ,a ⊥b ⇔ ; (3)当a 与b 同向时,a ·b = ;当a 与b 反向时,a ·b = ,a ·a =a 2,|a|=a·a ; (4)cos θ=a·b |a||b|;(5)|a ·b|____|a ||b |.4.平面对量数量积满意的运算律 (1)a·b = (交换律);(2)(λa )·b = = (λ为实数); (3)(a +b )·c = .5.平面对量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b = ,由此得到 (1)若a =(x ,y ),则|a |2= 或|a |= .(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=AB = . (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔ .二.难点正本 疑点清源1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,肯定要留意两向量夹角的范围. 2.数量积的运算只适合交换律、加乘安排律及数乘结合律,但不满意向量间的结合律,即(a ·b)c 不肯定等于a(b ·c).这是由于(a ·b)c 表示一个与c 共线的向量,而a(b ·c)表示一个与a 共线的向量,而c 与a 不肯定共线.三.基础自测1.已知向量a 和向量b 的夹角为30°,|a|=2,|b|=3,则向量a 和向量b 的数量积a·b =________.2.在△ABC 中,AB =3,AC =2,BC 10则AC AB ·=______.3.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.4.已知|a|=6,|b|=3,a·b =-12,则向量a 在向量b 方向上的投影是 ( ) A .-4 B .4 C .-2 D .25.已知向量a =(1,-1),b =(1,2),向量c 满意(c +b)⊥a ,(c -a)∥b ,则c 等于 ( ) A .(2,1) B .(1,0) C.⎝⎛⎭⎫32,12 D .(0,-1)四.题型分类 深度剖析题型一 求两向量的数量积例1 (1)在Rt △ABC 中,∠C =90°,AB =5,AC =4,求BC AB ·; (2)若a =(3,-4),b =(2,1),试求(a -2b)·(2a +3b).变式训练1 (1)若向量a 的方向是正南方向,向量b 的方向是正东方向,且|a|=|b|=1,则(-3a)·(a +b)=______.(2)如图,在△ABC 中,AD ⊥AB ,BC = 3 BD →,|AD |=1,则AD AC ·等于( ) A .2 3 B.32 C.33D.3题型二 求向量的模例2 已知向量a 与b 的夹角为120°,且|a|=4,|b|=2,求:(1)|a +b|;(2)|3a -4b|;(3)(a -2b)·(a +b).变式训练2 设向量a ,b 满意|a -b |=2,|a|=2,且a -b 与a 的夹角为π3,则|b|=________.题型三 利用向量的数量积解决夹角问题例3 已知a 与b 是两个非零向量,且|a|=|b|=|a -b|,求a 与a +b 的夹角.变式训练3 设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角.题型四 平面对量的垂直问题例4 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π). (1)求证:a +b 与a -b 相互垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)变式训练4 已知平面内A 、B 、C 三点在同一条直线上,OA =(-2,m ),OB →=(n,1),OC =(5,-1),且OA →⊥OB →,求实数m ,n 的值.五.答题规范5.思维要严谨,解答要规范试题:设两向量e 1、e 2满意|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.六.思想方法 感悟提高方法与技巧1. 向量的数量积的运算法则不具备结合律,但运算律和实数运算律类似.如(a +b)2=a 2+2a·b +b 2;(λa +μb)·(s a +t b)=λs a 2+(λt +μs )a·b +μt b 2(λ,μ,s ,t ∈R).2.求向量模的常用方法:利用公式|a|2=a 2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法技巧.失误与防范1.(1)0与实数0的区分:0a =0≠0,a +(-a)=0≠0,a·0=0≠0;(2)0的方向是随意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系.2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a ⊥b.3.一般地,(a·b)c≠(b·c)a 即乘法的结合律不成立.因a·b 是一个数量,所以(a·b)c 表示一个与c 共线的向量,同理右边(b·c)a 表示一个与a 共线的向量,而a 与c 不肯定共线,故一般状况下(a·b)c≠(b·c)a.4.a·b =a·c(a≠0)不能推出b =c .即消去律不成立.5.向量夹角的概念要领悟,比如正三角形ABC 中,〈,AB BC 〉应为120°,而不是60°.七.课后练习1.设向量a =(1,0),b =(12,12),则下列结论中正确的是( ) A .|a |=|b | B .a·b =22C .a ∥bD .a -b 与b 垂直2.若向量a =(1,1),b =(2,5),c =(3,x ),满意条件(8a -b)·c =30,则x 等于( )A .6B .5C .4D .33.已知向量a ,b 的夹角为60°,且|a |=2,|b |=1,则向量a 与a +2b 的夹角等于( )A .150°B .90°C .60°D .30°4.平行四边形ABCD 中,AC 为一条对角线,若AB =(2,4),AC =(1,3),则⋅AD BD 等于( )A .6B .8C .-8D .-65.若e 1、e 2是夹角为π3的单位向量,且向量a =2e 1+e 2,向量b =-3e 1+2e 2,则a·b 等于( ) A .1 B .-4 C .-72 D.726.若向量a ,b 满意|a |=1,|b |=2且a 与b 的夹角为π3,则|a +b |=________. 7.已知向量a ,b 满意|a |=3,|b |=2,a 与b 的夹角为60°,则a·b =________,若(a -mb )⊥a ,则实数m =________.8.设a 、b 、c 是单位向量,且a +b =c ,则a·c 的值为________.9.(O 是平面α上一点,A 、B 、C 是平面α上不共线的三点.平面α内的动点P 满意),(AC AB OA OP ++=λ若λ=12时,()⋅+PA PB PC 的值为______. 10.不共线向量a ,b 的夹角为小于120°的角,且|a |=1,|b |=2,已知向量c =a +2b ,求|c |的取值范围.11.已知平面对量a =(1,x ),b =(2x +3,-x ),x ∈R.(1)若a ⊥b ,求x 的值;(2)若a ∥b ,求|a -b |.12.向量a =(cos 23°,cos 67°),向量b =(cos 68°,cos 22°).(1)求a·b ;(2)若向量b 与向量m 共线,u =a +m ,求u 的模的最小值.第四部分:平面对量应用举例一.基础学问 自主学习1.向量在平面几何中的应用平面对量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相像、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相像问题,常用共线向量定理:a ∥b ⇔ ⇔ .(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔ ⇔ .(3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b|=x 1x 2+y 1y 2x 21+y 21x 22+y 22(θ为a 与b 的夹角).2.平面对量在物理中的应用(1)由于物理学中的力、速度、位移都是 ,它们的分解与合成与向量的 相像,可以用向量的学问来解决.(2)物理学中的功是一个标量,这是力F 与位移s 的数量积.即W =F ·s =|F ||s|cos θ (θ为F 与s 的夹角).3.平面对量与其他数学学问的交汇平面对量作为一种运算工具,常常与函数、不等式、三角函数、数列、解析几何等学问结合,当平面对量给出的形式中含有未知数时,由向量平行或垂直的充要条件可以得到关于该未知数的关系式.在此基础上,可以求解有关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转化为代数运算,其转化途径主要有两种:一是利用平面对量平行或垂直的充要条件;二是利用向量数量积的公式和性质.二.难点正本 疑点清源1.向量兼具代数的抽象与严谨和几何的直观,向量本身是一个数形结合的产物.在利用向量解决问题时,要留意数与形的结合、代数与几何的结合、形象思维与逻辑思维的结合.2.要留意变换思维方式,能从不同角度看问题,要擅长应用向量的有关性质解题.三.基础自测1.在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC .已知A (-2,0),B (6,8),C (8,6).则D 点的坐标为________.2.已知平面对量α、β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.3.平面上有三个点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方程为_______________.4.已知A 、B 是以C 为圆心,半径为5的圆上两点,且|AB |=5,CB AC ·等于 ( ) A .-52 B.52 C .0 D.5325.某人先位移向量a :“向东走3 km”,接着再位移向量b :“向北走3 km”,则a +b 表示 ( )A .向东南走3 2 kmB .向东北走3 2 kmC .向东南走3 3 kmD .向东北走3 3 km四.题型分类 深度剖析题型一 向量在平面几何中的应用例1 如图,在等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,D 为BC 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .变式训练1 在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线 的长;(2)设实数t 满意(AB →-tOC →)·OC →=0,求t 的值.题型二 平面对量在解析几何中的应用例2 已知点P (0,-3),点A 在x 轴上,点M 满意⋅PA AM =0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.变式训练2 已知圆C :(x -3)2+(y -3)2=4及点A (1,1),M 是圆上的随意一点,点N 在线段MA 的延长线上,且MA =2AN →,求点N 的轨迹方程.题型三 平面对量与三角函数例3 已知向量a =(sin x ,cos x ),b =(sin x ,sin x ),c =(-1,0).(1)若x =π3,求向量a 与c 的夹角; (2)若x ∈⎣⎡⎦⎤-3π8,π4,求函数f (x )=a·b 的最值; (3)函数f (x )的图象可以由函数y =22sin 2x (x ∈R)的图象经过怎样的变换得到?变式训练3 已知A (3,0),B (0,3),C (cos α,sin α).(1)若AC ·BC =-1,求sin ⎝⎛⎭⎫α+π4的值;(2) 若|OA +OC |=13,且α∈(0,π),求OB →与OC 的夹角.五.易错警示9.忽视对直角位置的探讨致误试题:已知平面上三点A 、B 、C ,向量BC =(2-k,3),AC =(2,4).