2019年4月清华大学标准能力测试(数学)(附详细解答)

合集下载

2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份) 解析版

2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份) 解析版

2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±32.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<04.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣35.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD =.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是,理由是16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是(填写序号).17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =度.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是;(2)若m2x+(m+b)2x=4,则x=.三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.20.(5分)解方程组.21.(5分)解不等式组并写出这个不等式组的所有整数解.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标;(2)直接写出以A,B,O为顶点的三角形的面积;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是,理由是;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为人.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是.29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:.2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)参考答案与试题解析一.选择题(本题共30分,每小题3分)1.(3分)9的算术平方根是()A.﹣3B.3C.D.±3【分析】根据算术平方根的定义解答.【解答】解:∵32=9,∴9的算术平方根是3.故选:B.2.(3分)已知a<b,下列不等式中,正确的是()A.a+4>b+4B.a﹣3>b﹣3C.a<b D.﹣2a<﹣2b 【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加4,不等号的方向不变,故A错误;B、两边都减3,不等号的方向不变,故B错误;C、两边都乘,不等号的方向不变,故C正确;D、两边都乘﹣2,不等号的方向改变,故D错误;故选:C.3.(3分)在平面直角坐标系中,如果点P(﹣1,﹣2+m)在第三象限,那么m的取值范围为()A.m<2B.m≤2C.m≤0D.m<0【分析】根据解一元一次不等式基本步骤移项、合并同类项1可得.【解答】解:由题意知﹣2+m<0,则m<2,故选:A.4.(3分)若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣3【分析】将方程的解代入方程得到关于a的方程,从而可求得a的值.【解答】解:将是代入方程ax+y=1得:a﹣2=1,解得:a=3.故选:A.5.(3分)如图所示,下列说法中,不正确的是()A.∠1和∠4是内错角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠2是同旁内角【分析】根据内错角,对顶角,同位角以及同旁内角的概念进行判断.【解答】解:A、∠1和∠4是内错角,说法正确,故本选项错误;B、∠1和∠3是对顶角,说法正确,故本选项错误;C、∠3和∠4是同位角,说法正确,故本选项错误;D、∠1和∠2是邻补角,说法错误,故本选项正确.故选:D.6.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.【分析】垂线段满足两个条件:①经过点B.②垂直于AC;由此即可判断.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.7.(3分)如图,数轴上点N表示的数可能是()A.B.C.D.【分析】根据估算无理数大小的方法进行估算,再确定数字在数轴上的位置即可求解.【解答】解:A.1<<2,不符合题意;B.1<<2,不符合题意;C.2<<3,符合题意;D.3<<4,不符合题意.故选:C.8.(3分)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°【分析】根据对顶角相等可得∠AOD=∠BOC,AO不是∠COE的角平分线,因此∠AOC 和∠AOE不一定相等,根据∠EOD=90°,利用平角定义可得∠AOE+∠BOD=90°,根据邻补角互补可得∠AOD+∠BOD=180°【解答】解:A、∠AOD=∠BOC,说法正确;B、∠AOC=∠AOE,说法错误;C、∠AOE+∠BOD=90°,说法正确;D、∠AOD+∠BOD=180°,说法正确;故选:B.9.(3分)如图是北京世界园艺博览会园内部分场馆的分布示总图.在图中,分别以正东、北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1),那么下列各场阁的坐标表示正确的是()A.中国馆的坐标为(﹣1,﹣2)B.国际馆的坐标为(1,﹣3)C.生活体验馆的坐标为(4,7)D.植物馆的坐标为(﹣7,4)【分析】根据演艺中心的点的坐标为(1,2),表示永宁阁的点的坐标为(﹣4,1)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.【解答】解:根据题意可建立如下所示平面直角坐标系,A、中国馆的坐标为(﹣1,﹣2),故本选项正确;B、国际馆的坐标为(3,﹣1),故本选项错误;C、生活体验馆的坐标为(7,4),故本选项错误;D、植物馆的坐标为(﹣7,﹣4),故本选项错误;10.(3分)三名快递员某天的工作情况如图所示,其中点A1,A2,A3的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点B1,B2,B3的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是()A.①②B.①③C.②D.②③【分析】从图中根据①②③的信息依次统计,即可求解;【解答】解:从图可知以下信息:上午送时间最短的是甲,①正确;下午送件最多的是乙,②不正确;一天中甲送了65件,乙送了75件,③正确;故选:B.二.填空题(本题共24分,每小题3分)11.(3分)点M(﹣2,3)到x轴和y轴的距离之和是5.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.12.(3分)物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是h=4.9t2.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为10s.【分析】把h=490代入h=4.9t2即可求解.【解答】解:把h=490代入h=4.9t2中,t2=100,∵t>0,∴t=10.故答案是:10.13.(3分)若关于x的一元一次方程4x+m+1=x﹣1的解是负数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据已知得关于m的不等式,求出即可.【解答】解:4x+m+1=x﹣1,移项得:4x﹣x=﹣1﹣1﹣m,∴x=,∵方程的解是负数,∴<0,∴m>﹣2,故答案为m>﹣2.14.(3分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD = 1.5.【分析】先根据DA=6,DB=3求出线段AB的长,再由C为线段AB的中点求出BC的长,根据CD=BC﹣DB即可得出结论.【解答】解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.15.(3分)如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.16.(3分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是④(填写序号).【分析】根据图象信息一一判断即可.【解答】解:①从1月到4月,手机销售总额连续下降;错误,3月到4月是增长的.②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;错误,2月到3月是增长的.③音乐手机4月份的销售额比3月份有所下降;错误,是增加长的.④今年1~4月中,音乐手机销售额最低的是3月;正确.故答案为④17.(3分)如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD =56度.【分析】由OE⊥AB,∠COE=34°,利用互余关系可求∠BOD.【解答】解:∵OE⊥AB,∠COE=34°,∴∠BOD=90°﹣∠COE=90°﹣34°=56°.故答案为:56.18.(3分)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是﹣4;(2)若m2x+(m+b)2x=4,则x=.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.故答案为:(1)4;(2).三.解答题(本题共46分,第19-21每小题5分,第22-25每小题5分,第26题7分)19.(5分)计算:.【分析】直接利用立方根以及二次根式的性质化简得出答案.【解答】解:原式=5﹣4﹣3=﹣2.20.(5分)解方程组.【分析】应用代入法,求出二元一次方程组的解是多少即可.【解答】解:由(2),可得x=2﹣y(3),将(3)代入(1)得,可得2(2﹣y)=6﹣3y,解得y=2,将y=2代入(3),可得x=0,∴原方程组的解为:.21.(5分)解不等式组并写出这个不等式组的所有整数解.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可.【解答】解:,∵由①,得x≤2,由②,得x>﹣,∴原不等式组的解集为﹣<x≤2,∴原不等式组的所有整数解为0,1,2.22.(6分)已知x+2是27的立方根,3x+y﹣1的算术平方根是4,求7x+3y平方根.【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x、y的值,再计算3x+5y的值,根据平方根的定义,可得答案.【解答】解:由x+2是27的立方根,3x+y﹣1的算术平方根是4,得:,解得:,∴7x+3y=7+42=49,∵49的平方根为±7,∴7x+3y的平方根为±7.23.(6分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,OF⊥OD.求∠EOF的度数.【分析】依据对顶角的性质以及角平分线的定义,即可得到∠DOE的度数,再根据垂线的定义,即可得到∠EOF的度数.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠EOD=∠BOD=×76°=38°,∵OF⊥OD,∴∠DOF=90°,∴∠FOE+∠EOD=90°,∴∠FOE=90°﹣∠EOD=90°﹣38°=52°.24.(6分)在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,﹣2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标(1,0);(2)直接写出以A,B,O为顶点的三角形的面积 4.5;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程先向左平移3个单位长度,再向下平移1个单位长度.【分析】(1)直接利用已知点画出平面直角坐标系进而得出答案;(2)利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出平移规律.【解答】解:(1)如图所示:点C的坐标为:(1,0);故答案为:(1,0);(2)△AOB的面积为:3×4﹣×1×4﹣×1×2﹣×3×3=4.5;故答案为:4.5;(3)答案不唯一,如:先向左平移3个单位长度,再向下平移1个单位长度.故答案为:先向左平移3个单位长度,再向下平移1个单位长度.25.(6分)某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 6983 77 82 85 92 95 58 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数40≤x<50150≤x<60260≤x<70270≤x<80880≤x<9090≤x<1005(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是B,理由是在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为130人.【分析】(1)根据题意,画出直方图,频数分布表即可.(2)B较好.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)求出A项目优秀人数即可判断.【解答】解:(1)补全图、表如下.(2)B.理由是:在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.故答案为:B,在此次测试中,B项目80分及以上的人数为17人,高于A项目;59分及以下人数相同.所以B项目成绩更好些.(3)300×=130.答:估计A项目和B项目成绩都是优秀的人数最多为130人.故答案为130.26.(7分)国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:A型B型价格(万元/台)x y年载客量/万人次60100若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【解答】解:(1)由题意,得,解得;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆.(3)设购车总费用为w万元则w=100m+150(10﹣m)=﹣50m+1500,∵﹣50<0,6≤m≤8且m为整数,∴m=8时,w最小=1100,∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.27.(4分)若关于x,y的二元一次方程组的解满足2x+y≤3,则a的取值范围是a≤﹣1.【分析】先把两式相加求出2x+y的值,再代入2x+y≤3中得到关于a的不等式,求出a 的取值范围即可.【解答】解:,①+②得,2x+y=4+a,∵2x+y≤3,∴4+a≤3,解得:a≤﹣1,故答案为:a≤﹣1.28.(4分)已知关于x的一元一次不等式mx+1>5﹣2x的解集是x<,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是点A.【分析】求出不等式的解集,根据已知得出关于m的不等式,求出不等式的解集即可.【解答】解:mx+1>5﹣2x,(m+2)x>4,∵关于x的一元一次不等式mx+1>5﹣2x的解集是x<,∴m+2<0,∴m的取值范围是m<﹣2,∵数轴上的A,B,C,D四个点中,只有点A表示的数小于﹣2,∴实数m对应的点可能是点A.故答案为点A29.(4分)按下面程序计算,即根据输入的x判断5x+1是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的5x+1的值作为新的x的值,继续运算,循环往复,直至输出结果为止.若开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5..【分析】利用运算程序,当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,…,然后把输出结果分别等于656,再解方程求出对应的正整数x的值即可.【解答】解:当第一次输入x,第一次输出的结果为5x+1,当第二次输入5x+1,第二次输出的结果为5(5x+1)+1=25x+6,当第三次输入25x+6,第三次输出的结果为5(25x+6)+1=125x+31,当第四次输入125x+31,第三次输出的结果为5(125x+31)+1=625x+156,若5x+1=656,解得x=131;、若25x+6=656,解得x=26;若125x+31=656,解得x=5;若625x+156=656,解得x=,所以当开始输入x的值为正整数,最后输出的结果为656,则满足条件的所有x的值是131或26或5.30.(4分)已知关于x的不等式组恰好有2个整数解,则整数a的值是﹣4,﹣3.【分析】表示出不等式组的解集,由解集中恰好有2个整数解,确定出整数a的值即可.【解答】解:不等式组,由①得:ax<﹣4,当a<0时,x>﹣,当a>0时,x<﹣,由②得:x<4,又∵关于x的不等式组恰好有2个整数解,∴不等式组的解集是﹣<x<4,即整数解为2,3,∴1≤﹣<2(a<0),解得:﹣4≤a<﹣2,则整数a的值为﹣4,﹣3,故答案为:﹣4,﹣3.31.(4分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组A是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是a ≥2;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,则a ﹣b+c﹣d的值为﹣4;(4)已知不等式组M:有解,且N:1<x≤3是不等式组M的“子集”,请写出m,n满足的条件:m≤2,n>9.【分析】(1)求出不等式组A与B的解集,利用题中的新定义判断即可(2)根据“子集”的定义确定出a的范围即可;(3)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)根据“子集”的定义确定出所求即可.【解答】解:(1)A:的解集为3<x<6,B:的解集为x>1,M:的解集为x>2,则不等式组A是不等式组M的子集,故答案为A;(2)∵关于x的不等式组是不等式组的“子集”,∴a≥2,故答案为a≥2;(3)∵a,b,c,d为互不相等的整数,其中a<b,c<d,A:a≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,∴a=3,b=4,c=2,d=5,则a﹣b+c﹣d=3﹣4+2﹣5=﹣4,故答案为﹣4;(4)不等式组M:整理得:,由不等式组有解得到<,即≤x<,∵N:1<x≤3是不等式组的“子集”,∴≤1,>3,即m≤2,n>9,故答案为m≤2,n>9.。

