数学物理方程小结word

合集下载

九年级物理方程总结知识点

九年级物理方程总结知识点

九年级物理方程总结知识点物理是一门研究自然界各种物质及其相互作用的科学。

在学习物理的过程中,我们会遇到各种各样的方程式,它们是解决问题、推导关系的重要工具。

本文将对九年级物理中常见的方程进行总结,并对其相关知识点进行梳理。

1. 牛顿运动定律1.1 第一定律(惯性定律)牛顿第一定律描述了物体在不受力作用时将保持静止或匀速直线运动的状态。

其数学表达式为:\[F = 0\]其中,F代表物体所受的合外力。

1.2 第二定律(运动定律)牛顿第二定律描述了物体在受力作用下将产生加速度的关系。

其数学表达式为:\[F = ma\]其中,F代表物体所受的合外力,m代表物体的质量,a代表物体的加速度。

1.3 第三定律(作用-反作用定律)牛顿第三定律描述了两个物体之间相互作用力大小相等、方向相反的关系。

其数学表达式为:\[F_{12} = -F_{21}\]其中,F_{12}代表物体1对物体2施加的力,F_{21}代表物体2对物体1施加的力。

2. 动量和冲量2.1 动量定理动量定理描述了物体受力作用下动量的变化量与合外力的乘积之间的关系。

其数学表达式为:\[F_{\text{外}} = \frac{\Delta p}{\Delta t}\]其中,F_{\text{外}}代表物体所受的合外力,\frac{\Deltap}{\Delta t}代表动量的变化率。

2.2 冲量冲量描述了物体受力作用下动量的变化量,可以用来计算物体的冲撞效果。

其数学表达式为:\[J = F \cdot \Delta t\]其中,J代表冲量,F代表物体所受的合外力,\Delta t代表时间间隔。

3. 能量与功3.1 功功描述了力对物体做功的能力。

其数学表达式为:\[W = F \cdot s \cdot \cos{\theta}\]其中,W代表功,F代表力的大小,s代表力的方向上的位移,\theta代表力与位移的夹角。

3.2 功率功率描述了单位时间内做功的能力。

数学物理方程归纳总结

数学物理方程归纳总结

数学物理方程归纳总结数学和物理方程是科学研究中的重要工具,广泛应用于各个领域。

本文将对一些常见的数学物理方程进行归纳总结,分析其数学意义和物理应用,并探讨其背后的原理和推导过程。

1. 一维运动方程一维运动是物理学中最简单的情形之一,其运动状态只涉及一个方向的变化。

常见的一维运动方程有:- 位移公式:$S = V_0t + \frac{1}{2}at^2$- 速度公式:$V = V_0 + at$- 速度与位移的关系:$V^2 = V_0^2 + 2aS$这些方程描述了质点在匀加速度下的运动规律,其中$S$ 表示位移,$V_0$ 表示初始速度,$a$ 表示加速度,$t$ 表示时间,$V$ 表示末速度。

这些方程在解决一维运动问题时具有重要的应用价值,可以帮助我们计算物体的位移、速度和加速度等物理量。

2. 牛顿力学方程牛顿力学是经典力学的基础理论,在描述宏观物体运动和相互作用时非常重要。

牛顿三定律是牛顿力学的核心,其表述为:- 第一定律(惯性定律):物体在不受外力作用时保持静止或匀速直线运动。

- 第二定律(运动定律):物体受到的合力等于质量乘以加速度,即 $F = ma$。

- 第三定律(作用与反作用定律):任何两个物体之间的相互作用力大小相等、方向相反。

根据牛顿第二定律,我们可以推导出一些重要的等式,用于解决各种力学问题。

例如,结合万有引力定律,我们可以得到开普勒第三定律 $T^2 = \frac{4\pi^2}{GM}r^3$,其中 $T$ 是行星公转周期,$G$ 是引力常数,$M$ 是太阳的质量,$r$ 是行星与太阳的平均距离。

3. 麦克斯韦方程组麦克斯韦方程组是电磁学的基础方程,描述了电磁场的产生和传播规律。

麦克斯韦方程组包括四个方程:- 高斯定律:$\nabla \cdot E = \frac{\rho}{\varepsilon_0}$- 安培定律:$\nabla \cdot B = 0$- 法拉第电磁感应定律:$\nabla \times E = -\frac{\partial B}{\partial t}$- 完整的麦克斯韦方程:$\nabla \times B =\mu_0J+\mu_0\varepsilon_0\frac{\partial E}{\partial t}$其中,$E$ 和 $B$ 分别表示电场和磁场,$\rho$ 表示电荷密度,$J$ 表示电流密度,$\varepsilon_0$ 是真空中的介电常数,$\mu_0$ 是真空中的磁导率。