(1) 若三点A 、B 、C 不能构成三角形,求实数k 应满意的条件;(2)若△ABC 为直角三角形,求k 的值.六.思想方法 感悟提高方法与技巧1. 向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合供应了前提,运用向量的有关学问可以解决某些函数问题.2. 以向量为载体,求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3. 有关线段的长度或相等,可以用向量的线性运算与向量的模.4.用向量方法解决平面几何问题的步骤(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,探讨几何元素之间的关系;(3)把运算结果“翻译”成几何关系.5.向量的坐标表示,使向量成为解决解析几何问题的有力工具,在证明垂直、求夹角、写直线方程时显示出了它的优越性,在处理解析几何问题时,须要将向量用点的坐标表示,利用向量的有关法则、性质列出方程,从而使问题解决.失误与防范1.向量关系与几何关系并不完全相同,要留意区分.例如:向量AB ∥CD →并不能说明AB ∥CD .2.加强平面对量的应用意识,自觉地用向量的思想和方法去思索问题.七.课后练习1.已知△ABC AC AB =,则肯定有( )A .AB ⊥AC B .AB =ACC .(AB +AC )⊥(AB -AC )D .AB +AC =AB -AC2.点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设起先时点P 的坐标为(-10,10),则5秒后质点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)3.平面上有四个互异点A 、B 、C 、D ,已知(2)()0+-⋅-=DB DC DA AB AC ,则△ABC 的形态是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形4.如图,△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则⋅AO BC 等于( )A.32B.52C .2D .35.平面上O 、A 、B 三点不共线,设b a ==OB OA ,,则△OAB 的面积等于( ) A.|a |2|b |2-(a ·b )2 B.|a |2|b |2+(a ·b )2 C.12|a |2|b |2-(a ·b )2 D.12|a |2|b |2+(a ·b )2 6.已知|a|=3,|b|=2,〈a ,b 〉=60°,则|2a +b|=________.7.河水的流速为2 m/s ,一艘小船想以垂直于河岸方向10 m/s 的速度驶向对岸,则小船的静水速度大小为________.8.已知△ABO 三顶点的坐标为A (1,0),B (0,2),O (0,0),P (x,y )是坐标平面内一点,且满意AP ·OA →≤0,BP →·OB →≥0,则OP →·AB 的最小值为________.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若AB ·AC =1⋅=BA BC ,那么c =________. 10.如右图,在Rt △ABC 中,已知BC =a,若长为2a 的线段PQ 以点A 为中心,问PQ 与BC →的夹角θ取何值时BP →·CQ的值最大?并求出这个最大值.11.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.12.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若BC BA AC AB ··==k (k ∈R).(1)推断△ABC 的形态;(2)若c =2,求k 的值.。
高三数学专题复习 平面向量解题必会知识与方法整理试卷
高三数学专题复习——平面向量解题必会知识与方法整理必备知识: 1. 向量的基本概念。
2. 向量线性运算的几何运算(三角形法则和平行四边形法则)和坐标运算。
3. 两个定理:平面向量基本定理和向量共线定理。
4. 一个定义:平面向量数量积的定义及几何意义。
5. 极化恒等式:()()⎥⎦⎤⎢⎣⎡--+=⋅2241b a b a b a解题方法与策略示例 一 回归定义解题1.在ABC ∆中,若2||AC AB AC ⋅>,则有( )A .||||AC BC >B .||||BC AC > C .||||AC AB >D .||||AB BC >2.已知平面向量2,1,,==βαβα,()βαα2-⊥,则βα+2的值是3.已知向量,a b 夹角为45︒ ,且1,210a a b =-=;则_____b =4.已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93-- 5.已知a =(5,4),b =(3,2),则与2a -3b 平行的单位向量为二 运用平面向量几何背景解题6. 已知P 是ABC ∆内一点,且满足=++PC PB PA 320,记ABP ∆、BCP ∆、ACP ∆ 的面积依次为1S 、2S 、3S ,则1S :2S :3S 等于( ) A .3:2:1B .9:4:1C .3:2:1D .2:1:37.若b a ,是两个非零向量,且]1,33[|,|||||∈+==λλb a b a ,则b 与b a -的夹角的取值范围是8. 已知a ,b 是平面内两个互相垂直的单位向量,向量c 满足0c)(b c)(a =-⋅-,则|c| 的最大值为( )A . 1 B. 2 C. 2 D. 229. 已知平面向量α,β (α≠ 0,α≠β )满足|β |=1,且α与β- α的夹角为 120°,则|α| 的取值范围是10. 若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是11.非零向量OA 与OB ,对于任意的,t R ∈OA tOB +的最小值的几何意义为 . 12. 已知直线x+y=a 与圆x 2+y 2=4交于A 、B 两点,且|OA +OB |=|OA -OB |,其中O 为原点,则实数a 的值为13、如图,在扇形OAB 中,∠AOB =60°,C 为弧AB 上的一个动点.若OC =x OA +y OB ,则x +3y 的取值范围是________.三 利用向量的坐标运算解题14. 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0c)(b c)(a =-⋅-,则|c| 的最大值为( )A . 1 B. 2 C. 2 D.2215.已知向量a ,b 是单位向量,0⋅=a b .向量c 满足||1--=c a b ,则||c 的取值范围是( )A .[221]B .222]C .212 D .21216.给定两个长度为1,且互相垂直的平面向量OA 和OB ,点C 在以O 为圆心||OA 为半径的劣弧AB 上运动,若OB y OA x OC +=,其中x 、R ∈y ,则22)1(-+y x 的最大值为_____.17. 设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于AB 上任一点P ,恒有→PB ∙→PC ≥→P 0B∙→P 0C ,则( ) A .∠ABC =90︒ B .∠BAC =90︒ C .AB =AC D .AC =BC18. 如图,在菱形ABCD 中,60BAD ∠=︒,4AB =,E 是 BCD ∆内部任意一点,AE 与BD 交于点F ,则AF BF ⋅的最小值是 .FDAEO PQA19. 若,,a b c 均为单位向量,且0a b ⋅=,()()0a c b c +⋅+≤,则||a b c +-的最大值为________.四. 根据平面向量基本定理,选好基底,进行运算20. 设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于 .21. 若等边ABC ∆的边长为2,平面内一点M 满足CA CB CM 2131+=,则=⋅MB MA ( )A .98B .913C .98-D .913-22.在平行四边形ABCD 中,AD=1,∠BAD=60°,E 为CD 的中点.若·=1,则AB 的长为 .五.运用数量积的几何意义运算23.已知圆O 的半径为2,圆O 的一条弦B A 长是3,P 圆O 上的任意一点, 则AP AB ⋅的最大值为________.24.如图所示的等腰梯形ABCD 中,已知AB=2,CD=4,则·等于 .25.正三角形ABC 中,D 是边BC 上的点,AB=3,BD=1,则·= .26.如图,两个半径分别为1和2的同心圆,点P 、Q 分别是大圆和小圆上 的一个动点,过点P 作小圆的一条切线,切于点A ,则PA PQ 的取值 范围是 .27.如图,已知圆M :22(3)(3)4x y -+-=,ABC ∆为圆M 的内接正三 角形,E 为边AB 的中点,当正ABC ∆绕圆心M 转动,同时点F 在边AC 上运动时,ME OF ⋅的最大值是 。
高中数学平面向量知识点总结及常见题型
平面向量一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法 AB ,a;坐标表示法),(y x yj xi a =+=向量的大小即向量的模长度,记作|AB |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a=0⇔|a|= 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行共线的问题中务必看清楚是否有“非零向量”这个条件.注意与0的区别 ③单位向量:模为1个单位长度的向量向量0a 为单位向量⇔|0a|=1④平行向量共线向量:方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b行任意的平移即自由向量,平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b ==,则a+b =AB BC +=AC1a a a=+=+00;2向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”:1用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量2 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量关于相反向量有: i )(a --=a; ii a +a -=a -+a =0 ; iii 若a 、b是互为相反向量,则a =b -,b =a -,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:)(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量a 、b有共同起点 4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:Ⅰa a⋅=λλ;Ⅱ当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ 6平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 7 特别注意:1向量的加法与减法是互逆运算2相等向量与平行向量有区别,向量平行是向量相等的必要条件3向量平行与直线平行有区别,直线平行不包括共线即重合,而向量平行则包括共线重合的情况4向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关二.