清华大学中学生标准学术能力(TDA)诊断性测试2024-2025学年高二上学期数学试卷和答案

清华大学中学生标准学术能力(TDA)诊断性测试2024-2025学年高二上学期数学试卷和答案

标准学术能力诊断性测试2024年9月测试数学试卷(A 卷)本试卷共150分,考试时间90分钟.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,a b ∈R ,则“22log log a b >”是“1122b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.集合(){}{}22ln 23,23,A x y x x B y y x x x A ==--==-+∈∣∣,则A B ⋂=R ð()A.(),1∞-- B.()(],13,6∞--⋃C.()3,∞+ D.()[),16,∞∞--⋃+3.已知复数z 满足5z z ⋅=,则24i z -+的最大值为()C. D.4.已知非零向量,a b 满足3a b = ,向量a 在向量b 方向上的投影向量是9b - ,则a 与b 夹角的余弦值为() A.33 B.13 C.33- D.13-5.设函数()f x 的定义域为R ,且()()()()42,2f x f x f x f x -++=+=-,当[]1,2x ∈时,()()()2,303f x ax x b f f =+++=-,则b a -=()A.9-B.6-C.6D.96.班级里有50名学生,在一次考试中统计出平均分为80分,方差为70,后来发现有3名同学的分数登错了,甲实际得60分却记成了75分,乙实际得80分却记成了90分,丙实际得90分却记成了65分,则关于更正后的平均分和方差分别是()A.82,73 B.80,73 C.82,67D.80,677.已知()sin 404cos50cos40cos θθ-=⋅⋅ ,且ππ,22θ⎛⎫∈- ⎪⎝⎭,则θ=()A.π3- B.π6- C.π6 D.π38.已知函数()2221x f x x =-++,则不等式()()2232f t f t +->的解集为()A.()(),13,∞∞--⋃+ B.()1,3- C.()(),31,∞∞--⋃+ D.()3,1-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对但不全得3分,有错选的得0分.9.已知实数,,a b c 满足0a b c <<<,则下列结论正确的是()A.11a c b c>-- B.a a c b b c +<+C.b c a c a b --> D.2ac b bc ab+<+10.已知函数()sin3cos3f x a x x =-,且()3π4f x f ⎛⎫≤⎪⎝⎭对任意的x ∈R 恒成立,则下列结论正确的是()A.1a =±B.()f x 的图象关于点π,04⎛⎫ ⎪⎝⎭对称C.将()f x 的图象向左移π12个单位,得到的图象关于y 轴对称D.当π23π,1236x ⎡⎤∈-⎢⎥⎣⎦时,满足()2f x ≤-成立的x 的取值范围是π7π,3636⎡⎤-⎢⎥⎣⎦11.在长方体1111ABCD A B C D -中,已知4,2AB BC ==,13,AA M N =、分别为1111B C A B 、的中点,则下列结论正确的是()A.异面直线BM 与AC 所成角的余弦值为7210B.点T 为长方形ABCD 内一点,满足1D T ∥平面BMN 时,1D T的最小值为5C.三棱锥1B B MN -的外接球的体积为14πD.过点,,D M N 的平面截长方体1111ABCD A B C D -所得的截面周长为+三、填空题:本题共3小题,每小题5分,共15分.12.若实数,x y 满足1232,34x y x y ≤+≤≤-+≤,则x y +的取值范围是__________.13.如图所示,在梯形ABCD 中,1,3AE AB AD =∥,3,BC BC AD CE =与BD 交于点O ,若AO x AD y AB =+ ,则x y -=__________.14.在四面体ABCD 中,3,,CD AD CD BC CD =⊥⊥,且AD 与BC 所成的角为30 .若四面体ABCD 的体积为2,则它的外接球表面积的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数12213i z =-+=--.(1)若12z z z =,求z ;(2)在复平面内,复数12,z z 对应的向量分别是,OA OB ,其中O 是原点,求AOB ∠的大小.16.(15分)在ABC 中,角,,A B C 的对边分别是,,a b c ,且cos cos 1a C b A c -+=.(1)求角A ;(2)已知b D =为BC 边上一点,且2,BD BAC ADC ∠∠==,求AD 的长.17.(15分)如图所示,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ⊥平面ABCD ,点Q 为PA 的三等分点,满足13PQ PA =.(1)设平面QCD 与直线PB 相交于点S ,求证:QS ∥CD ;(2)若3,2,60,AB AD DAB PA ∠==== ,求直线CQ 与平面PAD 所成角的大小.18.(17分)甲、乙两位同学进行投篮训练,每个人投3次,甲同学投篮的命中率为p ,乙同学投篮的命中率为()q p q >,且在投篮中每人每次是否命中的结果互不影响.已知每次投篮甲、乙同时命中的概率为15,恰有一人命中的概率为815.(1)求,p q 的值;(2)求甲、乙两人投篮总共命中两次的概率.19.(17分)已知函数()233x x f x a --=⋅+是偶函数,()246h x x x =-+.(1)求函数()e 2x y h a =-的零点;(2)当[],x m n ∈时,函数(()h f x 与()f x 的值域相同,求n m -的最大值.标准学术能力诊断性测试2024年9月测试数学(A卷)参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.12345678A B C C D B A C二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对但不全的得3分,有错选的得0分.91011AD BC BD三、填空题:本题共3小题,每小题5分,共15分.12.21,55⎡⎤-⎢⎥⎣⎦13.11114.73π-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)解:(1)()() ()()12224i13i24i26i4i127i13i13i13i19i5 zzz-+---++-++ =====-+-+---5z∴==(2)依题意向量()()2,4,1,3OA OB=-=--于是有()()()214310OA OB⋅=-⨯-+⨯-=-OA OB====AOB∠为OA 与OB 的夹角,2cos2OA OBAOBOA OB∠⋅∴==-[]0,πAOB∠∈,3π4AOB∠∴=16.(15分)解:(1)由正弦定理可得:cos sin cos sin cos 1sin a C b A C B A c C--+==()cos 1sin sin cos sin A C A C B ∴+=-,由()sin sin B A C =+可得:()cos sin sin sin cos sin A C C A C A C ⋅+=-+,cos sin sin sin cos sin cos cos sin A C C A C A C A C ⋅+=--,cos sin sin cos sin A C C A C∴⋅+=-sin 0C ≠ 可得:cos 1cos A A +=-,1cos 2A ∴=-,()0,πA ∈ ,2π3A ∴=(2),BAC ADC BCA ACD ∠∠∠∠== ,BAC ∴ 与ADC 相似,满足:AC BC CD AC =,设CD x =,则有3x =解得:1,3x x ==-(舍去),即:1CD =2π3ADC BAC ∠∠== ,在ADC 中,由余弦定理可得:2222πcos 32AD CD AC AD CD+-=⋅⋅,即:211221AD AD +--=⨯⨯解得:1,2AD AD ==-(舍去),AD ∴的长为117.(15分)解:(1)证明:因为平面QCD 与直线PB 相交于点S ,所以平面QCD ⋂平面PAB QS=因为四边形ABCD 为平行四边形,AB ∴∥CD ,AB ⊄ 平面,QCD CD ⊂平面,QCD AB ∴∥平面QCDAB ⊂ 平面PAB ,平面QCD ⋂平面,PAB QS AB =∴∥QS ,AB ∥,CD QS ∴∥CD(2)过点C 作CH AD ⊥于点H ,PA ⊥ 平面,ABCD PA ⊂平面PAD ,所以平面PAD ⊥平面ABCD ,因为平面PAD ⋂平面ABCD AD =,且CH AD ⊥,CH ∴⊥平面PAD连接,QH CQH ∠∴是直线CQ 与平面PAD 所成的角因为点Q 为PA 的三等分点,232,223PA QA PA =∴==,在Rt DCH 中,333sin602CH =⋅= 在ACD 中,利用余弦定理可得:222223cos120,19223AC AC +-=∴=⨯⨯ ,在Rt QAC 中,222(22)1933QC QA AC =+=+=在Rt QCH 中,3312sin 233CH CQH CQ ∠===,可得π6CQH ∠=,即直线CQ 与平面PAD 所成的角等于π618.(17分)解:(1)设事件A :甲投篮命中,事件B :乙投篮命中,甲、乙投篮同时命中的事件为C ,则C AB =,恰有一人命中的事件为D ,则D AB AB =⋃,由于两人投篮互不影响,且在投篮中每人每次是否命中的结果互不影响,所以A 与B 相互独立,,AB AB 互斥,所以:()()()()P C P AB P A P B ==⋅()(()()(()()()P D P AB AB P AB P AB P A P B P A P B =⋃=+=⋅+⋅可得:()()1581115pq p q p q ⎧=⎪⎪⎨⎪-+-=⎪⎩解得:1335p q ⎧=⎪⎪⎨⎪=⎪⎩或3315,,,1533p p q p q q ⎧=⎪⎪>∴==⎨⎪=⎪⎩(2)设i A :甲投篮命中了i 次;j B :乙投篮命中了j 次,,0,1,2,3i j =,()30285125P A ⎛⎫== ⎪⎝⎭()2213223223365555555125P A ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()2223232323545555555125P A ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()3028327P B ⎛⎫== ⎪⎝⎭()2211221221433333339P B ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭()2222112112233333339P B ⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭设E :甲、乙两人投篮总共命中两次,则021120E A B A B A B =++由于i A 与j B 相互独立,021120,,A B A B A B 互斥,()()()()()()()()021*********P E P A B A B A B P A P B P A P B P A P B ∴=++=⋅+⋅+⋅8236454830412591259125271125=⨯+⨯+⨯=19.(17分)解:(1)()233x x f x a --=⋅+ 是偶函数,则()()f x f x -=,即11333399x x x x a a --⋅+=⋅+,()113309x x a -⎛⎫∴--= ⎪⎝⎭,由x 的任意性得119a =,即9a =()246h x x x =-+ ,()()()()()22e 2e 4e 618e 4e 12e 6e 2x xx x x x x y h a ∴=-=-⋅+-=-⋅-=-+,令()()e 6e 20x x -+=,则e 6x =或e 2x =-(舍去),即ln6x =,()e 2x y h a ∴=-有一个零点,为ln6(2)设当[],x m n ∈时,函数()f x 的值域为[],s t ,则函数()()h f x 的值域也为[],s t ,由(1)知()2933332x x x x f x ---=⋅+=+≥=当且仅当33x x -=,即0x =时等号成立,令()p f x =,则2p ≥,()2246(2)2h x x x x =-+=-+ 在区间[)2,∞+上单调递增,所以当[],p s t ∈时,()2,s h p ≥的值域为()(),h s h t ⎡⎤⎣⎦,即()()h s s h t t ⎧=⎪⎨=⎪⎩,则224646s s s t t t ⎧-+=⎨-+=⎩,即,s t 为方程246x x x -+=的两个根,解得23s t =⎧⎨=⎩,所以当[],x m n ∈时,()f x 的值域为[]2,3令()30x x λ=>,则()133,1x x y f x λλλ-==+=+>,3x λ= 在()0,∞+上单调递增,对勾函数1y λλ=+在()1,∞+上单调递增,由复合函数的单调性知,()f x 在()0,∞+上单调递增,()f x 是偶函数,()f x ∴在(),0∞-上单调递减令()3f x =,即333x x -+=,解得332x +=或332x =,即33log 2x +=或33log 2x -=,故n m -的最大值为3333535735log log log 222-+-=答案解析1.A【解析】由22log log a b >可得0a b >>,由1122b a⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭可得a b >,由a b >得不到0a b >>,故必要性不成立;由0a b >>可以得到a b >,故充分性成立,则“22log log a b >”是“1122b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”的充分不必要条件.2.B 【解析】集合(){}{}22ln 23230A x y x x x x x ==--=-->∣∣()(){}310{13},x x x x x x =-+>=<->∣∣或集合{}{}223,6B yy x x x A y y ==-+∈=>∣∣,{}()(]6,,13,6B y y A B ∞=≤∴⋂=--⋃R R ∣3.C【解析】复数z 满足5z z ⋅=,设22i,5z a b z z a b =+⋅=+=,()()2224i 24i (2)(4)z a b a b -+=-++=-++,则点()2,4-到圆225a b +=+=4.C【解析】设非零向量,a b 夹角为θ,向量a 在向量b 方向上的投影向量是39b - ,则cos ,39b a a b b θ⨯=-= ∣,解得3cos 3θ=-.5.D【解析】()()42f x f x -++= ,取()()1,312x f f =+=,()()()321211f f a b a b =-=-++=--,()()2f x f x +=- ,取()()0,2042x f f a b ===++,()()303,1423,2f f a b a b a +=---+++=-=- ,()()42f x f x -++= ,取2x =,则()21f =,则7b =,则729b a -=+=.6.B【解析】设更正前甲,乙,丙 的成绩依次为12350,,,,a a a a ,则12505080a a a +++=⨯ ,即507590655080a ++++=⨯ ,()222250(7580)(9080)(6580)807050a -+-+-++-=⨯ ,更正后平均分:()5016080908050x a =++++= ,()22222501(6080)(8080)(9080)807350s a ⎡⎤=-+-+-++-=⎣⎦ .7.A 【解析】()sin 40sin40cos cos40sin θθθ-=- 4cos50cos40cos 4sin40cos40cos θθ=⋅⋅=⋅⋅ 1cot40tan 4cos40θ⇒-=14cos40tan cot40θ-⇒=sin404sin40cos40cos40-=()sin 30102sin80cos40+-= 13cos102cos1022cos40+-=3313sin10cos10sin10cos102222cos40cos40--==()()sin 1060sin 50cos40cos40--===πππ,,223θθ⎛⎫∈-∴=- ⎪⎝⎭.8.C【解析】设()()21121x g x f x x =-=-++,()()2221112121x x x g x f x x x -⋅-=--=--+=--+++,()()2221102121x x x g x g x x x ⎛⎫⋅+-=-++--+= ⎪++⎝⎭,设()()1212121222,112121x x x x g x g x x x ⎛⎫⎛⎫>-=-+--+ ⎪ ⎪++⎝⎭⎝⎭()()()()()122121121222222021212121x x x x x x x x x x -⎛⎫=-+-=-+> ⎪++++⎝⎭,故()g x 为奇函数,且单调递增,()()()()()()22223212310230f t f t f t f t g t g t +->⇒-+-->⇒+->,()()()()()222302332g t g t g t g t g t +->⇒>--=-,故232t t >-,解得()(),31,t ∞∞∈--⋃+.9.AD【解析】A.0a b c <<<,可得a c b c -<-,故11a c b c>--,A 正确;B.设不等式成立,则()()a a c b c b b c b b b c++<++,可得ab ac ab bc +<+,即ac bc <,由0a b c <<<可得ac bc >,故假设不成立,B 错误;C.不妨假设211313210,,1332b c a c a b c a b --+--+=-<=-<=-<====--,故,C b c a c a b --<错误;D.设不等式成立,()()22,,,0ac b bc ab ac bc ab b a b c a b b a b c +<+-<--<-<<< ,()()a b c a b b -<-成立,故2ac b bc ab +<+成立,D 正确.10.BC【解析】A.()()sin3cos33sin 0,cos πf x a x x x ϕϕϕϕ⎛⎫=-=+=-=≤ ⎪⎝⎭()3π4f x f ⎛⎫≤ ⎪⎝⎭对任意x ∈R 恒成立,()f x ∴在3π4x =处取得极值,即3ππ3π42k ϕ⨯+=+,解得7π3ππ,sin 0,π,,sin 4422k ϕϕϕϕϕϕ=-+=-≤∴=-=-=- ,可求得1a =-,A 错误;B.()()3ππ3,0,44f x x f f x ⎛⎫⎛⎫=-=∴ ⎪ ⎪⎝⎭⎝⎭的图象关于点π,04⎛⎫ ⎪⎝⎭对称,B 正确;C.将()f x 的图象向左平移π12个单位,得到()π3ππ3331242g x x x x ⎛⎫⎛⎫=+⨯-=-=- ⎪ ⎪⎝⎭⎝⎭,函数图象关于y 轴对称,C 正确;D.()3π2342f x x ⎛⎫=-≤- ⎪⎝⎭,即3π1sin 342x ⎛⎫-≤- ⎪⎝⎭,7π3π11π2π32π646k x k ∴+≤-≤+,解得23π231π2ππ363363k x k +≤≤+,由题意知π23π,1236x ⎡⎤∈-⎢⎥⎣⎦,符合条件的k 的取值为1,0-,当1k =-时,π7π3636x -≤≤,均在定义域内,满足条件,当0k =时,23π31π3636x ≤≤,此时仅有23π36x =满足条件,所以满足()22f x ≤-成立的x 的取值范围为π7π23π,363636⎡⎤⎧⎫-⋃⎨⎬⎢⎣⎦⎩⎭,D 错误.11.BD【解析】A.MN ∥,AC BMN ∠∴为直线MN 与AC 所成角,在BMN 中,根据余弦定理可知222cos 2BM MN BN BMN BM MN∠+-=⋅,422BM MN BN ======,代入求得cos 10BMN A ∠=错误;B.取AD 的中点E ,取CD F ,取11A D 的中点S ,连接11,,,,EF D E D F AS SM ,SM ∥,AB AS ∥BM ,所以四边形ABMS 是平行四边形,AS ∥BM 且AS ∥11,D E D E ∴∥1BM D E ∴∥平面BMN ,同理可得1D F ∥平面BMN ,1DT ∥平面,BMN T ∈平面ABCD ,所以点T 的运动轨迹为线段EF ,在1ΔD EF 中,过点1D 作1D T EF ⊥,此时1D T 取得最小值,由题意可知,11D E D F EF ===,1111sin sin sin 105D EF BMN D T D E D EF ∠∠∠====,B 正确;C.取MN 的中点1O ,连接11B O ,则1111O N O M O B ==,过点1O 作1OO ∥1BB ,且111322OO BB ==,OM ∴为外接球的半径,在1Rt MB N 中,MN =,2R OM ∴==,34ππ,33V R C ∴==球错误;D.由平面11AA D D ∥平面11BB C C 得,过点,,D M N 的平面必与11,AA C C 有交点,设过点,,D M N 的平面与平面11AA D D 和平面11BB C C 分别交于,DO PM DO ∴∥,PM 同理可得DP ∥,ON 过点,,D M N 的平面截长方体1111ABCD A B C D -所得的截面图形为五边形DPMNO ,如图所示,以D 为坐标原点,以1,,DA DC DD 所在直线分别为,,x y z 轴建立空间直角坐标系,设,AO m CP n ==,则()()()()()0,0,0,2,0,,0,4,,1,4,3,2,2,3D O m P n M N ,()()()()0,2,3,1,0,3,2,0,,0,4,ON m PM n DO m DP n ∴=-=-== ,DP ∥,ON DO ∥PM ,()()2323m n n m ⎧=-⎪∴⎨=-⎪⎩,解得2m n ==,DO DP ∴==ON PM MN ====,所以五边形DPMNO 的周长为DO DP ON PM MN ++++==+,D 正确.12.21,55⎡⎤-⎢⎥⎣⎦【解析】令()()()()2323x y m x y n x y m n x m n y +=++-+=-++,2131m n m n -=⎧∴⎨+=⎩,解得()()2121,,235555m n x y x y x y ==-∴+=+--+,1232,34x y x y ≤+≤≤-+≤ ,则()()22441323,555555x y x y ≤+≤-≤--+≤-,24435555x y ∴-≤+≤-,即21,55x y ⎡⎤+∈-⎢⎣⎦.13.111【解析】建立如图所示的平面直角坐标系,设1AD =,则3BC =,()()()()220,0,3,0,,,1,,,33B C A m n D m n E m n ⎛⎫∴+ ⎪⎝⎭,所以直线BD 的方程为1n y x m =+,直线CE 的方程为()2329n y x m =--,联立两直线方程求得()()666655,,,,1,0,,11111111m n m n O AO AD AB m n +-⎛⎫⎛⎫∴=-==-- ⎪ ⎝⎭⎝⎭ ,6511,511m x my AO xAD y AB n ny -⎧=-⎪⎪=+∴⎨⎪-=-⎪⎩ ,解得651,,111111x y x y ==∴-=.14.73π-【解析】依题意,可将四面体ABCD 补形为如图所示的直三棱柱ADE FCB -,AD 与BC 所成的角为30 ,30BCF ∠∴= 或150,设,CB x CF y ==,外接球半径记为R ,外接球的球心如图点O ,11113sin 23324ABCD CBF V DC S xy BCF xy ∠⎛⎫∴=⋅⋅=⨯⨯== ⎪⎝⎭ ,解得8xy =,在2Rt OCO 中,2222222223922sin 4BF R OC OO CO BF BCF ∠⎛⎫⎛⎫==+=+=+ ⎪ ⎪⎝⎭⎝⎭,在BCF 中,由余弦定理可得2222cos BF BC CF BC CF BCF ∠=+-⋅⋅,要使外接球表面积最小,则R 要尽可能小,则BCF ∠应取30 ,(2222BF x y xy ∴=+≥-,当且仅当x y =时取等,(22min 99732444R BF xy ∴=+=+=-所以外接球表面积的最小值2min min 4π73πS R ==-.。