数学物理方法知识点总结数学物理方程知识点归纳

数学物理方法知识点总结数学物理方程知识点归纳

数学物理方法知识点总结数学物理方程知识点归纳一、力学1.物质的运动和静止是相对参照物而言的。

2.相对于参照物,物体的位置改变了,即物体运动了。

3.参照物的选取是任意的,被研究的物体不能选作参照物。

4.力的作用是相互的,施力物体同时也是受力物体。

5.力的作用效果有两个:使物体发生形变。

使物体的运动状态发生改变。

6.力的三要素:力的大小、方向、作用点。

7.重力的方向总是竖直向下的,浮力的方向总是竖直向上的。

8.重力是由于地球对物体的吸引而产生的。

9.一切物体所受重力的施力物体都是地球。

10.两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力。

11.二力平衡的条件(四个):大小相等、方向相反、作用在同一条直线上,作用在同一个物体上。

12.用力推车但没推动,是因为推力小于阻力(错,推力等于阻力)。

13.影响滑动摩擦力大小的两个因素:接触面间的压力大小。

接触面的粗糙程度。

14.惯性现象:(车突然启动人向后仰、跳远时助跑、运动员冲过终点不能立刻停下来)。

15.物体惯性的大小只由物体的质量决定(气体也有惯性)16.司机系安全带,是为了防止惯性(错,防止惯性带来的危害)。

17.判断物体运动状态是否改变的两种方法:速度的大小和方向其中一个改变,或都改变,运动状态改变。

如果物体不是处于静止或匀速直线运动状态,运动状态改变。

18.物体不受力或受平衡力作用时可能静止也可能保持匀速直线运动。

二、热学1.实验室常用温度计是利用液体热胀冷缩的性质制成的2.人的正常体温约为36.5℃。

3.体温计使用前要下甩,读数时可以离开人体。

4.物质由分子组成,分子间有空隙,分子间存在相互作用的引力和斥力。

5.扩散现象说明分子在不停息的运动着;温度越高,分子运动越剧烈。

6.密度和比热容是物质本身的属性。

7.沿海地区早晚、四季温差较小是因为水的比热容大(暖气供水、发动机的冷却系统)。

8.物体温度升高内能一定增加(对)。

9.物体内能增加温度一定升高(错,冰变为水)。

初中的物理方程式归纳总结

初中的物理方程式归纳总结

初中的物理方程式归纳总结物理作为一门自然科学,通过数学语言表达自然界的规律和现象。

在初中阶段的物理学习中,学生需要掌握和理解一系列的物理方程式,这些方程式是解决物理问题的基础工具。

本文将对初中物理学习中常见的物理方程式进行归纳总结,帮助学生更好地掌握和运用它们。

1. 动力学方程1.1 牛顿第二定律牛顿第二定律是物理学中最基本、最重要的方程式之一,它描述了力、质量和加速度之间的关系。

它的数学表达为:F = ma其中,F代表力,m代表物体的质量,a代表物体的加速度。

1.2 重力公式重力是普遍存在于物体之间的一种力,它的大小与物体的质量和距离有关。

重力公式可以用来计算两个物体之间的引力:F =G * (m1 * m2) / r^2其中,F代表引力的大小,G代表重力常数,m1和m2分别代表两个物体的质量,r代表两个物体之间的距离。

2. 动能和功2.1 动能公式动能是物体运动具有的能量形式,它与物体的质量和速度有关。

动能的数学表达为:K = 1/2 * m * v^2其中,K代表动能,m代表物体的质量,v代表物体的速度。

2.2 功和功率功表示力对物体做的功,是描述物体受到的外力作用产生的结果。

功的数学表达为:W = F * s其中,W代表功,F代表力,s代表力的方向上位移的大小。

功率是描述功的速率,即单位时间内所做的功。

功率的数学表达为:P = W / t其中,P代表功率,W代表做的功,t代表时间。

3. 波动和光学3.1 物体的折射当一束光由一个介质进入另一个介质时,光线会发生折射现象。

折射的大小和角度可由折射定律计算得出:n1 * sin(θ1) = n2 * sin(θ2)其中,n1和n2分别代表两个介质的折射率,θ1和θ2分别代表光线与法线的夹角。

3.2 光的反射和折射当光线射到一个平面镜上时,会发生光的反射。

反射光线与入射光线的夹角相等。

而光线从一个介质射入另一个介质时会发生折射。

这两种现象可以用光的反射定律和光的折射定律来描述。

数学物理方程第一章总结

数学物理方程第一章总结

数学物理方程第一章总结
数学物理方程是研究物理现象和规律的数学描述。

第一章主要介绍了一些基础的数学概念和工具,为后续章节的学习打下基础。

首先,本章讨论了向量和矢量的概念。

向量有大小和方向,并且可以进行加法和乘法运算。

矢量在物理中经常用来描述物体的位移、速度、加速度等量。

我们学习了向量的表示方法,如坐标表示和分量表示,以及向量的运算规则。

接下来,我们学习了微积分的基本概念和运算。

微积分是研究变化率和积分的数学分支,对于物理学的建模和求解方程非常重要。

我们学习了导数的定义和性质,包括常见的导数法则和求导公式。

此外,我们也学习了不同函数类型的导数,如多项式函数、指数函数和三角函数的导数。

在本章的最后,我们介绍了一些重要的微积分定理,如中值定理和泰勒展开定理。

这些定理在求解物理问题时经常被应用,可以帮助我们更好地理解函数的性质和行为。

总结而言,第一章主要介绍了数学物理方程中的基础概念和工具,包括向量和矢量的概念、微积分的基本概念和运算,以及一些重要的微积分定理。

这些知识为我们后续学习数学物理方程的章节奠定
了基础,帮助我们更好地理解和应用数学物理方程。

数学物理方程知识点归纳

数学物理方程知识点归纳

数学物理方程知识点归纳数学物理方程是数学和物理学两门学科的交叉领域,其涉及到许多重要的知识点。

本文将从微积分、向量、力学、热力学和波动等方面,总结归纳数学物理方程的主要知识点。

一、微积分微积分是数学和物理学中非常重要的一个分支。

其中,微分和积分是微积分的两个基本概念。

微分是研究函数在某一点的变化率,积分则是求解函数的面积、体积或长度等量的方法。

微积分的一些重要公式包括:牛顿-莱布尼茨公式、柯西-黎曼方程、拉普拉斯公式等。

二、向量向量是几何学和物理学中非常重要的概念。

向量具有大小和方向两个属性,可以表示物理量的大小和方向。

向量的一些重要知识点包括:向量的加法和减法、向量的数量积和向量积、向量的投影、向量的夹角等。

三、力学力学是物理学中研究物体运动和相互作用的学科。

其中,牛顿三大定律是力学的基础。

牛顿第一定律指出物体在外力作用下保持静止或匀速直线运动;牛顿第二定律则确定了物体受力的大小和方向与其加速度成正比;牛顿第三定律则描述了力的相互作用。

四、热力学热力学是物理学中研究热量和能量转化的学科。

其中,热力学的一些重要概念包括:热力学系统、热力学过程、热力学态函数、热力学循环等。

热力学中的一些重要公式包括:热力学第一定律、热力学第二定律、热力学方程等。

五、波动波动是物理学中研究波的传播和相互作用的学科。

其中,波动的一些重要概念包括:波长、频率、波速、干涉、衍射、折射等。

波动的一些重要公式包括:波动方程、费马原理、赫兹实验等。

数学物理方程中的知识点非常丰富,包括微积分、向量、力学、热力学和波动等方面。

这些知识点是理解和应用物理学中的方程和定律的基础,对于物理学的学习和科学研究都具有重要的意义。

物理方程式总结与技巧总结

物理方程式总结与技巧总结

物理方程式总结与技巧总结物理方程式是解决物理问题的基础工具,掌握物理方程式的使用方法和技巧可以帮助我们更好地理解和应用物理学知识。

本文将从基础的物理方程式出发,总结一些常用的物理方程式,并介绍一些在解决物理问题时的技巧。

1. 基础物理方程式总结1.1 运动方程运动方程描述了物体在运动过程中的位置、速度和加速度之间的关系。

根据不同的运动情况,有三种基本的运动方程:1.一维直线运动:\[x = x_0 + v_0t + \frac{1}{2}at^2\] 其中,\[x\]为物体最终位置,\[x_0\]为初始位置,\[v_0\]为初始速度,\[a\]为加速度,\[t\]为时间。