平面向量的坐标表示 1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对x,y 是一一对应的,因此把x,y 叫做向量a 的坐标,记作a =x,y,其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标1相等的向量坐标相同,坐标相同的向量是相等的向量2向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3)若a =x,y,则λa =λx, λy(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x3,数与向量的乘积,向量的数量内积及其各运算的坐标表示和性质12(a b x x +=+AB BC AC +=12(a b x x -=-)(b a b a-+=- AB BA =-OB OA AB -=a a)()(λμμλ=12a b x x •=+三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积或内积 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R,称为向量b 在a 方向上的投影投影的绝对值称为射影3数量积的几何意义:a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a ba ab b ±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律: ①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:1结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; 2消去律不成立a b a c⋅=⋅不能得到b c =⋅3a b ⋅=0不能得到a =0或b =0 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ001800≤≤θ叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x 平面向量数量积的性质题型1.基本概念判断正误:1共线向量就是在同一条直线上的向量.2若两个向量不相等,则它们的终点不可能是同一点. 3与已知向量共线的单位向量是唯一的. 4四边形ABCD 是平行四边形的条件是AB CD =. 5若AB CD =,则A 、B 、C 、D 四点构成平行四边形. 6因为向量就是有向线段,所以数轴是向量. 7若a 与b 共线, b 与c 共线,则a 与c 共线. 8若ma mb =,则a b =. 9若ma na =,则m n =.10若a 与b 不共线,则a 与b 都不是零向量. 11若||||a b a b ⋅=⋅,则//a b . 12若||||a b a b +=-,则a b ⊥. 题型2.向量的加减运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += .2.化简()()AB MB BO BC OM ++++= .3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 .4.已知AC AB AD为与的和向量,且,AC a BD b ==,则AB = ,AD = .5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC . 题型3.向量的数乘运算1.计算:13()2()a b a b +-+= 22(253)3(232)a b c a b c +---+-=2.已知(1,4),(3,8)a b =-=-,则132a b -= .题型4.作图法球向量的和已知向量,a b ,如下图,请做出向量132a b +和322a b -.a b题型5.根据图形由已知向量求未知向量1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,表示AD . 2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和.题型6.向量的坐标运算1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 .2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 .3.若物体受三个力1(1,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 .4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -.5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值.6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = .7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标.题型7.判断两个向量能否作为一组基底1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e +-和 B.1221326e e e e --和4 C.122133e e e e +-和 D.221e e e -和2.已知(3,4)a =,能与a 构成基底的是A.34(,)55B.43(,)55C.34(,)55--D.4(1,)3--题型8.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标.2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标.题型9.求数量积1.已知||3,||4a b ==,且a 与b 的夹角为60,求1a b ⋅,2()a a b ⋅+,31()2a b b -⋅,4(2)(3)a b a b -⋅+.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,2a b ⋅,3(2)a a b ⋅+, 4(2)(3)a b a b -⋅+.题型10.求向量的夹角1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角.2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角.3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC ∠. 题型11.求向量的模1.已知||3,||4a b ==,且a 与b 的夹角为60,求1||a b +,2|23|a b -.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,5||a b +,61||2a b -.3.已知||1||2a b ==,,|32|3a b -=,求|3|a b +.题型12.求单位向量 与a 平行的单位向量:||a e a =± 1.与(12,5)a =平行的单位向量是 .2.与1(1,)2m =-平行的单位向量是 . 题型13.向量的平行与垂直1.已知(6,2)a =,(3,)b m =-,当m 为何值时,1//a b 2a b ⊥2.已知(1,2)a =,(3,2)b =-,1k 为何值时,向量ka b +与3a b -垂直 2k 为何值时,向量ka b +与3a b -平行3.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:()a b c ⊥-.题型14.三点共线问题1.已知(0,2)A -,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线.2.设2(5),28,3()2AB a b BC a b CD a b =+=-+=-,求证:A B D 、、三点共线. 3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是 .4.已知(1,3)A -,(8,1)B -,若点(21,2)C a a -+在直线AB 上,求a 的值.5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B -,(1,1)C ,是否存在常数t ,使OA tOB OC +=成立题型15.判断多边形的形状1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是 .2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形.3.已知(2,1)A -,(6,3)B -,(0,5)C ,求证:ABC ∆是直角三角形.4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形.题型16.平面向量的综合应用1.已知(1,0)a =,(2,1)b =,当k 为何值时,向量ka b -与3a b +平行2.已知(3,5)a =,且a b ⊥,||2b =,求b 的坐标.3.已知a b 与同向,(1,2)b =,则10a b ⋅=,求a 的坐标.3.已知(1,2)a =,(3,1)b =,(5,4)c =,则c = a + b .4.已知(5,10)a =,(3,4)b =--,(5,0)c =,请将用向量,a b 表示向量c .5.已知(,3)a m =,(2,1)b =-,1若a 与b 的夹角为钝角,求m 的范围; 2若a 与b 的夹角为锐角,求m 的范围.6.已知(6,2)a =,(3,)b m =-,当m 为何值时,1a 与b 的夹角为钝角 2a 与b 的夹角为锐角7.已知梯形ABCD 的顶点坐标分别为(1,2)A -,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD =,求点C 的坐标.8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B -,(3,4)C ,求第四个顶点D 的坐标.9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30角,求水流速度与船的实际速度.10.已知ABC ∆三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,1若0AB AC ⋅=,求c 的值;2若5c =,求sin A 的值.备用1.已知||3,||4,||5a b a b ==+=,求||a b -和向量,a b 的夹角.2.已知x a b =+,2y a b =+,且||||1a b ==,a b ⊥,求,x y 的夹角的余弦.1.已知(1,3),(2,1)a b ==--,则(32)(25)a b a b +⋅-= .4.已知两向量(3,4),(2,1)a b ==-,求当a xb a b +-与垂直时的x 的值.5.已知两向量(1,3),(2,)a b λ==,a b 与的夹角θ为锐角,求λ的范围. 变式:若(,2),(3,5)a b λ==-,a b 与的夹角θ为钝角,求λ的取值范围. 选择、填空题的特殊方法:1.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c ==-=--,则c = A.1322a b -- B.1322a b -+ C.3122a b - D.3122a b -+ 2.排除法例:已知M 是ABC ∆的重心,则下列向量与AB 共线的是A.AM MB BC ++B.3AM AC +C.AB BC AC ++D.AM BM CM ++。
高中平面向量知识点详细归纳总结(附带练习)
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
2023届高考数学复习:历年经典好题专项(平面向量的概念及线性运算)练习(附答案)
A.√3
B.2√3
C.3√3
D.4√3
)
)
10.(多选)设 M 是△ABC 所在平面内一点,则下列说法正确的是(
A.若⃗
1 ⃗
2
1 ⃗
,则
2
⃗
M 是边 BC 的中点
B.若⃗=2⃗
⃗ ,则点 M 在边 BC 的延长线上
C.若⃗=-⃗
⃗,则 M 是△ABC 的重心
1
1
D.若⃗=x⃗+y⃗ ,且 x+y= ,则△MBC 的面积是△ABC 面积的
2
2
1
4
11.(历年山东德州高三模拟)设向量 a,b 不平行,向量 a+ λb 与-a+b 平行.则实数 λ=
.