2019年03月清华中学生标准学术能力THUSSAT2019年3月测试理科数学试卷及参考答案

2019年03月清华中学生标准学术能力THUSSAT2019年3月测试理科数学试卷及参考答案

(一)必考题:60 分.
17.(12 分)
(1)由 5sin(B + C) = 3sin(A + C) 得 5sin A = 3sin B
由正弦定理得 5a = 3b
………2 分
a = 3,b = 5
………3 分
………1 分
由余弦弦定理得 c2 = a2 + b2 − 2abcosC = 36
………5 分
OE ⊥ 平面ABCD FM ⊥ 平面ABCD
FM 平面CFD 平面ABCD ⊥ 平面CFD
………4 分
(2)过 O 做 ON ⊥ CD 于 N, 平面ABCD ⊥ 平面CFD ,
平面ABCD 平面CFD=CD,ON 平面ABCD ON ⊥ 平面CFD
OE∥FM , OE 平面CFD, FM 平面CFD , OE ∥平面CFD ,
………12 分
18.(1)补充完整的 2×2 列联表如下:
第1页 共 5 页
优秀 不优秀 合计
甲班 20 25
45
乙班 5
40
45
合计 25 65
90
………2 分
K 2 = 90 (20 40 − 25 5)2 = 162 12.46 10.828
2565 45 45 13
………4 分
EF∥平面ABCD , EF 平面BCFE , 平面ABCD 平面EFCB = BC
EF ∥ BC . EF = 1 BC, 2
………1 分
O、M 分别为 BD、CD 的中点, OM ∥ BC,OM = 1 BC 2
………2 分
OM ∥ EF,OM = EF 四边形 OMFE 为平行四边形, OE∥FM ………3 分

2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题(解析版)

2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题(解析版)

