第3章多维随机变量及其分布习题及答案

合集下载

概率习题答案3

概率习题答案3

第三章多维随机变量及其分布 3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1 2 31 1/6 1/9 1/182 1/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1, 可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为(2)在X=2的条件下,Y的条件分布律.表(b)解答:由X与Y相互独立知P{X=xi,Y=yi}=P{X=xi}P{Y=yj),从而(X,Y)的联合概率分布为P{X+y=1}=P{X=-2,y=3}+P{X=0,Y=1}=116+148=112,P{X+Y≠0}=1-P{X+Y=0}=1-P{X=-1,Y=1}-P{X=12,Y=-12=1-112-16=34.习题6某旅客到达火车站的时间X均匀分布在早上7:55∼8:00, 而火车这段时间开出的时间Y的密度函数为fY(y)={2(5-y)25,0≤y≤50,其它,求此人能及时上火车站的概率.解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它,因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为(3)(4)={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2.解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

第3章多维随机变量及其分布试题答案

第3章多维随机变量及其分布试题答案

第3章多维随机变量及其分布试题答案、选择(每小题 2分)1、设二维随机变量的分布律为则 P{ X Y = 0} = ( C ) (A) 0.2(B)0.5(C) 0.6(D) 0.7”c, —1 c x c 1,-1 < y c 12、设二维随机变量(X ,Y)的概率密度为f(x, y)=」,则常数0, otherC =( A )1 1 (A)-(B) -(C) 2 (D)4423、设二维随机变量(X ,Y )的分布律为设P jj = P{X =i,^ j}, i, j =0,1,则下列各式中错误的是( D ) (A ) P 00 :: P 01(B ) P 10 :::P 11 (C ) P 00 ::P 11 (D ) P 10 :::P 014、设二维随机变量的分布律为则 P{X 二Y}=(A ) (A)0.3(B) 0.5(C) 0.7(D)0.8• V -Ae*e y , x > 0, y a 0 门宀*..5、设二维随机变量(X ,Y )的概率密度为f(x,y),则常数A = ,0, other(D )(B) 16、设二维随机变量(X,Y )的分布律为则 P{XY =0} = (C )7、设二维随机变量)的分布律为为其联合分布函数,则 = (D )3 310、设二维随机变量(X ,Y )的分布函数为F (x, y ),则F (x, •::)=( B ) (D)2(A) (B)12(C) (D)11 (B) 12(C)1(D)4-X T e e f (x, y)= \ 0,X 0, y 0,则 P{ X 一 Y}= other(B )1123(A)—(B)-(C)-(D)—4 23 4它们取-1,1两个值的概率分别 1 31,-,则 P{ XY —1}=4 4(A)1 16(B)花(C)(D)(A) 0(B) F X (x) (C) F Y (y) (D) 1 8、设二维随机变量(X ,丫)的概率密度为 9、设随机变量X 与Y 独立同分布,11、设随机变量 X 和Y 相互独立,且 X ~ N(3,4) , Y 〜N(2,9),则Z = 3X Y ~ ( D ) (A)N(7,21)(B)N(7,27)(C)N(7,45)(D)N(11,45)12、设二维随机变量的联合分布函数为 ,其联合概率分布为则 F(0,1)=( B )则 k =( B )贝U P{XY =2} =( C )0^y 乞1时,(X,Y)关于Y的边缘概率密度为f Y (y)= ( D )(A)0.2(B)0.5(C) 0.713、设二维随机变量(X ,Y)的联合概率分布为(D) 0.8k(x y), 0 _ x _ 2,0 _ y _ 1 other(A)(B) (C) (D)(A)0.2(B) 0.3(C) 0.515、设二维随机变量(X,Y)的概率密度为(D) 0.6f (x, y)= ;4xy,b,0乞x 乞1,0乞y乞1 other,则当(A)2; (B)2x(C)1 2y(D) 2y(B) 2「=1(C) > - 1J = 2 (D) .9 93 3 3 3-7、设二维随机变量的分布律为18、设二维随机变量(X,Y )的分布律为20、设(X ,Y )的概率分布如下表所示,当 X 与Y 相互独立时,p,q )=( C )则有(B ) (A)(A)1 12(B)1 (C)3(D)(A) a = 0.2, b = 0.6 (B) a = 0.1, b = 0.9 (C)a = 0.4,b = 0.4(D) a = 0.6, b = 0.219、设二维随机变量(X,Y )的概率密度为1f (x, y) = < 40,0 :: x 2,0 :y :: 2 则 P{0:: X ::: 1,0 :: Y ::: 1} =( A )1(A)4(B)23(C)4(D) 1P{X 1X 2 =0} =1,贝y P{X 1 =X 2}= (A )24、设两个相互独立随机变量 X 和Y 分别服从正态分布 N (0,1)和N (1,1),则(B ) 1 1 (A)P{ X Y - 0}(B) P{ X Y -1} 22 1 1 (C) P{X -Y _0}(D) P{X - Y _1}=221 解:由Z = X Y ~ N(1,2),其分布密度关于1对称,故P{X Y -1}=-。

多维随机变量及其分布习题及答案

多维随机变量及其分布习题及答案

第3章多维随机变量及其分布习题及答案(共8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--23第三章多维随机变量及其分布一、填空题1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-.2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 .3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X5、设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它042,20)6(),(y x y x k y x f ,则=k 81.6、随机变量),(Y X 的分布如下,写出其边缘分布.7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则=⎰∞+∞-)(x f X1 .8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 .249、如果随机变量),(Y X 的联合概率分布为X1 2 3 161 91 181 2 31α β 则βα,应满足的条件是 186=+βα ;若X 与Y 相互独立,则=α 184 ,=β182. 10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度=),(y x f 22221y x e+-π,Y X Z +=的概率密度=)(Z f Z42221x e-π .12、 设 ( ) 的 联 合 分 布 函 数 为()()()()⎪⎩⎪⎨⎧≥≥+-+-+++= y x y x y x A y x F 00,0111111,222则 A =__1___。

概率论与数理统计 多维随机变量及其分布习题答案

概率论与数理统计 多维随机变量及其分布习题答案

A e2xdx e3y dy
0
0
A(
1
e2x
)
(
1
e3 y
)
2 03 0
=A/6 =1
所以, A=6
P{ X<2, Y<1} f(x, y)dxdy {X2,Y1}
2
dx
1 6e(2x3 y)dy
0
0
6 2 e2xdx 1e3ydy
0
0
Y
1
{X<2, Y<1} 0
(1 e4 )(1 e3 )
令:从表中的每一种情况出现的次数计算出
它们的频率,就产生了二维随机向量(X,Y)的 概率分布:
P{X=0,Y=0}≈3/23000=0.00013,
P{X=1,Y=0}≈1/23000=0.00004,
P{X=0,Y=1}≈4597/23000=0.19987, P{X=1,Y=1}≈18399/23000=0.79996.
所以( X ,Y ) 的分布函数为
0, x 1 或 y 1,
F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
例3 二维随机向量(X,Y)的联合概率分布为:
XY 0 1
2
-1 0.05 0.1 0.1
0
0.1 0.2 0.1
1
a 0.2 0.05
1, 3
故 ( X , Y ) 的分布律为
YX
12
1
0 13
2
13 13
下面求分布函数.
(1)当 x 1 或 y 1 时, y
F ( x, y) P{X x,Y y} 2(1,2)

概率论与数理统计浙大四版习题答案第三章

概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y 试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。