2.平抛运动:\[y = y_0 + v_0t - \frac{1}{2}gt^2\] 其中,\[y\]为物体最终高度,\[y_0\]为初始高度(通常为0),\[v_0\]为初始速度,\[g\]为重力加速度,\[t\]为时间。

3.匀速圆周运动:\[v = \frac{{2\pi r}}{T}\] 其中,\[v\]为物体的线速度,\[r\]为圆周半径,\[T\]为旋转周期。

1.2 动力学方程动力学方程描述了物体运动的原因和结果之间的关系。

其中,最经典的动力学方程是牛顿第二定律:\[F = ma\] 其中,\[F\]表示物体所受的合力,\[m\]表示物体的质量,\[a\]表示物体的加速度。

1.3 能量守恒方程能量守恒方程描述了一个封闭系统内能量的变化。

在物理学中,有两种常见的能量守恒方程:1.动能定理:\[K = \frac{1}{2}mv^2\] 其中,\[K\]为物体的动能,\[m\]为物体质量,\[v\]为物体速度。

2.机械能守恒定律:\[E_{\text{总}} = E_{\text{势}} + E_{\text{动}}\] 其中,\[E_{\text{总}}\]表示系统的总机械能,\[E_{\text{势}}\]表示系统的势能,\[E_{\text{动}}\]表示系统的动能。

数学物理方程总结

数学物理方程总结

试证:圆锥形枢轴的纵振动方程为2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ其中h 为圆锥的高。

并求通解及它的初值问题:0:(),()ut u x x tϕψ∂===∂的解。

(1)证明:在圆锥形枢轴内取出],[x x x ∆+一小段来研究。

端面丛向位移为),(t x u [,][(,),(,)]x x x u x t u x x t +∆→+∆ 在时刻t,端面的相对延伸为),(t x u 与),(t x x u ∆+根据胡克定律为),(t x ESux-及),(t x x ESu x ∆+由牛顿第二定律有合力为:),(t x x ESu x ∆+),(t x ESu x -x Su tt ∆=ρ又因为 2222[()t a n ]()()S r h x h x t a nππαπα==-=- 2[()tan ](,)x E h x x u x x t πα--∆+∆),(]tan )[(2t x u x h E x απ--x u x h tt∆-=2]tan )[(αρπttx u x h xu x h E 22)()(-=∂-∂ρππ tt x u x h x u x h E 22)()(-=∂-∂ρ 即:2222222222[(1)](1)1[(1)](1)E ()x u x uE x h x h t x u x u x h x a h t a ρρ∂∂∂-=-∂∂∂∂∂∂-=-∂∂∂=令。

(5分)(2)设(,)()(,)v x t h x u x t =-(5分) 2()()x x v h x v u h x -+=-2222222[(1)]()1[(1)](1)()x x ux h x v h x v x x ux h h x a h t ∂∂-∂∂-+∂∂=-=-∂-∂ 2222221()()v u h x h x x a t ∂∂-=-∂∂ ∴ 2222221[()][()]h x u h x u x a t∂∂-=-∂∂ (5分) 即:222221v v x a t∂∂=∂∂, 或22222v v a t x ∂∂=∂∂则其通解为:()()()h x u v F x at G x at -==-++ (5分)2.利用传播波法,求解波动方程的特征问题(又称古尔沙问题)⎪⎪⎩⎪⎪⎨⎧==∂∂=∂∂=+=-).()(0022222x u x u x u a t u at x at x ψϕ ())0()0(ψϕ= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ϕ=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0) 所以 F(x)=)2(x ψ-G(0). G (x )=)2(x ϕ-F(0). 且 F (0)+G(0)=).0()0(ψϕ= 所以 u(x,t)=(ϕ)2at x ++)2(atx -ψ-).0(ϕ 即为古尔沙问题的解。