2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题一、单选题1.已知全集U =R ,集合10x A x x ⎧⎫-=≥⎨⎬⎩⎭,(){}lg 31B x y x ==-,则()UA B =ð( ) A .(]0,1 B .10,3⎛⎤ ⎥⎝⎦C .1,13⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】求出集合A 、B ,利用补集的定义求出集合U B ð,然后利用交集的定义可求出集合()U A B ∩ð. 【详解】(]11000,1x x A x x x x ⎧⎫⎧⎫--=≥=≤=⎨⎬⎨⎬⎩⎭⎩⎭,(){}{}1lg 31310,3B x y x x x ⎛⎫==-=->=+∞ ⎪⎝⎭,则1,3U B ⎛⎤=-∞ ⎥⎝⎦ð,因此,()10,3U A B ⎛⎤= ⎥⎝⎦ð.故选:B. 【点睛】本题考查交集和补集的计算,同时也考查分式不等式与对数函数定义域的计算,考查运算求解能力,属于基础题. 2.已知a R ∈,复数23a iz i -=+(i 为虚数单位),若z 为纯虚数,则a =( ) A .23B .23- C .6 D .6-【答案】A【解析】利用复数的除法法则将复数z 表示为一般形式,由题意得出该复数的实部为零,虚部不为零,可求出实数a 的值. 【详解】()()()()()()233262326333101010a i i a a i a i a a z i i i i ----+--+====-++-, 由于复数z 为纯虚数,则320106010a a -⎧=⎪⎪⎨+⎪≠⎪⎩,解得23a =.故选:A. 【点睛】本题考查复数的除法运算,同时考查了复数相关的概念,解题的关键就是利用复数的四则运算法则将复数表示为一般形式,考查运算求解能力,属于基础题.3.某单位200名职工的年龄分布情况如图所示,现要从中抽取25名职工进行问卷调查,若采用分层抽样方法,则40~50岁年龄段应抽取的人数是( )A .7B .8C .9D .10【答案】C【解析】先计算出饼图中40~50岁的职工所占的比例,再乘以25即可得出结果. 【详解】由题中饼图可知,40~50岁年龄段的职工所占的比例为10.440.20.36--=, 因此,40~50岁年龄段应抽取的人数是250.369⨯=. 故选:C. 【点睛】本题考查利用分层抽样计算所抽取的人数,根据分层抽样的特点列方程是解题的关键,考查运算求解能力,属于基础题.4.下列函数中,在区间()0,∞+上单调递增的是( ) A .3x y -= B .0.5log y x =C .21y x=D .12x y x +=+ 【答案】D【解析】分析各选项中函数在区间()0,∞+上的单调性,可得出合乎题意的选项.【详解】对于A 选项,函数133xx y -⎛⎫== ⎪⎝⎭在区间()0,∞+上为减函数; 对于B 选项,函数0.5log y x =在区间()0,∞+上为减函数; 对于C 选项,函数21y x =在区间()0,∞+上是减函数; 对于D 选项,函数()21111222x x y x x x +-+===-+++在区间()0,∞+上是增函数. 故选:D. 【点睛】本题考查基本初等函数单调性的判断,熟悉一些基本初等函数的单调性是判断的关键,考查推理能力,属于基础题.5.已知抛物线24y x =的焦点为F ,直线l 过点F 与抛物线交于A 、B 两点,若3AF BF =,则AB =( )A .4B .92C .132D .163【答案】D【解析】设直线l 的方程为1x my =+,由3AF BF =,得出3AF FB =uu u r uu r,可得出123y y =-,并将直线l 的方程与抛物线的方程联立,列出韦达定理,结合关系式123y y =-求得213m =,再利用抛物线的定义可求出AB . 【详解】 如下图所示:抛物线24y x =的焦点为()1,0F ,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立241y xx my ⎧=⎨=+⎩,得2440y my --=.由韦达定理得124y y m +=,124y y =-,3AF BF =,3AF FB ∴=,即()()11221,31,x y x y --=-,123y y ∴-=,即123y y =-.则12224y y y m +=-=,得22y m =-,由221224312y y y m -==-=-,所以,213m =. 由抛物线的定义得()()()21212124162112444433AB x x my my m y y m =++=++++=++=+=+=. 故选:D. 【点睛】本题考查抛物线焦点弦的性质,将直线方程与抛物线联立,利用韦达定理法结合抛物线的定义求解是解题的关键,考查运算求解能力,属于中等题. 6.已知1tan 43πα⎛⎫-=- ⎪⎝⎭,则()()sin 22sin cos 2παπαπα⎛⎫+--+= ⎪⎝⎭( )A .75B .15C .15-D .3125【答案】A【解析】利用两角差的正切公式求出tan α的值,然后利用诱导公式、二倍角公式结合弦化切的思想可求出所求代数式的值. 【详解】tan tantan 114tan 41tan 31tan tan 4παπααπαα--⎛⎫-===- ⎪+⎝⎭+,解得1tan 2α=. 因此,()()sin 22sin cos cos 22sin cos 2παπαπαααα⎛⎫+--+=+ ⎪⎝⎭222222cos sin 2sin cos cos sin 2sin cos cos sin αααααααααα-+=-+=+222222222222211cos sin 2sin cos 121tan 2tan 722cos cos cos cos sin 1tan 511cos cos 2αααααααααααααα⎛⎫-+⨯-+ ⎪-+⎝⎭====+⎛⎫++ ⎪⎝⎭. 故选:A. 【点睛】本题考查两角差的正切公式、诱导公式、二倍角公式求值,解题的关键就是利用弦化切思想进行化简,同时也要注意弦化切所适用的基本类型,考查运算求解能力,属于中等题.7.设变量x 、y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,且z kx y =+的最大值为12,则实数k 的值为( ) A .2- B .3-C .2D .3【答案】C【解析】作出不等式组所表示的可行域,可知当直线z kx y =+经过可行域的顶点()4,4和点()0,12时,直线z kx y =+在y 轴上的截距最大,且为12,再将点()4,4代入直线z kx y =+的方程可求出实数k 的值. 【详解】作出不等式组20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩所表示的可行域如下图所示:联立240240x y x y -+=⎧⎨--=⎩,得44x y =⎧⎨=⎩,得点()4,4A .作直线z kx y =+,由图形可知,当直线z kx y =+过点()0,12P 和点()4,4A 时,直线z kx y =+在y 轴上的截距最大,此时z 取到最大值,即max 4412z k =+=,解得2k =.故选:C. 【点睛】本题考查含参的线性规划问题,解题的关键就是利用数形结合法找出线性目标函数取得最值时的位置,考查数形结合思想的应用,属于中等题.8.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )AB.7C.12D【答案】B【解析】利用两角差的正弦公式和边角互化思想可求得tan B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】1sin sin cos sin 322b A a B a B a B π⎛⎫=-=- ⎪⎝⎭,即1sin sin cos sin sin 22A B A B A B =-,即3sin sin cos A B A A =, sin 0A >,3sin B B ∴=,得tan 3B =,0B π<<,6B π∴=.由余弦定理得b === 由正弦定理sin sin c bC B=,因此,1sin sin c B C b ===. 故选:B. 【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.9.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π【答案】C【解析】作出三棱锥的实物图P ACD -,然后补成直四棱锥P ABCD -,且底面为矩形,可得知三棱锥P ACD -的外接球和直四棱锥P ABCD -的外接球为同一个球,然后计算出矩形ABCD 的外接圆直径AC ,利用公式2R =球的直径2R ,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积. 【详解】三棱锥P ACD -的实物图如下图所示:将其补成直四棱锥P ABCD -,PB ⊥底面ABCD , 可知四边形ABCD 为矩形,且3AB =,4BC =.矩形ABCD 的外接圆直径5AC ,且2PB =.所以,三棱锥P ACD -外接球的直径为2R ==因此,该三棱锥的外接球的表面积为()224229R R πππ=⨯=. 故选:C. 【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.10.函数||13cos 6x y x e =-的大致图象是( ) A . B . C . D .【答案】A【解析】设()13cos 6xf x x e =-,利用定义分析函数()y f x =的奇偶性,然后利用导数判断出函数()y f x =在区间()0,∞+上的单调性,即可得出函数()y f x =的图象. 【详解】设()13cos 6xf x x e =-,该函数的定义域为R , ()()()113cos 3cos 66x xf x x e x e f x --=--=-=,则函数()y f x =为偶函数.当0x >时,()13cos 6xf x x e =-,当0πx <<时,()13sin 06xf x x e '=--<;当x π>时,()113sin 3066x f x x e e π'=--<-<.所以,函数()y f x =在区间()0,∞+上为减函数. 因此,选项A 中的图象为函数13cos 6xy x e =-的图象. 故选:A. 【点睛】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点与函数值符号来进行判断,考查推理能力,属于中等题.11.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,直线:l y =与C 交于A 、B 两点,AF 、BF 的中点分别为M 、N ,若以线段MN 为直径的圆经过原点,则双曲线的离心率为( )A .3B .1C 2D 1【答案】D【解析】作出图形,由题意得出2MON π∠=,再由中位线的性质可得出2AFB π∠=,设双曲线C 的左焦点为F ',可得出2F AF π'∠=,6AF F π'∠=,可得出AF '=,AF c =,再利用双曲线的定义即可求出其离心率.【详解】如下图所示,设双曲线C 的焦距为()20c c >,由于以线段MN 为直径的圆经过原点,则2MON π∠=,AF 、BF 的中点分别为M 、N ,且O 为AB 的中点,//OM BF ∴,//ON AF ,2AFB π∴∠=,O 为FF '的中点,所以,四边形AFBF '为矩形,2F AF π'∴∠=,由于直线l 3AOF π∠=,所以,6AF F π'∠=,2cos6AF c π'∴==,2sin6AF c c π==,由双曲线的定义得2AF AF a '-=2c a -=,因此,双曲线C 的离心率为1c e a ===. 故选:D. 【点睛】本题考查双曲线离心率的计算,考查了双曲线的定义,在涉及焦点三角形问题时,应充分分析三角形的形状,结合正弦、余弦定理以及锐角三角函数来计算,考查分析问题和解决问题的能力,属于中等题.12.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .83【答案】C【解析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值. 【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=, 同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29m =,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题.二、填空题13.已知{}n a 为等比数列,若33a =,512a =,则7a =__________. 【答案】48【解析】利用等比中项的性质得出2537a a a =,由此可得出7a 的值.【详解】由等比中项的性质可得2537a a a =,2257312483a a a ∴===. 故答案为:48. 【点睛】本题考查等比数列中项的计算,利用等比中项的性质进行计算是解题的关键,考查运算求解能力,属于基础题.14.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【答案】33,2⎡⎤-⎢⎥⎣⎦ 【解析】将点()0,1的坐标代入函数()y f x =的解析式,求出4πθ=,利用诱导公式和二倍角余弦公式得出()22sin 2sin 1f x x x =--+,换元[]sin 1,1t x =∈-,于是可将函数()y f x =的值域转化为二次函数213222y t ⎛⎫=-++ ⎪⎝⎭在[]1,1t ∈-上的值域,利用二次函数的基本性质即可求解. 【详解】由题意可得()02cos2cos02cos211f θθ=+=+=,得cos20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.【点睛】本题考查正弦型二次函数值域的求解,利用诱导公式、二倍角余弦公式化为有关正弦的二次函数的值域是解题的关键,考查化归与转化思想的应用,属于中等题.15.黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用,其定义为:()[]1,,,0,0,10,1q qx p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是既约真分数当或上的无理数,若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()20f x f x -+=,当[]0,1x ∈时,()()f x R x =,则()18lg 305f f ⎛⎫+= ⎪⎝⎭_________. 【答案】15-【解析】先利用题中条件推导出函数()y f x =是以2为周期的周期函数,然后利用题中定义结合周期性和奇偶性可分别求出185f ⎛⎫⎪⎝⎭和()lg30f 的值,相加即可. 【详解】由于函数()y f x =是定义在R 上的奇函数,且()()20f x f x +-=,()()()22f x f x f x ∴=--=-,所以,函数()y f x =是以2为周期的周期函数,则181822214=555555f f f f R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()()()()()()lg30lg3lg10lg31lg311lg31lg30f f f f f R =+=+=-=--=--=, 因此,()181lg 3055f f ⎛⎫+=-⎪⎝⎭. 故答案为:15-. 【点睛】本题考查新定义函数值的计算,推导出函数的周期是解题的关键,考查推理能力与计算能力,属于中等题.16.如图,正方体1111ABCD A B C D -的棱长为a ,E 、F 分别是AB 、BC 的中点,过点1D 、E 、F 的截面将正方体分割成两部分,则较小部分几何体的体积为__________.【答案】32572a 【解析】先将截面1D EF 在正方体各个面上的交线画出来,并将位于截面下方的几何体的体积计算出来,即可得出答案. 