12.(历年浙江杭州二中高二期中)在等腰梯形 ABCD 中,设⃗=a,⃗=b,⃗ =2⃗,M 为 BC 的中点,则
2
3
1
3
A. a+ b
2
3
1
3
C. a- b
2
3
)
(
)
1
3
B.- a+ b
2
3
1
3
D.- a- b
5.(历年四川宜宾叙州区第一中学月考)在▱ABCD 中,若|⃗
A.▱ABCD 为菱形
(
⃗|=|⃗
⃗|,则必有(
)
B.▱ABCD 为矩形
C.▱ABCD 为正方形 D.▱ABCD 为梯形
6.设 a,b 是非零向量,则“a=2b”是“|a+b|≥|a|+|b|”的
A.充分不必要条件
平面向量之二轮专题复习含答案
高三数学第二轮专题复习---平面向量一、本章知识结构二、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
三、热点分析对本章内容的考查主要分以下三类:1、以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2、以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3、向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
四、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
高考平面向量题型归纳总结
高考平面向量题型归纳总结在高考数学考试中,平面向量是一个常见的考点,也是学生普遍认为较为困难的部分之一。
平面向量题型包括向量的加减、数量积、向量方向等。
本文将对高考平面向量题型进行归纳总结,帮助学生更好地掌握此类题型。
一、向量的加减1. 向量的加法向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
在解题过程中,可以利用向量的平移性质,将向量平移至同一起点,再连接终点得到新的向量。
2. 向量的减法向量的减法可以转化为加法进行处理,即a - b = a + (-b)。
其中,-b表示b的反向量,即方向相反的向量,模长相等。
二、数量积数量积又称为内积或点积,记作a·b。
1. 定义对于两个向量a(x₁, y₁)和b(x₂, y₂),它们的数量积a·b = x₁x₂ +y₁y₂。
另外,数量积还可以表示为向量模长和夹角的乘积,即a·b =|a| · |b| · cosθ,其中θ为a与b的夹角。
2. 性质(1) 交换律:a·b = b·a(2) 分配律:a·(b + c) = a·b + a·c(3) 结合律:k(a·b) = (ka)·b = a·(kb),其中k为实数(4) 若a·b = 0,则a与b垂直或其中一个为零向量(5) 若a·b > 0,则夹角θ为锐角;若a·b < 0,则夹角θ为钝角。
三、向量方向向量的方向可以用两种方式来表示:1. 向量的方向角:向量a(x, y)的方向角为与x轴正方向之间的夹角α,其中-π < α ≤ π。
2. 方向余弦:向量a(x, y)的方向余弦为与x轴的夹角的余弦值cosα,与y轴的夹角的余弦值cosβ。
在解决平面向量题型时,可以利用这两种方式来确定向量的方向。
高三数学二轮复习专题 平面向量共线,极化恒等式,奔驰定理,轨迹等问题(解析版)
平面向量综合问题参考答案与试题解析一.试题(共38小题)1.如图,在ABC ∆中,13AN NC =,P 是BN 上的一点,若211AP mAB AC =+,则实数m的值为( )A .911B .511C .211D .311【分析】由已知中ABC ∆中,13AN NC =,P 是BN 上的一点,设BP BN λ=后,我们易将AP表示为(1)4AB AC λλ-+的形式,根据平面向量的基本定理我们易构造关于λ,m 的方程组,解方程组后即可得到m 的值 【解答】解:P 是BN 上的一点,设BP BN λ=,由13AN NC =,则AP AB BP =+AB BN λ=+()AB AN AB λ=+-(1)AB AN λλ=-+(1)4AB AC λλ=-+211mAB AC =+1m λ∴=-,2411λ=解得811λ=,311m =故选:D .【点评】本题考查的知识点是面向量的基本定理及其意义,其中根据面向量的基本定理构造关于λ,m 的方程组,是解答本题的关键.2.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB 、BC 分别为a 、b ,则(AH = )A .2455a b -B .2455a b +C .2455a b -+D .2455a b --【分析】欲求出向量则AH ,关键是求出向量则AH 与向量AF 的线性.关系过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,利用相似三角形有知识即可得出它们的线性关系,从而解决问题. 【解答】解:过点F 作BC 的平行线交DE 于G , 则G 是DE 的中点,且1124GF EC BC ==14GF AD ∴=,则AHD GHF ∆∆∽ 从而14FH AH =,∴45AH AF =又12AF AD DF b a =+=+ ∴4124()5255AH b a a b =+=+ 故选:B .【点评】本题主要考查了向量加减混合运算及其几何意义、平行四边形的几何性质,属于基础题.3.如图所示,在凸四边形ABCD 中,对边BC ,AD 的延长线交于点E ,对边AB ,DC 的延长线交于点F ,若BC CE λ=,ED DA μ=,3(,0)AB BF λμ=>,则( )A .3144EB EF EA =+B .14λμ=C .11λμ+的最大值为1 D .49EC AD EB EA⋅-⋅ 【解答】解:对于A ,因为3AB BF =,所以3()EB EA EF EB -=-,整理得3144EB EF EA =+,故A 正确;对于B ,过点B 作//BG FD ,交AE 于点G ,则AF AD BF DG =,BC DG CE DE =,所以1AF BC ED AD DG ED BF CE DA DG DE DA⋅⋅=⋅⋅=,因为BC CE λ=,ED DA μ=,3AB BF =,所以4AF BF =,BCCEλ=,ED DA μ=, 所以41λμ=,所以14λμ=,故B 正确; 对于C ,由B 知,114()84λμλμλμ+=+=,当且仅当12λμ==时等号成立, 所以11λμ+的最小值为4,故C 错误;对于D ,因为BC CE λ=,ED DA μ=,所以(1)EB EC λ=+,(1)(1)EA DA AD μμ=+=-+, 所以111455(1)(1)9(1)(1)244EC AD EC AD EB EA EC AD λμλμλμλμ⋅⋅-===-=--++⋅-++⋅+++,当且仅当12λμ==时取等号,故D 正确. 故选:ABD .【点评】本题主要考查平面向量的线性运算,基本不等式的应用,考查转化思想与数形结合思想的应用,属于中档题.4.已知向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则( )A .0a e ⋅=B .()0a a e ⋅-=C .()0e a e ⋅-=D .()()0a e a e +⋅-=【分析】由平面向量数量积运算可得22210t te a e a -⋅+⋅-=,对任意t R ∈恒成立,则2(2)4(21)0e a e a ⋅-⋅-,然后求解即可.【解答】解:由向量a e ≠,||1e =,满足对任意t R ∈,恒有||||a te a e --,则2222222a te a t e a e a e -⋅+=-⋅+,即22210t te a e a -⋅+⋅-=,由题意有2(2)4(21)0e a e a ⋅-⋅-,即2(1)0e a ⋅-,即1e a ⋅=,则()0e a e ⋅-=, 故选:C .【点评】本题考查了平面向量数量积运算,重点考查了不等式恒成立问题,属基础题.5.已知e 为单位向量,向量a 满足()(5)0a e a e -⋅-=,则||a e +的最大值为( ) A .4B .5C .6D .7【分析】设(1,0)e =,(,)a x y =,根据向量a 满足()(5)0a e a e -⋅-=,可得x ,y 的关系式,并得出x ,y 的取值范围,||(1)a e x +=+ 【解答】解:设(1,0)e =,(,)a x y =,则()(5)(1a e a e x -⋅-=-,)(5y x ⋅-,22)650y x x y =-++=,即22(3)4x y -+=,则15x ,22y -,所以||(1)a e x +=+=,当5x =6,即||a e +的最大值为6, 故选:C .【点评】本题考查了向量数量积的应用,将所求问题坐标化转化为函数的最值问题是解题关键.6.已知ABC ∆中,对任意t R ∈,||||BA tBC AC -,则ABC ∆是 以C 为直角的直角 三角形.【分析】两边平方后整理成关于t 的一元二次不等式恒成立,再利用判别式小于等于0,以及正弦定理可得.【解答】解:对任意t R ∈,||||BA tBC AC -,即22()|BA tBC AC-,即22222cos 0a t act B c b -+-,则△2222(2cos )4()0ac B a c b =--,化简得222cos 1b B c -,即222sin b B c ,即sin b B c,设ABC ∆外接圆的半径为R ,则由正弦定理可得2b bR c,得2c R ,得sin 1C ,又sin 1C ,sin 1C ∴=,2C π∴=.故答案为:以C 为直角的直角.【点评】本题考查了平面向量数量积的性质及其运算,属中档题. 7.已知ABC ∆,若对任意t R ∈,||||BA tBC AC -,则ABC ∆一定为( )A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定【解答】解:令AM BA tBC =-,则根据向量的减法的几何意义可得M 在BC 上, 由||||BA tBC AC -对一切实数t 都成立可得:||||AM AC ,AC BC ∴⊥,则ABC ∆为直角三角形.故选:C .【点评】本题是一道构造非常巧妙的试题,解题的关键是由||||BA tBC AC -对一切实数t都成立可得到AC 为A 到BC 的距离.8.如图,在平行四边形ABCD 中,AP BD ⊥,垂足为P ,且3AP =,则AP AC = 18 .【分析】设AC 与BD 交于O ,则2AC AO =,在RtAPO 中,由三角函数可得AO 与AP 的关系,代入向量的数量积||||cos AP AC AP AC PAO =∠可求 【解答】解:设AC 与BD 交于点O ,则2AC AO =AP BD ⊥,3AP =,在Rt APO ∆中,cos 3AO OAP AP ∠==||cos 2||cos 2||6AC OAP AO OAP AP ∴∠=⨯∠==,由向量的数量积的定义可知,||||cos 3618AP AC AP AC PAO =∠=⨯= 故答案为:18【点评】本题主要考查了向量的数量积 的定义的应用,解题的关键在于发现规律:cos 2cos 2AC OAP AO OAP AP ⨯∠=⨯∠=.9.