数学物理方程公式总结

数学物理方程公式总结

===================== 无限长弦的一般强迫振动定解问题200(,)(,0)()()tt xx t t t u a u f x t x R t u x u x ϕψ==⎧=+∈>⎪=⎨⎪=⎩ 解()()().().0()111(,)(,)222x at t x a t x at x a t u x t x at x at d f d d a a ττϕϕψξξατατ++----⎡⎤=++-++⎡⎤⎣⎦⎢⎥⎣⎦⎰⎰⎰ 三维空间的自由振动的波动方程定解问题()2222222220001,,,,0(,,)(,,)t t u uu a x y z t t x y z u x y z u x y z t ϕϕ==⎧⎛⎫∂∂∂∂=++-∞<<+∞>⎪ ⎪∂∂∂∂⎝⎭⎪⎪=⎨⎪∂⎪=∂⎪⎩在球坐标变换sin cos sin sin (0,02,0)cos x r y r r z r θϕθϕϕπθπθ=⎧⎪=≤<+∞≤≤≤≤⎨⎪=⎩21()1()(,)44M Mat r S S M M u M t dS dS a t r a rϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰(r=at)221()1()(,)44M Mat atS S M M u M t dS dS a t t a tϕψππ⎡⎤''∂=+⎢⎥∂⎢⎥⎣⎦⎰⎰⎰⎰无界三维空间自由振动的泊松公式()sin cos ()sin sin (02,0)()cos x x at y y at z z at θϕθϕϕπθπθ'=+⎧⎪'=+≤≤≤≤⎨⎪'=+⎩2()sin dS at d d θθϕ=二维空间的自由振动的波动方程定解问题()222222200,,,0(,)(,)t t u uu a x y t t x y u u x y x y t ϕψ==⎧⎛⎫∂∂∂=+-∞<<+∞>⎪ ⎪⎪∂∂∂⎝⎭⎨∂⎪==⎪∂⎩22at at ππ⎡⎤⎡⎤======================= 傅立叶变换1()()2i x f x f e d λλλπ+∞-∞=⎰基本性质[]1212[][]F f f F f F f αβαβ+=+ 1212[][][]F f f F f F f *=12121[][][]2F f f F f F f π=* [][]F f i F f λ'= ()[]()[]k k F f i F f λ= [][]d F f F ixf d λ=- 1[()]d i x f F f d λλ--= 00[()][()]i x F f x x e F f x λ--=00[()]()i x F e f x f λλλ=- ..1[()][()]x F f d F f x i ξξλ-∞=⎰.0.[)]1i xi xx F x x edx eλλδδ∞--=-∞===⎰(() ()()..[]i x i F x x e dx e λλξδξδξ∞---∞-=-=⎰1[()]()F f ax f a aλ=若[()]()F f x g λ=则 [()]2()F g x f πλ=-[]12()F πδλ= 22242ax aF e e λπ--⎛⎫⎡⎤= ⎪⎣⎦⎝⎭1cos ()21sin ()2ia iaia ia a e e a e e i --=+=- cos sin cos sin ia ia e a i a e a i a -=+=-2x edx +∞--∞=⎰()()i x f f x e dx λλ+∞--∞=⎰========================= 拉普拉斯变换()()sx f s f x e dx +∞-=⎰[]Re Re ax cL ce p a p a=>-21[]L x s=21[]()x L e x s ββ-⋅=+[]22sin kL kt s k=+ []22cos sL kt s k==+ []22[]2ax ax e e aL shax L s a --==- Re Re s a > []22[]2ax ax e e sL chax L s a -+==+ Re Re s a >基本性质[]1212[][]L f f L f L f αβαβ+=+ 1111212[][]L f f L f L f αβαβ---⎡⎤+=+⎣⎦[()][()],0s L f x e L f x τττ--=≥[()](),Re()ax L e f x f s a s a σ=--> 1[()](),(0)sL f cx f c c c=> ()12(1)[][](0)(0)(0)n n n n n L f s L f s f s f f ---'=----..01[()][()]x L f d L f x sττ=⎰ [][()]nn n d L f L x f ds=- ..()[]pf x fs ds L x∞=⎰() 1212[][][]L f f L f F f *= 0[()]()1sx L x x e dx δδ+∞-==⎰====================== 三个格林公式 高斯公式:设空间区域V 是由分片光滑的闭曲面S 所围成,函数P ,Q,R 在V 上具有一阶连续偏导数,则:V SP Q R dV Pdydz Qdzdx Rdxdy x y z ⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()()()cos ,cos ,cos ,V SP Q R dV P n x Q n y R n z dS x y z ⎛⎫∂∂∂++=++⎡⎤ ⎪⎣⎦∂∂∂⎝⎭⎰⎰⎰⎰⎰ 第一格林公式设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:SVVu v dS u vdV u vdV ∇⋅=∇⋅∇+∆⎰⎰⎰⎰⎰⎰⎰⎰第二格林公式设u(x,y,z),V(x,y,z)在SŲS V 上有一阶连续偏导数,它们在V 中有二阶偏导,则:()()SVu v v u dS u v v u dV ∇-∇⋅=∆-∆⎰⎰⎰⎰⎰第三格林公式设M 0,M 是V 中的点,v(M)=1/r MM0, u(x,y,z)满足第一格林公式条件,则有:000011111()44MM MM MM S V u u M u dS u dV r n n r r ππ⎡⎤⎛⎫⎛⎫∂∂=--∆⎢⎥ ⎪ ⎪ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 定理1:泊松方程洛平问题(,,),(,,)(,,),((,,),(xx yy zz SS S u u u u f x y z x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续) 的解为: 011111()()()()44S V u M M M dS f M dV r n r r ψϕππ⎡∂⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰⎰ 推论1:拉氏方程洛平问题0,(,,)(,,),((,,),(xx yy zz SS S u u u u x y z V uu x y z x y z n ϕψ∆=++=∈⎧⎪⎨∂==⎪∂⎩连续)连续)的解为: 0111()()()4S u M M M dS r n r ψϕπ⎡∂⎤⎛⎫=- ⎪⎢⎥∂⎝⎭⎣⎦⎰⎰ ============================调和函数1、定义:如果函数u(x,y,z)满足:(1) 在V S 具有二阶连续偏导数;(2) 0u ∆= 称u 为V 上的调和函数。