【详解】 如下图所示,延长EF 分别交DA 、DC 的延长线于M 、N ,连接DM 交1AA 于点G ,连接1D N 交1CC 于点H ,再连接GE 、HF ,则该截面截正方形的截面为五边形1D GEFH .//BC AD Q ,则//AM BF ,则EMA EFB ∠=∠,EAM EBF ∠=∠,E 为AB 的中点,则AE BE =,EAM EBF ∴∆≅∆,2aAM BF ∴==,同理2a CN =, 11//AM A D ,11GAMGA D ∴∆∆,11112AG AM A G A D ∴==,1133a AG AA ∴==, 在Rt MDN ∆中,32DM DN a ==,则21928DMN S DM DN a ∆=⋅=, 123111933388D DMNDMN V S DD a a a -∆=⋅=⨯⨯=,2211112228AMNS AM AE a a ∆⎛⎫=⋅=⨯= ⎪⎝⎭,2311111338372G AME AME V S AG a a a -∆=⋅=⨯⨯=,所以,正方体位于截面1D GEFH 下方的几何体体积为133333125122872722D DMN G AME V V a a a a ---=-⨯=<.因此,较小部分几何体的体积为32572a . 故答案为:32572a . 【点睛】本题考查截面截几何体所得体积的计算,作出截面图形是解题的关键,考查推理能力与计算能力,属于中等题.三、解答题17.某学校为了解学生假期参与志愿服务活动的情况,随机调查了30名男生,30名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):(1)能否有95%的把握认为该校学生一周参与志愿服务活动时间是否超过1小时与性别有关?(2)以这60名学生参与志愿服务活动时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机抽查10名学生,试估计这10名学生中一周参与志愿服务活动时间超过1小时的人数. 附:()()()()()22n ad bc K a b c d a c b d -=++++【答案】(1)有,理由见解析;(2)6.【解析】(1)列出22⨯列联表,根据表格中的数据计算出2K 的观测值,并将2K 的值与3.841作大小比较,即可判断出题中结论的正误;(2)根据表格中的数据得出参与志愿服务活动时间超过1小时的频率,然后乘以10即可得出结果. 【详解】(1)22⨯列联表如下表所示:()222602216814403.8413624309K ⨯⨯-⨯==>⨯⨯, 因此,有95%的把握认为该校学生一周参与志愿服务活动时间是否超过1小时与性别有关;(2)由表格中的数据可知,该校参与志愿服务活动时间超过1小时的学生频率为360.660=, 因此,抽取的10名学生中一周参与志愿服务活动时间超过1小时的人数为100.66⨯=. 【点睛】本题考查独立性检验思想的应用,同时也考查了分层抽样中频数的计算,考查运算求解能力,属于基础题.18.已知数列{}n a 是等差数列,其前n 项和为n S ,且35a =,4237S a -=,数列{}n b 为等比数列,且12b a =,49b S =. (1)求数列{}n a 和{}n b 的通项公式; (2)若n n n a c b =,设数列{}n c 的前n 项和为n T ,求证:113n T ≤<. 【答案】(1)21n a n =-,3nn b =;(2)证明见解析.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,列出关于1a 和d 的方程组,求出这两个量,利用等差数列的通项公式求出n a ,根据题意求出1b 和q ,利用等比数列的通项公式可求出n b ;(2)求出n c ,然后利用错位相减法求出n T ,再利用数列{}n T 的单调性即可证明出113n T ≤<. 【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由题意可得()()3142112534637a a d S a a d a d =+=⎧⎨-=+-+=⎩,即112537a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()()1112121n a a n d n n ∴=+-=+-=-.123b a ==,34918998132b S a d q ⨯==+==,解得3q =, 因此,111333n n nn b b q --==⨯=.综上所述,21n a n =-,3nn b =;(2)213n n n n a n c b -==,23135213333n nn T -∴=++++,① 231113232133333n nn n n T +--=++++,② ①-②得,21231121121222211213313333333313n n n n n n n T -++⎛⎫- ⎪--⎝⎭=++++-=+--111111212221333333n n n n n -++-+⎛⎫=+--=- ⎪⎝⎭,1113n n n T +∴=-<, 又110n n n T T c ++-=>,则数列{}n T 是单调递增数列,则113n T T ≥=. 因此,113n T ≤<. 【点睛】本题考查等差数列和等比数列通项公式的计算,同时也考查了错位相减法求和,考查运算求解能力,属于中等题.19.如图,已知四边形ABCD 为梯形,//AB CD ,90CBA ∠=,四边形ACFE 为矩形,且平面ACFE ⊥平面ABCD ,又AB BC CF a ===,2CD a =.(1)求证:DE BF ⊥; (2)求点E 到平面BDF 的距离. 【答案】(1)证明见解析;(2)a .【解析】(1)取BF 的中点M ,连接DM 、EM ,利用三线合一得出BF DM ⊥,BF EM ⊥,利用直线与平面垂直的判定定理可证明出BF ⊥平面DEM ,即可得出DE BF ⊥;(2)过点E 在平面DEM 内作EN DM ⊥,垂足为点N ,证明出EN ⊥平面BDF ,并计算出DEM ∆三边边长,然后利用等面积法求出EN ,即为点E 到平面BDF 的距离. 【详解】(1)如下图所示,取BF 的中点M ,连接DM 、EM ,四边形ACFE 为矩形,AC CF ∴⊥,平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,CF ⊂平面ACFE ,CF ∴⊥平面ABCD ,CD ⊂平面ABCD ,CF CD ∴⊥,DF ∴==,四边形ABCD 为梯形,//AB CD ,90CBA ∠=,90BCD ∴∠=,BD ∴==,M 为BF 的中点,DM BF ∴⊥,同理可得BE BF ==,EM BF ∴⊥,又DMEM M =,BF ∴⊥平面DEM .DE ⊂平面DEM ,DE BF ∴⊥;(2)如下图所示,过点E 在平面DEM 内作EN DM ⊥,垂足为点N ,由(1)知,BF ⊥平面DEM ,EN ⊂平面DEM ,EN BF ∴⊥.EN DM ⊥,DM BF M =,EN ∴⊥平面BDF .由(1)知,CF ⊥平面ABCD ,BC ⊂平面ABCD ,CF BC ∴⊥,BF ∴=,DM a ==,EM ==, CF ⊥平面ABCD ,//AE CF ,AE ∴⊥平面ABCD ,AD ⊂Q 平面ABCD ,AE AD ∴⊥,由于四边形ABCD 为直角梯形,且90ABC ∠=,AD ∴==,DE ∴=,222DE EM DM ∴+=,则90DEM ∠=.由等面积法可得2DE EMEN a DM⋅===. 因此,点E 到平面BDF 的距离为a . 【点睛】本题考查异面直线垂直的证明,同时也考查了点到平面距离的计算,一般作出垂线或者利用等体积法进行计算,考查推理能力与计算能力,属于中等题.20.已知点52,3M ⎛⎫ ⎪⎝⎭在椭圆()2222:10x y E a b a b+=>>上,1A 、2A 分别为E 的左、右顶点,直线1A M 与2A M 的斜率之积为59-,F 为椭圆的右焦点,直线9:2l x =.(1)求椭圆E 的方程;(2)直线m 过点F 且与椭圆E 交于B 、C 两点,直线2BA 、2CA 分别与直线l 交于P 、Q 两点.试问:以PQ 为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.【答案】(1)22195x y +=;(2)过定点()2,0和()7,0,理由见解析. 【解析】(1)利用直线1A M 与2A M 的斜率之积为59-,得出3a =,再由点M 在椭圆上,可求出b 的值,即可得出椭圆E 的标准方程;(2)由对称性知,以PQ 为直径的圆过x 轴上的定点(),0K k ,设直线BC 的方程为2x ty =+,点()11,B x y 、()22,C x y ,设点9,2P p ⎛⎫ ⎪⎝⎭、9,2Q q ⎛⎫⎪⎝⎭,求出p 、q ,将直线BC 的方程与椭圆E 的方程联立,列出韦达定理,求出pq 的值,由0PK QK ⋅=,结合韦达定理求出k 的值,即可得出定点K 的坐标.【详解】(1)点M 在椭圆E 上,则2225431a b⎛⎫⎪⎝⎭+=,①, 易知点()1,0A a -、()2,0A a ,直线1A M 的斜率为1532k a =+,直线2A M 的斜率为1532k a =-,由题意可得122255949k k a ==--,解得3a =,代入①式得b = 因此,椭圆E 的方程为22195x y +=;(2)易知,直线m 不能与x 轴重合.由对称性知,以PQ 为直径的圆过x 轴上的定点(),0K k ,设直线BC 的方程为2x ty =+,点()11,B x y 、()22,C x y ,设点9,2P p ⎛⎫ ⎪⎝⎭、9,2Q q ⎛⎫ ⎪⎝⎭, 如下图所示:易知点()23,0A ,22//A B A P ,即()1131,//,2ty y p ⎛⎫-⎪⎝⎭,()11312y p ty ∴=-, 得()11321y p ty =-,同理可得()22321y q ty =-. 将直线m 的方程与椭圆E 的方程联立222195x ty x y =+⎧⎪⎨+=⎪⎩,消去x 得,()225920250t y ty ++-=,()()2224001005990010t t t ∆=++=+>. 由韦达定理得1222059t y y t +=-+,1222559y y t =-+, ()()()21212222121212222599925594114412520415959y y y y t pq ty ty t y y t y y t t t t ⎛⎫⨯- ⎪+⎝⎭∴====---⎡⎤⎛⎫-++⎣⎦⨯-++ ⎪++⎝⎭,9,2PK k p ⎛⎫=-- ⎪⎝⎭,9,2QK k q ⎛⎫=-- ⎪⎝⎭,2299250224PK QK k pq k ⎛⎫⎛⎫∴⋅=-+=--= ⎪ ⎪⎝⎭⎝⎭,解得2k =或7.因此,以PQ 为直径的圆过定点()2,0和()7,0.【点睛】本题考查椭圆方程的求解,同时也考查了圆过定点的问题,一般将直线方程与椭圆方程联立,利用韦达定理设而不求法求解,考查计算能力,属于中等题. 21..已知函数()ln f x x ax =-,a R ∈.(1)当1a =-时,求曲线()y f x =在点()()1,1M f 处的切线方程; (2)当1a >时,求证:函数()()g x f x a =+恰有两个零点. 【答案】(1)210x y --=;(2)证明见解析.【解析】(1)将1a =-代入函数()y f x =的解析式得()ln f x x x =+,求出()1f 和()1f '的值,然后利用点斜式可得出所求切线的方程;(2)可得出()10g =,利用导数分析函数()y g x =在区间()0,∞+上的单调性,利用零点存在定理证明出函数()y g x =在区间10,a ⎛⎫⎪⎝⎭上有且只有一个零点,从而可证明出结论成立. 【详解】(1)当1a =-时,()ln f x x x =+,则()11f =,()11f x x'=+,()12f '∴=. 因此,曲线()y f x =在点()()1,1M f 处的切线方程为()121y x -=-,即210x y --=;(2)()()ln g x f x a x ax a =+=-+Q ,则()10g =.1a >Q ,则()11ax g x a -'=-=,令()0g x '=,得()10,1x =∈,列表如下:所以,函数()y g x =在1x a=处取得极大值,亦即最大值,即()max 11ln g x g a a a ⎛⎫==-- ⎪⎝⎭.令()1ln h a a a =--,1a >,则()1110a h a a a-'=-=>, 所以,函数()y h a =在()1,a ∈+∞上单调递增,则()()10h a h >=,()ln 0a a a a g e e ae a ae ----=-+=-<,且11a a e e a-=<, 所以,函数()y g x =在区间1,ae a -⎛⎫⎪⎝⎭上有一个零点, ()11,,a ⎛⎫+∞⊆+∞⎪⎝⎭,所以,函数()y g x =在区间()1,+∞上单调递减, 当1x >时,则()()10g x g <=,所以,函数()y g x =在区间()1,+∞上没有零点. 综上所述,函数()()g x f x a =+恰有两个零点. 【点睛】本题考查利用导数求函数的切线方程,同时也考查了利用导数研究函数的零点个数问题,一般结合导数研究函数的单调性,结合极值与最值的符号来进行分析,考查化归与转化思想的应用,属于中等题.22.以平面直角坐标系中的坐标原点为极点,x 轴的正半抽为极轴,建立极坐标系,曲线C 的极坐标方程是6sin 4cos ρθθ=+,直线l 的参数方程是4cos 3sin x t y t αα=+⎧⎨=+⎩(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于M 、N两点,且MN =l 的倾斜角α. 【答案】(1)()()222313x y -+-=;(2)6π或56π. 【解析】(1)在曲线C 的极坐标的两边同时乘以ρ,再由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩,可将曲线C的极坐标方程化为直角坐标方程;(2)将直线l 的参数方程代入曲线C 的直角坐标方程,得到关于t 的一元二次方程,并列出韦达定理,借助弦长公式即可计算出α的值. 【详解】(1)在曲线C 的极坐标的两边同时乘以ρ,得26sin 4cos ρρθρθ=+,所以,曲线C 的直角坐标方程为2246x y x y +=+,即()()222313x y -+-=; (2)设点M 、N 在直线l 上对应的参数分别为1t 、2t ,将直线l 的参数方程代入曲线C 的直角坐标方程,得()2222cos sin 13t t αα++=, 即24cos 90t t α+-=,216cos 360α∆=+>, 由韦达定理得124cos t t α+=-,129t t =-,12MN t t ∴=-===cos 2α=±, 0απ<<,因此,6πα=或56π. 【点睛】本题考查极坐标方程与普通方程之间的转化,同时也考查了利用直线与圆所得弦长求直线的倾斜角,考查了韦达定理的应用,考查运算求解能力,属于中等题.23.己知函数()3132f x x x =+-+的最大值为m ,a 、b 、c 均为正实数,且a b c m ++=.(1)求证:1119a b c++≥;(2+≤.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)利用绝对值三角不等式可求出函数()y f x =的最大值为1,可得出1a b c ++=,然后将代数式a b c ++与111a b c++相乘,利用柯西不等式可证明出1119a b c++≥;(2)利用柯西不等式得()()2111a b c ++++≥,化简后可证明出≤【详解】(1)由绝对值三角不等式得()()32311m x x =+-+=,1a b c ∴++=, 由柯西不等式得()21111119a b ca b c a b c ⎛⎫++=++++≥= ⎪⎝⎭,当且仅当13a b c ===时,等号成立,因此,1119a b c++≥;(2)由柯西不等式得()()2111a b c ++++≥,即23≤,13a b c ===时,等号成立.≤. 【点睛】本题考查利用柯西不等式证明不等式,同时也考查了利用绝对值三角不等式求绝对值函数的最值,在利用柯西不等式证明不等式时,需要对代数式进行合理配凑,考查计算能力,属于中等题.。