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足向量2AP PM =,则向量()PA PB PC +等于( )A .49-B .43-C .43D .49【分析】由题意M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =可得:P 是三角形ABC 的重心,根据重心的性质,即可求解.【解答】解:M 是BC 的中点,知AM 是BC 边上的中线, 又由点P 在AM 上且满足2AP PM =P ∴是三角形ABC 的重心∴()PA PB PC +2||PA AP PA ==-又1AM =∴2||3PA =∴4()9PA PB PC +=-故选:A . 【点评】本题考查向量的数量积的应用,解题的关键是判断P 点是三角形的重心,考查计算能力.10.在ABC ∆中,2AB =,3AC =,N 是边BC 上的点,且,BN NC O =为ABC ∆的外心,则(AN AO ⋅= ) A .3B .134C .92D .94【分析】利用平面向量的线性运算法则以及外心的性质、数量积的定义求解. 【解答】解:因为O 为ABC ∆的外心,故2122AO AB AB ⋅==,21922AO AC AC ⋅==, 又BN NC =,故N 为BC 的中点,故1()2AN AB AC =+,所以11()()22AN AO AB AC AO AO AB AO AC ⋅=+⋅=⋅+⋅1913(2)224=+=.故选:B .【点评】本题考查平面向量数量积的定义以及平面向量线性运算的几何意义,属于中档题.11.设a 、b 、c 是单位向量,0a b =,则()()a c b c --的最小值为 1 【分析】利用向量的运算法则展开()()a c b c --,再利用余弦值的有界性求范围. 【解答】解:设c 与a b +的夹角等于θ,()()(a c b c a b c --=-2)a b c ++20||||cos 10||1()1c a b a b a b θ=-++-++=-++2222211a b a b a b =+++=-++1=.故答案为:1【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,考查向量的运算法则:交换律、分配律,但注意不满足结合律,属于中档题.12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()()PB AB PB PC -+的最小值是( ) A .1-B .32-C .2-D .43-【分析】建立坐标系,设(,)P x y ,得出()()PB AB PB PC -+关于x ,y 的表达式,配方即可得出结论.【解答】解:以BC 为x 轴,以BC 边上的高为y 轴建立坐标系,则(0,3)A ,设(,)P x y ,则2(2,2)PB PC PO x y +==--,()(,3)PB AB PA x y -==--, 222233()()222322()22PB AB PB PC x y y x y ∴-+=+-=+--, ∴当0x =,32y =时,()()PB AB PB PC -+取得最小值32-, 故选:B .【点评】本题考查了平面向量的数量积运算,属于中档题.13.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE 的最小值为( )A .2116B .32C .2516D .3【分析】如图所示,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,求出A ,B ,C 的坐标,根据向量的数量积和二次函数的性质即可求出. 【解答】解:如图所示,以D 为原点,以DA 所在的直线为x 轴, 以DC 所在的直线为y 轴,过点B 做BN x ⊥轴,过点B 做BM y ⊥轴,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==, 1cos602AN AB ∴=︒=,3sin 60BN AB =︒,13122DN ∴=+=,32BM ∴=,3tan302CM MB ∴=︒=, 3DC DM MC ∴=+=,(1,0)A ∴,3(2B ,3)2,(0,3)C ,设(0,)E m ,∴(1,)AE m =-,3(2BE =-,3)2m -,03m,∴22233333321()()224216416AE BE m m m m =+-=-+-=-+, 当34m =时,取得最小值为2116. 故选:A .【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题. 14.在ABC ∆中,D 是BC 的中点,H 是AD 的中点,过点H 作一直线MN 分别与边AB ,AC 交于M ,N ,若,AM xAB AN y AC ==,则4x y +的最小值是( )A .52B .73C .94D .14【分析】根据题意,利用MH 与NH 共线,求出x 与y 的表达式,再利用基本不等式求出4x y +的最小值即可.【解答】解:在ABC ∆中,D 为BC 边的中点,H 为AD 的中点, ,AM xAB AN y AC ==,∴1()4AH AM MH xAB MH AB AC =+=+=+,∴11()44MH x AB AC =-+,同理,11()44NH AB y AC =+-, MH 与NH 共线,∴存在实数λ,使(0)MH NH λλ=<,即1111()()4444x AB AC AB y AC λλ-+=+-,即114411()44x y λλ⎧-=⎪⎪⎨⎪=-⎪⎩,解得14x λ-=,114y λ-=, 1115159442(444444x y λλλλ--∴+=+⨯=--+-=, 当且仅当14λλ-=-,即2λ=-时,“=”成立,4x y ∴+的最小值是94. 故选:C .【点评】本题考查了平面向量的线性运算,以及基本不等式的应用,属于中档题. 15.直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM mAB =,AN nAC =,(0,0)m n >>,则下列结论错误的是( ) A .12m n+为常数 B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为:12m =,2n = 【分析】作出图形,由2BP PC =可得出1233AP AB AC =+,根据三点共线的结论得出123m n+=,结合基本不等式可判断出各选项的正误,即可得出结论. 【解答】解:如下图所示:由2BP PC =,可得2()AP AB AC AP -=-,∴1233AP AB AC =+, 若,,(0,0)AM mAB AN nAC m n ==>>,则11,AB AM AC AN m n==, ∴1233AP AM AN m n=+,M 、P 、N 三点共线,∴12133m n+=,∴123m n +=,故A 正确;所以1,22m n ==时,也满足123m n +=,则D 选项正确;122252252(2)()2333333333n m n m n m n m n mn m +=++=++⋅=, 当且仅当m n =时,等号成立,C 选项成立; 1222()()1211333333n m n m n m n m n m n m +=++=++⋅,当且仅当2n m =时,即1222,33m n ++==时等号成立,故B 选项错误. 故选:B .17.已知点O 、N 、P 在ABC ∆所在平面内,且||||||OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅,则点O 、N 、P 依次为ABC ∆的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【分析】根据O 到三角形三个顶点的距离相等,得到O 是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,只要判断第三个条件可以得到三角形的什么心就可以,移项相减,得到垂直,即得到P 是三角形的垂心. 【解答】证明:||||||OA OB OC ==,O ∴到三角形三个顶点的距离相等, O ∴是三角形的外心,根据所给的四个选项,第一个判断为外心的只有C ,D 两个选项,∴只要判断第三个条件可以得到三角形的什么心就可以,PA PB PB PC PC PA ⋅=⋅=⋅,∴()0PB PA PC -=,∴0PB CA ⋅=,∴PB CA ⊥,同理得到另外两个向量都与相对应的边垂直,得到P 是三角形的垂心, 故选:C .【点评】本题是一个考查的向量的知识点比较全面的题目,把几种三角形的心总结的比较全面,解题时注意向量的有关定律的应用,不要在运算律上出错. 18.已知非零向量,AB AC 和BC 满足())0||||AB AC BC AB AC +⋅=,且1||||2AC BC AC BC ⋅=,则ABC ∆为( ) A .等边三角形 B .等腰非直角三角形C .非等腰三角形D .等腰直角三角形【解答】解:根据向量的性质可得||||1||||AB ACAB AC == ∴||||AB ACAB AC +在BAC ∠的角平分线上(设角平分线为)AD (())0||||AB ACBC AB AC +⋅= AD BC ∴⊥从而有AB AC =又因为12||||AC BC AC BC ⋅=且||||1||||AC BCAC BC ==所以60C ∠=︒三角形为等边三角形 故选:A .【点评】本题主要考查了平面向量的加法的四边形法则,向量的数量积的运算,考查了等边三角形的性质,属于综合试题.19.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足()2||cos ||cos OB OC AB ACOP AB B AC Cλ+=++,[0λ∈,)+∞,则动点P 的轨迹一定通过ABC ∆的( ) A .内心B .垂心C .重心D .外心【解答】解:设BC 的中点为D , ()2||cos ||cos OB OC AB AC OP AB B AC C λ+=++,∴()||cos ||cos AB ACOP OD AB B AC C λ=++, 即()||cos ||cos AB ACDP AB B AC Cλ=+,两端同时点乘BC ,||||cos()||||cos ()()(||||)0||cos ||cos ||cos ||cos AB BC AC BC AB BC B AC BC CDP BC BC BC AB B AC C AB B AC Cπλλλ⋅⋅⋅-⋅⋅=+=+=-+=DP BC ∴⊥,∴点P 在BC 的垂直平分线上,即P 经过ABC ∆的外心故选:D .【点评】本题主要考查了空间向量的加减法,以及三角形的外心的知识,属于基础题. 20.