数学物理方程公式总结

数学物理方程公式总结

数学物理方程公式总结数学和物理是自然科学的两个重要分支,它们在研究自然界的规律时不可分割。

在数学和物理的学习过程中,我们经常会遇到大量的方程和公式。

这些方程和公式帮助我们理解和解决问题,归纳总结这些方程和公式有助于我们更好地掌握它们。

下面是一些数学物理方程公式的总结。

1.牛顿力学相关方程:- 运动方程: F = ma,其中 F 表示作用力,m 表示物体的质量,a 表示物体的加速度。

-牛顿第一定律:F=0,一个物体若无外力作用,则物体保持静止或匀速直线运动。

- 牛顿第二定律: F = ma,物体的加速度与作用力成正比,与物体的质量成反比。

-牛顿第三定律:F12=-F21,两个物体之间的作用力大小相等,方向相反。

2.热力学相关方程:-热力学第一定律:ΔU=Q-W,系统内部能量的变化等于吸热减去对外界做功。

-热力学第二定律:ΔS≥0,隔离系统内部的熵不会减少,或者说熵的增加不可逆。

-热力学第三定律:绝对零度时,熵为零。

3.电磁学相关方程:-库仑定律:F=k*(Q1*Q2)/r^2,两个点电荷之间的力与电荷大小成正比,与距离的平方成反比。

-高斯定律:Φ=E*A=Q/ε0,电场通过任意闭合曲面的通量与该曲面内的电荷成正比。

-法拉第电磁感应定律:ε=-ΔΦ/Δt,电磁感应产生的电动势与磁通量的变化率成正比。

4.波动与光学相关方程:-波速公式:v=λ*f,波速等于波长乘以频率。

- 光的折射定律: n1 * sin(θ1) = n2 * sin(θ2),光线从一种介质进入另一种介质时,入射角和折射角与两种介质的折射率成正比。

5.直流电路相关方程:-欧姆定律:V=I*R,电压与电流和电阻的关系。

- 串联电阻的总电阻: R_total = R1 + R2 + ...,串联电阻的总电阻等于各个电阻之和。

- 并联电阻的总电阻: 1/R_total = 1/R1 + 1/R2 + ...,并联电阻的倒数总电阻等于各个电阻的倒数之和。

数学物理方程知识点总结

数学物理方程知识点总结

数学物理方程知识点总结一、牛顿运动定律牛顿的运动定律是经典物理力学的基础,它描述了物体在力的作用下的运动规律。

牛顿的三大运动定律分别是:1. 第一定律:一个物体如果受力作用,将保持静止或匀速直线运动,直到受到外力的作用而改变其状态。

2. 第二定律:物体的加速度与作用力成正比,与质量成反比。

即F=ma。

3. 第三定律:作用力与反作用力大小相等,方向相反,且在同一直线上。

这三个定律描述了物体在受力作用下的运动规律,它们被广泛应用于物体的运动研究和工程设计中。

二、电磁场方程电磁场方程描述了电荷和电磁场之间的相互作用。

其中,麦克斯韦方程组是最基本的电磁场方程,它包括了电荷产生的电场和电流产生的磁场,并描述了它们随时间和空间的变化规律。

麦克斯韦方程组包括了4个方程,分别是:1. 静电场高斯定律:描述电荷产生的静电场。

2. 静磁场高斯定律:描述磁场的产生和分布。

3. 安培定律:描述电流产生的磁场。

4. 法拉第电磁感应定律:描述磁场的变化产生感应电场。

这些方程组成了电磁场的基本描述,它们被广泛应用于电磁场的研究和工程技术中。

三、热传导方程热传导方程描述了物体内部的热传导过程。

热传导方程可以描述物体内部温度分布和热量的传导规律。

通常情况下,热传导方程是一个偏微分方程,它描述了温度场随时间和空间的变化规律。

热传导方程一般形式为:δT/δt = αΔT其中,T表示温度场,t表示时间,α为热传导系数,ΔT为温度梯度。

这个方程被广泛应用于热传导问题的研究和工程设计中。

四、波动方程波动方程描述了机械波和电磁波在空间中的传播规律。

波动方程是一个偏微分方程,它描述了波动场随时间和空间的变化规律。

波动方程的一般形式为:∂^2ψ/∂t^2 = v^2∇^2ψ其中,ψ表示波动场,t表示时间,v为波速,∇^2为拉普拉斯算符。

波动方程描述了波动在空间中的传播和幅度变化规律,它被广泛应用于波动现象的研究和工程设计中。

总之,数学与物理方程是自然科学研究和工程技术发展的基础。

物理方程总结

物理方程总结

物理方程总结引言物理学是自然科学的一个重要分支,研究物质和能量之间相互作用的规律和性质。

在物理学中,方程是描述物理现象和规律的数学表达式。

本文将总结一些常见的物理方程,帮助读者了解物理学中的基本概念和原理。

运动学方程运动学方程用于描述物体在空间中的运动。

以下是一些常见的运动学方程:1. 位移方程位移方程用于计算物体在运动过程中的位移。

假设物体的初始位置为x0,末位置为x,时间为t,则位移方程为:\[ \Delta x = x - x_0 \]2. 平均速度方程平均速度方程用于计算物体在一段时间内的平均速度。

假设物体在时间t内移动了一个位移$\\Delta x$,则平均速度方程为:\[ v_{avg} = \frac{\Delta x}{t} \]3. 平均加速度方程平均加速度方程用于计算物体在一段时间内的平均加速度。

假设物体在时间t 内速度从v0变化到v,则平均加速度方程为:\[ a_{avg} = \frac{v - v_0}{t} \]4. 位移-时间方程(匀变速直线运动)位移-时间方程适用于匀变速直线运动的情况。

假设物体的初始位移为x0,初始速度为v0,加速度为a,时间为t,则位移-时间方程为:\[ x = x_0 + v_0t + \frac{1}{2}at^2 \]动力学方程动力学方程用于描述物体运动的原因和结果。

以下是一些常见的动力学方程:1. 牛顿第二定律牛顿第二定律描述了物体的受力和加速度之间的关系。

假设物体质量为m,受力为F,加速度为a,则牛顿第二定律方程为:\[ F = ma \]2. 动能定理动能定理描述了物体动能的变化与所受的合外力之间的关系。

假设物体的质量为m,初始速度为v0,末速度为v,则动能定理方程为:\[ \Delta KE = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 \]3. 弹性力学方程弹性力学方程适用于弹性物体的变形过程。

假设物体的弹性系数为k,位移为x,弹性势能为PE,则弹性力学方程为:\[ F = -kx \quad\quad PE = \frac{1}{2}kx^2 \]热力学方程热力学方程用于描述物质的热力学性质。