解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。

第3章多维随机变量及其分布习题解答

第3章多维随机变量及其分布习题解答


16.设 X 与 Y 相互独立,且 P { X = 0} = P {Y = 0} =
1 2 , P { X = 1} = P {Y = 1} = 3 3

⎧1 Z =⎨ ⎩0
X +Y ≠1 ,则 Z 的分布律为 X +Y =1
P ( Z = 0) = 4 / 9, P ( Z = 1) = 5 / 9
X
1 2
Y
1 0.18 0.42 0.6
2 0.12 0.28 0.4
P( X = i)
0.3 0.7
P (Y = j )
(2) P{ X = Y } = P{ X = Y = 1} + P{ X = Y = 2} = 0.18 + 0.28 = 0.46 (3) XY 的分布律为
XY P
1 0.18
∫∫
p ( x, y )dxdy = ∫ dx ∫
0
1
1− x 2 0
2e− ( x + 2 y ) dy = 1 − 2e−1
26.设 X 与 Y 相互独立, X与Y 的概率密度分别为
⎧1, 0 ≤ x ≤ 1 p X ( x) = ⎨ , 其他 ⎩0,
⎧8 y, 0 < y < 1/ 2 pY ( y ) = ⎨ 其他 ⎩ 0,
)


X
Y











pij = pi. ⋅ p. j
(i, j = 1, 2, ⋅⋅⋅⋅⋅⋅)
2
⎧1 − e − x x ≥ 0 ⎪ 13 . 设 X 与 Y 相 互 独 立 , 分 布 函 数 分 别 为 FX ( x ) = ⎨ , ⎪ ⎩0 x < 0

第三章 多维随机变量及其分布答案

第三章 多维随机变量及其分布答案

第三章 多维随机变量及其分布答案一 选择题1. 设随机变量X 的密度函数为()x ϕ,且()()x x ϕϕ-=,F(x)为X 的分布函数,则对任意实数a ,有 【 】(A) ()0()1aF a x dx ϕ-=-⎰. (B) ()01()2aF a x dx ϕ-=-⎰. (C ) ()()F a F a -=.(D) ()2()1F a F a -=-. 【答案】应选 (B) .【详解】因()()01()2aaF a x dx x dx ϕϕ--∞--==-⎰⎰,而()()00a a x dx x dx ϕϕ-=⎰⎰,所以()01()2aF a x dx ϕ-=-⎰画图容易理解。

2. 设随机变量(X,Y)服从二维正态分布,且X与Y不相关,)()(y f x f Y X 分别表示X,Y的概率密度,则在Y=y 的条件下,X的密度)|(|y x f Y X 为 【 】 (A) )(x f X . (B) )(y f Y . (C ) )()(y f x f Y X . (D))()(y f x f Y X . 【答案】应选 (A) .【详解】因(X,Y)服从二维正态分布,且X与Y不相关,故X与Y相互独立,于是)|(|y x f Y X =)(x f X . 因此选(A) .3. 设两个相互独立的随机变量X 和Y 分别服从正态分布N(0,1)和N(1,1),则 【 】 (A) {}01/2P X Y +≤=. (B) {}11/2P X Y +≤=. (C ) {}01/2P X Y -≤=. (D) {}11/2P X Y -≤=. 【答案】应选 (B) .【详解】由~(0,1)~(1,1)X N Y N X Y 与以及与相互独立,得X ~(1,2)Y N + ,X-~(1,2)Y N - 因为,若2Z~N(,)μσ,则必有{}12P Z μ≤=,比较四个选项,只有(B)正确。

4. 设随机变量X 和随机变量Y 都服从正态分布,且它们不相关,则 【 】 (A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布. (C ) X 和Y 未必独立. (D) X+Y 服从一维正态分布. 【答案】应选 (B) .【详解】由于只有当(X,Y)服从二维正态分布时,X 与Y 不相关X 和Y 相互独立。

《概率论与数理统计》习题三参考答案 多维随机变量及其分布(熊万民、杨波版)

《概率论与数理统计》习题三参考答案 多维随机变量及其分布(熊万民、杨波版)

~
f
Z
z
2ez
1
0
e
z
z0

其他
19.5 个相互独立工作的电子元器件,它们的寿命 Xk(k=1,2,3,4,5)服从同一指数分布,其
概率密度为: X k ~ f x 0.0010e0.001x
x x
0 0
,分布函数为
F
x
1
e0.001x 0
x0

x0
Z Ma xX1, X 2 , X3, X 4 , X5 的概率密度函数为: Z ~ FZ z F z5 ,
P X 2,Y 2 P X 2,Y 3 P X 3,Y 1 P X 3,Y 2 0 ,
PX
0,Y
3
PX
0
C30
1 2
3
1 8

PX
3,Y
3
PX
3
1 8

PX
1, Y
1
PX
1
3 8

PX
2,Y
1
PX
2
C32
1 2
3
3 8

2.盒子里边装有 3 个白球,3 个黑球,2 个红球,从中任取 4 个球, X 为取到的白球个数, Y 为
0
2
e2 ydy 1 ez
z
2
z0

z0
(2)因为 X ,Y ~ f x, y e0xy
x 0,
y0
,则
X
~
E 1 ,Y
~
E 1,且
X
、Y
相互
其他
独立,则 Z
Max X ,Y 的概率分布函数为:Z

三多维随机变量及其分布(参考答案).

三多维随机变量及其分布(参考答案).

概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(一)一、填空题:1、设二维随机变量(,)X Y 的联合密度函数为2,01,01(,)0,Axy x y f x y ⎧<<<<=⎨⎩其他,则常数A = 6 。

2、设二维随机变量(,)X Y 的联合分布函数为arctan arctan ,0,0(,)0,A x y x y F x y ⋅>>⎧=⎨⎩其他,则常数A =24π。

二、计算题:1.在一箱子中装有12只开关,其中2只次品,在其中取两次,每次任取一只,考虑两种实验: (1)放回抽样;(2)不放回抽样。

我们定义随机变量X ,Y 如下:01X ⎧=⎨⎩若第一次出的是正品若第一次出的是次品 , 01Y ⎧=⎨⎩若第二次出的是正品若第二次出的是次品 试分别就(1),(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样 (2)不放回抽样2.设二维离散型随机变量的联合分布见表:试求(1)13{,04}22P X Y <<<<,(2){12,34}P X Y ≤≤≤≤解:(1)13{,04}22P X Y <<<< 111213(,)(,)(,)P X Y P X Y P X Y ===+==+== 14=(2){12,34}P X Y ≤≤≤≤13142324(,)(,)(,)(,)P X Y P X Y P X Y P X Y ===+==+==+== 11516416=+=3.设随机变量(,)X Y 的联合分布律如表:求:(1)a 值; (2)(,)X Y 的联合分布函数(,)F x y (3)(,)X Y 关于X ,Y 的边缘分布函数()X F x 和()Y F y 解:(1) 由归一性1111446iji jp a =+++=∑∑ 解得 13a =(2)(,)X Y 的联合分布函数为00111210452101211202120,(,),,,x y x y F x y x y x y x y <<-⎧⎪⎪≤<-≤<⎪⎪⎪=≥-≤<⎨⎪⎪≤<≥⎪⎪≥≥⎪⎩或(3)(,)X Y 关于X ,Y 的边缘分布函数为:01112212()X x F x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩ 01510121()y y F y y y <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩4.设随机变量(,)X Y 的概率密度为(6)0<x<2,2<y<4(,)0k x y f x y --⎧=⎨⎩其他,求:(1)常数k ; (2)求{1,3}P X Y <<; (3){ 1.5}P X <; (4){4}P X Y +≤ 解:(1)由归一性 242266281(,)()()F dx k x y dy k x dx k -∞+∞=--=-==⎰⎰⎰所以 1k =(2) {1,3}P X Y <<131020117368828()()dx x y dy x dx =--=-=⎰⎰⎰ (3){ 1.5}P X <1541502011276628832..()()dx x y dy x dx =--=-=⎰⎰⎰(4){4}P X Y +≤4168()x y x y dxdy +≤=--⎰⎰ 2402168()x dx x y dy -=--⎰⎰ 220112816()x x dx =-+⎰23=概率论与数理统计练习题系 专业 班 姓名 学号第三章 多维随机变量及其分布(二)一、选择题:1、设随机变量X 与Y 独立,且221122(,),(,)XN Y N μσμσ,则Z X Y =-仍服从正态分布,且有 [ D ] (A )221212(,)Z N μμσσ++ (B) 221212(,)Z N μμσσ+- (C) 221212(,)ZN μμσσ-- (D) 221212(,)ZN μμσσ-+2、若(,)X Y 服从二维均匀分布,则 [ B ] (A )随机变量,X Y 都服从均匀分布 (B )随机变量,X Y 不一定服从均匀分布 (C )随机变量,X Y 一定不服从均匀分布 (D )随机变量X Y +服从均匀分布 二、填空题:1、设二维随机变量(,)X Y 的密度函数为2,01,02(,)30,.xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他, 则(1)P X Y +≥=3136。

