八年级下册数学教案新人教版
新人教版八年级数学下册《平行四边形》教案设计(10篇)
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
关于名师新人教版八年级数学下册教案5篇
关于名师新人教版八年级数学下册教案5篇关于名师新人教版八年级数学下册教案5篇数学的本质在于它的自由。
数学是打开科学大门的钥匙。
数学是各式各样的证明技巧。
挑选好一个确定得研究对象,锲而不舍。
你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。
这里给大家分享一些关于名师新人教版八年级数学下册教案,供大家参考学习。
名师新人教版八年级数学下册教案(精选篇1)一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。
⑶平移不改变图形的大小和形状(只改变图形的位置)。
(4)平移后的图形与原图形全等。
3.简单的平移作图①确定个图形平移后的位置的条件:⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转2.旋转的性质⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成①确定组合图案中的“基本图案”②发现该图案各组成部分之间的内在联系③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;⑸旋转变换与轴对称变换的⑹轴对称变换与平移变换的组合。
八年级数学下册电子版全册教案(新人教版)
第十六章二次根式16.1二次根式第1课时二次根式的概念和性质1.二次根式的概念和应用.2.二次根式的非负性.重点二次根式的概念.难点二次根式的非负性.一、情景导入师:(多媒体展示)请同学们看屏幕,这是东方明珠电视塔.电视节目信号的传播半径r/km与电视塔高h/km之间有近似关系r=2Rh(R为地球半径).如果两个电视塔的高分别为h1km,h2km,那么它们的传播半径之比为多少?同学们能化简这个式子吗?由学生计算、讨论后得出结果,并提问.生:半径之比为2Rh12Rh2,暂时我们还不会对它进行化简.师:那么怎么去化简它呢?这要用到二次根式的运算和化简.如何进行二次根式的运算?如何进行二次根式的化简?这将是本章所学的主要内容.二、新课教授活动1:知识迁移,归纳概念用含根号的式子填空.(1)17的算术平方根是________;(2)如图,要做一个两条直角边长分别为7 cm和4 cm的三角形,斜边长应为________cm;(3)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为________m;(4)面积为3的正方形的边长为________,面积为a的正方形的边长为____________;(5)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t=________.【答案】(1)17(2)65(3)65(4)3 a (5)h 5活动2:二次根式的非负性(1)式子a表示的实际意义是什么?被开方数a满足什么条件时,式子a才有意义?(2)当a>0时,a________0;当a=0时,a________0;二次根式是一个________.【答案】(1)a的算术平方根,被开方数a必须是非负数(2)>=非负数老师结合学生的回答,强调二次根式的非负性.当a>0时,a表示a的算术平方根,因此a>0;当a=0时,a表示0的算术平方根,因此a=0.也就是说,当a≥0时,a≥0.三、例题讲解【例】当x是怎样的实数时,x-2在实数范围内有意义?解:由x -2≥0,得x ≥2.所以当x ≥2时,x -2在实数范围内有意义. 四、巩固练习1.已知a -2+b +12=0,求-a 2b 的值.【答案】a -2≥0,b +12≥0,又∵它们的和为0,∴a -2=0且b +12=0,解得a =2,b =-12.∴-a 2b =-22×(-12)=2.2.若x ,y 使x -1+1-x -y =3有意义,求2x +y 的值. 【答案】-1 五、课堂小结1.本节课主要学习了二次根式的概念.形如a(a ≥0)的式子叫做二次根式,“ ”称为二次根号.2.二次根式的被开方数必须是什么数才有意义?a(a ≥0)又是什么数?六.课后作业必做题: 选做题: 七.板书设计第2课时 二次根式的化简1.理解(a)2=a(a ≥0),并能利用它进行计算和化简.2.通过具体数据的解答,探究a 2=a(a ≥0),并利用这个结论解决具体问题.重点理解并掌握(a)2=a(a ≥0),a 2=a(a ≥0)以及它们的运用. 难点探究结论.一、复习导入教师复习口述上节课的重要内容,并板书:1.形如a(a≥0)的式子叫做二次根式.2.a(a≥0)是一个非负数.那么,当a≥0时,(a)2等于什么呢?下面我们一起来探究这个问题.二、新课教授活动1:根据算术平方根的意义填空:(4)2=____;(2)2=____;(13)2=____;(52)2=____;(0.01)2=____;(0)2=____.由学生计算、讨论得出结果,并提问部分过程,教师进行点评.老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此(4)2=4.同理:(2)2=2;(13)2=13;(52)2=52;(0.01)2=0.01;(0)2=0.所以归纳出:(a)2=a(a≥0).