数学物理方程学习总结

数学物理方程学习总结

数学物理方程学习总结
数学物理方程,总体来说,我觉得是一门挺深奥的学科,难度较大。

它主要讲的就是三大方程(波动方程,热传导方程,调和方程)的推导,初边值问题的解及其性质(存在性,唯一性,稳定性)的讨论。

波动方程,对于非齐次线性方程组初值问题的解利用叠加原理,分为方程齐次和初值问题齐次,方程齐次利用的方法为行波法(达朗贝尔公式),初值齐次利用的是齐次化原理。

初边值问题—变量分离法,对于高维波动方程初值问题—泊松公式,性质讨论—能量不等式。

热传导方程,边值问题基本上与波动方程类似,初值问题—傅里叶变换。

性质讨论主要用到的就是极值原理。

调和方程,不存在柯西问题,它只有边值问题,分为狄利克雷内外问题。

主要方法为格林函数法,静电源像法,解决问题也比较单一,有球面,半空间,圆。

性质讨论—极值原理和先验估计均可。

高一物理计算方程思想总结

高一物理计算方程思想总结

高一物理计算方程思想总结物理计算方程是物理学中常用的一种思想方法,通过建立数学方程来描述物理现象,并对其中的物理量进行计算和分析。

在高一阶段学习物理时,学生开始接触到一些简单的物理计算方程,如匀速直线运动的位移公式、速度公式等。

下面对物理计算方程的思想进行总结。

首先,物理计算方程体现了物理规律的定量描述。

物理规律是通过实验和观察发现的,而物理计算方程则将这些规律转化为数学形式,使其更加精确和具体。

通过建立方程,可以将物理现象中的各种物理量用数值进行揭示,方便进行量的比较和计算。

其次,物理计算方程能够揭示物理量之间的关系。

在物理学中,不同的物理量之间存在着一定的关系,如位移与时间之间的关系、力与加速度之间的关系等。

通过解析这些方程,可以揭示出这些物理量之间的关系式,并获得它们之间的定量关系。

此外,物理计算方程还能够解决物理问题。

物理问题往往涉及到多个物理量之间的关系,通过建立相应的方程,可以利用已知的物理量来求解未知的物理量。

通过对方程的分析和计算,可以获得我们所需要的物理量,进而解决实际问题。

值得注意的是,物理计算方程的建立要根据具体的物理情境进行推导和归纳。

物理计算方程不是凭空想象出来的,而是通过对物理现象的观察和实验进行总结得出的。

所以,在学习和应用物理计算方程时,要了解物理现象的特点,明确各个物理量的定义和度量方式,才能正确建立和应用相应的方程。

最后,物理计算方程还能够培养学生的分析和解决问题的能力。

通过对物理计算方程的应用,学生需要理解问题的要求,分析问题的关键点,选择合适的方程以及进行计算和解答。

这样的过程要求学生进行理性思考和独立思考,培养了他们的逻辑思维和问题解决能力。

总之,物理计算方程作为物理学中常用的思想方法,在高一物理学习中有着重要的作用。

通过建立物理计算方程,可以将物理现象的规律定量描述并揭示物理量之间的关系,解决物理问题,培养学生的分析和解决问题能力。

因此,我们应该认真学习和掌握物理计算方程的思想与方法,使其成为我们学习和研究物理的一种有力工具。

数学物理方程学习总结

数学物理方程学习总结

数学物理方程学习总结四年前匡老师作为我的高数老师走进我的大学生活,如今作为一名研究生,很荣幸又能跟着匡老师学习数学。

我本科主修土木工程专业,现在学的是岩石力学专业,主要是跟着导师从事一些关于应力波的研究,所以数学物理方程这门课成了我的必修课。

数学物理方程研究的主要对象是从物理学中提出来的一些偏微分方程。

这些方程中的自变量和函数有着鲜明的物理意义,有些问题的解可以通过实验给出,这给偏微分方程的研究指明了方向,同时由于物理学上的需求,就诞生了专门研究有物理意义的偏微分方程的解法。

本学期数学物理方程起初学习了拉普拉斯和傅立叶变换概念、性质以及卷积定理,了解其在微分方程求解中的应用,并着重介绍了Γ函数和β函数的性质以及其两者的关系。

然后介绍了三大经典方程的建立和定解条件(泊松方程与拉普拉斯方程都是描述恒稳场状态,与初始状态无关,所以不提初始条件)的提出和表示。

第四章和第五章分别详细的讲了分离变量法、行波法和积分变换法在求解经典方程中的应用,主要针对求解热传导方程和波动方程。

三种方法有时候可以通用但有时候还是有区别,分离变量法主要用来求解有限区域内定解问题;行波法是一种针对无界域的一维波动方程的求解方法;积分变换法主要是求解一个无界域上不受方程类型限制的方法。

第六章主要讲述用格林函数法求解拉普拉斯方程,伊始提出两种拉普拉斯方程的边值问题(狄氏内问题、狄氏外问题、牛曼内问题、牛曼外问题),然后介绍几种格林函数的取得,最后简介求解狄氏问题。

最后三章分别介绍几个特殊类型的常微分方程(贝塞尔方程和勒让德方程)的引入和他们性质和求解。

数学物理方程概括起来就是使用四种方法求解三种经典方程,介绍求解过程中产生的两种特殊函数的一门学科。

作为数理方程的学习者,本人觉得它确实是一门比较难的课程,真正的难点却并不是只有数理方程课程本身,而是对以前高等数学学过的知识的理解与记忆的加深。

所以,我觉得想学好这门课程,不仅要把时间放在对相关内容的巩固、复习上,还得多做课本上的例题、习题。

数学物理方程学习总结-中国科学技术大学

数学物理方程学习总结-中国科学技术大学
2 ∂2u 2∂ u = a ∂t2 ∂x2
(1.23)
可以在用特征线进行代换 ξ1 = x − at, x2 = x + at 后化为标准型 ∂2u =0 ∂ξ1 ∂ξ2 分别对 ξ1 , ξ2 积分就得到通解 u = f (x − at) + g (x + at) f, g 为任意光滑函数,这组解因物理意义称为行波解 对于有较大物理意义的定解问题 2 2 ∂ u 2∂ u = a 2 ∂x2 ∂t u|t=0 = φ(x) ∂u = ψ (x) ∂t t=0 有 d’Alembert 公式 1 1 u(x, t) = [φ(x − at) + φ(x + at)] + 2 2a ˆ
第一章
偏微分方程定解问题
7
1.5.2
双曲型方程
此时特征方程有两支解,分别对应 √ √ dy a12 + ∆ a12 − ∆ dy = = 与 dx a11 dx a11
(1.21)
可以解出两组特征线 φ1 = h1 , φ2 = h2 ,使用特征线对应的函数进行代换 (ξ1 = φ1 (x1 , x2 ), ξ2 = φ2 (x1 , x2 ),此时可以验证 Jacobi 行列式非零) ,即有 A11 = A22 = 0。方程化为标准型
1.3 偏微分方程的定解条件
未包含其他条件的“裸的”偏微分方程是泛定方程,用于确定解中未知 函数的条件称为定解条件,泛定方程配上恰好足够的定解条件构成一套定解 问题。习惯上把一些物理问题中的出的定解条件分为初始条件、边界条件、 衔接条件等。
1.3.1
初始条件
∂mu ∂tm
给出未知函数 u 及其对时间的诸偏导数 值。
i i 1 2 n