概率论与数理统计第三章多维随机变量及其分布习题解答

概率论与数理统计第三章多维随机变量及其分布习题解答

习题3-11、设(,)X Y 的分布律为求a 。

解:由分布律的性质,得1,0iji jp a =>∑∑,即111111691839a +++++=,0a >, 解得,29a =。

注:考察分布律的完备性和非负性。

2、设(,)X Y 的分布函数为(,)F x y ,试用(,)F x y 表示:(1){,}P a X b Y c ≤≤<;(2){0}P Y b <<;(3){,}P X a Y b ≥<。

解:根据分布函数的定义(,){,}F x y P X x Y y =≤≤,得(1){,}{,}{,}(,)(,)P a X b Y c P X b Y c P X a Y c F b c F a c ---≤≤<=≤<-<<=-; (2){0}{,}{,0}(,)(,0)P Y b P X Y b P X Y F b F -<<=≤+∞<-≤+∞≤=+∞-+∞; (3){,}{,}{,}(,)(,)P X a Y b P X Y b P X a Y b F b F a b ---≥<=≤+∞<-<<=+∞-。

3、设二维随机变量(,)X Y 的分布函数为(,)F x y ,分布律如下:试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤;(3)(2,3)F 。

解:由(,)X Y 的分布律,得 (1)1311{,04}{1,1}{1,2}{1,3}002244P X Y P X Y P X Y P X Y <<<<===+==+===++=; (2){12,34}{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y P X Y ≤≤≤≤===+==+==+==1150016416=+++=;(3)(2,3){2,3}{1,1}{1,2}{1,3}F P X Y P X Y P X Y P X Y =≤≤===+==+==1119{2,1}{2,2}{2,3}000416416P X Y P X Y P X Y +==+==+===+++++=。

经济概率统计作业参考答案(第三章)

经济概率统计作业参考答案(第三章)

p{X
k} a , p{Y k} b , (k 1,2 ,3), 且
k
k2
X
与Y
相互独立,则
( D )。
( A) a 1, b 1;
(B) 11a 49 b 1 ; 6 36
(C) a, b 为任意实数 ;
(D) a 6 , b 36 。 11 49
三、计算
1、一盒子中装有 3 个黑球、2 个白球、2 个红球。在其中任意取四球,以 X 表示取到黑球 的个数,以Y 表示取到红球的个数,求( X , Y )的联合分布列。
1 0 x 1
f
X
(x)
0
其他
fY ( y)
f (x, y)dx
当0
y
2
时,
f Y
( y)
11
0 2
dx
1 2
当 y 0 或 y 2 时, fY ( y) 0
1 / 2
f Y
( y)
0
0 y2 其他
5、已知随机变量 X 和 Y 的联合分布为:
(x , y) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)
答案: F(b, c) F(a, c) , F(, a) F(,0) , F(,b) F(a,b)
2、设二维随机变量的密度函数为
p(x)
4xy
0
,0 x 1, 0 y 1
,
其他

则 p(0 X 0.5)

答案: 1 4
3、随机变量 (X ,Y ) 的分布率如下表,则, 应满足的条件是
1/ 6
3
1/12 1/ 6
0
2. 二维随机变量( X ,Y )的联合密度函数为:

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

第三章 多维随机变量及其分布考研试题及答案

第三章  多维随机变量及其分布考研试题及答案

第三章 多维随机变量及其分布 一、填空题1.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .【解题分析】首先要根据Z 的定义确定Z 的取值范围,然后求Z 取值的概率即可. 解: 由于,X Y 仅取0、1两个数值,故Z 也仅取0和1两个数值,因,X Y 相互独立,故 {0}{max(,)0}{0,0}P Z P X Y P X Y ======111{0}{0},224P X P Y ====⨯=g3{1}1{0}.4P Z P Z ==-==Z 的分布律为Z01P14 342.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它.则{1}P x y +≤= . 【解题分析】利用(){}()DPX Y D f x y dxdy ∈=⎰⎰,,求解.解: 如图10-5所示图10-5X0 1P12 1211201(1)664x xDP x y xdxy dx dxdy -+≤===⎰⎰⎰⎰. 二、选择题1.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( ).A .;X Y =B .{}0;P X Y ==C .{}12;P X Y ==D .{} 1.P X Y ==【解题分析】乍看似乎答案是A ,理由是X 和Y 同分布,但这是错误的,因为,若X Y =,说明X 取什么值时, Y 也一定取相同的值,而这是不可能的,所以只能从剩下的三个答案中选一个,这时只要直接计算{}P X Y =即可.解: 由X 和Y 相互独立知{}{1,1}{1,1}P X Y P X Y P X Y ===-=-+=={1}{1}{1}{1}P X P Y P X P Y ==-=-+==g g11111.22222=⨯+⨯= 所以,正确答案是C .2.(1999年数学三)设随机变量101(1,2)111424i X i -⎡⎤⎢⎥=⎢⎥⎣⎦:,且满足{}1201,P X X ==则12{}P X X =等于( ).A .0;B .14;C .12; D .1.【解题分析】本题应从所给条件{}1201P X X ==出发,找出随机变量12,X X 的联合分布.解: 设随机变量12,X X 的联合分布为由 121212{0}{0,1}{0,1}P X X P X X P X X ====-+==121212{1,0}{1,0}{0,0}P X X P X X P X X +=-=+==+==21231232221p p p p p =++++=知 111331330,p p p p ====从而有 2111311144p p p =--=, 类似地 231232111,,.444p p p ===进一步可知 22123210.2p p p =--=即 1122330.p p p ===因此有12{}0.P X X ==正确答案是A .3.(1999年数学四)假设随机变量X 服从指数分布,则随机变量min{,2}Y X =的分布函数( ).A .是连续函数;B .至少有两个间断点;C .是阶梯函数;D .恰好有一个间断点.【解题分析】从公式(){}{}{}{}min 1min z F z P X z P X Y z =≤=->,Y ,{}{}{}1,1P X z Y z P X z P Y z =->>=->> ()()()()111X Y F z F z =---出发求解即可.解: 由题设,0,()0,0.x e x X e x λλλ-⎧>=⎨≤⎩:令12,2,X ξξ==则120,0,0,2,()()1,0,1, 2.xx x F x F x e x x ξξλ-≤<⎧⎧==⎨⎨->≥⎩⎩ 于是12min{,2}min{,}Y X ξξ==的分布函数为120,0,()1(1())(1())1,02,1, 2.x x F x F x F x e x x λξξ-≤⎧⎪=---=-<<⎨⎪≥⎩可见其仅有一个间断点 2.x =正确答案是D .4.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则A .12()()f x f x +必为某一随机变量的分布密度;B .12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;D .12()()f x f x 必为某一随机变量的分布密度.解: 由于若随机变量X 与Y 相互独立,它们的分布函数分别为1()F x 与2()F y ,则max{,}Z X Y =的分布函数为12()()()z F z F x F y =,可知12()()F x F x 必为某一随机变量的分布函数.故选择B .注:本题与2002年高数一中的选择题类同.本题也可以用赋值法求解.三、计算与证明题1.(1994年数学三)假设随机变量1234,,,X X X X 相互独立,且同分布,{0}0.6,{1}0.4(1,2,3,4,)i i P X P X i =====求行列式1234X X X X X =的概率分布.【解题分析】X 由22⨯阶行列式表示,仍是一随机变量,且1423X X X X X =-,由于1234,,,X X X X 独立同分布, 故14X X 与23X X 也是独立同分布的,因此可先求出14X X 和23X X 的分布律,再求X 的分布律.解: 记114Y X X =,223Y X X =,则12X Y Y =-.随机变量1Y 和2Y 独立同分布:1223{1}{1}{1,1}P Y P Y P X X ====== {}{}23110.16P X P X ====. 12{0}{0}10.160.84P Y P Y ====-=.随机变量12X Y Y =-有三个可能值-1,0,1.易见12{1}{0,1}0.840.160.1344,P X P Y Y =-====⨯= 12{1}{1,0}0.160.840.1344,P X P Y Y =====⨯={0}120.13440.7312.P X ==-⨯=于是12341010.13440.73120.1344X X X X X -⎡⎤=⎢⎥⎣⎦:. 2.(2003年数学三)设随机变量X 与Y 独立,其中X 的概率分布律为120.30.7X ⎡⎤⎢⎥⎣⎦:,而Y 的分布密度为()f y ,求随机变量U X Y =+的分布密度()g u .【解题分析】本题是求随机变量函数的分布,这里的两随机变量一个是离散型,一个是连续型,我们仍然从求分布函数出发,根据X 的不同取值,利用全概率公式来求解.解: 设()F y 为y 分布函数,则由全概率公式及X 与Y 的独立性可知,U X Y =+的分布函数为()()()G u P U u P X Y u =≤=+≤()()()()1|12|2P X P X Y u X P X P X Y u X ==+≤=+=+≤=0.3(|1)0.7(|2)P X Y u X P X Y u X =+≤=++≤=0.3(1|1)0.7(2|2)P Y u X P Y u X =≤-=+≤-=0.3(1)0.7(2)0.3(1)0.7(2)P Y u P Y u F u F u =≤-+≤-=-+-,由此得 ()0.3(1)0.7(2).g u f u f u =-+-3.(2006年数学四) 设二维随机变量()X Y ,的概率分布律为其中a b c ,,为常数,且X 的数学期望0.2EX =-,{}000.5P Y X ≤≤=,记Z X Y =+.求(1) a b c ,,的值;(2)Z 的概率分布;(3){}P X Z =【解题分析】要求a b c ,,的值,只需要找到三个含有a b c ,,的等式即可,这可以由分布函数的性质及题设中所给的两个条件得到;求Z 的概率分布,首先要弄清楚Z 的可能取值,由X Y ,的取值可知,Z 的可能取值为-2,-1,0,1,2,然后再求Z 取值的概率;要求{}P X Z =,只需要转化为求关于X Y ,的概率,由{}{}{}0P X Z P X X Y P Y ===+==,既可得出结论.解: (1)由概率分布的性质知,0.61a b c +++=, 即 0.4a b c ++=.由 0.2EX =-,可得 0.1a c -+=-. 再由{}{}{}000.1000.50.50P Y X a b P Y X a b P X ≤≤++≤≤===++≤,,得 0.3a b +=.解以上关于a b c ,,的三个方程得 0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{}{}21,10.2P Z P X Y =-==-=-=,{}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-=,{}{}{}{}01,10,0 1,10.3P Z P X Y P X Y P X Y ===-=+==+==-={}{}{}11,00,10.3P Z P X Y P X Y ====+===, {}{}21,10.1P Z P X Y =====.即Z 的概率分布律为(3) {}{}{}0P X Z P X X Y P Y ===+===00.10.2b ++=. 4.(1987年数学一)设随机变量,X Y 相互独立,其概率密度函数分别为1,01,0()()0,0,y X Y x e y f x f y y -≤≤⎧>⎧==⎨⎨≤⎩⎩其它, 求2Z X Y =+的概率密度函数. 【解题分析】此类问题,一般有两种解法:一种是先写出二维随机变量(,X Y )的联合概率分布密度函数,再计算2Z X Y =+的概率分布密度函数,另一种是直接利用两独立随机变量和的分布密度计算公式(即卷积公式)求解.解: 方法1 由于随机变量,X Y 相互独立,所以二维随机变量(,X Y )的概率分布密度函数为(,),01,0,(,)()()0,y X Y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩g 其它. 因此,随机变量Z 的分布函数为2(){2}()()Z X Y x y zF z P X Y z f x f y dxdy +<=+<=⎰⎰g2222000121200000,0,0,(1),02,(1), 2.zz z x yx z z xy x z z z dx e dy e dx z dx e dye dx z ------⎧⎧≤≤⎪⎪⎪⎪⎪==-<≤⎨⎨⎪⎪⎪⎪->⎩⎪⎩⎰⎰⎰⎰⎰⎰,所以,随机变量Z 的分布密度函数为()()Z Z f z F z '==20,0,1(1),02,21(1), 2.2z zz e z e e z --⎧⎪≤⎪⎪-<≤⎨⎪⎪->⎪⎩ 方法2 由于随机变量,X Y 相互独立,所以,由卷积公式知,随机变量Z 的密度函数为1()()(2)(2)Z X Y Y f z f x f z x dx f z x dx +∞-∞=-=-⎰⎰=(2)201(2)00,0,,02,, 2.z z x z x z e dx z e dx z ----⎧≤⎪⎪⎪<≤⎨⎪⎪>⎪⎩⎰⎰=20,0,1(1),02,21(1), 2.2z zz e z e e z --⎧⎪≤⎪⎪-<≤⎨⎪⎪->⎪⎩ 5.(1999年数学四)设二维随机变量(,X Y )在矩形{(,)|02,01}G x y x y =≤≤≤≤上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率分布密度函数()f s .【解题分析】由题设容易得出随机变量(,X Y )的分布密度,本题相当于求随机变量,X Y 的函数S XY =的分布密度.可先求出其分布函数,再求导得分布密度.在求分布函数时,一定要注意对S 的取值范围进行讨论.解: 由于二维随机变量(,X Y )服从均匀分布,所以,它的概率分布密度函数为1,(,),2(,)0,(,).x y G f x y x y G ⎧∈⎪=⎨⎪∈⎩若若 设(){}F s P S s =≤为S XY =的分布函数,则 当0s ≤时, ()0;F s = 当2s ≥时, () 1.F s =现在,设02,s <<如图10-6所示, 曲线xy s =与矩形G 的上边交于点(,1)s ;图10-6位于曲线xy s =上方的点满足xy s >,位于下方的点满足xy s <,于是(){}{}1{}F s P S s P XY s P XY s =≤=≤=->211111(1ln 2ln ).222s s x xy ssdxdy dx dy s >=-=-=+-⎰⎰⎰⎰于是,1(ln 2ln ),02()20,0 2.s s f s s s ⎧-<<⎪=⎨⎪≤≥⎩若若或6.(2001年数学一)设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客中途下车的概率为(01)p p <<,且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.【解题分析】显然,第一问求的是条件概率, 发车时有n 个乘客, 中途有m 人下车的概率,为n 重伯努利概型,可以依此求解.其次,要求二维随机变量(,)X Y 的概率分布,首先确定X Y ,的取值,然后按乘法公式求解.解: (1)设事件A ={发车时有n 个乘客},B ={中途有m 个人下车},则在发车时有n 个乘客的条件下,中途有m 个人下车的概率是一个条件概率,即(|)(|).P B A P Y m X n ===根据n 重伯努利概型,有()(|)1n mm mn P B A C p p -=-,其中0,0,1,2,m n n ≤≤=L .(2)由于(,)()(|)(),P X n Y m P AB P B A P A ====g 而上车人数服从()P λ,因此(),!nP A en λλ-=于是(,)X Y 的概率分布律为()()(,)(1),!nm mn mnP X n Y m P Y m X n P X n C p p e n λλ--=======-g其中0,0,1,2,m n n ≤≤=L .7.(2001年数学三)设随机变量X 和Y 的联合分布在正方形{(,):13,13}G x y x y =≤≤≤≤(如图10-7)上服从均匀分布,试求随机变量||U X Y =-的概率分布密度函数().p u图10-7【解题分析】本题主要考查随机变量函数的分布,可从分布函数出发求解.但是,这里要注意的是随机变量函数带有绝对值.解: 由条件知X 和Y 联合密度为13,13,(,)40,x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩若1其它.以()()()F u P U u u =≤-∞<<∞表示随机变量U 的分布函数,显然,当0u ≤时,()0F u =;当2u ≥时,()1F u =.设02,u <<则||{||}1()(,)4x y ux y u GF u f x y dxdy dxdy -≤-≤==⎰⎰⎰⎰I2211[4(2)]1(2)44u u =--=--, 于是,随机变量U 的分布密度为()1(2)2,()20,U u <u <f u F u ⎧-⎪'==⎨⎪⎩若0其它.8.(2002年数学三、四)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间(()E X )为5小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数().F y【解题分析】本题主要考查随机变量函数的分布.首先要找到Y 与X 的关系,然后分情况进行讨论.解: 设X 的分布参数为λ,由于1()5,E X λ==可见15λ=.显然,{}min 2Y X =,.对于0,()0;y F y <=对于2,() 1.y F y ≥=设02,y ≤<有(){}{min{,2}}F y P Y y P X y =≤=≤=5{}1y P X y e-≤=-于是,Y 的分布函数为 50,0,()12,1, 2.y y F y ey y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩若若0若 求随机变量函数的分布,是概率论中考试的重点,对于求连续型随机变量函数的分布密度,一般从求分布函数出发,结合图形对自变量的取值范围进行讨论,求出分布函数,然后求导即得分布密度.。