设点O 在ABC ∆的内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A .2B .32C .3D .53【解答】解:分别取AC 、BC 的中点D 、E ,230OA OB OC++=,∴2()OA OC OB OC+=-+,即2 4OD=-OE,O∴是DE的一个三等分点,∴3ABCAOCSS∆∆=,故选:C.【点评】此题是个基础题.考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.21.已知点O在ABC∆内,且::4:3:2AOB BOC AOCS S S∆∆∆=,AO AB ACλμ=+,则(λμ+= A.1B.29C.59D.23【分析】先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=成立,得到4320OC OA OB++=,利用向量的线性运算得到429AC AB AO+=,求出λ,μ,由此能求出结果.【解答】解:先证明0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,延长AO交BC于Q,由题意得AOB BOC AOC ABCS S S S∆∆∆∆++=,由面积关系得:BOCABCS OQS AQ∆∆=,∴APB CPAABCS SAQ AQS∆∆∆+=⋅,||||||||AOC AOBAOC AOB AOC AOBS SQC QBAQ AB AC AB ACS S S SBC BC∆∆∆∆∆∆=⋅+⋅=⋅+⋅++,∴0AOC AOB BOCS OB S OC S AO∆∆∆⋅+⋅-⋅=,∴0AOB BOC AOCS OC S OA S OB∆∆∆⋅+⋅+⋅=,由题意知::4:3:2AOB BOC AOCS S S∆∆∆=,4320OC OA OB∴++=,∴429AC AB AO+=,∴24,99λμ==,23λμ∴+=.故选:D.22.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”()Mercedesbenz的log o很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O是ABC∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OA OC ⋅=⋅=⋅.则( )A .O 为ABC ∆的外心B .BOC A π∠+=C .||:||:||cos :cos :cos OA OB OC A B C =D .::tan :tan :tan A B C S S S A B C =【分析】选项A ,将OA OB OB OC ⋅=⋅移项,并结合平面向量的减法和数量积的运算法则,可得OB CA ⊥,同理推出OA CB ⊥,OC AB ⊥,得解; 选项B ,根据选项A 中所得,可知2OBC C π∠+=,2OCB B π∠+=,再由三角形的内角和定理,得解;选项C ,延长CO 交AB 于点P ,结合诱导公式与余弦函数的定义,可证cos :cos :A B OA OB =,进而得解;选项D ,由三角形的面积公式与诱导公式,可得:tan :tan A B S S A B =,进而得解. 【解答】解:对于选项A ,()00OA OB OB OC OB OA OC OB CA OB CA ⋅=⋅⇔⋅-=⇔⋅=⇔⊥,同理可得,OA CB ⊥,OC AB ⊥,故O 为ABC ∆的垂心,即A 错误; 对于选项B ,因为OB AC ⊥,OC AB ⊥,所以2OBC C π∠+=,2OCB B π∠+=,所以OBC C OCB B π∠++∠+=,又OBC OCB BOC π∠+∠+∠=,所以BOC C B ∠=+, 又A B C π++=,所以BOC A π∠+=,即B 正确; 对于选项C ,由上可知,A BOC π=-∠,B AOC π=-∠, 延长CO交AB 于点P ,cos :cos cos():cos()cos :cos ::OP OPA B BOC AOC BOP AOP OA OB OB OAππ=-∠-∠=∠∠==, 同理可得,cos :cos :A C OA OC =,所以cos :cos :cos ::A B C OA OB OC =,即C 正确;对于选项D ,11:():():tan :tan tan :tan tan():tan()tan :tan 22A B S S OC BP OC AP BP AP OP POB OP AOP BOC AOC A B A Bππ=⋅⋅⋅⋅==∠∠=∠∠=--=,同理可得,:tan :tan A C S S A C =,所以::tan :tan :tan A B C S S S A B C =,即D 正确.故选:BCD .【点评】本题考查平面向量在几何中的应用,熟练掌握平面向量的数量积,诱导公式,平面几何基础知识是解题的关键,考查逻辑推理能力和运算能力,属于难题.23.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为( )A .3B .22C 5D .2【分析】方法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,先求出圆的标准方程,再设点P 的坐标为25(1θ+,252)θ+,根据AP AB AD λμ=+,求出λ,μ,根据三角函数的性质即可求出最值.方法二:根据向量分解的等系数和线直接可得.【解答】解:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上, 设圆的半径为r ,2BC =,1CD =,22215BD ∴=+∴1122BC CD BD r ⋅=⋅, 5r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为25(1θ+252)θ+,AP AB AD λμ=+,25(1θ∴+252)(1θλ+=,0)(0μ+,2)(λ=,2)μ, ∴251θλ+=2522θμ+=,255cos sin 2sin()255λμθθθϕ∴+=++=++,其中tan 2ϕ=, 1sin()1θϕ-+,13λμ∴+,故λμ+的最大值为3,方法二:根据向量分解的等系数和线,可得λμ+的最大值为3,如图所述 故选:A .【点评】本题考查了向量的坐标运算以及圆的方程和三角函数的性质,关键是设点P 的坐标,考查了学生的运算能力和转化能力,属于中档题.24.平面直角坐标系中,O 为坐标原点,已知两点(3,1)A 、(1,3)B -,若点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,则点C 的轨迹方程为( )A .32110x y +-=B .22(1)(2)5x y -+-=C .20x y -=D .250x y +-=【分析】由点C 满足OC OA OB αβ=+,其中α、R β∈,且1αβ+=,知点C 在直线AB 上,故求出直线AB 的方程即求出点C 的轨迹方程.【解答】解:C 点满足OC OA OB αβ=+且1αβ+=,A ∴、B 、C 三点共线. C ∴点的轨迹是直线AB 又(3,1)A 、(1,3)B -,∴直线AB 的方程为:133113y x --=---整理得250x y +-= 故C 点的轨迹方程为250x y +-= 故选:D .【点评】考查平面向量中三点共线的充要条件及知两点求直线的方程,是向量与解析几何综合运用的一道比较基本的题,难度较小,知识性较强.25.若动直线:440l mx y m -+-=与圆22:(4)(5)9C x y -+-=相交于A ,B 两点,则()A .||AB 的最小值为42B .CA CB ⋅的最大值为7-C .(OA OB O ⋅为坐标原点)的最大值为78D .AC AB ⋅的最大值为18【解答】解:440mx y m -+-=,(4)(4)0m x y ∴---=,故动直线l 恒过点(4,4)D ; 圆22:(4)(5)9C x y -+-=的圆心为(4,5)C ,半径为3,则22||(44)(45)1CD =-+-=, 故||AB 的最小值为2223142⨯-=;故选项A 正确;对于选项B ,||||cos 9cos CA CB CA CB ACB ACB ⋅=⋅∠=∠,易知当CD AB ⊥时,ACB ∠最小,此时22233(42)7cos 2339maxACB +-∠==-⨯⨯;故7()9()79max CA CB ⋅=⨯-=-;故选项B 正确;对于选项C ,设AB 的中点为M ,()()OA OB OM MA OM MA ⋅=+⋅-22229OM MA OM CM =-=+-,而点M 在以DC 为直径的圆2291(4)()24x y -+-=上,设1(4cos 2M θ+,91sin )([022θθ+∈,2]π,且)2πθ≠,故2222221911119(4cos )(sin )(cos )(sin )9222222OA OB OM CM θθθθ⋅=+-=+++++--284cos 4sin 2842sin()28424πθθθ=++=+++,故错误;对于选项D ,21||||cos ||2AC AB AC AB CAB AB ⋅=⋅∠=, 故当||AB 取最大值,即AB 过圆心C 时,但动直线l 的斜率一定存在, 故动直线l 不包括垂直于x 轴的直线,故AC AB ⋅的最大值不存在,即错误; 故选:AB .【点评】本题综合考查了直线与圆的位置关系的应用及平面向量的综合应用,属于难题.。
(完整版)高三一轮复习平面向量知识点整理,推荐文档
(答: 2 2 );
(3)已知作用在点
A(1,1)
的三个力
F1
(3, 4), F2
(2, 5), F3
(3,1)
,则合力
F F1 F2 F3 的终点坐标是
(答:(9,1))
4⑴、实向数量数与乘向运量算a:的积是一个向量的运算叫做向量的数乘,记作 a .
①
a
a
;
②当
0
时,
a
的方向与
(答:2);
(2)已知 a (1,1),b (4, x) , u a 2b , v 2a b ,且 u // v ,则 x=______
6、向量垂直: a b a b 0 | a b || a b | x1x2 y1 y2 0 .
(答:4);
【例题】(1)已知 OA (1, 2),OB (3, m) ,若 OA OB ,则 m
1、已知向量 a = 2,4,,b = 11 .若向量 b (a + b) ,则实数 的值是
.
2、若向量
a,b
的夹角为
60
,
a
b
1,则 aA a b
.
3、在平面直角坐标系中,正方形 OABC 的对角线 OB 的两端点分别为 O(0,0) , B(1,1) ,
则 ABAAC
.
三、解答题:
1、已知 ΔABC 三个顶点的直角坐标分别为 A(3,4)、B(0,0)、C( c ,0).
(1)若 ABAAC 0 ,求 c 的值;
(2)若 c 5 ,求 sin∠A 的值
2、在 △ABC 中,角 A,B, C 的对边分别为 a,b,,c tan C 3 7 .
