相似三角形知识点梳理及经典练习

合集下载

中考数学《相似三角形》知识点及练习题

中考数学《相似三角形》知识点及练习题

相似三角形一. 知识梳理1.平行线分线段成比例定理定理:两条直线被三条平行线所截,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

2.相似三角形定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。

相似比:相似三角形对应边的比叫做相似比。

3.相似三角形的判定平行法:平行于三角形一边的直线和其他两边相交,所得的三角形与原三角形相似。

两角法:两角分别相等的两个三角形相似。

边角法:两边成比例且夹角相等的两个三角形相似。

三边法:三边对应成比例的两个三角形相似。

4.相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应边上高的比,对应边上中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。

5.位似图形定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

这时的相似比又叫位似比6. 黄金分割:点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 二.课后作业1.下列图形中不一定属于相似形的是( )A.两个圆B.两个等边三角形C.两个正方形D.两个矩形2.如果两个相似三角形的面积比是1∶4,那么它们的周长比是( )A. 1∶16B. 1∶4C. 1∶6D. 1∶23.已知△ABC ∽△DEF ,且AB:DE=1:2,则△ABC 的周长与△DEF 的周长之比( )A.1:2B.1:4C.2:1D.4:14.如图,给出下列条件:其中,不能单独判定△ABC∽△ACD 的条件为( )A.∠B=∠ACDB.∠ADC=∠ACBC.AC CD =AB BCD.AC AD =AB AC5.如图,DE ∥BC ,且AD=2,BD=5,则△ADE 与△ABC 的相似比为( )A.2:5B.5:2C.2:7D.7:26.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=( ) A.7 B.8 C.9 D.10 E A D CB A BC DE7.已知△ABC ∽△DEF ,且它们的周长之比为1:2,那么它们的相似比为 。

相似三角形的判定+性质+经典例题分析

相似三角形的判定+性质+经典例题分析

相似形(一)一、比例性质1.基本性质:(两外项的积等于两内项积)2.反比性质:(把比的前项、后项交换)3。

合比性质:(分子加(减)分母,分母不变).4.等比性质:(分子分母分别相加,比值不变.)如果,那么.谈重点:(1)此性质的证明运用了“设法”,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.5。

黄金分割:○,1内容○,2尺规作图作一条线段的黄金分割点经典例题回顾:例题1.已知a、b、c是非零实数,且,求k的值.例题2.已知,求的值.概念:谈重点:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关.⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例—-全等形.①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3.②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

○,4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论错误!的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;判定定理1:两角对应相等,两三角形相似.符号语言:拓展延伸:(1)有一组锐角对应相等的两个直角三角形相似。

(2)顶角或底角对应相等的两个等腰三角形相似。

例题精讲【重难点高效突破】例题1.如图,直线DE分别与△ABC的边AB、AC的反向延长线相交于D、E,由ED∥BC可以推出吗?请说明理由.(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC中,∠BAC=90°,AD⊥BC于D.求证:(1);(2);(3)例题3.如图,AD是RtΔABC斜边BC上的高,DE⊥DF,且DE和DF分别交AB、AC于E、F。

相似三角形经典总复习(含知识点习题)

相似三角形经典总复习(含知识点习题)

第23章:相似三角形 第一节:比例线段 知识点:1、相似多边形:从几何直观上来说,两个图形如果形状一致,而大小不同,则称这两个图形相似,具体到多边形,称之为相似多边形。

从严谨定义上来说,如果两个多边形各边成比例,各角相等,则称这两个多边形为相似多边形。

2、比例线段:一、线段的比:如果用同一长度单位量得两条线段a 、b 的长度分别为m ,n ,则m ∶n 就是线段a ,b 的比,记作a ∶b =m ∶n 或a mb n=,其中a 叫做比例前项,b 叫做比例后项。

二、比例线段:四条线段,如果其中两条线段的比与另外两条线段的比相同,则称这四条线段成比例线段,简称比例线段。

例如线段a 、b 、c 、d ,如果a cb d=或者(::a b c d =)a 、b 、c 、d 成比例线段,这里要注意,a 、b 、c 、d 必须按顺序写出,不能写成b c a d =或a d b c=。

三、比例外项、比例内项、第四比例项、比例中项:若a cb d=,则称a 、d 为比例外项,b 、c 、为比例内项,d 为第四比例项,如果b =c ,则称b 为a 、c 的比例中项,可记做(2b ac =)3、比例性质: 1、基本性质:如果a cb d=,则根据等式的基本性质,两边同时乘以bd 得ad bc =。