第三章 多维随机变量及其分布考研试题及答案

第三章  多维随机变量及其分布考研试题及答案

第三章 多维随机变量及其分布 一、填空题1.(1994年数学一)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量max{,}Z X Y =的分布律为 .【解题分析】首先要根据Z 的定义确定Z 的取值范围,然后求Z 取值的概率即可.解: 由于,X Y 仅取0、1两个数值,故Z 也仅取0和1两个数值,因,X Y 相互独立,故 {0}{max(,)0}{0,0}P Z P X Y P X Y ======111{0}{0},224P X P Y ====⨯=3{1}1{0}.4P Z P Z ==-==Z 的分布律为Z 01P14342.(2003年数学一)设二维随机变量(),X Y 的概率密度为6,01,(,)0,x x y f x y ≤≤≤⎧=⎨⎩其它. 则{1}P x y +≤= . 【解题分析】利用(){}()DP X Y D f x y dxdy ∈=⎰⎰,,求解.解: 如图10-5所示X 01P1212图10-511201(1)664x xDP x y xdxy dx dxdy -+≤===⎰⎰⎰⎰. 二、选择题1.(1990年数学三)设随机变量X 和Y 相互独立,其概率分布律为则下列式子正确的是( ).A .;X Y =B .{}0;P X Y ==C .{}12;P X Y ==D .{} 1.P X Y ==【解题分析】乍看似乎答案是A ,理由是X 和Y 同分布,但这是错误的,因为,若X Y =,说明X 取什么值时, Y 也一定取相同的值,而这是不可能的,所以只能从剩下的三个答案中选一个,这时只要直接计算{}P X Y =即可.解: 由X 和Y 相互独立知{}{1,1}{1,1}P X Y P X Y P X Y ===-=-+=={1}{1}{1}{1}P X P Y P X P Y ==-=-+==11111.22222=⨯+⨯= 所以,正确答案是C .2.(1999年数学三)设随机变量101(1,2)111424iX i -⎡⎤⎢⎥=⎢⎥⎣⎦,且满足{}1201,P X X ==则12{}P X X =等于( ).A .0;B .14;C .12; D .1.【解题分析】本题应从所给条件{}1201P X X ==出发,找出随机变量12,X X 的联合分布.解: 设随机变量12,X X 的联合分布为 由121212{0}{0,1}{0,1}P X X P X X P X X ====-+==121212{1,0}{1,0}{0,0}P X X P X X P X X +=-=+==+==21231232221p p p p p =++++=知 111331330,p p p p ====从而有 2111311144p p p =--=, 类似地 231232111,,.444p p p ===进一步可知 22123210.2p p p =--=即 1122330.p p p ===因此有12{}0.P X X ==正确答案是A .3.(1999年数学四)假设随机变量X 服从指数分布,则随机变量min{,2}Y X =的分布函数( ).A .是连续函数;B .至少有两个间断点;C .是阶梯函数;D .恰好有一个间断点.【解题分析】从公式(){}{}{}{}min 1min z F z P X z P X Y z =≤=->,Y ,{}{}{}1,1P X z Y z P X z P Y z =->>=->> ()()()()111X Y F z F z =---出发求解即可.解: 由题设,0,()0,0.x e x X e x λλλ-⎧>=⎨≤⎩ 令12,2,X ξξ==则120,0,0,2,()()1,0,1, 2.xx x F x F x e x x ξξλ-≤<⎧⎧==⎨⎨->≥⎩⎩ 于是12min{,2}min{,}Y X ξξ==的分布函数为120,0,()1(1())(1())1,02,1, 2.x x F x F x F x e x x λξξ-≤⎧⎪=---=-<<⎨⎪≥⎩可见其仅有一个间断点 2.x =正确答案是D .4.(2002年数学四)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则A .12()()f x f x +必为某一随机变量的分布密度;B .12()()F x F x 必为某一随机变量的分布函数;C .12()()F x F x +必为某一随机变量的分布函数;D .12()()f x f x 必为某一随机变量的分布密度.解: 由于若随机变量X 与Y 相互独立,它们的分布函数分别为1()F x 与2()F y ,则max{,}Z X Y =的分布函数为12()()()z F z F x F y =,可知12()()F x F x 必为某一随机变量的分布函数.故选择B .注:本题与2002年高数一中的选择题类同.本题也可以用赋值法求解. 三、计算与证明题1.(1994年数学三)假设随机变量1234,,,X X X X 相互独立,且同分布,{0}0.6,{1}0.4(1,2,3,4,)i i P X P X i =====求行列式1234X X X X X =的概率分布.【解题分析】X 由22⨯阶行列式表示,仍是一随机变量,且1423X X X X X =-,由于1234,,,X X X X 独立同分布, 故14X X 与23X X 也是独立同分布的,因此可先求出14X X 和23X X 的分布律,再求X 的分布律.解: 记114Y X X =,223Y X X =,则12X Y Y =-.随机变量1Y 和2Y 独立同分布:1223{1}{1}{1,1}P Y P Y P X X ====== {}{}23110.16P X P X ====.12{0}{0}10.160.84P Y P Y ====-=.随机变量12X Y Y =-有三个可能值-1,0,1.易见12{1}{0,1}0.840.160.1344,P X P Y Y =-====⨯= 12{1}{1,0}0.160.840.1344,P X P Y Y =====⨯={0}120.13440.7312.P X ==-⨯=于是12341010.13440.73120.1344X X X X X -⎡⎤=⎢⎥⎣⎦. 2.(2003年数学三)设随机变量X 与Y 独立,其中X 的概率分布律为120.30.7X⎡⎤⎢⎥⎣⎦,而Y 的分布密度为()f y ,求随机变量U X Y =+的分布密度()g u .【解题分析】本题是求随机变量函数的分布,这里的两随机变量一个是离散型,一个是连续型,我们仍然从求分布函数出发,根据X 的不同取值,利用全概率公式来求解.解: 设()F y 为y 分布函数,则由全概率公式及X 与Y 的独立性可知,U X Y =+的分布函数为()()()G u P U u P X Y u =≤=+≤()()()()1|12|2P X P X Y u X P X P X Y u X ==+≤=+=+≤=0.3(|1)0.7(|2)P X Y u X P X Y u X =+≤=++≤=0.3(1|1)0.7(2|2)P Y u X P Y u X =≤-=+≤-=0.3(1)0.7(2)0.3(1)0.7(2)P Y u P Y u F u F u =≤-+≤-=-+-,由此得 ()0.3(1)0.7(2).g u f u f u =-+-3.(2006年数学四) 设二维随机变量()X Y ,的概率分布律为其中a b c ,,为常数,且X 的数学期望0.2EX =-,{}000.5P Y X ≤≤=,记Z X Y =+.求(1) a b c ,,的值;(2)Z 的概率分布;(3){}P X Z =【解题分析】要求a b c ,,的值,只需要找到三个含有a b c ,,的等式即可,这可以由分布函数的性质及题设中所给的两个条件得到;求Z 的概率分布,首先要弄清楚Z 的可能取值,由X Y ,的取值可知,Z 的可能取值为-2,-1,0,1,2,然后再求Z 取值的概率;要求{}P X Z =,只需要转化为求关于X Y ,的概率,由{}{}{}0P X Z P X X Y P Y ===+==,既可得出结论. 