数学物理方程小结

数学物理方程小结

解 法 二 : Fourier Fourier 法
数学物理方程小结
1.6‘定解问题
utt − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), ut ( x, 0) = 0 (−∞ < x < +∞)
utt (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % Fourier变换 % Fourier % % 定解问题: u (λ , 0) = ϕ (λ ), ut (λ , 0) = 0 %
方程具有傅立叶正弦级数解
nπ x u ( x, t ) = ∑ Tn (t ) sin l n =1

nπ at nπ at nπ x u ( x, t ) = ∑ An cos + Bn sin sin l l l n =1

数学物理方程小结
1.2定解问题
utt − a 2u xx = 0 u x (0, t ) = 0, u x (l , t ) = 0 (t > 0) u ( x, 0) = ϕ ( x), u ( x, 0) = ψ ( x) (0 < x < l ) t
数学物理方程小结
解 法 二 : Fourier Fourier 变 换 法 2.6’定解问题
ut − a 2u xx = 0 (t > 0) u ( x, 0) = ϕ ( x), (−∞ < x < +∞)
Fourier 定解问题 解 Fourier
ut (λ , t ) − a 2 (iλ ) 2 u (λ , t ) = 0 % % % % u (λ , 0) = ϕ (λ ),

(完整word版)数学物理方法总结(改)(word文档良心出品)

(完整word版)数学物理方法总结(改)(word文档良心出品)

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而 ()x C ϕ=.故 v=2xy+C.222()(2)f z x y i x y C z i C=-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2lf z f dz iz απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限11010l i m l i m 1k k k k k k kk a z z aR a a z z +++→∞→∞->=-,即说明20102000()()()......()......k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1l i m1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑. 双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim{[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--. 推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xz zz π-====-=-+++++⎰⎰⎰,Z的单极点为1,22z ==- 则221Re (22241z s i z z z π→--=+=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()}i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()}i m x G x m x d x G x e π∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n )k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰, k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i l lk l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1. ()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()ptf p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()()c f t c f t c f pc fp ++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a . (5) 位移定理 ()()te f t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()()f t f t f p f p , 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为ux∂∂,xx u 意为22u x ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)u f M t n∑∂=∂第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sinn n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k l k X x C x lπλπ+=+= 其中 k=0,1,2…… (4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+. 初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(c o s )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(c o s )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l lr r l u A r P x P x P x θθ∞======+∑,则 22200121(,)(c o s )(c o s )33l l l l u r A r P r P r θθθ∞===+∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学物理方程小结第七章 数学物理定解问题数学物理定解问题包含两个部分:数学物理方程(即泛定方程)和定解条件。

§7.1数学物理方程的导出一般方法: 第一确定所要研究的物理量u ,第二 分析体系中的任意一个小的部分与邻近部分的相互作用,根据物理规律, 抓住主要矛盾, 忽略次要矛盾。

(在数学上为忽略高级小量.)第三 然后再把物理量u 随时间,空间的变为通过数学算式表示出来, 此表示式即为数学物理方程。

(一) 三类典型的数学物理方程(1)波动方程: 0:),(:),(:22222222==∂∂-∂∂=∆-∂∂→f 当无外力时t x f xua t u 一维t r f u a tu 三维 此方程 适用于各类波动问题。

(特别是微小振动情况.)(2)输运方程: 0:).(:),(:2222==∂∂-∂∂=∆-∂∂→f 无外源时t x f x u a t u 一维t r f u a tu 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程: .0(:0:).程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==∆=∆→稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方程 。