【例1】教材第3页例2活动2:填空:22=___;0.12=___;(13)2=___;(37)2=___;(212)2=___;02=___.教师点评:根据算术平方根的意义,我们可以得到:22=2;0.12=0.1;(13)2=13;(37)2=37;(212)2=212;02=0.所以归纳出:a2=a(a≥0).【例2】教材第4页例3教师点评:当a≥0时,a2=a;当a≤0时,a2=-a.三、课堂小结本节课应理解并掌握(a)2=a(a≥0)和a2=a(a≥0)及其运用,同时应理解a2=-a(a≤0).四.课后作业必做题:选做题:五.板书设计16.2二次根式的乘除第1课时二次根式的乘法理解并掌握a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0),会利用它们进行计算和化简.重点a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0)及它们的运用.难点利用逆向思维,导出a·b=a·b(a≥0,b≥0).一、创设情境,导入新课活动1:发现探究填空:(1)4×9=_____,4×9=______;(2)25×16=_____,25×16=______;(3)19×36=____,19×36=_______;(4)100×0=_____,100×0=______.生:(1)4×9=6,4×9=6;(2)25×16=20,25×16=20;(3)19×36=2,19×36=2;(4)100×0=0,100×0=0.试一试,参考上面的结果,比较四组等式的大小关系.生:上面各组中两个算式的结果相等.二、新课教授活动2:总结规律结合刚才的计算,学生分组讨论,教师提问部分学生,最后教师综合学生的答案,加以点评,归纳出二次根式的乘法法则.教师点评:1.被开方数都是非负数.2.两个非负数算术平方根的积等于它们积的算术平方根.一般地,二次根式的乘法法则为:a·b=ab(a≥0,b≥0)由等式的对称性,反过来:ab=a·b(a≥0,b≥0)活动3:讲练结合教材第6~7页例题三、巩固练习完成课本第7页的练习.【答案】课本练习第1题:(1)10;(2)6;(3)23;(4)2.第2题:(1)77;(2)15;(3)2y;(4)4bc ac.第3题:4 5.四、课堂小结本节课应掌握:a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0)及其应用.五.课后作业必做题:选做题:六.板书设计第2课时二次根式的除法理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0),会利用它们进行计算和化简.重点理解并掌握ab=ab(a≥0,b>0),ab=ab(a≥0,b>0),利用它们进行计算和化简.难点归纳二次根式的除法法则.一、复习导入活动1:1.由学生回答二次根式的乘法法则及逆向等式.2.填空.(1)925=______,925=_____;(2)164=_____,164=_____;(3)8149=_____,8149=_____;(4)3664=_____,3664=_____.二、新课教授活动2:先由学生对上面的结果进行比较,观察每组两个算式结果的大小关系,并总结规律.教师点评:一个非负数的算术平方根除以一个正数的算术平方根,等于它们商的算术平方根.一般地,二次根式的除法法则是:ab=ab(a≥0,b>0)由等式的对称性,反过来:ab=ab(a≥0,b>0)【例】教材第8~9页例题三、巩固练习课本第10页练习第1题.【答案】(1)3(2)23(3)33(4)2a四、课堂小结本节课应掌握ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及其应用.五.课后作业必做题:选做题:六.板书设计第3课时 最简二次根式最简二次根式的概念、利用最简二次根式的概念和性质进行二次根式的化简和运算.重点最简二次根式的运用. 难点会判断这个二次根式是否是最简二次根式.一、复习导入(学习活动)请同学们完成下列各题.(请四位同学上台板书) 计算:(1)23;(2)2618;(3)82a ;(4)x 3x 2y.教师点评:(1)23=63;(2)2618=233;(3)82a =2a a ;(4)x 3x 2y=xy y .二、新课教授教师点评:上面这些式子的结果具有如下两个特点: 1.被开方数不含分母.2.被开方数中不含能开得尽方的因数或因式.师:我们把满足上述两个条件的二次根式,叫做最简二次根式.(教师板书) 教师强调:在二次根式的运算中,一般要把最后结果化为最简二次根式. 【例1】判断下列式子是不是最简二次根式,为什么?(1)3xy 12x ;(2)25a 3a 3;(3)1x;(4)0.2a.解:(1)被开方数中有因数12,因此它不是最简二次根式;(2)被开方数中有开得尽方的因式a 2,因此它不是最简二次根式;(3)被开方数中有分母,因此它不是最简二次根式;(4)被开方数中有因数0.2,它不是整数,所以它不是最简二次根式.【例2】化简:(1)278;(2)12x 2y 3(x ≥0);(3)a 2b 4+a 4b 2(ab ≥0).解:(1)278=27×28×2=916×6=346;(2)12x 2y 3=4x 2y 2·3y =2xy 3y ;(3)a 2b 4+a 4b 2=a 2b 2(b 2+a 2)=ab a 2+b 2. 【例3】教材第9页例7 三、课堂小结1.本节课应掌握最简二次根式的特点及其运用. 2.二次根式的运算结果要化为最简二次根式. 四.课后作业必做题:选做题:五.