2019届北京市清华大学附属中学高三高考二模考试数学(文)试卷及解析

2019届北京市清华大学附属中学高三高考二模考试数学(文)试卷及解析

2019届北京市清华大学附属中学高三高考二模考试数学(文)试卷★祝考试顺利★一、选择题。

1.设集合{}2|670A x x x =--<,{|}B x x a =≥,现有下面四个命题:1p :a R ∃∈,A B ⋂=∅; 2p :若0a =,则(7,)A B =-+∞; 3p :若(,2)R B =-∞ð,则a A ∈; 4p :若1a ≤-,则A B ⊆.其中所有的真命题为( ) A. 1p ,4p B. 1p ,3p ,4p C. 2p ,3p D. 1p ,2p ,4p【答案】B 【解析】由题设可得,()17A =-,,则当7a ≥时,有AB ⋂=∅,所以命题1p 正确;若0a =时,[)0B =+∞,,则()1,A B ⋃=-+∞,所以命题2p 错误;若()2R B ,=-∞ð,则2a A =∈,所以命题3p 正确;若1a ≤-时,A B ⊆成立.故正确答案为B. 点睛:此题主要考查集合的补集、交集、并集、包含等基本关系与运算,以及二次不等式、命题的真假判断等运算与技能,属于中低档题型,也是常考题型.在二次不等式的求解过程中,首先要算出其相应二次方程的根()1212,x x x x <,当0a >时,则有“大于号取两边,即()()12,x x -∞⋃+∞,,小于号取中间,即()12,x x ”.2.下列说法错误的是( ) A. 回归直线过样本点的中心(),x yB. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C. 在回归直线方程0.20.8y x ∧=+y 0.2x 0.8=+中,当解释变量x 每增加1个单位时,预报变量y ∧平均增加0.2个单位D. 对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小 【答案】D 【解析】分析:A. 两个变量的相关关系不一定是线性相关;B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程0.2.8ˆ0y x =+中,当解释变量x 每增加1个单位时,预报变量ˆy平均增加0.2个单位 D.正确.详解:A. 两个变量的相关关系不一定是线性相关;也可以是非线性相关; B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程0.2.8ˆ0y x =+中,当解释变量x 每增加1个单位时,预报变量ˆy平均增加0.2个单位 D.正确. 故选D.3.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( ) A. 2盏 B. 3盏 C. 26盏 D. 27盏【答案】C 【解析】分析:每次灯的个数成等差数列,设最顶层有x 盏灯,则最下面一层有()8x n +盏,利用等差数列求和公式列方程可得详解:设最顶层有x 盏灯,则最下面一层有()8x n +盏,813,813x n x n x x +==-,2812,3n x x n ==, ()()()()23...8126x x n x n x n x n ++++++++=, ()9123...8126x n +++++=,936126x n +=,29361263n n ⨯+=,636126,42126n n n +==,126423n =÷=,2323x =⨯=(盏),所以最下面一层有灯,13226⨯=(盏),故选C.点睛:本题主要考查等差数列的通项公式、等差数列的前n 项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量1,,,,,n n a d n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.4.如图,已知正方形的面积为10,向正方形内随机地撒200颗黄豆,数得落在阴影外的黄豆数为114颗,以此试验数据为依据,可以估计出阴影部分的面积约为( )A. 5.3B. 4.3C. 4.7D. 5.7【答案】B 【解析】由古典概型概率公式概率公式及对立事件概率公式可得,落在阴影部分概率为1141200-,因为正方形的面积为10,所以由几何概型概率公式可得阴影部分的面积约为114101 4.3200⎛⎫⨯-= ⎪⎝⎭,故选B.【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.5.《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求职”中提出了已知三角形三边,,a b c 求面积的公式,这与古希腊的海伦公式完成等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S =现在有周长为10+V ABC 满足sin :sin :sin 2:A B C =,则用以上给出的公式求得V ABC 的面积为( )A.B. C. D. 12【答案】A 【解析】因为sin :sin :sin 27A B C =,所以由正弦定理得:::2:a b c = ,又ABC ∆ 的周长为10+,所以可得4,6,a b c ===,ABC ∆∴ 的面积为S === ,故选A.6.如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A. B.C. D.【答案】A 【解析】 【分析】根据剩余几何体的直观图,结合三视图的定义即可得到主视图 【详解】解:正方体1111ABCD A B C D -中, 过点1,,A E C 的平面截去该正方体的上半部分后, 剩余部分的直观图如图:则该几何体的正视图为图中粗线部分. 故选:A .7.在如图所示的程序框图中,若输入的2s =,输出的2018s >,则判断框内可以填入的条件是( )A. 9i >B. 10i ≤C. 10i ≥D. 11i ≥【答案】D 【解析】输入2S =,1i =,242S ==2i =,382S == 当10i =,1122048S ==当10111i =+=,当11i ≥时,满足条件 退出循环,2048S = 故选D8.(2017新课标全国卷Ⅰ文科)设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞ 【答案】A 【解析】当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab≥=≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则t a n603a b≥=≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞,选A .点睛:本题设置的是一道以椭圆知识为背景的求参数范围的问题.解答问题的关键是利用条件确定,a b 的关系,求解时充分借助题设条件120AMB ∠=转化为tan 603ab≥=这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.二、填空题。

2019届北京市清华大学附属中学高三下学期一模考试数学(文)试卷及解析

2019届北京市清华大学附属中学高三下学期一模考试数学(文)试卷及解析

2019届清华大学附属中学高三下学期一模考试数学(文)试卷2019.04★祝考试顺利★注意事项:1.答题前,考生先将自已所在县(市、区)、姓名、试室号、座位号和考生号填写清楚,将条形码粘贴在指定区域。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卷上对应题目的答案标号涂黑,如需要改动用先橡皮擦干净,再选涂其他答案标号。

第Ⅱ卷用黑色墨水签字笔在答题卷上书写作答。

在试题卷上作答,答案无效。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.考试结束,监考人员将试卷、答题卷一并收回。

5.保持答题卷清洁,不要折叠、不要弄破。

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.( )D.【答案】A【解析】试题解析:,,选A.2.为弘扬中华传统文化,某校组织高一年级学生到古都西安游学,在某景区,由于时间关系,每个班只能在甲、乙、丙三个景点中选择一个游览,高一1班的27名同学决定投票来选定游览的景点,约定每人只能选择一个景点,得票数高于其它景点的入选,据了解,在甲、乙两个景点中有18人会选择甲,在乙、丙两个景点中有18人会选择乙,那么关于这轮投票结果,下列说法正确的是( )①该班选择去甲景点游览;②乙景点的得票数可能会超过9;③丙景点的得票数不会比甲景点高;④三个景点的得票数可能会相等.A. ①②B. ①③C. ②④D. ③④【答案】D【解析】6甲>乙>丙甲>丙>乙乙>丙>甲乙>甲>丙丙>甲>乙丙>乙>甲甲、乙两个景点时优先甲的人数:优先乙的人数:乙、丙两个景点时优先乙的人数:优先丙的人数:,因为,所以综上所述③④正确,选D.3.的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】⇒)判断出结论.【详解常数常数,若已知则共线,但是有可能反向;代入)()。

北京市房山区达标名校2019年高考四月质量检测数学试题含解析

北京市房山区达标名校2019年高考四月质量检测数学试题含解析
13.已知函数 ,若方程 的解为 , ( ),则 _______; _______.
14.已知椭圆 的左右焦点分别为 ,过 且斜率为 的直线交椭圆于 ,若三角形 的面积等于 ,则该椭圆的离心率为________.
15.在三棱锥 中,三条侧棱 两两垂直, ,则三棱锥 外接球的表面积的最小值为________.
A. B.
C. D.
9.双曲线 的渐近线方程为( )
A. B.
C. D.
10.已知集合 . 为自然数集,则下列表示不正确的是()
A. B. C. D.
11.若变量 ,满足 ,则 的最大值为()
A.3B.2C. D.10
12.设集合 , ,则 ()
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
15.
【解析】
【分析】
设 ,可表示出 ,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.
【详解】
设 则 ,由 两两垂直知三棱锥 的三条棱 的棱长的平方和等于其外接球的直径的平方.记外接球半径为 ,

当 时, .
故答案为: .
【点睛】
本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和.
满意
不满意


是否有 的把握认为顾客购物体验的满意度与性别有关?
若在购物体验满意的问卷顾客中按照性别分层抽取了 人发放价值 元的购物券.若在获得了 元购物券的 人中随机抽取 人赠其纪念品,求获得纪念品的 人中仅有 人是女顾客的概率.
附表及公式: .
23.(8分)已知 .

数学-清华大学中学生标准学术能力诊断性测试2024-2025学年高三上学期10月试卷和答案

数学-清华大学中学生标准学术能力诊断性测试2024-2025学年高三上学期10月试卷和答案

标准学术能力诊断性测试2024年10月测试数学试卷本试卷共150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1244x A x ⎧⎫=<<⎨⎬⎩⎭,{2,1,0,1,2}B =--,则A B = ()A.{1,0,1}-B.{2,1,0,1,2}-- C.{0,1}D.{1,1}-2.若1i 1z z +=-,则||z =()B.22C.1D.123.已知单位向量a 和b,若()2a a b ⊥+ ,则a b += ()A.2B.14.已知圆柱的底面半径和球的半径相等,圆柱的高与球的半径相等,则圆柱与球的表面积之比为()A.1:2B.1:1C.3:4D.2:35.已知1sin()3αβ+=,tan 2tan αβ=,则sin()αβ-=()A.13-B.19-C.13D.196.已知函数2,01()1(1),12x x f x f x x ⎧<≤⎪=⎨->⎪⎩,则函数2()()g x f x x =-的零点个数为()A.2B.0C.3D.无穷7.将sin y x =的图象变换为πsin 36y x ⎛⎫=- ⎪⎝⎭的图象,下列变换正确的是()A.将图象上点的横坐标变为原来的13倍,再将图象向右平移π6个单位B.将图象上点的横坐标变为原来的3倍,再将图象向右平移π18个单位C.将图象向右平移π6个单位,再将图象上点的横坐标变为原来的13倍D.将图象向右平移π6个单位,再将图象上点的横坐标变为原来的3倍8.定义在R 上的函数()f x 满足:(1)(1)0f x f x -+---=,且(1)(1)0f x f x ++-=,当[1,1]x ∈-时,()2f x ax =-,则()f x 的最小值为()A.6- B.4- C.3- D.2-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对但不全得3分,有错选的得0分.9.从{1,2,3}中随机取一个数记为a ,从{4,5,6}中随机取一个数记为b ,则下列说法正确的是()A.事件“a b +为偶数”的概率为49B.事件“ab 为偶数”的概率为79C.设X a b =+,则X 的数学期望为()6E X =D.设Y ab =,则在Y 的所有可能的取值中最有可能取到的值是1210.在直棱柱1111ABCD A B C D -中,底面ABCD为正方形,1CD ==P 为线段1B C 上动点,E ,F 分别为11A D 和BC 的中点,则下列说法正确的是()A.若1103CP CB λλ⎛⎫=<< ⎪⎝⎭ ,则经过P ,E ,F 三点的直棱柱的截面为四边形B.直线1B C 与11A C所成角的余弦值为4C.三棱锥11P A DC -的体积为定值D.1A P BP +11.一条动直线1l 与圆221x y +=相切,并与圆2225x y +=相交于点A ,B ,点P 为定直线2:100l x y +-=上动点,则下列说法正确的是()A.存在直线1l ,使得以AB 为直径的圆与2l 相切B.22||||PA PB +的最小值为150-C.AP PB ⋅的最大值为27-+D.||||PA PB +的最小值为三、填空题:本题共3小题,每小题5分,共15分.12.若m-的展开式中存在2x 项,则由满足条件的所有正整数m 从小到大排列构成的数列{}n a 的通项公式为__________.13.设双曲线2222:1x y C a b -=(0a >,0b >)的右顶点为F ,且F 是抛物线2:4y x Γ=的焦点.过点F 的直线l 与抛物线Γ交于A ,B 两点,满足2AF FB =,若点A 也在双曲线C 上,则双曲线C 的离心率为__________.14.已知()|ln ln 2|1af x a x x=--+-,则()f x 的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC △的内角A ,B ,C 的对边分别是a ,b ,c ,满足()2222321a b c++=.(1)若b c =,3cos 4A =,求ABC △的面积;(2)记BC 边的中点为D ,AD x =,若A 为钝角,求x 的取值范围.16.(15分)如图所示,在四棱锥P ABCD -中,2PA AC ==,1BC =,AB =.(1)若AD ⊥平面PAB ,证明://AD 平面PBC ;(2)若PA ⊥底面ABCD ,AD CD ⊥,二面角A CP D --的正弦值为3,求AD 的长.17.(15分)已知椭圆2222:1(0)x y C a b a b+=>>,C 的下顶点为B ,左、右焦点分别为1F 和2F ,离心率为12,过2F 的直线l 与椭圆C 相交于D ,E 两点.若直线l 垂直于1BF ,则BDE △的周长为8.(1)求粗圆C 的方程;(2)若直线l 与坐标轴不垂直,点E 关于x 轴的对称点为G ,试判断直线DG 是否过定点,并说明理由.18.(17分)已知函数()sin f x ax x =+,[0,π]x ∈.(1)若1a =-,证明:()0f x ≤;(2)若()0f x ≤,求a 的取值范围;(3)若0a ≠,记1()()ln(1)g x f x x a=-+,讨论函数()g x 的零点个数.19.(17分)乒乓球比赛有两种赛制,其中就有“5局3胜制”和“7局4胜制”,“5局3胜制”指5局中胜3局的一方取得胜利,“7局4胜制”指7局中胜4局的一方取得胜利.(1)甲、乙两人进行乒乓球比赛,若采用5局3胜制,比赛结束算一场比赛,甲获胜的概率为0.8;若采用7局4胜制,比赛结束算一场比赛,甲获胜的概率为0.9.已知甲、乙两人共进行了()*m m ∈N 场比赛,请根据小概率值0.010α=的2K独立性检验,来推断赛制是否对甲获胜的场数有影响.(2)若甲、乙两人采用5局3胜制比赛,设甲每局比赛的胜率均为p ,没有平局.记事件“甲只要取得3局比赛的胜利比赛结束且甲获胜”为A ,事件“两人赛满5局,甲至少取得3局比赛胜利且甲获胜”为B ,试证明:()()P A P B =.(3)甲、乙两人进行乒乓球比赛,每局比赛甲的胜率都是(0.5)p p >,没有平局.若采用“赛满21n -局,胜方至少取得n 局胜利”的赛制,甲获胜的概率记为()P n .若采用“赛满21n +局,胜方至少取得1n +局胜利”的赛制,甲获胜的概率记为(1)P n +,试比较()P n 与(1)P n +的大小.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.0250.0100k 3.8415.0246.635标准学术能力诊断性测试2024年10月测试数学 参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对但不全的得3分,有错选的得0分.三、填空题:本题共3小题,每小题5分,共15分.12.=a n n 413 14.2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)解:(1)由余弦定理知:+=+b c bc A 5214cos 22)(,又==b c A 4,cos 3,代入等式中可得:=+bc bc 10213,即得=bc 3,所以==b c ······································································· 4分所以∆ABC 的面积为=⨯=bc A 2248sin 13 ············································· 5分 (2)因为D 为线段BC 的中点,所以()1AD AB AC =+2,两边平方得:=++x b c bc A 42cos 1222)(,由余弦定理可得:=+−bc A b c a 2cos 222, 代入上式得:=+−x b c a 42212222)(, 再由++=a b c 2321222)(,可得=−a x 761222,+=+b c x 738222 ·················· 10分因为A 为钝角,所以>+a b c 222,可得−>+x x 776312822,解得<<x 0.所以,x的取值范围为⎩⎭⎪⎪⎨<<⎪⎧x x 100 ····················································· 13分 16.(15分)解:(1)因为⊥AD 平面PAB ,⊂AB 平面PAB ,所以⊥AD AB ,由===AC BC AB 2,1,=+AC AB BC 222,所以⊥BC AB , 所以在平面四边形ABCD 中,由⊥⊥AD AB BC AB ,,可得AD BC ,因为⊄AD 平面PBC ,⊂BC 平面PBC , 所以AD平面PBC ·················································································· 6分(2)【方法一】因为⊥PA 底面ABCD ,⊂CD 底面ABCD ,所以⊥PA CD ,因为AD CD PAAD A ⊥=,,所以⊥CD 平面PAD ,可得⊥CD PD ,即∠=︒PDC 90.以直线DA 为x 轴,直线DC 为y 轴,过点D 且垂直于平面ABCD 的直线为z 轴,建立空间直角坐标系,如图所示: ························································ 8分 设==AD a DC b ,,则D A a C b P a 0,0,0,,0,0,0,,0,,0,2)()()()(,在坐标平面xDz 中,直线DP 的法向量就是平面PDC 的法向量,可得其中一个法向量为(2,0,n a =−1).设平面PAC 的一个法向量为(,,n x y z =2),则0n AP n CP ⋅=⋅=22, 而()(0,0,2,,,2AP CP a b ==−),可得=−=z ax by 0,0.令=x b ,则=y a ,得(,,0n b a =2) ··························································· 12分 所以cos ,n n <>=+⋅+−a a bb 4222212,依题可知,cos ,n n <>=3312,可得()()++=a b a b 43412222, 因为+==a b AC 4222,所以−=b b 83122,解得=b 22, 则=a 22,得=AD ············································································ 15分x【方法二】设点A 到平面PCD 的距离为d 1,点A 到直线PC 的距离为d 2,二面角−−A CP D 的平面角为θ,则由二面角的平面角定义知=θd d sin 21.由题意计算可得=d 2=3=d 1 由等体积公式可得⋅⋅=⋅⋅∆∆S PA S d ACD PCD 33111,即⋅=⋅AD CD PD CD 3,得=PD .因为=+=−PC PD CD CD AC AD ,222222, 所以=+−AD AD 83422,得=AD17.(15分) 解:(1)由离心率为21,==BF a OF c ,11,可得=BF OF 2111则∠=︒BFO 601,可得∆BF F 12若直线l 垂直BF 1,则直线l 垂直平分线段BF 1∆BDE 与∆F DE 1全等,那么∆F DE 1的周长为8.由椭圆定义可知:+=+=EF EF a DF DF 2,1212所以∆F DE 1的周长为a 4,可得=a 48,即=a 2所以=c 1,可得=b ,则椭圆C 的方程为+x y 4322(2)设l 的方程为=+x my 1,则−G x y ,22)(可得直线DG 的方程为−y 因为=+=x my x my 1,1122将它们代入直线方程中, 可得直线DG 的方程为:y 12可整理得:()−=+−−+m y y y y y x my y y y 212121212)()( (*) ···································· 10分联立方程⎪⎨⎪+=⎧x y 43122,得:++−=m y my 3469022)(,则+++=−=−m m y y y y m 3434,69221212, 可得=+y y m y y 321212,=+my y y y 231212)(, 将其代入(*)式中,可得直线DG 的方程为:()−=+−+m y y y y y x y y 4121212)()(()()+−=−−m y y x 3446122)(, 可见直线DG 过定点4,0)(,所以直线DG 过定点,定点坐标为4,0)( ······················································· 15分18.(17分)解:(1)若=−a 1,则=−+f x x x sin )(,得=−+≤'f x x 1cos 0)(,可知f x )(在π0,][单调递减,可得≤f x f 0)()(,而=f 00)(,所以≤f x 0)( ········································································ 3分 (2)依题意,必须π≤f 0)(,即π≤a 0,可得≤a 0,求导得=+'f x a x cos )(.若≤−a 1,则≤'f x 0)(,得f x )(在π0,][单调递减,则≤f x f 0)()(,而=f 00)(,则≤f x 0)(成立 ············································ 5分 若−<≤a 10,由于'f x )(在π0,][单调递减,而=+>'f a 010)(,π=−<'f a 10)(, 可知'f x )(在π0,][内有唯一零点,记为x 1,当≤<x x 01时,>'f x 0)(,可知f x )(在x 0,1)[单调递增,可得>=f x f 001)()(, 这与≤f x 0)(对任意∈πx 0,][恒成立矛盾,所以−<≤a 10不能成立,综上,实数a 的取值范围为−∞−,1]( ······························································ 8分 (3)有=+−+∈πag x x x x x sin ln 1,0,1][)()(, 观察知:=g 00)(,可见=x 0是g x )(的一个零点.下面我们考虑g x )(在π0,](内的零点情况 ······················································· 9分当∈πx 0,](时,若>a 0,则≥a x sin 01,可得+≥ax x x sin 1, 令=−+∈πF x x x x ln 1,0,]()()(,则+=>'x F x x10)(,得F x )(在π0,](单调递增,可得>=F x F 00)()(,即>+x x ln 1)(, 那么+>+ax x x sin ln 11)(,即>g x 0)(,故当>a 0时,函数g x )(在π0,](内无零点 ··················································· 12分若<a 0,则+=+−'a x g x x 11cos 11)(, ①当⎝⎦⎥ ∈π⎛⎤πx 2,时,<x cos 0,则>a x cos 01,而+−>x 1101,可得>'g x 0)(;②当⎝⎦⎥ ∈⎛⎤πx 20,时,()+=−+>''x ag x x 1sin 0112)(,可得'g x )(在⎝⎦⎥ ⎛⎤π20,单调递增, 因为⎝⎭π+ ⎪=<=−>''⎛⎫πa g g 2200,1012)(, 所以'g x )(在⎝⎦⎥ ⎛⎤π20,内有唯一零点,记为x 2,当<<x x 02时,<'g x 0)(;当<≤πx x 22时,>'g x 0)(,综合①②,g x )(在x 0,2)(单调递减,在πx ,2](单调递增.因为=g 00)(,所以<g x 02)(,又由>+x x ln 1)(可得π=π−π+>g ln 10)()(, 所以g x )(在π0,](内恰有1个零点.综上所述,当>a 0时,g x )(有1个零点;当<a 0时,g x )(有2个零点 ·········· 17分19.(17分)解:(1)据题中条件,列出赛制和甲获胜情况列联表如下:由计算公式得:⨯⨯⨯==−m m m mK mm m m1.70.351220.080.182222)(, 若≥m516.6352,即≥m 169.1925,故若≥m 170时,根据小概率值=α0.010的K 2独立 性检验,推断赛制对甲获胜的场数有影响,此推断犯错误的概率小于0.010.若<m 170,根据小概率值=α0.010的K 2独立性检验,没有证据认为赛制对甲获胜的场数有影响,此时赛制对甲获胜的场数没有影响 ·················································· 4分(2)依题意=+⋅−+⋅−P A p p C p p p C p p 1134322222)()()(=+−+−+=−+p p p p p p p p p 31612615103332543)()(,又有=−+−+−P B C p p C p p C p p 1115553344552)()()()(=−+−+p p p p p 101513452)()(=−++−+p p p p p p 10201055543455=−+p p p 61510543所以=P A P B )()( ·········································································· 7分 (3)考虑赛满+n 21局的情况,以赛完−n 21局为第一阶段,第二阶段为最后2局.设“赛满+n 21局甲获胜”为事件C ,结合第一阶段的结果,要使事件C 发生,有两种情况:第一阶段甲获胜,记为A 1;第一阶段乙获胜,且甲恰好胜了−n 1局,记为A 2, 则=+C AC A C 12,得:=+P C P AC P A C 12)()()(.若第一阶段甲获胜,即赛满−n 21局甲至少胜n 局,有两类情况:甲至少胜+n 1局和甲恰好胜n 局.第一类情况,无论第二阶段的2局结果如何,最终甲获胜;第二类情况,有可能甲不能获胜,这种情况是第二阶段的2局比赛甲均失败,其概率值为:−−−−C p p p n n nn 112112)()(,所以=−−−−−P AC P n C p p p n n nn 1112112)()()()(.若第一阶段乙获胜,且甲恰好胜了−n 1局,那么要使甲最终获胜,第二阶段的2局比赛甲必须全部取胜,可得:==−−−−P A C P A P C A C pp p n n n n122221112)()()()(,所以+==−−−+−−−−−−P n P C P n C p p p C pp p n n n nn n n n1111212111212)()()()()()( ······················································ 14分可得+−=−−−−−−−−−P n P n C pp p C p p p n n n n n nnn 1111212111212)()()()()(=−−−−−++C pp C p p n n n n n n nn 11212111)()(=−−−−C p p p p n n n n1121)()()(⎝⎭ ⎪=−−⎛⎫−C p p p n n n n 221121)(因为>p 21,所以⎝⎭ ⎪−−>⎛⎫−C p p p n n nn 2210121)(,可得+>P n P n 1)()(,综上:+>P n P n 1)()( ·································································· 17分。