2、合比性质:如果a cb d=,则根据等式的基本性质,两边同时加上1或-1得a b c d b d ±±=。

在此处键入公式。

a b c db d±±=3、等比性质:如果a c mb d n===(0b d n +++≠),则a c m a c mb d n b d n+++====+++,运用这个性质时,一定要注意0b d n +++≠的条件。

4、黄金分割:把线段AB 分成两条线段AP 、PB (AP >PB ),如果AP 是线段PB 和AB 的比例中项,则线段AP 把线段AB 黄金分割,点P 叫做线段AB 的黄金分割点。

相似三角形的判定与性质知识梳理及例题分析

相似三角形的判定与性质知识梳理及例题分析

相似三角形的判定与性质知识梳理及例题分析1.相似三角形的概念:在和中,如果,,,,我们就说和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).思考:在中,点是边的中点,,交于点,与有什么关系?猜想:与相似. 证明:在与中,∴,.过点作,交于点在中,,,∴.又,∴∴,∴∽(对应角相等,对应边的比相等的两三角形相似),相似比为.改变点在上的位置,可以进一步猜想以上两个三角形依然相似.2.相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.思考:对比三角形全等判定的简单方法(),看是否也有简便的方法?已知:在和中,.求证:∽.证明:在线段(或它的延长线)上截取,过点作,交于点,根据前面的结论可得∽.∴又,∴∴同理:∴≌∴∽相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.思考:若,,与是否相似呢?相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.进一步引申:若,,与是否相似呢?不一定问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.例1.根据下列条件,判断与是否相似,并说明理由:(1),,;,,.(2),,;,,.解:(1),∴又∴∽问:这两个相似三角形的相似比是多少?(答:是)(2),,∴与的三组对应边的比不等,它们不相似.问:要使两三角形相似,不改变的长,的长应当改为多少?(答:) 例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:,3;或,;或,.注:当两三角形相似而边不确定时,要注意分类讨论.相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.3.三角形相似的判定的应用例3.如图,弦和弦相交于内一点,求证:.证明:连接,.在∴∽∴.例4.已知:如图,在中,于点.(1)求证:∽∽;(2)求证:;;(此结论称之为射影定理)(3)若,求.(4)若,求.分析:(1)利用两角相等证相似;(2)把相似三角形的相似比的比例式改为乘积式即可;(3)利用射影定理和勾股定理直接求;(4)利用上面的定理和方程求.进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,于点,则可得到双垂直图形.例.已知:∽,分别是两个三角形的角平分线.求证:.4.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.证明:如果∽,相似比为,那么.因此,,.从而,.同理可得相似多边形对应周长的比也等于相似比.如图,已知:∽,相似比为.分别作出与的高和和都是直角三角形,并且,∽相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.例5.如图,在和中,,,,的周长是24,面积是48,求的周长和面积.解:在和中,,又∽,相似比为.的周长为,的面积是.例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.分析:此题第1问:利用两边的比相等,夹角相等证相似.即,第2问:设∵是的比例中项,∴是的比例中项即∴解得又∵第3问:∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.例7.如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求出的长.解:(1),∽(2)∵的周长与四边形的周长相等∽(3)在线段上存在点,使得为等腰直角三角形.过作于,则,设交于若,则.∵∽若,同理可求.若,∽∴在线段上存在点,使得为等腰直角三角形,此时,或.三、总结归纳:1、相似三角形的判定:(1)相似三角形的定义;(2)平行得相似;(3)三边的比相等;(4)两边的比相等,夹角相等;(5)两角对应相等.三角形相似判定的方法较多,要根据已知条件适当选择.23、相似三角形的常见图形及其变换:4、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.。

(完整版)相似三角形基本知识点+经典例题(完美打印版)

(完整版)相似三角形基本知识点+经典例题(完美打印版)

相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

初中相似三角形基本知识点和经典例题

初中相似三角形基本知识点和经典例题

初中相似三角形基本知识点和经典例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初三相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b db d a c=⇔=.(4)合、分比性质:a c a b c db d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零. ③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:baf d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或 注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形....三边..对应成比例. ②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,已知AD ∥BE ∥CF,B可得AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

(完整word版)九年级数学相似三角形知识点及习题

(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。

(完整版)相似三角形知识点及典型例题,推荐文档

(完整版)相似三角形知识点及典型例题,推荐文档

相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

(6)判定直角三角形相似的方法:①以上各种判定均适用。

②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)2=BD·DC, (2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。