板书设计16.3二次根式的加减第1课时二次根式的加减理解并掌握二次根式加减的方法,并能用二次根式加减法法则进行二次根式的加减运算.重点理解并掌握二次根式加减计算的方法.难点二次根式的化简、合并被开方数相同的最简二次根式.一、复习导入(学生活动)1.计算:(1)x+2x;(2)3a-2a+4a;(3)2x2-3x2+5x2;(4)2a2-4a2+3a.2.教师点评:上面的运算实际上就是以前所学习的合并同类项,合并同类项就是字母连同指数不变,系数相加减.二、新课教授(学生活动)1.类比计算,说明理由.(1)2+22;(2)38-28+48;(3)32+8;(4)23-33+12.2.教师点评:(1)2+22=(1+2)2=32;(2)38-28+48=(3-2+4)8=58=102;(3)虽然表面上2与8的被开方数不同,不能当作被开方数相同,但8可化为22,32+8=32+22=(3+2)2=52;(4)同样12可化为23,23-33+12=23-33+23=(2-3+2)3= 3.所以在用二次根式进行加减运算时,如果被开方数相同则可以进行合并,因此可将二次根式先化为最简二次根式,比较被开方数是否相同.因此可得:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【例1】教材第13页例1 【例2】教材第13页例2 三、巩固练习教材第13页练习第1,2题.【答案】第1题:(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.第2题:(1)-47;(2)35;(3)102-33;(4)36+142.四、课堂小结本节课应掌握进行二次根式加减运算时,先把不是最简二次根式的化成最简二次根式,再把相同被开方数的最简二次根式进行合并.五.课后作业必做题: 选做题: 六.板书设计第2课时 二次根式的加减乘除混合运算含有二次根式的式子进行加减乘除混合运算和含有二次根式的多项式乘法公式的应用.重点二次根式的加减乘除混合运算. 难点由整式运算知识迁移到含二次根式的运算. 一、复习导入(学生活动):请同学们完成下列各题. 计算:(1)(3x 2+2x +2)·4x ; (2)(4x 2-2xy)÷(-2xy); (3)(3a +2b)(3a -2b); (4)(2x +1)2+(2x -1)2. 二、新课教授由于整式运算中的x ,y ,a ,b 是字母,它的意义十分广泛,可以代表一切,当然也可以代表二次根式,因此整式中的运算规律也适用于二次根式,下面我们就使用这些规律来进行计算.【例1】计算: (1)(8+3)×6;(2)(42-36)÷2 2.分析:二次根式仍然满足整式的运算规律,所以可直接用整式的运算规律. 解:(1)(8+3)×6=8×6+3× 6 =48+18=43+32; (2)(42-36)÷2 2=42÷22-36÷22=2-323.【例2】计算:(1)(2+3)(2-5); (2)(5+3)(5-3); (3)(3-2)2.分析:第(1)题可类比多项式乘以多项式法则来计算,第(2)题把5当作a ,3当作b ,就可以类比(a +b)(a -b)=a 2-b 2,第(3)题可类比(a -b)2=a 2-2ab +b 2来计算.解:(1)(2+3)(2-5) =(2)2+32-52-15 =2+32-52-15 =-13-22;(2)(5+3)(5-3)=(5)2-(3)2=5-3=2; (3)(3-2)2=(3)2-2×3×2+(2)2 =5-2 6. 三、巩固练习教材第14页练习第1,2题.【答案】第1题:(1)6+10;(2)4+22;(3)11+55;(4)4.第2题:(1)9;(2)a -b ;(3)7+43;(4)22-410.四、课堂小结本节课应掌握利用整式运算的规律进行二次根式的乘除、乘方等运算.五.课后作业必做题: 选做题: 六.板书设计第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.阅读教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm ,面积为________cm2.【答案】(1)17(2)7(3)68(4)6,8,10(5)3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?五.课后作业必做题:选做题:六.板书设计第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】23 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.五.课后作业必做题:选做题:六.板书设计第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b 为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC =4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.五.课后作业必做题:选做题:六.板书设计17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.一、复习导入活动探究(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.五.课后作业必做题:选做题:六.板书设计第2课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32页例1。