解: (1)由概率分布的性质知,0.61a b c +++=, 即 0.4a b c ++=.由 0.2EX =-,可得 0.1a c -+=-.再由{}{}{}000.1000.50.50P Y X a b P Y X a b P X ≤≤++≤≤===++≤,,得 0.3a b +=.解以上关于a b c ,,的三个方程得 0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{}{}21,10.2P Z P X Y =-==-=-=,{}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-=,{}{}{}{}01,10,0 1,10.3P Z P X Y P X Y P X Y ===-=+==+==-={}{}{}11,00,10.3P Z P X Y P X Y ====+===, {}{}21,10.1P Z P X Y =====. 即Z 的概率分布律为(3) {}{}{}0P X Z P X X Y P Y ===+===00.10.2b ++=.4.(1987年数学一)设随机变量,X Y 相互独立,其概率密度函数分别为1,01,0()()0,0,y X Y x e y f x f y y -≤≤⎧>⎧==⎨⎨≤⎩⎩其它, 求2Z X Y =+的概率密度函数.【解题分析】此类问题,一般有两种解法:一种是先写出二维随机变量(,X Y )的联合概率分布密度函数,再计算2Z X Y =+的概率分布密度函数,另一种是直接利用两独立随机变量和的分布密度计算公式(即卷积公式)求解.解: 方法1 由于随机变量,X Y 相互独立,所以二维随机变量(,X Y )的概率分布密度函数为(,),01,0,(,)()()0,y X Y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其它. 因此,随机变量Z 的分布函数为2(){2}()()Z X Y x y zF z P X Y z f x f y dxdy +<=+<=⎰⎰2222000121200000,0,0,(1),02,(1), 2.zz z x yx z z xy x z z z dx e dy e dx z dx e dye dx z ------⎧⎧≤≤⎪⎪⎪⎪⎪==-<≤⎨⎨⎪⎪⎪⎪->⎩⎪⎩⎰⎰⎰⎰⎰⎰,所以,随机变量Z 的分布密度函数为()()Z Z f z F z '==20,0,1(1),02,21(1), 2.2z zz e z e e z --⎧⎪≤⎪⎪-<≤⎨⎪⎪->⎪⎩ 方法2 由于随机变量,X Y 相互独立,所以,由卷积公式知,随机变量Z 的密度函数为1()()(2)(2)Z X Y Y f z f x f z x dx f z x dx +∞-∞=-=-⎰⎰=(2)201(2)00,0,,02,, 2.z z x z x z e dx z e dx z ----⎧≤⎪⎪⎪<≤⎨⎪⎪>⎪⎩⎰⎰=20,0,1(1),02,21(1), 2.2z zz e z e e z --⎧⎪≤⎪⎪-<≤⎨⎪⎪->⎪⎩5.(1999年数学四)设二维随机变量(,X Y )在矩形{(,)|02,01}G x y x y =≤≤≤≤上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率分布密度函数()f s .【解题分析】由题设容易得出随机变量(,X Y )的分布密度,本题相当于求随机变量,X Y 的函数S XY =的分布密度.可先求出其分布函数,再求导得分布密度.在求分布函数时,一定要注意对S 的取值范围进行讨论.解: 由于二维随机变量(,X Y )服从均匀分布,所以,它的概率分布密度函数为1,(,),2(,)0,(,).x y G f x y x y G ⎧∈⎪=⎨⎪∈⎩若若 设(){}F s P S s =≤为S XY =的分布函数,则 当0s ≤时, ()0;F s = 当2s ≥时, () 1.F s =现在,设02,s <<如图10-6所示, 曲线xy s =与矩形G 的上边交于点(,1)s ;图10-6位于曲线xy s =上方的点满足xy s >,位于下方的点满足xy s <,于是(){}{}1{}F s P S s P XY s P XY s =≤=≤=->211111(1ln 2ln ).222s s x xy ssdxdy dx dy s >=-=-=+-⎰⎰⎰⎰ 于是,1(ln 2ln ),02()20,0 2.s s f s s s ⎧-<<⎪=⎨⎪≤≥⎩若若或6.(2001年数学一)设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客中途下车的概率为(01)p p <<,且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.【解题分析】显然,第一问求的是条件概率, 发车时有n 个乘客, 中途有m 人下车的概率,为n 重伯努利概型,可以依此求解.其次,要求二维随机变量(,)X Y 的概率分布,首先确定X Y ,的取值,然后按乘法公式求解.解: (1)设事件A ={发车时有n 个乘客},B ={中途有m 个人下车},则在发车时有n 个乘客的条件下,中途有m 个人下车的概率是一个条件概率,即(|)(|).P B A P Y m X n ===根据n 重伯努利概型,有()(|)1n mm mn P B A C p p -=-,其中0,0,1,2,m n n ≤≤=.(2)由于(,)()(|)(),P X n Y m P AB P B A P A ====而上车人数服从()P λ,因此 (),!nP A e n λλ-=于是(,)X Y 的概率分布律为()()(,)(1),!nmmn mnP X n Y m P Y m X n P X n C p p e n λλ--=======-其中0,0,1,2,m n n ≤≤=.7.(2001年数学三)设随机变量X 和Y 的联合分布在正方形{(,):13,13}G x y x y =≤≤≤≤(如图10-7)上服从均匀分布,试求随机变量||U X Y =-的概率分布密度函数().p u图10-7【解题分析】本题主要考查随机变量函数的分布,可从分布函数出发求解.但是,这里要注意的是随机变量函数带有绝对值.解: 由条件知X 和Y 联合密度为 13,13,(,)40,x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩若1其它.以()()()F u P U u u =≤-∞<<∞表示随机变量U 的分布函数,显然,当0u ≤时, ()0F u =;当2u ≥时,()1F u =.设02,u <<则||{||}1()(,)4x y u x y u GF u f x y dxdy dxdy -≤-≤==⎰⎰⎰⎰ 2211[4(2)]1(2)44u u =--=--, 于是,随机变量U 的分布密度为()1(2)2,()20,U u <u <f u F u ⎧-⎪'==⎨⎪⎩若0其它.8.(2002年数学三、四)假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间(()E X )为5小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数().F y【解题分析】本题主要考查随机变量函数的分布.首先要找到Y 与X 的关系,然后分情况进行讨论.解: 设X 的分布参数为λ,由于1()5,E X λ==可见15λ=.显然,{}min 2Y X =,.对于0,()0;y F y <=对于2,() 1.y F y ≥=设02,y ≤<有(){}{min{,2}}F y P Y y P X y =≤=≤=5{}1y P X y e-≤=- 于是,Y 的分布函数为50,0,()12,1, 2.y y F y ey y -<⎧⎪⎪=-≤<⎨⎪≥⎪⎩若若0若 求随机变量函数的分布,是概率论中考试的重点,对于求连续型随机变量函数的分布密度,一般从求分布函数出发,结合图形对自变量的取值范围进行讨论,求出分布函数,然后求导即得分布密度.。