(1)求 cos C ;
7高三数学 平面向量复习基本知识点及经典结论总结精简版
平面向量复习基本知识点及经典结论总结 石玉星1.向量的概念:既有大小又有方向的量。
2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);4.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,5.证明三点共线的方法: 三点A B C 、、共线⇔ AB AC 、共线;6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
7.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; (2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:,=(),x y 叫做向量的坐标表示。
若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--8.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
910.向量的减法法则:用 “三角形法则”:起点相同指向被减,AB AC CA -=(见上图)11.向量的加减法坐标运算:12(a b x x ±=±,12)y y ±。
12.实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。
13.实数与向量的积坐标运算:()()1111,,a x y x y λλλλ==。
14.平面向量的数量积: ∙=cos a b θ=1212x x y y +。
15.向量平行(共线)的充要条件://a b a b λ⇔=1212x y y x ⇔-=0。
含解析高中数学《平面向量》专题训练30题(精)
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
平面向量高考一轮总复习完整版(含全部知识点习题)
第一课时 向量的基本概念及基本运算C【知识要点】1.向量的基本概念(1)定义:既有大小又有方向的量叫做向量;向量的大小叫做向量的模 (2)特定大小或关系的向量①零向量:模为0的向量,记作→0,其方向是任意的②单位向量:模为1个单位长度的向量 ③共线向量(平行向量):方向相同或相反的非零向量。
规定:零向量与任何向量共线 ④相等向量:模长相等且方向相同的向量⑤相反向量:模长相等但方向相反的向量。
规定:零向量的相反向量是它本身 2.向量的表示法①字母表示法:如小写字母a , b , c 等,或AB ,CD 等 ②几何表示法:用一条有向线段表示 ③代数表示法:即向量的坐标表示法1.向量的加法、减法(1)法则:平行四边形法则、三角形法则 (2)运算律:交换律、结合律 (3)几何意义:2.向量的数乘(实数与向量的积) (1)定义与法则:(2)运算律:交换律、结合律、分配律 1.共线定理:向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ=2.平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数221121,,e e a λλλλ+=使3.三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数βα,,使得βα+=,其中1=+βα ,O 为平面上任意一点4.①平面内有任意三点O 、A 、B ,若M 是线段AB 的中点,则()+=21②ABC ∆中,M 为BC 边的中点,G 为重心,则=++,=++ ③向量加法的多边形法则 【自主练习】1. 以下命题中,正确命题的序号是 (1=,则b a = (2)b a b a =则都是单位向量若,, (3)===则若,,(4)==则,//(5)若四边形ABCD 是平行四边形,则==,2.已知直线a y x =+与圆422=+y x 交于AB两点,且-=+。
其中O 为坐标原点,则实数a 的值为3.已知向量,53=-=+=,则= 4.已知()-=+-=+=3,82,5 ,则( ) A. 点A 、B 、D 共线 B. 点A 、B 、C 共线 C. 点B 、C 、D 共线 D. 点A 、C 、D 共线 【典例解析】例1.对于非零向量b a ,,“=+”是“//”的( )A. 充分非必要B. 必要不充分C. 充要条件D.既不充分也不必要知识突破:如图,四边形ABCD ,其中A. 与B. 与C. DB AC 与D. OB DO 与例2.如图所示,D 、E 是△ABC 中AB ,AC 边的中点, M 、N 分别是DE ,BC 的中点。
2020届高三文理科数学一轮复习《平面向量基本定理及坐标表示》专题汇编(学生版)
《平面向量基本定理及坐标表示》专题一、相关知识点1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =xi +yj ,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). 3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 5.常用结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.(3)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22;已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33题型一 平面向量基本定理及其应用1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 2.下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-343.在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)4.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =_______.5.在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →等于( )A .b -12aB .b +12aC .a +12bD .a -12b6.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB →=a ,AC →=b ,则AO →=( )A .12a +12bB .12a +13bC .14a +12bD .12a +14b8.在平行四边形ABCD 中,AC 与BD 交于点O ,F 是线段DC 上的点.若DC =3DF ,设AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b9.在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→ D .-13AB ―→+23AD ―→10.在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB ―→=λAM ―→+μAN ―→,则λ+μ等于( )A.15B.25C.35D.4511.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=_______.12.在△ABC 中,点P 是AB 上一点,且CP ―→=23CA ―→+13CB ―→,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM―→=t CP ―→,则实数t 的值为________.13.在△ABC 所在平面上有三点P ,Q ,R ,满足PA ―→+PB ―→+PC ―→=AB ―→,QA ―→+QB ―→+QC ―→=BC ―→,RA ―→+RB ―→+RC ―→=CA ―→,则△PQR 的面积与△ABC 的面积之比是( )A .1∶2B .1∶3C .1∶4D .1∶514.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 分别交于点M ,N ,且AM ―→=x AB ―→,AN ―→=y AC ―→(x ,y >0),则3x +y 的最小值是( )A.83B.72C.52D.43+23315.在△ABC 中,点D 满足BD →=34BC →,当点E 在射线AD (不含点A )上移动时,若AE →=λAB →+μAC →,则λ+1μ的最小值为________.16.如图,已知△OCB 中,点C 是以A 为中点的点B 的对称点,D 是将OB →分为2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.题型二 平面向量的坐标运算1.若a =(2,3),b =(-1,4),则2a -b =________.2.如果向量a =(1,2),b =(4,3),那么a -2b =3.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于4.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.5.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=6.若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( )A .3a +bB .3a -bC .-a +3bD .a +3b7.已知a =(1,2),b =(-1,1),c =2a -b ,则|c |=8.已知A (1,4),B (-3,2),向量BC ―→=(2,4),D 为AC 的中点,则BD ―→=________.9.已知在平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫-12,-5D.⎝⎛⎭⎫12,-510.已知点 A (1,3),B (4,-1),则与AB →同方向的单位向量是( )A .⎝⎛⎭⎫35,-45B .⎝⎛⎭⎫45,-35C .⎝⎛⎭⎫-35,45D .⎝⎛⎭⎫-45,3511.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,|OC ―→|=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=12.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于13.已知向量a =(2,1),b =(1,-2).若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.14.平面直角坐标系xOy 中,已知A (1,0),B (0,1),C (-1,c ),(c >0),且|OC →|=2,若OC →=λOA →+μOB →,则实数λ+μ的值为________.题型三 平面向量共线的坐标表示1.已知向量a =(1,-1),则下列向量中与向量a 平行且同向的是( )A .b =(2,-2)B .b =(-2,2)C .b =(-1,2)D .b =(2,-1)2.已知向量a =(1,2),b =(-2,3),若m a -n b 与2a +b 共线(其中n ∈R ,且n ≠0),则mn =________.3.已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.4.已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.5.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值为________.6.已知A (-2,-3),B (2,1),C (1,4),D (-7,t ),若AB →与CD →共线,则t =________.7已知向量a =(1,2),a -b =(4,5),c =(x,3),若(2a +b )∥c ,则x =________.8.已知向量OA ―→=(k ,12),OB ―→=(4,5),OC ―→=(-k ,10),且A ,B ,C 三点共线,则k 的值是9.若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为____.10.向量a =⎝⎛⎭⎫13,tan α,b =(cos α,1),且a ∥b ,则cos 2α=11.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=12.已知点A (2,3),B (4,5),C (7,10),若AP ―→=AB ―→+λAC ―→(λ∈R),且点P 在直线x -2y =0上,则λ=13.已知平面向量a =(1,m ),b =(-3,1)且(2a +b )∥b ,则实数m 的值为14.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.15.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任意向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)16.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.17.已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +mb 且A ,B ,C 三点共线,求m 的值.18.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =mb +nc 的实数m ,n ;(2)若(a +kc )∥(2b -a ),求实数k .19.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标.。
2024年高考数学一轮复习(新高考版)《平面向量的综合应用》课件ppt
C.-38
D.-14
1 2 3 4 5 6 7 8 9 10 11 12
建立如图所示的平面直角坐标系,设P(x,y), 则A(0,0),B(1,0),C(1,2), 所以P→B=(1-x,-y), P→A+P→C=(-x,-y)+(1-x,2-y)=(1-2x,2-2y), 故(P→A+P→C)·P→B=(1-2x)(1-x)+(2-2y)(-y)=2x-342+2y-122-58, 所以当 x=34,y=12时,平面向量与复数
§5.4 平面向量的综合 应用[培优课]
题型一 平面向量在几何中的应用
例 1 (1)如图,在△ABC 中,cos∠BAC=14,点 D 在线段 BC 上,且 BD =3DC,AD= 215,则△ABC 的面积的最大值为____1_5__.
设△ABC的内角A,B,C所对的边分别为a,b,c, 因为 BD=3DC,A→D=14A→B+34A→C, 又 AD= 215,cos∠BAC=14, 所以A→D2=14A→B+34A→C2=116c2+196b2+38bccos∠BAC =116c2+196b2+332bc,
试用
a,b
表示D→E为__32_b_-__12_a_,若A→B⊥D→E,则∠ACB
π 的最大值为___6___.
D→E=C→E-C→D=32b-12a, A→B=C→B-C→A=b-a, 由A→B⊥D→E得(3b-a)·(b-a)=0,
即3b2+a2=4a·b, 所以 cos∠ACB=|aa|·|bb|=34b|2a+||ba| 2≥24|3a||a|b|||b|= 23,
又145=116c2+196b2+332bc=41c2+43b2+332bc≥2×14c×43b+332bc=1352bc, 当且仅当c=3b时,等号成立. 所以 bc≤8,又 sin∠BAC= 415, 所以 S△ABC=12bcsin∠BAC≤12×8× 415= 15.