§7.2定解条件定解条件包含初始条件与边界条件。

(1) 初始条件的个数等于方程中对时间最高次导数的次数。

例如波动方程应有二个初始条件, 一般选初始位移u (x,o )和初始速度u t (x,0)。

而输运方程只有一个初始条件选为初始分布u (x,o ),而Laplace 方程没有初始条件。

(2) 三类边界条件第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3)其中H 为常数.7.3 二阶线性偏微分方程分类判别式 ,,0,,0,,0221121222112122211212抛物型a a a 椭圆型a a a 双曲型a a a =-=∆<-=∆>-=∆ 波动方程是双曲型的,输运方程为抛物型的,而拉普拉斯方程为椭圆型的. 7.4 达朗贝尔公式对一维无界的波动方程,当不考虑外力时,定解问题为()()()()()()()[]()⎰+-+++-====∂∂-∂∂atx at x t d aat x at x t x u 解为x x u x x u x u a t u ξξψϕϕψϕ2121,:0,0,022222对半无界问题作延拓处理:对第一类齐次边界条件作奇延拓,而对第二类齐次边界条件作偶延拓.第八章 分离变量法 8.1 分离变量法 主要步骤:1.边界条件齐次化,对非齐次边界条件首先把它化为齐次的.•2.分离变量 u(x,t) =X(x) T(t) (1)[以后对三维问题也是如此]•3. 将(1)式代入原方程得出含任意常数λ的常微分方程, (称为本征方程) 而λ为本征值.•4.由齐次边界条件确定本征值,并求出本征方程.(得出的解为本征函数)•5.根据迭加原理把所有满足方程的线性无关解迭加后,就能得通解.•6.再由初始条件确定系数.一维波动方程在第一类齐次边界条件下的()()()()()()()()()4,sin 2:3,sin 22,sin0,:1,sin sin cos,:0011ξπξξψπξπξξϕϕππππd ln a n b 同样d ln l a x lxn a x u 代入边入边界lxn l at n b l at n a t x u 通解ln ln n n n n n ⎰⎰∑∑====⎪⎭⎫ ⎝⎛+=∞=∞=一维波动方程在第二类齐次边界条件下的通解:()()()()()()()()7.cos 2,cos 26.1,15,cossin cos .000000100ξπξξψπξπξξϕξξψξξϕπππd ln a n B d l n l A d l B d l A l x n l at n B l at n A t B A t x u ln ln ll n n n ⎰⎰⎰⎰∑====⎪⎭⎫ ⎝⎛+++=∞=一维输运方程在第一类齐次边界条件下的通解:()()⎰∑==⎪⎭⎫ ⎝⎛-∞=ln t l a n n n d ln l c lx n ec t x u 01sin 2,sin ,2ξπξξϕππ一维输运方程在第二类齐次边界条件下的通解:()()()⎰⎰∑===⎪⎭⎫⎝⎛-∞=ln lt l a n n n d ln l c d l c lx n ec t x u 0000cos 2,1,cos ,2ξπξξϕξξϕππ对其他的齐次边界条件,如本征函数已知也可直接求解,而对本征函数不熟则只能用分离变量法来求解. 8.2 非齐次边界条件的处理 常用方法有 1) 直线法 :对边界条件为: u(0,t)=g(t), u(L,t)=h(t) .令 ()()()()()x Lt g t h t g t x u t x v ---=,, ,可把边界条件化为齐次,但一般情况下方程变为非齐次. •只有当g,h 为常数时,方程才不变.2) 特解法•把 u 化为两部分,令 u=v+w 使v 满足齐次边界条件与齐次方程,而使w 满足齐次方程与非齐次边界条件.下面通过实例来介绍此方法. • 例题 求解下列定解问题• U tt -a 2 U xx = 0 • U|x=0 =0, U|x=L = ASin ωt • U|t=0 = 0 , U t ∣t=0 = 0 •( 其中A 、ω为常数, 0<x <L , 0< t ) •解:令 u=v+w ,使w 满足波动方程与非齐次边界条件,•得出()altaxA t x w ωωωsinsin sin,..第九章 二阶常微分方程的级数解法本征值问题一.拉普拉斯方程与亥姆霍斯方程在球坐标与柱坐标下分离变量结果.1. 拉普拉斯方程在球坐标下的通解:()()()1,,1,,,1ϕϑϕϑim m l l L ll Y r B r A r u ∑⎪⎭⎫ ⎝⎛+=+其中Y lm 为球函数,拉普拉斯方程在球坐标下的解不依赖于边界条件.在轴对称时(1)式退化为()()()∑∞=+⎪⎭⎫ ⎝⎛+=012,cos ,l l l l l l P r B r A r u θθ2. 拉普拉斯方程在柱坐标下:()()()()()()()()()()()()()()()()()()..55.0:4,,0,ln :4;:3,04.01.3.022,1,0,sin cos 1.,,222222222''2程为m 阶Bessel方R m x dxdR x dx R d x 式为今x m F E R 式解为Bz A z Z 的解为R m d dR d R d Z Z m m m b m a z Z r R z u =-++==+=+===⎪⎪⎭⎫⎝⎛-++=-==+=ΦΦ=ρμρμρμρρρμλϕϕϕϕϕρ(5)式其解为m 阶Bessel 函数,解依赖于边界条件,当侧面边界条件是齐次时, μ<0.对应的解是虚贝塞尔函数.3. 亥姆霍斯方程在球坐标与柱坐标下分离变量结果.在球坐标下: ()()()ϕϑϕϑ,,,Y r R r u=其中Y 为球函数,R 为球贝塞尔函数.在柱坐标下: .()()()()()()()()()()()()()5.0:4,;4.01.3.022,1,0,sin cos 1.,,22222222222222''2=-++=-==⎪⎪⎭⎫ ⎝⎛--++=+==+=ΦΦ=R m x dxdR x dx R d x 式为今x k 令R m k d dR d R d Z Z m m m b m a z Z r R z u ρμνμρνρρρνλϕϕϕϕϕρ (5)式其解为m 阶Bessel 函数, 二、常微分方程的级数解法 1. 掌握常点邻域的级数解法. 2. 掌握正则奇点邻域的级数解法. 3.知道无穷级数退化为多项式的方法.三. 知道Sturm-Livouville 本征值问题的共同性质 •当k(x),q(x)和ρ(x)都只取非负的值(≥0), Sturm-Livouville 方程共同性质为:•1)当k(x),k ’(x)和q(x)连续且x=a 和x=b 最多为一阶极点时,存在无限多个本征值及对应的本征函数:()()()()x y x y x y x y k k 321321,,≤≤≤≤≤λλλλ••2)所有本征值λn ≥0•3)对应于不同本征值的本征函数带权正交()()()()m n dx x x y x y banm≠=⎰,0ρ•4)本征函数族构成完备系()()∑∞==1n n n x y f x f第十章 球函数一、 对称的球函数当物理问题绕某一轴转动不变时,选此轴 为z 轴这时物理量u 就与φ无关,m=0.那末球函数Y(θ,φ)就为L 阶勒让德多项式.即Y=P l (cos θ) 1) 勒让德多项式1. 勒让德多项式级数形式:()()()()()()1.!2!2!!22121202∑-=-----=l 或l n nl lnl x n l n l n n l x P 2. 勒让德多项式微分形式:()()()2.1!212l ll l l x dxd l x P -=3.前几项为:P 0(x)= 1, P 1(x) =x=cos θ, •P 2(x)=(3x 2-1)/2, ….. •一般勒让德多项式的幂次取决L•当L 为偶数时都为偶次幂项,L 为奇数时都为奇次幂项. 对特殊点x=1,0.()()()()()()()()(),!!2!!1210,00,1,11212n n P P x P x P P nn n l ll l --==-=-=- •4.勒让德多项式正交关系 ()lk l k l N dx x P x P δ211)(=⎰- (3) •5.勒让德多项式的模 122,1222+=+=l N l N l l (4) • 6.广义傅里叶级数 :当f(x)在[-1,1]连续可导,且在x=-1与1有限时.()()()(),212111⎰∑-∞=+==dx x P x f l f x P f x f l l l l l (5) •7.在球坐标下Laplace 方程: △u= 0的通解为:()()()∑∞=+⎪⎭⎫ ⎝⎛+=016,cos ,l l l l ll P r B r A r u θθ(6)式有两系数需要两条件来确定,对球坐标有两自然边界条件,r=0与r →∞,球内解包含r=0,•u 有限, ()∑∞===0cos ,0l l ll l P r A u B θ (7)•而A l 由球面的边界条件确定,同样对球外区域两系数由球面的边界条件与r →∞, 两个条件确定. 8. 母函数()∑∞==+-02cos cos 211l l l P r r r θθ (8)9. 递推公式()()()()()()()0.12.2,112'1'1''1'111>-=+-+=++=+-+-++-l P P P l xP P P P x P l x lP x xP l l l l l l l l l l l二.连带勒让德函数•在一般情况下,物理量u 与φ有关,故球函数Y 是连带勒让德函数与周期函数的乘积.1. 连带勒让德函数()[]()x P x m l m 221-=Θ (1)2.连带勒让德函数的微分表示 ()().1!21222l m l m l l m m l x dx d l x P --=++ (2) 从(2)可得当L 一定时,m 的取值为 m=0,1,2…L.共有L+1个值.3.正交关系()()()()()!!1223.2211m l m l l 模平方N N dx x P x P ml lk ml m km l -++==⎰-δ•..(注:本资料素材和资料部分来自网络,仅供参考。

相关文档
最新文档