注:由上述射影定理还可以证明勾股定理。

即(AB)2+(AC)2=(BC)2。

典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC ,∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CEEF∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。

九年级相似三角形知识点总结及例题讲解

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识知识点一:放缩与相似1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a:b =m :n (或n m b a =)2、比的前项,比的后项:两条线段的比a:b 中.a 叫做比的前项,b 叫做比的后项. 说明:求两条线段的比时,对这两条线段要用同一单位长度.3、比例:两个比相等的式子叫做比例,如dc b a =4、比例外项:在比例dc b a =(或a :b =c :d )中a 、d 叫做比例外项. 5、比例内项:在比例d c b a =(或a :b =c:d)中b 、c 叫做比例内项。

6、第四比例项:在比例d cb a =(或a:b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为a bb a =(或a:b =b :c 时,我们把b 叫做a 和d 的比例中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段.(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bcad d cb a =⇔= (两外项的积等于两内项积)2.反比性质: c da b dc b a =⇒= (把比的前项、后项交换)3。

第27章相似三角形知识点总结及典型题目精选全文完整版

第27章相似三角形知识点总结及典型题目精选全文完整版

可编辑修改精选全文完整版相似三角形知识点总结1. 比例线段的有关概念:b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。

把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。

2. 比例性质:3. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1∥l2∥l3。

②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方一.选择题:1、下列各组数中,成比例的是( )A .-7,-5,14,5B .-6,-8,3,4C .3,5,9,12D .2,3,6,122、如果x:(x+y)=3:5,那么x:y =( )A. B. C. D. 3、如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( ) A 、21 B 、31 C 、32 D 、41 4、下列说法中,错误的是( )(A )两个全等三角形一定是相似形 (B )两个等腰三角形一定相似 (C )两个等边三角形一定相似 (D )两个等腰直角三角形一定相似5、如图,RtΔABC 中,∠C=90°,D 是AC 边上一点,AB =5,AC =4,若ΔABC∽ΔBDC,则CD = . A .2 B .32 C .43 D .94二、填空题6、已知a =4,b =9,c 是a b 、的比例中项,则c = .7、如图,要使ΔABC∽ΔACD,需补充的条件是 .(只要写出一种)8、如图,小东设计两个直角,来测量河宽DE ,他量得AD =2m ,BD =3m ,CE =9m ,则河宽DE 为ABCD(第7题)238332589、一公园占地面积约为8000002m ,若按比例尺1∶2000缩小后,其面积约为 2m .10、如图,点P 是R tΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点P 作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条. 三、解答题11、如图18—95,AB 是斜靠在墙壁上的长梯,梯脚B 距墙80cm ,梯上点D 距墙70cm ,BD 长55cm .求梯子的长.12、如图,已知AC⊥AB,BD⊥AB,AO =78cm ,BO =42cm ,CD =159cm ,求CO 和DO .13、如图,在正方形网格上有111C B A ∆∽222A C B ∆,这两个三角形相似吗?如果相似,求出222111A C B A C B ∆∆和的面积比.CBAP(第10题)14、已知:如图,在△ABC 中,点D 、E 、F 分别在AC 、AB 、BC 边上,且四边形CDEF 是正方形,AC =3,BC =2,求△ADE、△EFB、△ACB 的周长之比和面积之比.15、如图所示,梯形ABCD 中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB 上确定点P 的位置,使得以P,A,D 为顶点的三角形与以P,B,C 为顶点的三角形相似.16、如图,□ABCD 中,:2:3AE EB =,DE 交AC 于F . (1)求AEF ∆与CDF ∆周长之比;(2)如果CDF ∆的面积为220cm ,求AEF ∆的面积.PAB DCABECDF。

九年级数学相似三角形知识点总结及例题讲解

九年级数学相似三角形知识点总结及例题讲解

1. 平行线分线段成比例定理
例.
已知 l 1∥ l 2∥ l 3,
A Dl
B El
: 三条平行线截两条直线
1 2
, 所得的 对应线段成比 .
C
Fl
可得 AB
DE AB 或
DE 等.
BC EF AC DF
2. 推论 : 平行于三角形一边的直线截其它两边
3
( 或两边的延长线 ) 所得的对应线段成比例 .
注意 :(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法.
(2) 应用等比性质时,要考虑到分母是否为零.
(3)
可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
知识点三:黄金分割
1) 定义 :在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC(AC>BC ),如果 AC AB
ad bc
(两外项的积等于两内项积)
2. 反比性质:
ac bd
bd a c ( 把比的前项、后项交换 )
3. 更比性质 ( 交换比例的内项或外项 ) :
ac bd
a b ,(交换内项 ) cd d c ,(交换外项 ) ba d b .(同时交换内外项 ) ca
4. 合比性质
a

c
bd
ab b
cd (分子加(减)分母 , 分母不变)
例 4、矩形 ABCD 中, BC=3AB , E、F,是 BC 边的三等分点,连结 AE 、 AF 、AC ,问图中是否存在非全 等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式
例 5、△ ABC 中,在 AC 上截取 AD ,在 CB 延长线上截取 BE ,使 AD=BE ,求证: DF AC=BC FE