高三理科数学一轮复习 专题 平面向量课件
向量数量积满足分配律,即 $(overset{longrightarrow}{a} + overset{longrightarrow}{c}) cdot overset{longrightarrow}{b} = overset{longrightarrow}{a} cdot overset{longrightarrow}{b} + overset{longrightarrow}{c} cdot overset{longrightarrow}{b}$。
理解混合积的几何意义
详细描述
混合积的几何意义是表示三个向量的体积。 具体来说,当三个向量表示一个平行六面体 的三条边时,混合积的大小就等于这个平行 六面体的体积。
当两向量同向时,投影长度等于向量 $overset{longrightarrow}{a}$的模;当两向量反向时,投 影长度等于负的向量$overset{longrightarrow}{a}$的模; 当两向量垂直时,投影长度为0。
向量数量积的运算律
向量数量积满足交换律,即 $overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = overset{longrightarrow}{b} cdot overset{longrightarrow}{a}$。
向量的模
总结词
向量的模是表示向量大小的数值,记作|a|。
详细描述
向量的模是表示向量大小的数值,记作|a|。向量的模的计算公式为$sqrt{x^2 + y^2}$,其中$x$和$y$分别是向量在x轴和y轴上的分量。
向量的加法
总结词
向量的加法是通过向量起点对齐、同向相加、反向取反的方 式进行。
平面向量 高三 一轮复习(完整版)
题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。
2023届高三数学一轮复习专题 平面向量的表示、三点共线研究 讲义 (解析版)
高三第一轮复习专题 平面向量表示、三点共线研究 一、平面向量基本定理:设12,e e 是同一平面内两个不共线向量,a 是这一平面内的任一向量。
在平面内任取一点O ,作12,,OA e OB e OC a ===,过C 作OB 的平行线,交直线OA 于M ;过C 作OA 的平行线,交直线OB 于N 。
因OM 与OA 共线,则存在实数1λ,使得:11OM e λ=;因ON 与OB 共线,则存在实数2λ,使得:22ON e λ=; OC OM ON =+1122a e e λλ∴=+也即,任一向量a 都可表示成1122e e λλ+的形式。
平面向量基本定理:若12,e e 是同一平面内的两个不共线向量,则对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使得:1122a e e λλ∴=+。
(也可称为a 用12,e e 表示出来)不共线向量12,e e 称为表示这一平面内所有向量的一组基底,12,e e 称为基向量。
例1。
ABCD 两条对角线交于O ,AB a =,AD b =,用a 、b 表示OA 、OB 、OC 、OD 。
2e2ea解:AC AB AD a b =+=+,DB AB AD a b =-=-O ABCD 为两条对角线的交点()1122OA AC a b ∴=-=-+,()1122OC AC a b ==+()1122OB DB a b ==-, ()1122OD DB a b =-=--。
故在一个图形中,任意两个不共线向量都可以作为一组基底,其余向量都可用这一组基向量表示出来。
在具体问题中,基向量的选择十分重要,它决定了是否容易表示。
二、向量的表示:★★★★★在研究向量间关系时,常先取两个基向量作为一组基底,其余向量用这两个基向量表示出来,这样能够更清晰地找出所研究向量间的关系。
1.,其余向量用这两个基向量表示出来。
例。
在ABC 中,2BD DC =,设,AB a AC b ==,用,a b 表示AD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学平面向量专题复习
一、选择题:
1.若r r
|a -b|=r r |a|=4,
|b|=5,则r r a与b 的数量积为 ( )
A .10
3
B .-10
3
C .10
2
D .10
2.若点P 分
AB 所成的比为
4
3
,则A 分BP 所成的比是( ) A.73 B. 37 C.- 37 D.-7
3 3.若将向量r a =(2,
1)围绕原点按逆时针方向旋转π
4
得到向量b r ,则向量b r 的坐标为( ) A .)
2
23,22(--
B .)223,22(
C .)22,223(-
D .)2
2,223(-
4.在矩形ABCD 中,u u r u u r u u r u u r u u r u u r 设11AE =AB,BF =BC, AB =(a,0),AD =(0,b)22,当u u r u u r
EF ⊥DE 时,
|a|
|b|
的值为 ( ) A .2 B .3 C .2 D .3
5.已知A (5,7),B (2,3),将u u r r
AB a 按=(4,1)平移后的坐标为
( )
A .(-3,-4)
B .(-4,-3)
C .(1,-3)
D .(-3,1)
6.将函数
)(x f y =图象上的点P (1,0)平移至P ′(2,0),则经过这种平移后得到的新
函数的解析式为
( )
A .y =f(x -1)
B .y =f(x)-1
C .y =f(x +1)
D .y =f(x)+1
7.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( )
A.(-∞,-1)
B.(-1,0)
C.(-∞,0)
D.(-∞,-2
1
) 8.已知02
=+⋅AB BC AB ,则△ABC 一定是
( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰直角三角形
9.若非零向量r r
a,b 互相垂直,则下列各式中一定成立的是
( )
A .r r r r
a +
b =a -b B .r r r r |a +b|=|a -b|
C .r r r r (a +b)(a -b)=0
D .r r 2
(a -b)=0
10.设四边形ABCD 中,有DC =2
1
,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形
C.等腰梯形
D.菱形 11.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是
A.(2a,b)
B.(a-b,a+b)
C.(a+b,b-a)
D.(a-b,b-a)
12.将椭圆0716*******
2
=---+y x y x 按向量r a 平移,使中心与原点重合,则r
a 的坐标为
( ) A .(2,1) B .(-1,-2) C .(-1,2) D .(1,-2)
二、填空题:
13.在菱形ABCD 中,(
AB +AD )·
(AB -AD )= 。
14.已知e 为单位向量,||a =4,e a 与的夹角为π3
2
,则e a 在方向上的投影为 .
15.已知b a b a ,,3||,4||==的夹角为120°,且b a c 2+=,b k a d +=2,当a c ⊥时,
k= .
16.已知点A (-2,-3),B (-1,-6),C (19,4),则△ABC 的形状是 . 三、解答题:
17.已知△ABC 的顶点坐标为A (1,2),B (2,3),C (3,1),把△ABC 按向量),(n m a =平移后得
到C B A '''∆,若C B A '''∆的重心为G ′(3,4) 求△ABC 的对应点A ′、B ′、C ′以及a 的坐标.
18.平面内有向量u u r OA =(1,
7),u u r u u r
OB =(5,1),OP =(2,1),点M 为直线OP 上一个动点. (1)当u u r
u u r
MA ,
MB 取最小值,求u u u u r
OM 的坐标; (2)当点M 满足(1)的条件和结论时,求AMB ∠cos 的值. 19.已知a=(cos α,sin α),b=(cos β,sin β),a 与b 之间有关系|ka+b|=
3|a -kb|, (k>0)
(1)用k 表示a ·b;
(2)求a ·b 的最小值,并求此时a ·b 的夹角的大小。
20.(1)已知a,b 是两个非零向量,且a+3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,试求a 与b 的夹
角; (2)已知:|a|=
2,|b|=3,a 和b 的夹角为45°,求使向量a+λb 与λa+b 的夹角是锐角时λ的取值范
围。
21.设a 、b 是两个不共线的非零向量(R t ∈)
(1)记u u r r u u r r u u r r r
1OA =a,OB =tb,OC =(a +b),3
那么当实数t 为何值时,A 、B 、C 三点共线?
(2)若120o r r r u r
且 与夹角为
|a|=|b|=1 a b ,那么实数x 为何值时||b x a -的值最小? 22.设x , y ∈R ,r i 、r j 为直角坐标系内x 、y 轴正方向上的单位向量,若r a =x r i +(y+2)r j ,r b =x r
i +
(y -2)r
j ,且r a 2+r b 2=16.
(1)求点M (x, y )的轨迹C 的方程;
(2)过定点(0,3)作直线l 与曲线C 交于A 、B 两点,设u u r u u r u u r
OP =OA +OB ,是否存在直线l 使四边
形OAPB 为正方形?若存在,求出l 的方程,若不存在说明理由.
1、 ABC 中,设命题p : ,命题q : ABC 为等边三角形,则命题p 是
命题q的()
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分又不必要条件
2、在ABC中,若A:B:C=1:2:3,则a:b:c等于()
A、1:2:3
B、1: :2
C、1:4:9
D、1::
3、在ABC中,若sinA:sinB:sinC=2:3:4,则∠ABC等于()
A、
4、已知A(2,1),B(6,7),将向量向量(2,3)平移后得到一个新向量,那么下面各向量中能与垂直的是()
A、(-3,-2)
B、
C、(-4,6)
D、(0,-2)
5、ABC为钝角三角形的充分不必要条件是()
(1)
A、(1)(4)
B、(2)(4)
C、(3)(4)
D、(1)(2)(3)
6、已知的夹角为锐角,则实数m的取值范围是()
A.
7、已知,则在下列各结论中
(1)(2)m1n1=m2n2
(3)m1n1+m2n2=0 (4)(5)=
是的充分不必要的条件为( )
A、(1)(4)(5)
B、(1)(2)(4)
C、(1)(2)(3)
D、(1)(3)(5)
8、若钝角三角形的三个内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的取值范围为()
A、(1,2)
B、(2,+∞)
C、(3,+∞)
D、(4,+∞)
二、填空题(每题5分,共20分)
1、若向量与的夹角为30°,且的夹角的余弦值为。
2、已知,是不共线向量,且, 若, 为一组基底,则= 。
3、已知向量则与的夹角为。
4、已知ABC满足,则ABC的形状是三
角形。
三、解答题(本大题共分4题,满分48分)
1、在ABC中内角A、B、C所对的边长分别为a、b、c,设a、b、c满足条件
①b2+c2-bc=a2
②,
求A和tanB的值。
2、设在ABC中内角A、B、C所对的边长分别为a、b、c,且A、B、C成等差数列
(1)求cosAcosC的取值范围;
(2)若ABC的外接圆半径R=1,求的取值范围。
3、在ABC中内角A、B、C所对的边长分别为a、b、c,且
(1)求的值。
(2)若,求bc的最大值。
4、在ABC中内角A、B、C所对的边长分别为a、b、c,已知a、b、c成等比数列,且
(1)求cotA+cotC的值;
(2)设,求a+c的值。