完整第三章 多维随机变量及其分布考研试题及答案

完整第三章  多维随机变量及其分布考研试题及答案

第三章多维随机变量及其散布一、填空题1.〔1994年纪学一〕设互相独破的两个随机变量存在统一散布律,且的散布律为那么随机变量的散布律为.【解题剖析】起首要依照的界说断定的取值范畴,而后求取值的概率即可.解: 因为仅取0、1两个数值,故也仅取0跟1两个数值,因互相独破,故的散布律为2.〔2003年纪学一〕设二维随机变量的概率密度为那么=.【解题剖析】应用求解.解:如图10-5所示图10-5.二、选择题1.(1990年纪学三)设随机变量跟互相独破,其概率散布律为那么以下式子准确的选项是〔〕.....【解题剖析】乍看大概谜底是,来由是跟同散布,但这是过错的,因为,假定,阐明取什么值时,也必定取一样的值,而这是不能够的,因而只能从剩下的三个谜底当选一个,这时只要直截了当盘算即可.解:由跟互相独破知因而,准确谜底是.2.(1999年纪学三)设随机变量,且满意那么即是〔〕..0;.;.;.1.【解题剖析】此题应从所给前提动身,寻出随机变量的联合散布.解: 设随机变量的联合散布为由知从而有,相似地进一步可知即因而有准确谜底是.3.(1999年纪学四)假定随机变量听从指数散布,那么随机变量的散布函数〔〕..是延续函数;.至多有两个延续点;.是门路函数;.恰恰有一个延续点.【解题剖析】从公式动身求解即可.解: 由题设令那么因而的散布函数为可见其仅有一个延续点准确谜底是.4.(2002年纪学四)设跟是恣意两个互相独破的延续型随机变量,它们的概率密度分不为跟,散布函数分不为跟,那么.必为某一随机变量的散布密度;.必为某一随机变量的散布函数;.必为某一随机变量的散布函数;.必为某一随机变量的散布密度.解: 因为假定随机变量与互相独破,它们的散布函数分不为与,那么的散布函数为,可知必为某一随机变量的散布函数.应选择.注:此题与2002年高数一中的选择题类同.此题也能够用赋值法求解.三、盘算与证实题1.(1994年纪学三)假定随机变量互相独破,且同散布,求行列式的概率散布.【解题剖析】由阶行列式表现,还是一随机变量,且,因为独破同散布,故与也是独破同散布的,因而可先求出跟的散布律,再求的散布律.解: 记,,那么.随机变量跟独破同散布:..随机变量有三个能够值-1,0,1.易见因而.2.(2003年纪学三)设随机变量与独破,此中的概率散布律为,而的散布密度为,求随机变量的散布密度.【解题剖析】此题是求随机变量函数的散布,这里的两随机变量一个是团圆型,一个是延续型,咱们依然从求散布函数动身,依照的差别取值,应用全概率公式来求解.解: 设为散布函数,那么由全概率公式及与的独破性可知,的散布函数为,由此得3.(2006年纪学四)设二维随机变量的概率散布律为此中为常数,且的数学希冀,,记.求(1)的值;(2)的概率散布;(3)【解题剖析】请求的值,只要求寻到三个含有的等式即可,这能够由散布函数的性子及题设中所给的两个前提失掉;求的概率散布,起首要弄清晰的能够取值,由的取值可知,的能够取值为-2,-1,0,1,2,而后再求取值的概率;请求,只要求转化为求对于的概率,由,既可得出论断.解: (1)由概率散布的性子知,,即.由,可得.再由,得.解以上对于的三个方程得.(2)的能够取值为-2,-1,0,1,2,,,,.即的概率散布律为(3)=.4.(1987年纪学一)设随机变量互相独破,其概率密度函数分不为求的概率密度函数.【解题剖析】此类咨询题,普通有两种解法:一种是先写出二维随机变量()的联合概率散布密度函数,再盘算的概率散布密度函数,另一种是直截了当应用两独破随机变量跟的散布密度盘算公式(即卷积公式)求解.解: 办法1因为随机变量互相独破,因而二维随机变量()的概率散布密度函数为因而,随机变量的散布函数为因而,随机变量的散布密度函数为办法2因为随机变量互相独破,因而,由卷积公式知,随机变量的密度函数为==5.(1999年纪学四)设二维随机变量()在矩形上听从平均散布,试求边长为跟的矩形面积的概率散布密度函数.【解题剖析】由题设轻易得出随机变量()的散布密度,此题相称于求随机变量的函数的散布密度.可先求出其散布函数,再求导得散布密度.在求散布函数时,必定要留意对的取值范畴进展探讨.解:因为二维随机变量()听从平均散布,因而,它的概率散布密度函数为设为的散布函数,那么事先,事先,如今,设如图10-6所示,曲线与矩形的上边交于点;图10-6位于曲线上方的点满意,位于下方的点满意,因而因而,6.(2001年纪学一)设某班车终点站上车人数听从参数为的泊松散布,每位搭客半途下车的概率为,且半途下车与否互相独破.以表现在半途下车的人数,求:〔1〕在发车时有个搭客的前提下,半途有人下车的概率;〔2〕二维随机变量的概率散布.【解题剖析】显然,第一咨询求的是前提概率,发车时有个搭客,半途有人下车的概率,为重伯努利概型,能够依此求解.其次,请求二维随机变量的概率散布,起首断定的取值,而后按乘法公式求解.解: (1)设事情{发车时有个搭客},{半途有团体下车},那么在发车时有个搭客的前提下,半途有团体下车的概率是一个前提概率,即依照重伯努利概型,有,此中.(2)因为而上车人数听从,因而因而的概率散布律为此中.7.(2001年纪学三)设随机变量跟的联合散布在正方形(如图10-7)上听从平均散布,试求随机变量的概率散布密度函数图10-7【解题剖析】此题要紧考察随机变量函数的散布,可从散布函数动身求解.然而,这里要留意的是随机变量函数带有相对值.解: 由前提知跟联合密度为以表现随机变量的散布函数,显然,事先,;事先,.设那么,因而,随机变量的散布密度为8.(2002年纪学三、四)假定一装备开机后无毛病任务的时刻听从指数散布,平均无毛病任务的时刻〔〕为5小时,装备准时开机,呈现毛病时主动关机,而在无毛病的状况下任务2小时便关机.试求该装备每次开机无毛病任务的时刻的散布函数【解题剖析】此题要紧考察随机变量函数的散布.起首要寻到与的关联,而后分状况进展探讨.解: 设的散布参数为,因为可见.显然,.对于对于设有=因而,的散布函数为求随机变量函数的散布,是概率论中测验的重点,对于求延续型随机变量函数的散布密度,普通从求散布函数动身,联合图形对自变量的取值范畴进展探讨,求出散布函数,而后求导即得散布密度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 多维随机变量及其分布一、填空题1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-.2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 .3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X5、设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它042,20)6(),(y x y x k y x f ,则=k81. /6、随机变量),(Y X 的分布如下,写出其边缘分布.>7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则=⎰∞+∞-)(x f X1 .8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 .,9、如果随机变量),(Y X 的联合概率分布为X123《161 91 181 231α β 则βα,应满足的条件是 18=+βα ;若X 与Y 相互独立,则=α 184 ,=β 182 .10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度{=),(y x f 22221y x e +-π,Y X Z +=的概率密度=)(Z f Z4222x e-π .12、 设 ( ) 的 联 合 分 布 函 数 为()()()()⎪⎩⎪⎨⎧≥≥+-+-+++= y x y x y x A y x F 00,0111111,222则 A =__1___。

二、证明和计算题1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球 上标的数字为X ,第二次取的球上标的数字Y ,求),(Y X 的联合分布律.解:031}1,1{⋅===Y X P 31131}2,1{=⋅===Y X P312132}1,2{=⋅===Y X P312132}2,2{=⋅===Y X P《2、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,Y 为投入2 号信箱的信数,求),(Y X 的联合分布律.X Y 1 2,131 231 31解:X 的可能取值为0,1,2,3Y 的可能取值为0,1,2,3331}0,0{===Y X P333}1,0{===Y X P 3323333}2,0{====C Y X P331}3,0{===Y X P 333}0,1{===Y X P 3323}1,1{⨯===Y X P 3313}2,1{⨯===Y X P 0}3,1{===Y X P 3233}0,2{C Y X P ===333}1,2{===Y X P 0}2,2{===Y X P 0}3,2{===Y X P 331}0,3{===Y X P 0}3,3{}2,3{}1,3{=========Y X P Y X P Y X PX ( Y0 1 2 3 0271 273 273 271 ~ 1273 276 2730 2 273 2730 0* 32710 0 0 3、设 函 数 F(x , y) = ⎩⎨⎧≤+>+120121y x y x ;问 F(x , y) 是 不 是 某 二 维 随 机 变 量 的联 合 分 布 函 数 并 说 明 理 由 。