初中九年级相似相似三角形知识点总结及经典例题解析

初中九年级相似相似三角形知识点总结及经典例题解析

第27章:相似一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。

6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。

如求河的宽度、求建筑物的高度等。

(三)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。

相似三角形知识点与经典题型

相似三角形知识点与经典题型
如图,Rt△ABC 中,∠ BAC=90°,AD 是斜边 BC 上的高高,
则 AD2=BD·DC,AB2=BD·BC ,AC2=CD·BC 。
知识点 8 相似三⻆角形常⻅见的图形
1、下面面我们来看一一看相似三⻆角形的几几种基本图形: (1) 如图:称为“平行行行线型”的相似三⻆角形(有“A 型”与“X 型”图)
,那么

注:
①此性质的证明运用用了了“设 法”(即引入入新的参数 k)这样可以减少未知数的个数,这种方方法是有关比比例例计 算变形中一一种常用用方方法.②应用用等比比性质时,要考虑到分⺟母是否为零.
③可利利用用分式性质将连等式的每一一个比比的前项与后项同时乘以一一个数,再利利用用等比比性质也成立立.如:
相似三⻆角形知识点与经典题型
知识点1 有关相似形的概念
(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三⻆角形. (2)如果两个边数相同的多边形的对应⻆角相等,对应边成比比例例,这两个多边形叫做相似多
边形.相似多边形对应边⻓长度的比比叫做相似比比(相似系数).
知识点2 比比例例线段的相关概念
知识点 11 相似三⻆角形中有关证(解)题规律律与辅助线作法
1、证明四条线段成比比例例的常用用方方法: (1)线段成比比例例的定义 (2)三⻆角形相似的预备定理理 (3)利利用用相似三⻆角形的性质 (4)利利用用中间比比等量量代换 (5)利利用用面面积关系
2、证明题常用用方方法归纳: (1)总体思路路:“等积”变“比比例例”,“比比例例”找“相似” (2)找相似:通过“横找”“竖看”寻找三⻆角形,即横向看或纵向寻找的时候一一共各有三个不不 同的字⺟母,并且这几几个字⺟母不不在同一一条直线上,能够组成三⻆角形,并且有可能是相似的, 则可证明这两个三⻆角形相似,然后由相似三⻆角形对应边成比比例例即可证的所需的结论. (3)找中间比比:若没有三⻆角形(即横向看或纵向寻找的时候一一共有四个字⺟母或者三个字⺟母,但这 几几个字⺟母在同一一条直线上),则需要进行行行“转移”(或“替换”),常用用的“替换”方方法有这样的三种: 等线段代换、等比比代换、等积代换. 即:找相似找不不到,找中间比比。方方法:将等式左右两边的比比表示出来。

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。

它们的对应角度相等,对应边长成比例。

以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。

2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。

b. 对应边成比例:两个相似三角形的对应边的比值相等。

3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。

b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。

二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。

如果两个三角形是相似的,则对应边的比值相等。

以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。

则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。

例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。

解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。

例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。

若AB= 10cm,BC = 15cm,求AD的长度。

解析:由于ABCD是平行四边形,所以∠B = ∠D。

根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。

相似三角形(含练习有答案、例题和知识点)

相似三角形(含练习有答案、例题和知识点)

第27章:相似一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。

6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。

如求河的宽度、求建筑物的高度等。

(三)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。

相似三角形中考复习(知识点+题型分类练习)

相似三角形中考复习(知识点+题型分类练习)

相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。

2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。

温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。

(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。

(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。

相似三角形知识点与经典题型

相似三角形知识点与经典题型

甲小华乙相似三角形的判定与性质【知识点1】三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD2=BD·DC,AB2=BD·BC ,AC2=CD·BC 。