北京市海淀区清华附中2019-2020学年七年级下学期4月月考数学试题(含答案及解析)

北京市海淀区清华附中2019-2020学年七年级下学期4月月考数学试题(含答案及解析)

2019-2020学年北京市海淀区清华附中七年级(下)月考数学试卷(4月份)一、选择题1. 9的算术平方根是( )A. -3B. 3C. 13D. ±3 【答案】B【解析】【详解】解:93= ,故选B.2. 已知a b <,下列不等式中,正确的是( )A. 44a b +>+B. 33a b ->-C. 1122a b <D. 22a b -<- 【答案】C【解析】【分析】根据不等式的性质,可得出答案.【详解】解:A.两边都加4,不等号的方向不变,此选项错误;B. 两边都减3,不等号的方向不变,此选项错误;C. 两边都乘以12,不等号的方向不变,此选项正确; D. 两边都乘以-2,不等号的方向改变,此选项错误;故选:C .【点睛】本题考查知识点是不等式的性质,熟记不等式性质内容是解此题的关键.3. 在平面直角坐标系中,如果点(1,2)P m --+在第三象限,那么m 的取值范围为( )A. 2m <B. 2m ≤C. 0m ≤D. 0m <【答案】A【解析】【分析】根据第三象限内点的坐标特征可得出答案.【详解】解:∵点(1,2)P m --+在第三象限,∴20m -+<,∴2m <.故选:A .【点睛】本题难度较低,主要考查学生对直角坐标系与解不等式知识点的掌握,分析直角坐标系中第三象限坐标特点为解题关键.4. 若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程ax +y =1的解,则a 的值等于( ) A. 3 B. 1 C. ﹣1D. ﹣3【答案】A【解析】【分析】把解代入方程进行求解即可;【详解】解:将12x y =⎧⎨=-⎩是代入方程ax +y =1得:a ﹣2=1,解得:a =3.故选:A .【点睛】本题主要考查了二元一次方程的根,准确计算是解题的关键.5. 如图所示,下列说法不正确的是( )A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角【答案】A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义.6. 过点B画线段AC所在直线的垂线段,其中正确的是()A. B.C. D.【答案】D【解析】【分析】根据垂线段的定义判断即可.【详解】根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选D.【点睛】本题考查了垂线段的定义,过直线外一点做直线的垂线,这点与垂足间的线段叫做这点到直线的垂线段.7. 如图,数轴上点N表示的数可能是()A. 2B. 3C. 7D. 10【答案】C【解析】【分析】根据题意可得2<N<34N9.【详解】解:∵N在2和3之间,∴2<N <3, ∴4<N <9,∵24<,34<,109>,∴排除A ,B ,D 选项,∵479<<,故选C.【点睛】本题主要考查无理数的估算,在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.8. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A. ∠AOD =∠BOCB. ∠AOE +∠BOD =90°C. ∠AOC =∠AOED. ∠AOD +∠BOD =180°【答案】C【解析】【分析】 根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A 、∠AOD 与∠BOC 是对顶角,所以∠AOD=∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C 、∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C .【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义. 9. 下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为()1,2,表示水宁阁的点的坐标为()4,1-,那么下列各场馆的坐标表示正确的是( )A. 中国馆的坐标为()1,2--B. 国际馆的坐标为()1,3-C. 生活体验馆的坐标为()4,7D. 植物馆的坐标为()7,4-【答案】A【解析】【分析】根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.【详解】解:根据题意可建立如下所示平面直角坐标系,A 、中国馆的坐标为(-1,-2),故本选项正确;B 、国际馆的坐标为(3,-1),故本选项错误;C 、生活体验馆的坐标为(7,4),故本选项错误;D 、植物馆的坐标为(-7,-4),故本选项错误.故选A .【点睛】此题考查坐标确定位置,解题的关键就是确定坐标原点和x ,y 轴的位置.10. 三名快递员某天的工作情况如图所示,其中点1A ,2A ,3A 的横、纵坐标分别表示甲、乙、丙三名快递员上午派送快递所用的时间和件数;点1B ,2B ,3B ,的横、纵坐标分别表示甲、乙、丙三名快递员下午派送快递所用的时间和件数.有如下三个结论:①上午派送快递所用时间最短的是甲;②下午派送快递件数最多的是丙;③在这一天中派送快递总件数最多的是乙.上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②D. ②③【答案】B【解析】【分析】 根据所给的点的信息进行辨析即可得解.【详解】①上午派送快递所用时间最短的是A 1,即甲,不足2小时;故①正确;②下午派送快递件数最多的是B 2即乙,超过40件,其余的不超过40件,故②错误;③在这一天中派送快递总件数为:甲:40+25=65(件),乙:45+30=75;丙:30+20=50,所以这一天中派送快递总件数最多的是乙,故③正确.故选B.【点睛】本题考查的知识点是函数的图象,分析出图象中点的几何意义,是解答的关键.二、填空题11. 点(2,3)M 到x 轴和y 轴的距离之和是__________.【答案】5【解析】【分析】根据点到x 轴和y 轴的距离分别为点的纵坐标、点的横坐标的绝对值,再求和即可.【详解】解:∵点(2,3)M -到x 轴的距离即为纵坐标的绝对值,∴点(2,3)M -到x 轴的距离是3;∵点(2,3)M -到y 轴的距离即为横坐标坐标的绝对值,∴点(2,3)M -到x 轴的距离是2;∴点(2,3)M -到x 轴和y 轴的距离之和是5.故答案为:5.【点睛】本题考查的知识点是点的坐标,难度不大,需注意点到x 轴和y 轴的距离分别为点的纵坐标、点的横坐标的绝对值.12. 物体自由下落的高度h (单位:m )与下落时间t (单位:s )的关系式是24.9h t =.在一次实验中,一个物体从490m 高的建筑物上自由下落,到达地面需要的时间为________s .【答案】10【解析】【分析】直接将490代入所给关系式,可求出2100t =,再利用算术平方根定义求解即可.【详解】解:把490h =代入24.9h t =中,得24.9490t =,∴2100t =.0,t >10t ∴=.故答案为:10.【点睛】本题考查的知识点利用算术平方根求解,此题中需注意的是时间t 的取值范围是大于0的. 13. 若关于x 的一元一次方程411x m x ++=-的解是负数,则m 的取值范围是_______.【答案】m >﹣2【解析】【分析】把m 看做已知数表示出方程的解,由解为负数求出m 的范围即可.【详解】方程4x+m+1=x﹣1,移项合并得:3x=﹣2﹣m,化系数为1得:23m x--=由解为负数,得到23mx--=<0,解得:m>﹣2.故答案为:m>﹣2.【点睛】本题考查了一元一次方程的解以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.14. 如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=_____.【答案】1.5【解析】【分析】根据题意即可求出AB的长,然后根据中点的定义即可求出CB,从而求出CD的长.【详解】解:∵DA=6,DB=3,∴AB=DA+DB=9∵C为线段AB的中点,∴CB=12AB=4.5∴CD=CB-DB=1.5故答案为:1.5.【点睛】此题考查的是线段的和与差,掌握各线段之间的关系是解决此题的关键.15. 如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段PA,PB,PC,PD,PE中,最短的一条线段是_____,理由是___【答案】(1). PC;(2). 垂线段最短.【解析】【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【详解】根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.16. 某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).【答案】④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是60×18%=10.8(万元),4月份音乐手机的销售额是65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.17. 如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为______.【答案】56°【解析】【分析】依据OE⊥AB,可得∠BOE=90°;再根据∠COE=34°,即可得到∠BOD的度数.【详解】解:∵OE⊥AB,∴∠BOE=90°,又∵∠COE=34°,∴∠BOD=180°-90°-34°=56°,故答案是:56°.【点睛】本题考查了垂线、对顶角与邻补角.注意,邻补角互补,即和为180°.18. 已知正实数x的两个平方根是m和m+b.当b=8时,m的值是_____;若m2x+(m+b)2x=4,则x=_____.【答案】(1). -4(2). 2【解析】【分析】(1)由题意直接利用正实数平方根互为相反数即可求出m的值;(2)根据题意利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【详解】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;故答案为:-4;(2)∵正实数x 的平方根是m 和m+b ,∴(m+b )2=x ,m 2=x ,∵m 2x+(m+b )2x =4,∴x 2+x 2=4,∴x 2=2,∵x >0,∴x 2 2【点睛】本题考查平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键. 三、解答题19. 232564(3)+--【答案】-2【解析】【分析】直接利用立方根以及二次根式的性质化简得出答案. 232564(3)5432--=--=-.【点睛】本题考查的知识点是实数的运算,掌握实数的运算顺序以及立方根和二次根式的性质是解此题的关键.20. 解方程组2632x y x y =-⎧⎨+=⎩. 【答案】02x y =⎧⎨=⎩【解析】【分析】用代入消元法,求出二元一次方程组的解即可.【详解】解:2632x y x y =-⎧⎨+=⎩①② 由②得,2x y =-③,把③代入①中得,2(2)63y y -=-,解得:2y =,把2y =代入③可得,0x =,∴原方程组的解为:02x y =⎧⎨=⎩. 【点睛】本题考查的知识点是解二元一次方程组,解二元一次方程组一般用代入消元法和加减消元法,掌握二者的一般步骤是解此题的关键.21. 解不等式组513(1)1213x x x x -≤+⎧⎪+⎨-<⎪⎩并写出这个不等式组的所有整数解. 【答案】225x -<≤;01,2, 【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后求出答案即可. 【详解】解:513(1)1213x x x x -≤+⎧⎪⎨+-<⎪⎩①②∵由①,得2x ≤, 由②,得25x >-, ∴原不等式组的解集为:225x -<≤, ∴原不等式组的所有整数解为:01,2,. 【点睛】本题考查的知识点是解一元一次不等式组及求其整数解,解决此类问题的关键是正确解得一元一次不等式组的解集.22. 已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.【答案】7±【解析】【分析】根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x 、y 的值,再计算73x y +的值,根据平方根的定义,可得答案. 【详解】由题意得:3227314x x y ⎧+=⎪⎨+-=⎪⎩,解得:114x y =⎧⎨=⎩, ∴7374249x y +=+=,∵49的平方根为±7,∴73x y +的算术平方根为±7.【点睛】本题考查了立方根,平方根和算术平方根,根据题意得出二元一次方程组是解题的关键. 23. 如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC=76°,∠DOF=90°,求∠EOF 的度数.【答案】∠EOF=52°. 【解析】【分析】根据对顶角相等可得∠BOD =∠AOC ,再根据角平分线的定义求出∠DOE ,然后根据∠EOF =∠DOF -∠DOE 代入数据计算即可得解.【详解】由对顶角相等得,∠BOD =∠AOC =76°, ∵OE 平分∠BOD ,∴∠DOE =12∠BOD =38°, ∵∠DOF =90°,∴∠EOF =∠DOF ﹣∠DOE =90°﹣38°=52° 【点睛】本题考查了对顶角、邻补角,和角平分线的定义,熟练掌握这些定义是本题解题的关键. 24. 在正方形网格中建立平面直角坐标系xOy ,使得A ,B 两点的坐标分别为A(4,1),B(1,﹣2),过点B 作BC ⊥x 轴于点C .(1)按照要求画出平面直角坐标系xOy ,线段BC ,写出点C 的坐标 ;(2)直接写出以A ,B ,O 为顶点的三角形的面积 ;(3)若线段CD 是由线段AB 平移得到的,点A 的对应点是C ,写出一种由线段AB 得到线段CD 的过程.【答案】(1)(1,0);(2)4.5;(3)先向左平移3个单位长度,再向下平移1个单位长度【解析】【分析】(1)直接利用已知点画出平面直角坐标系进而得出答案;(2)利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质得出平移规律.【详解】解:(1)如图所示:点C的坐标为:(1,0);故答案为:(1,0);(2)△AOB的面积为:3×4﹣12×1×4﹣12×1×2﹣12×3×3=4.5;故答案为:4.5;(3)答案不唯一,如:先向左平移3个单位长度,再向下平移1个单位长度.故答案为:先向左平移3个单位长度,再向下平移1个单位长度.【点睛】本题考查网格作图、平移、三角形面积公式、直角坐标系点坐标的特征等知识,是常见基础考点,掌握相关知识是解题关键.25. 某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调査.过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 9558 54 63 67 82 74B项目93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75整理、描述数据B项目的频数分布表分组划记频数≤<— 1x4050x≤< 25060≤< 2x6070≤<87080xx≤<8090≤< 590100x(说明:成绩80分及以上为优秀,60~79分为基本达标,59分以下为不合格)根据以上信息,回答下列问题:(1)补全统计图、统计表;(2)在此次测试中,成绩更好的项目是__________,理由是__________;(3)假设该年级学生都参加此次测试,估计A项目和B项目成绩都是优秀的人数最多为________人.【答案】(1)见详解;(2)B,在此次测试中,B项目80分及以上人数为17人,高于项目A,59分以下人数与项目A相同,因此B项目成绩更好些;(3)130【解析】【分析】(1)根据题意,画出直方图,频数分布表即可;(2)B 较好,根据两个项目优秀人数以及不及格人数的比较即可;(3)由统计图可知,30名学生中A 、B 项目优秀的人数分别为13 人和17人,据此解答即可.【详解】解:(1)A 项目在70~80分之间有:3012310311-----=人;B 项目在8090x ≤<之间有:301228512-----=人,因此,补全图表如下:(2)在此次测试中,成绩更好的项目是B ,理由如下:在此次测试中,B 项目80分及以上人数为17人,高于项目A ,59分以下人数与项目A 相同,因此B 项目成绩更好些;故答案为:B ,在此次测试中,B 项目80分及以上人数为17人,高于项目A ,59分以下人数与项目A 相同,因此B 项目成绩更好些(3)∵A 项目优秀的人数约为:10330013030+⨯=人;B 项目优秀的人数约为:12530017030+⨯=人, ∴A 项目和B 项目成绩都是优秀的人数最多为130人.故答案为:130.【点睛】本题考查知识点是条形统计图以及频数(频率)分布表,解此题的关键是弄清题意,能够根据所给数据补全图表.26. 国家发改委、工业和信息化部、财政部公布了“节能产品惠民工程”,公交公司积极响应将旧车换成节能环保公交车,计划购买A 型和B 型两种环保型公交车10辆,其中每台的价格、年载客量如表:A 型B 型 价格(万元/台) x y若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.(1)求x、y的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?(3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?【答案】(1)100150xy=⎧⎨=⎩;(2)有三种购车方案,方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆;(3)总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.【解析】【分析】(1)根据“购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元”列出二元一次方程组求解可得;(2)购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,根据“总费用不超过1200万元、年载客量总和不少于680万人次”列一元一次不等式组求解可得;(3)设购车总费用为w万元,根据总费用的数量关系得出w=100m+150(10﹣m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.【详解】(1)由题意,得2400 2350 x yx y+=⎧⎨+=⎩,解得100150 xy=⎧⎨=⎩;(2)设购买A型环保公交车m辆,则购买B型环保公交车(10﹣m)辆,由题意,得60100(10)680 100150(10)1200 m mm m+-≥⎧⎨+-≤⎩,解得6≤m≤8,∵m为整数,∴有三种购车方案方案一:购买A 型公交车6辆,购买B 型公交车4辆;方案二:购买A 型公交车7辆,购买B 型公交车3辆;方案三:购买A 型公交车8辆,购买B 型公交车2辆.(3)设购车总费用为w 万元则w =100m+150(10﹣m )=﹣50m+1500,∵﹣50<0,6≤m≤8且m 为整数,∴m =8时,w 最小=1100,∴购车总费用最少的方案是购买A 型公交车8辆,购买B 型公交车2辆,购车总费用为1100万元.【点睛】本题主要考查一元一次不等式组和二元一次方程的应用,理解题意,找到题目蕴含的数量关系是解题的关键.四、拓展题27. 若关于x ,y 的二元一次方程组3123x y a y x -=+⎧⎨-=⎩ 的解满足2x +y ≤3,则a 的取值范围是____________. 【答案】a ≤-1【解析】【分析】根据3123x y a y x -=+⎧⎨-=⎩①②,令①+②得2x+y=4+a ,由2x +y ≤3,故得不等式即可求出a 的取值.【详解】由3123x y a y x -=+⎧⎨-=⎩①② 令①+②得2x+y=4+a ,∵2x +y ≤3,故4+a ≤3,解得a ≤-1【点睛】此题主要考查加减消元法求解二元一次方程组,解题的关键是根据方程组的特点与已知条件进行加减合并. 28. 已知关于x 的一元一次不等式152mx x +>-的解集是42x m <+,如图,数轴上的,,,A B C D 四个点中,实数m 对应的点可能是________.【答案】A【解析】【分析】求出不等式的解集,根据已知条件得出关于m 的不等式,求出不等式的解集即可.【详解】解:∵152mx x +>-,∴(2)4m x +>,∵关于x 的一元一次不等式152mx x +>-的解集是42x m <+, ∴20m +<,∴2m <-,∵数轴上只有点A 表示的数小于-2,∴实数m 对应的点可能是A .故答案为:A .【点睛】本题考查的知识点是解一元一次不等式,掌握不等式的性质是解此题的关键.29. 按下面程序计算,即根据输入的x 判断51x +是否大于500,若大于500则输出,结束计算,若不大于500,则以现在的51x +的值作为新的x 的值,继续运算,循环往复,直至输出结果为止.若开始输入x 的值为正整数,最后输出的结果为656,则满足条件的所有x 的值是__.【答案】131或26或5.【解析】【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解:当第一次输入x ,第一次输出的结果为51x +,当第二次输入51x +,第二次输出的结果为5(51)1256x x ++=+,当第三次输入256x +,第三次输出的结果为5(256)112531x x ++=+,当第四次输入12531x +,第三次输出的结果为5(12531)1625156x x ++=+,若51656x +=,解得131x =;、若256656x +=,解得26x =;若12531656x +=,解得5x =;若625156656x +=,解得45x =, 所以当开始输入x 的值为正整数,最后输出的结果为656,则满足条件的所有x 的值是131或26或5.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.30. 已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 【答案】4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围. 【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键31. 定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组:M :21x x ⎧⎨⎩>>是N :-2-1x x ⎧⎨⎩>>的“子集”. (1)若不等式组:A :+14+15x x ⎧⎨⎩><,B :2-11-3x x ⎧⎨⎩>>,则其中不等式组 是不等式组M :21x x ⎧⎨⎩>>的“子集”(填A 或B );(2)若关于x 的不等式组1x a x ⎧⎨-⎩>>是不等式组21x x ⎧⎨⎩>>的“子集”,则a 的取值范围是 ;(3)已知a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d ,下列三个不等式组:A :a≤x≤b ,B :c≤x≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”,则a ﹣b+c ﹣d 的值为 ;(4)已知不等式组M :23x m x n ≥⎧⎨⎩<有解,且N :1<x≤3是不等式组M 的“子集”,请写出m ,n 满足的条件: .【答案】(1)A ;(2)a≥2;(3)-4;(4)m≤2,n >9【解析】【分析】(1)根据题意求出不等式组A 与B 的解集,进而利用题中的新定义判断即可(2)由题意根据“子集”的定义确定出a 的范围即可;(3)由题意根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)由题意根据“子集”的定义确定出所求即可. 【详解】解:(1)A :+14+15x x ⎧⎨⎩><的解集为3<x <6,B :2-11-3x x ⎧⎨⎩>>的解集为x >1,M :21x x ⎧⎨⎩>>的解集为x >2,则不等式组A 是不等式组M 的子集,故答案为:A ;(2)∵关于x 的不等式组1x a x ⎧⎨-⎩>>是不等式组21x x ⎧⎨⎩>>的“子集”, ∴a≥2,故答案为:a≥2;(3)∵a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d , A :a≤x≤b ,B :c≤x≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”, ∴a =3,b =4,c =2,d =5,则a ﹣b+c ﹣d =3﹣4+2﹣5=﹣4,故答案为:﹣4;(4)不等式组M :23x m x n ≥⎧⎨⎩<整理得:23m x n x ⎧≥⎪⎪⎨⎪⎪⎩<, 由不等式组有解得到2m <3n ,即2m ≤x <3n ,∵N :1<x≤3是不等式组的“子集”, ∴2m ≤1,3n >3,即m≤2,n >9, 故答案为:m≤2,n >9.【点睛】本题考查解一元一次不等式组以及定义运算,读懂题干“子集”的定义以及能求出不等式组的解集是解答此题的关键.。

北京市海淀区清华大学附中2019年中考数学调研(4月)试卷(含解析)

北京市海淀区清华大学附中2019年中考数学调研(4月)试卷(含解析)

名师考前提醒01选择题做完就填答题卡这是针对考试总会忘记填答题卡的考生,为避免非智力因素失分,一般每门一做完选择题就填答题卡。

这时填答题卡心态较平静,不会因为担心时间不够而出现涂写错位的情况。

考试成绩的好坏往往与考试的心情有关,所以我们一定要调节好自己的考试心情。

特别是刚开始的状态,利用一些小的技巧如做完试题就填涂答题卡等,这样可以避免在最后时间较紧的情况下因匆忙而涂错、涂串或是没有涂完而造成遗憾。

02考前看相关资料转换思维考英语前最好看看复习资料,并不是要记住什么知识点,而是让大脑提前进入状态。

而数学试卷对一些学生来说比较发怵,建议在心中回忆梳理一下相关知识点,可驱使自己进入状态,效果不错。

考试紧张,这是很正常的事情,考试不紧张,就不正常了。

但是不能过度紧张,那样会给自己很大的压力不利于水平的发挥。

可以和同学聊一聊天,说说话放松一下。

03遇事都往好处想看大题时,先不想该怎么做,只是看它如何表述,甚至跟自己说“这题我会做,第一问认真看就能做对”,让自己有一个平和的心态答题。

即使是弱科,我们也要知足常乐,我只要把会做的都做上,在一场考试中把会的都做对其实就是很好的发挥了。

时刻给自己打一打气,阿Q一下,这样把对自己的期待放低一些,心态就平稳了,也就高兴了,这可以使得思路更顺畅,而超水平发挥也就很正常了。

04别看他人答题的速度考场上不要左顾右盼,观察别人做题的进度,万一人家比自己快,会给自己压力。

在考场上和比较熟悉的老师、同学可以主动打个招呼。

即使是不认识的老师,也可问候一声“老师好”,一般老师都会像老朋友似地回以微笑,这可以缓解紧张的情绪。

这一些方法和措施都是很有助于调节考试心态与考试情绪的。

有心理学家研究证明,人在平稳的平稳或是心情高兴的时候,智商最高,情商也不错,更容易发挥出自己的高水平来。

05答题遇困难要镇静,巧用考前5分钟这个问题是涉及到考试策略与方法的,对于每一学科的考试,我们都应该有自己的考试策略和答题风格。

2019年4月北京市清华大学附属中学2019届高三高考二模考试数学(文)试题(解析版)

2019年4月北京市清华大学附属中学2019届高三高考二模考试数学(文)试题(解析版)

绝密★启用前北京市清华大学附属中学2019届高三年级下学期第二次高考模拟考试数学(文)试题(解析版)2019年4月一、选择题。

1.设集合{}2|670A x x x =--<,{|}B x x a =≥,现有下面四个命题: 1p :a R ∃∈,A B ⋂=∅;2p :若0a =,则(7,)A B =-+∞;3p :若(,2)R B =-∞ð,则a A ∈;4p :若1a ≤-,则A B ⊆.其中所有的真命题为( )A. 1p ,4pB. 1p ,3p ,4pC. 2p ,3pD. 1p ,2p ,4p【答案】B【解析】 由题设可得,()17A =-,,则当7a ≥时,有AB ⋂=∅,所以命题1p 正确;若0a =时,[)0B =+∞,,则()1,A B ⋃=-+∞,所以命题2p 错误;若()2R B ,=-∞ð,则2a A =∈,所以命题3p 正确;若1a ≤-时,A B ⊆成立.故正确答案为B.点睛:此题主要考查集合的补集、交集、并集、包含等基本关系与运算,以及二次不等式、命题的真假判断等运算与技能,属于中低档题型,也是常考题型.在二次不等式的求解过程中,首先要算出其相应二次方程的根()1212,x x x x <,当0a >时,则有“大于号取两边,即()()12,x x -∞⋃+∞,,小于号取中间,即()12,x x ”.2.下列说法错误的是( )A. 回归直线过样本点的中心(),x yB. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C. 在回归直线方程0.20.8y x ∧=+y 0.2x 0.8=+中,当解释变量x 每增加1个单位时,预报变量y ∧平均增加0.2个单位D. 对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小【答案】D【解析】分析:A. 两个变量的相关关系不一定是线性相关;B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程0.2.8ˆ0yx =+中,当解释变量x 每增加1个单位时,预报变量ˆy 平均增加0.2个单位D.正确.详解:A. 两个变量的相关关系不一定是线性相关;也可以是非线性相关;B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程0.2.8ˆ0yx =+中,当解释变量x 每增加1个单位时,预报变量ˆy 平均增加0.2个单位D.正确.故选D.点睛:本题考查了两个变量的线性相关关系的意义,线性回归方程,相关系数,以及独立性检验等,是概念辨析问题.3.据有关文献记载:我国古代一座9层塔共挂了126盏灯,且相邻两层中的下一层灯数比上一层灯数都多n (n 为常数)盏,底层的灯数是顶层的13倍,则塔的底层共有灯( )A. 2盏B. 3盏C. 26盏D. 27盏 【答案】C。

2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案

2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案

2019年北京大学自主招生数学试题2019年清华大学自主招生数学试题2019年中国科学技术大学自主招生数学试题4.记3cos(),4cos()36x t y t =+-=++,则22x y +的最大值为__________。

5.设点0(1,0)P ,i OP (i =1,2,3…)绕原点按顺时针旋转θ得到向量i OQ , i Q 关于y 轴对称点记为1 i P +,则2019P 的坐标为__________。

.,且.已知,且9.将△D 1D 2D 3的各中点连线,折成四面体ABCD ,已知12233112,10,8D D D D D D ===,求四面体ABCD 的体积。

10.求证:对于任意的在R 上有仅有一个解0x =11.已知(1)求证:存在多项式()p x ,满足cos (cos )n p θθ=;(2)将()p x 在R [x ]上完全分解。