解: F(x , y) 不 可 能 是 某 二 维 随 机 变 量 的 联 合 分 布 函 数因 P{0 < 2, 0 < 1}= F(2 , 1)- F(0 , 1) - F(2 , 0) + F(0 , 0)= 1- 1- 1 + 0 =-1 < 0 。

故 F(x , y) 不 可 能 是 某 二 维 随 机 变 量 的 联 合 分 布 函 数 。

4、设⎰+∞=≥01)(,0)(dx x g x g 且,有⎪⎩⎪⎨⎧+∞<≤++=其它,0,0,][)(2),(2222y x y x y x g y x f π 证明:),(y x f 可作为二维连续型随机变量的概率密度函数。

证明:易验证),(y x f 0≥,又=⎰⎰+∞∞-+∞∞-dxdy y x f ),(dxdy yx y x g ⎰⎰∞+∞+++02222)(2π=⎰⎰⎰∞+∞+==0201)()(2dr r g rdr rr g d πθπ符合概率密度函数的性质,可以是二维连续型随机变量的概率密度函数。

5、在[ 0,π] 上 均 匀 地 任 取 两 数 X 与 Y ,求0){cos(<+Y X P }的值。

解:⎪⎩⎪⎨⎧≤≤=其它,0,0,1),(2ππy x y x f ,0){cos(<+Y X P =43)232{=<+<ππY X P6、设随机变量),(Y X 的密度函数为⎩⎨⎧>>=+-其它00,0),()43(y x ke y x f y x,(1)确定常数k (2)求),(Y X 的分布函数(3)求}20,10{≤<≤<Y X P解:(1)⎰⎰∞∞+-=00)43(1dx e k dy y x⎰⎰∞∞∞-∞---=-⋅-=0003043412]31[]41[k e e k dx e dy ek x y x y12=∴k (2)⎰⎰--+---⋅==y x y x v u e e dudv e y x F 0043)43()1)(1(1211212),()1)(1(43y x e e ----= 0,0>>y x0),(=y x F(3))2,0()0,1()0,0()2,1(}20,10{F F F F Y X P --+=≤<≤<95021.00)1)(1(83=+--=--e e7、设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤+=其它20,103/),(2y x xy x y x f 求}1{≥+Y X P~解:⎰⎰⎰⎰≥+-+==≥+110212)3(),(}1{y x xdy xy x dx dxdy y x f Y X P⎰=++=10327265)65342(dx x x x8、设随机变量),(Y X 在矩形区域},|),{(d y c b x a y x D <<<<=内服从均匀分布, (1)求联合概率密度及边缘概率密度. (2)问随机变量Y X ,是否独立 解:(1)根据题意可设),(Y X 的概率密度为⎩⎨⎧<<<<=其它,),(dy c b x a My x f⎰⎰⎰⎰∞+∞-∞+∞---===badcc d a b M dy dx M dxdy y x f ))((),(1\于是))((1c d a b M --=,故⎩⎨⎧<<<<--=其它0,))(/(1),(dy c b x a c d a b y x f⎰⎰∞+∞--=--==d cX ab c d a b dy dy y x f x f 1))((),()(即⎪⎩⎪⎨⎧<<-=其它1)(b x a ab x f X⎰⎰∞+∞--=--==ba Y cd c d a b dx dx y x f y f 1))((),()(即⎩⎨⎧<<-=其它)/(1)(d y c c d y f Y(2)因为)()(),(y f x f y x f Y X ⋅=,故X 与Y 是相互独立的.9、随机变量),(Y X 的分布函数为⎩⎨⎧≥≥+--=----其它,00,0,3331),(y x y x F y x y x 求:(1)边缘密度;(2)验证X,Y 是否独立。

解:(1))33(3ln ),(y x xx y x F ----⨯=∂∂,,33ln ),(22yx y x y x F --⨯=∂∂ 0,0>>y x .>⎩⎨⎧<>⨯=--其它00,033ln ),(2yx y x f y x⎪⎩⎪⎨⎧>⨯=⨯=---+∞⎰其它0033ln 33ln )(20x dy x f x y x X ,⎪⎩⎪⎨⎧>⨯=⨯=---+∞⎰其它00,33ln 33ln )(20y dx x f y y x Y(2) 因为)()(),(y f x f y x f Y X ⋅=,故X 与Y 是相互独立的.10、一电子器件包含两部分,分别以Y X ,记这两部分的寿命(以小时记),设),(Y X 的分布函数为⎩⎨⎧≥≥+--=+---其它00,01),()(01.001.001.0y x e e e y x F y x y x(1)问X 和Y 是否相互独立 (2)并求}120,120{>>Y X P(解:(1)⎩⎨⎧<≥-=+∞=-0001),()(01.0x x e x F x F x X⎩⎨⎧<≥-=+∞=-0001),()(01.0y y e y F y F yY 易证),()()(y x F y F x F Y X =,故Y X ,相互独立. (2)由(1)Y X ,相互独立}]120{1[}]120{1[}120{}120{}120,120{≤-⋅≤-=>⋅>=>>Y P X P Y P X P Y X P 091.0)]120(1)][120(1[42==--=⋅-e F F Y X11、设 随 机 变 量 ( , )的 分 布 函 数 为F x y A B arctg x C arctg y(,)()()=++23求:( 1 )系 数 A , B 及 C 的 值 , ( 2 ) ( , )的 联 合 概 率 密 度(x , y)。

解:( 1 )F A B C (,)()()+∞+∞=++=ππ221&F A B C (,)()()-∞+∞=-+=ππ220F A B C (,)()()+∞-∞=+-=ππ220由 此 解 得 A B C ===122ππ,,( 2 ) ϕπ(,)()()x y x y =++64922212、设),(Y X 相互独立且分别具有下列表格所定的分布律试写出),(Y X 的联合分布律. 解:XY2-1-【21 21- 81 61 241 61 1 161 121 |481 121 3161 121 481 121 13、设Y X ,求Y X Z +=的分布律.Y21-13k P21 、4141 X2- 1-21 k P41 {31 121 31 X1&2k P21 21 Y1 2k P21 21解: ,2,1,0}{===k P k X P k,2,1,0}{===γγγq Y PY X Z +=的分布律为 ,2,1,0}{===-i q P i Z P k i kZ 的全部取值为2,3,4412121}1{}1{}1,1{}2{=⋅========Y P X P Y X P Z P }1,2{}2,1{}3{==+====Y X P Y X P Z P2121212121}1{}2{}2{}1{=⋅+⋅===+===Y P X P Y P X P 412121}2{}2{}2,2{}4{=⋅========Y P X P Y X P Z P14、 X,Y 相互独立,其分布密度函数各自为⎪⎩⎪⎨⎧<≥=00021)(21x x e x f x X⎪⎩⎪⎨⎧<≥=00031)(3y y ey f yY求Y X Z +=的密度函数.解:Y X Z +=的密度函数为⎰∞+∞--=dx x Z f x f Z f Y X Z )()()(,由于)(x f X 在0≥x 时有非零值,)(x Z f Y -在0≥-x Z 即Z x ≤时有非零值, 故)()(x Z f x f Y X -在Z x ≤≤0时有非零值⎰⎰-----=⋅=Z Z xZ x Z xZ dx e edx e e Z f 06332613121)( )1(][6363Z ZZ x Z ee e e -----=-=当0≤Z 时,0)(=Z f故⎪⎩⎪⎨⎧≤>-=--000)1()(63Z Z e e Z f Z Z Z。

相关文档
最新文档