1、甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为 ________米.(第1题图)(第2题图)2、如图,在已建立直角坐标系的4×4正方形方格纸中,画出符号条件的格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是_______.3、在Rt△ABC中,斜边AC上有一动点D(不与点A,C重合),过D点作直线截△ABC,使截得的三角形与△ABC 相似,则满足这样条件的直线共有______条.【知识点2】三角形相似基本图形B CB E AC D 12A BCD E 12AABBCCDDE E12412EABC (D )EADCBGE AD B CP FCAB DE F (1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形知识点梳理及经典练习知识点1:有关相似形的概念1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2:比例线段的相关概念1.线段比:如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段写成n m b a ::=.注:在求线段比时,线段单位要统一。

2.比例线段:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.d 叫比例后项,d 叫第四比例项.如果b=c ,即a b b d =::那么b 叫做a 、d 的比例中项,此时有2b ad =。

3.黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是AB 和BC 的比例中项,注:①黄金三角形:顶角是360的等腰三角形。

②黄金矩形:宽与长的比等于黄金数的矩形。

知识点3:比例的性质(注意性质成立的条件:分母不能为0) 1.基本性质: (1)bc ad d c b a=⇔=::;(2)2::a b b cb ac =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,可化为:d c b a ::=,d b c a ::=,b a d c ::=,c a d b ::=, c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:知识点4:比例线段的有关定理1.三角形中平行线分线段成比例定理:①重要结论:平行于三角形一边,并且和其它两边相交的直线,所截三角形三边与原三角形三边对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD∥BE∥CF,注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

知识点5:相似三角形的概念1.相似三角形:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.知识点6:三角形相似的等价关系与三角形相似的判定定理的预备定理1.相似三角形的等价关系:(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆. (2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆ 2.三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形: 用数学语言表述是:BC DE // ,∴ ADE ∆∽ABC ∆.知识点7:三角形相似的判定方法1.定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2.平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4.判定定理2:如果一个三角形两边与另一个三角形两边对应成比例,且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5.判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似. 6.判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。

(3)B(2)BCA知识点8:相似三角形常见的图形1.下面我们来看一看相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

(有“反A 共角型”、“反A 共角共边型”、 “蝶型”)(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。

BEAC D12ABCD E12AABBCC DDEE12412ECAEAB(D )ADBED(3)BCAE (2)CAB2.几种基本图形的具体应用:(1)若DE∥BC(A型和X型)则△ADE∽△ABC(2)射影定理:若CD为Rt△ABC斜边上的高(双直角图形),则 Rt△ABC∽Rt△ACD∽Rt △CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB。

(3)满足①AC2=AD·AB,②∠ACD=∠B,③∠ACB=∠ADC,都可判定△ADC∽△ACB.知识点9:全等与相似的比较:知识点10:相似三角形的性质1.相似三角形对应角相等,对应边成比例.2.相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.3.相似三角形周长的比等于相似比.4.相似三角形面积的比等于相似比的平方.注:相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等.知识点11:相似三角形中有关证(解)题规律与辅助线作法1.证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理 (3)利用相似三角形的性质 (4)利用中间比等量代换 (5)利用面积关系 2.证明题常用方法归纳:(1)总体思路:“等积”变“比例”,“比例”找“相似”(2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。

方法:将等式左右两边的比表示出来。

①)(,为中间比nm n m d c n m b a ==②'',,n n n md c n m b a ===③),(,''''''nm n m n n m m n m d c n m b a =====或 (4)添加辅助线:若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.注:添加辅助平行线是获得成比例线段和相似三角形的重要途径。

平面直角坐标系中通常是作垂线(即得平行线)构造相似三角形或比例线段。

(5)比例问题:常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k 。

(6)对于复杂的几何图形,通常采用将部分需要的图形(或基本图形)“分离”出来的办法处理。

知识点12 相似多边形的性质1.相似多边形周长比、对应对角线比都等于相似比.2.相似多边形中对应三角形相似,相似比等于相似多边形的相似比.3.相似多边形面积比等于相似比的平方.注意:相似多边形问题往往要转化成相似三角形问题去解决,因此,掌握相似三角形知识是基础和关键.知识点13 :位似图形有关的概念与性质及作法1.如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这两个图形叫做位似图形.2. 这个点叫做位似中心,这时的相似比又称为位似比.注:(1)位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点连线相交于一点.(2)位似图形一定是相似图形,但相似图形不一定是位似图形.(3)位似图形的对应边互相平行或共线.3.位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.注:位似图形具有相似图形的所有性质.4. 画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤注:①位似中心可以是平面内任意一点,在图形内,或在图形外,或在图形上(图形边上或顶点上)。

相关文档
最新文档