2019年中国科学技术大学自主招生数学试题参考答案2.B红色曲线为y =sin 2x ,蓝色曲线为y =-cos 3x综上,知:00100110cos sin cos sin 01sin cos sin cos x x x y y y θθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭那么222(,)P x y 满足:200020002cos sin 10sin cos 01x x x x y y y y θθθθ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这也就说明了20,P P 重合。

故2019P 坐标为(cos ,sin )θθ--6.首先将递推公式两侧取倒数,则:112(1)11112(1)n n n n nn x n x x x x ++++=⇔-=+累加,即:21122(1)n n n k k x x n n =-=⇒=+∑裂项求和,则:2019112019*********k k x ==-=∑7.如图所示,我们定义a ~b 表示复数a 和b之间的边11z z -+是纯虚数,表明0~(z-1)与0~(z+1)垂直,进而说明|z~(z-1)|=|0~z|=|z~(z+1)|=1故||1z =,进一步,我们设cos sin z i θθ=+则222222222|3|(cos 2cos 3)(sin 2sin )cos 2cos 96cos 6cos 22cos cos 2sin 2sin 2sin 2sin 116cos 2812cos 8cos 53z z cos θθθθθθθθθθθθθθθθθθ++=++++=++++++++=++=++≥等号成立条件为1cos 3θ=-8.9.简解:由题意,易知四面体ABCD为等腰四面体,将其嵌入长方体后割补法即可图示蓝色边框为等腰四面体,黑色为被嵌入的长方体答案:410.首先,我们定义()()n f x 代表函数()f x 的n 阶导数令0()!kn x k x f x e k ==-∑注意到()()1n x f x e =-在R 上单调递增,故其在R 上仅有一根x =0,从而(1)()1n x f x e x -=--在R 上有最小值,即(1)(1)()(0)0n n f x f --≥=进而2(2)()12n x x f x e x -=---在R 上单调递增以此类推,可知:(2)()n k f x -在R 上单调递增,仅有一根x =0(21)()n k f x --在R 先减后增,且恒为非负实数,且仅有一根x =0综上,不论n 取何值,0()!knx k x f x e k ==-∑在R 上仅有一根x =011.本题考察内容十分清晰,旨在考察Chebyshev 多项式(1)采取归纳法证明,若对于不同的n ,存在满足题设的多项式,则记其为()n p x 首先,当1n =时,存在多项式1()p x x=其次,当2n =时,存在多项式22()21p x x =-我们假定命题在2,1n n --的情形下成立,下面考察n 的情形cos cos[(1)]cos(1)cos sin(1)sin 1cos(1)cos [cos cos(2)]2n n n n n n n θθθθθθθθθθθ=-+=-⋅--⋅=-⋅+--进而有cos 2cos cos(1)cos(2)n n n θθθθ=---即12()2()()n n n p x xp x p x --=-因为12(),()n n p x p x --都是多项式,所以()n p x 也是多项式。

2019清华大学中学生标准学术能力测试试题文数答案

2019清华大学中学生标准学术能力测试试题文数答案

= 3 , b2 = 9 , b3 = 27 ..........3 分
bn+1 an+1 + 1 3an + 3 = = = 3 ,{bn } 是等比数列...........8 分 bn an + 1 an + 1
(3)由(2)可得 bn = 3n , an = 3n −1 ............12 分
中学生标准学术能力诊断性测试 2018 年 9 月测试 文科数学试卷
参考答案 一. 选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.B 2.A 3.C 4.B 5.C 6.C 7.C 8.D 9.A 10.B 11.C 12.D
(2) | AB |= 1 + k | x1 − x2 |= 1 + k ( x1 + x2 ) − 4 x1 x2
2 2 2
(二)选考题:共 10 分.请考生在第 22,23 题中任选一题作答,如果多做,则按所做的第一 题计分.作答时请写清题号. 22. 【选修 4−4:坐标系与参数方程】(10 分) (1)曲线 C : x + y − 6 y − 7 = 0 .........4 分
2 2
= 4 1 + k 2 k 2 − k +1
点 C 到 AB 距离 d =
(2)直线 l 的参数方程代入曲线 C 的直角坐标方程得,
Байду номын сангаас
| 2k − 2 k + 2 |
2
t 2 + 4(cos − sin )t − 8 = 0 ,
........9 分 设交点 A , B 所对参数分别为 t1 , t2 , 则 t1 + t2 = −4(cos − sin ) , t1 t2 = −8 ,.........6 分

清华大学考试题及答案数学

清华大学考试题及答案数学

清华大学考试题及答案数学清华大学数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 函数f(x) = x^2在x=2处的导数是:A. 2B. 4C. 6D. 8答案:A3. 不等式x^2 + 3x + 2 > 0的解集是:A. (-∞, -2)B. (-2, -1)C. (-1, ∞)D. (1, 2)答案:C4. 圆的方程为(x-3)^2 + (y-4)^2 = 25,该圆的半径是:A. 5B. 10D. 20答案:A5. 极限lim (x->0) [sin(x)/x]的值是:A. 0B. 1C. ∞D. 不存在答案:B6. 方程组x + y = 52x - y = 1的解是:A. (1, 4)B. (2, 3)C. (3, 2)D. (4, 1)答案:C7. 集合A = {1, 2, 3},B = {2, 3, 4},则A∪B是:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B8. 已知数列1, 4, 7, 10, ...的第n项是3n-2,那么该数列的第5项是:A. 10C. 16D. 19答案:B9. 如果一个平面图形的周长是固定的,要使其面积最大,该图形应该是:A. 正方形B. 长方形C. 圆形D. 三角形答案:C10. 微分方程dy/dx = x/y的通解是:A. y^2 = x^2 + CB. y^2 = 2x + CC. x^2 = y^2 + CD. x^2 = 2y^2 + C答案:A二、填空题(每题4分,共20分)11. 圆心在原点,半径为5的圆的方程是________。

答案:(x-0)^2 + (y-0)^2 = 5^212. 函数f(x) = 2x^3 - 6x^2 + 3x的拐点个数是________。

答案:213. 已知向量a = (3, 4),b = (-2, 1),则向量a与b的夹角余弦值为________。

北京市房山区达标名校2019年高考四月调研数学试卷含解析

北京市房山区达标名校2019年高考四月调研数学试卷含解析

北京市房山区达标名校2019年高考四月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数1z 在复平面内对应的点为()22,3,2,z i =-+则12z z =( ) A .1855i -+ B .1855i -- C .815i -+D .815i --2.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )A .B .C .D .3.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计π的值:先用计算机产生2000个数对(),x y ,其中x ,y 都是区间()0,1上的均匀随机数,再统计x ,y 能与1构成锐角三角形三边长的数对(),x y 的个数m ﹔最后根据统计数m 来估计π的值.若435m =,则π的估计值为( ) A .3.12B .3.13C .3.14D .3.154.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3- B .{}1,0-C .{}0,3D .{}1,0,3-5.设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( )A .724- B .524-C .524D .7246.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>7.已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是( ) A .圆,但要去掉两个点 B .椭圆,但要去掉两个点 C .双曲线,但要去掉两个点D .抛物线,但要去掉两个点8.我们熟悉的卡通形象“哆啦A 梦”2.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米 B .480米 C .520米D .600米9.下列命题是真命题的是( )A .若平面α,β,γ,满足αγ⊥,βγ⊥,则//αβ;B .命题p :x R ∀∈,211x -≤,则p ⌝:0x R ∃∈,2011x -≤;C .“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件;D .命题“若()110xx e -+=,则0x =”的逆否命题为:“若0x ≠,则()110xx e -+≠”.10.命题p :2(1,2],20()x x x a a ∀∈--+≥∈R 的否定为A .2000(1,2],20()x x x a a ∃∈--+≥∈R B .2(1,2],20()x x x a a ∀∈--+<∈R C .2000(1,2],20()x x x a a ∃∈--+<∈R D .2(1,2],20()x x x a a ∀∉--+<∈R11.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线y bx a =+近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系太弱,无研究价值12.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按A ,B ,C 编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母A ,B ,C 的概率为( ) A .1721B .1928C .79D .2328二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年4月清华大学标准能力测试(数学)(附详细解答)‘详细解答:1.答案:ACF解析:点222)(),(a a a A a a P ⋅≤⇔∈01212≥+-⇔))((a a a 021≤≤-⇔a 或21≥a ; 点a a a B a a P 122222≥-⇔∈)(),(04≥-⇔)(a a 0≤⇔a 或4≥a ; 点a a a C a a P 254222≤+⇔∈),(05≤-⇔)(a a ≤⇔05≤a ;将六个选项逐一代入检验,可知6.25,2.5,-0.375恰好属于C B A ,,中的两个集合。

2.答案:DF解析:⎩⎨⎧≥=+⇔=,,||)(0340x ax x f 或⎩⎨⎧<=-.,||054x ax ⎩⎨⎧≥--=⇔,,01或7x ax 或⎩⎨⎧<-=,,01或9x ax 1-=⇔ax 或⎩⎨⎧≥-=,,07x ax 或⎩⎨⎧<=.,09x ax 当n a=时,不确定有几个零点,不合题意;当2-=x a 时,⎩⎨⎧<=-⎩⎨⎧≥-=--=-⇔=,,)(,,)()()(092或072或120x x x x x x x x x f 1=⇔x 或101-,不合题意;当0=a 时,无零点,不合题意;当32-=a 时,2-3=⇔x 或)2-3(7=x 或)2-3(9-=x ,符合题意;当32+-=x a 时,方程012312=+-+⇔-=x x ax )(,0621<-=∆,无实根;方程072372=+-+⇔-=x x ax )(,06223<--=∆,无实根;方程092392=--+⇔=x x ax )(,恰有一个负实根,不合题意;当32--=x a 时,方程012312=++-⇔-=x x ax )(,0621>+=∆,方程有两不相等的实根;方程072372=++-⇔-=x x ax )(,02362<-=∆,无实根;方程092392=-+-⇔=x x ax )(,恰有一个负实根,符合题意;综上所述,正确选项为DF .3.答案:A解析:由题意,可设))()(()(04522≠+++-=a c bx x x x a x f ,则))(())(()('b x x x a c bx x x a x f ++-+++-=2455222,因为452+-x x 是)('x f 的因式,所以只有可能45=22+-++x x c bx x,即)()()(04522≠+-=a x x a x f ,))(()('45-5222+-=x x x a x f ,故133-=)(')(f f 。

4.答案:E解析:)sin cos ()cos (sin )'(sin sin )'()('x x e x e x e x e x e x f xx x x x 22222222-=+-=+=-----。

5.答案:BDF解析:设点),(43-M 关于直线02=-+y x 的对称点为),(b a N ,则⎪⎪⎩⎪⎪⎨⎧=-+-++=-+,,022423134b a a b解得),(16-N ,故圆254322=++-)()(y x 关于直线02=-+y x 对称的圆为圆:N 251622=++-)()(y x 。

由题意,点P 到圆N 上的点的最小距离为5,故点P 到圆心N 的最小距离为0或10,即点P 与点N 重合,或在圆1001622=++-)()(y x 上,经检验,点),(70,)(5,2-,),(16-符合题意。

6.答案:ADE解析:由题意可知,切线的斜率存在,设切线方程为 b kx y +=, 因为直线与圆相切,故圆心到直线的距离5162==++=r kb d ||,又将直线方程与抛物线方程联立,得02=--b kx x ,所以042=+=∆b k .解得⎩⎨⎧±=-=,,21k b 或⎩⎨⎧±=-=,,31231k b即圆与抛物线的公切线的方程为12-±=x y 或31312-±=x y . 可知选项是ADE 正确的. 7.答案:BD解析:)sin )(cos sin (cos )cos()sin()(x x x x x f +-=++-=θθθθ ,)cos sin )(sin (cos )('x x x f +--=∴θθ,x x g cos )sin (cos )(θθ-=2,设θθsin cos -=k ,),(24ππθ∈ ,0<∴k ,故x k x g cos )(2=,),(22ππ-∈x . 从而)(x g 一定是偶函数,不是奇函数;又因为函数定义域为有限区间,故函数)(x g 不是周期函数;0<k ,故)(x g 在),(02π-上递减,在),(20π上递增, )()()(5552πππ-=>∴g g g ,而)()(57ππ-<-g g ;很显然020<=k g )(. 8.答案:AF解析:1>||a ,||||)(a x ax x f -++=∴1||||||||||a x ax a x a x a -++≥-++=11, 当且仅当01=+||a x ,即|))||,|((a a aa x -∈--=11时取等号; 又因为|||)()(|||||a a a x a x a x a x +=--+≥-++111,当且仅当01≤-+|))((a x ax 时取等号. 故当a x 1-=时,函数)(x f 的最小值为||a a+1,经代入检验,可知选项AF 正确. 9.答案:ACDF解析:依次写出数列}{n a 和}{n b 的前19项为:0.2;0.4;0.8;1.6;0.6;1.2;0.2;0.4;0.8;1.6;0.6;1.2;0.2;0.4;0.8;1.6;0.6;1.2;0.2…0.2;0.4;0.4;0.2;0.8;0.4;0.6;0.6;0.6;0.4;0.4;0.6;0.8;0.8;0.2;0.8;0.8;0.4;0.6… 可知,去掉前6项后,),(n n b a 是周期为12的数列对.而68121672018++⨯=,故40142018.==a a ,80152019.==a a ,80142018.==b b ,20152019.==b b ,80162020.==b b .经检验,选项ACDF 是正确的. 10.答案:BF解析:由已知,得11223a S S -=,即112123a a a a -=+,故得02=a .n n n a S S 231-=+ ,)(1123-+--=∴n n n n S S S S ,即)(2211≥+=∴-+n S S S n n n ,))((2211≥+=+∴-+n S S S S n n n n ,以及))((22211≥--=--+n S S S S n n n n ,故数列}{1-+n n S S 和}{12--n n S S 是等比数列,1212122---=⋅+=+∴n n n n S S S S )(,以及121211122----=-⋅-=-n n n n S S S S )()()(, 1001001012=+∴S S ;112100100101=-=-)(S S .11.答案:AE解析:由已知,得n n n S n n S S 321+=-+,即n n S nn S )(131+=+, n S n S n n ⨯=+∴+311,故数列}{n Sn 是公比为3的等比数列, 111331--=⋅=∴n n n S n S ,即13-⋅=n n n S . 从而91031832017191820>=⋅⋅=S S ; 3318310320391791981810209=⋅⨯⋅⋅⨯⋅=S S S S ,故选项AE 是正确的. 12.答案:BCF解析:以原点为极点,x 轴正半轴为极轴,建立极坐标系.设点P 的直角坐标为),(y x ,极坐标为),(θρ,则点P 绕原点逆时针旋转45度后,得到点'P 的极坐标为'P ),(4πθρ+,其直角坐标为)','(y x ,于是⎪⎪⎩⎪⎪⎨⎧+=+=+=-=-=+=),()cos sin ()sin('),()sin cos ()cos('y x y y x x 2222422224θρθρπθρθρθρπθρ 因为点'P 在题设参数方程所表示的曲线上,所以⎪⎩⎪⎨⎧-=+=,','t t y t t x 33于是⎩⎨⎧=-=+,'',''t y x t y x 223即⎪⎩⎪⎨⎧=-=,,t y t x 22223消去参数t ,得x y 23-=,经检验,选项BCF 是正确的.13.答案:AE解析:由已知,得12≤-++≤--+=|||||)()(|||z x z x z x z x z ,当且仅当0≤-+|))((z x z x 时取等号,故412=maxz; 122≤-+-||||x y y x ⎪⎩⎪⎨⎧≤+≤≤⇔,,,122y x x y y x 或⎪⎩⎪⎨⎧≤-≥≤,,,13322x y x y y x 或⎪⎩⎪⎨⎧≤--≥≥,,,122y x x y y x 或⎪⎩⎪⎨⎧≤-≤≥,,,13322y x x y y x在平面直角坐标系中,作出122≤-+-||||x y y x 所表示的图形为矩形ABCD 的边界及其内部,而22y x +的几何意义是点),(y x P 到原点距离的平方,故当点),(y x P 与矩形ABCD 的某一顶点),(3231或),(3132或),(3231--或),(3132--重合时, 22y x +的最大值为95,综上所述, 222z y x++的最大值为36294195=+.故选项AE 是正确的.。

相关文档
最新文档