八年级下册数学教案人教版4篇
八年级下册数学教案人教版4篇八年级下册数学教案人教版1图形的平移知识与技能目标:1.平移的定义;2.平移的基本性质过程与方法目标:1.通过具体实例认识平移,理解平移的基本内涵.2.探索平移的基本性质,理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.情感态度与价值观目标:经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移的基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
教学重点:平移的基本性质.教学难点:平移的基本内涵的理解.教学方法:探索、发现法.教具准备图片:一些游乐园的图片、辘轳、电梯等.电脑演示:平移的过程,粒子运动及行星运转等.教学过程Ⅰ.巧设情景问题,引入课题同学们,还记得游乐园内的一些项目吗?(或投影片放图片,或在电脑上演示幻灯片):旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?Ⅱ.讲授新课下面我们来看第一节:生活中的平移(电脑演示:P57的图3—1,然后提出问题)(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?好,(电脑出示问题,并演示四边形ABCD移动到四边形EFGH的位置的过程) 如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?八年级下册数学教案人教版2平均数一、教学目的:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解三、例习题意图分析1、教材P136的问题及讨论栏目在教学中起到的作用。
人教版八年级数学下册全册教案范文5篇
人教版八年级数学下册全册教案范文5篇人教版八年级数学下册全册教案范文5篇世界上有一种情,超越了亲情友情。
那就是老师对我们无微不至的关怀之情,对我们细心教导之情。
我真心祝福老师万事如意永远健康,永远HAPPY!这里给大家分享一些关于人教版八年级数学下册全册教案,供大家参考学习。
人教版八年级数学下册全册教案精选篇1教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,思考得到的图形有何特点2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,思考得到的图形有何特点【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起(2)此时它们的顶点、边、角有何特点【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,对应顶点在相对应的位置.人教版八年级数学下册全册教案精选篇2教学目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线.2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力.3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯.教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
人教版八年级下册数学教案5篇
人教版八年级下册数学教案5篇人教版八年级下册数学教案5篇在我们的教学当中可能会发现有些学生对数学有厌学心理,所以我们的教学设计就要激发通过性们对数学的兴趣,降低数学学习的难度。
下面小编给大家带来关于人教版八年级下册数学教案,方便大家学习人教版八年级下册数学教案1教学目标1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重难点掌握长方体和正方体表面积的计算方法。
教学工具长方体、正方体纸盒,剪刀,投影仪教学过程【复习导入】1.什么是长方体的长、宽、高什么是正方体的棱长2.指出长方体纸盒的长、宽、高,并说出长方体的特征。
指出正方体的棱长,并说出正方体的特征。
【新课讲授】1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。
请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。
让学生分别沿着正方体的棱剪开。
得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系观察后,小组议一议。
引导学生总结长方体的表面积概念。
长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么(这个长方体饭包装箱的表面积)先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
第十七章勾股定理(教案)2023-2024学年人教版数学八年级下册
6.增强学生的合作交流意识,通过小组讨论和合作解决问题,培养学生的团队协作能力和沟通技巧。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的表述及其在直角三角形中的应用,即直角三角形两直角边的平方和等于斜边的平方。
b.通过实际案例和练习题,指导学生识别直角三角形的特征,强调在实际问题中如何定位直角三角形,并准确应用勾股定理。
c.对于勾股定理逆定理的理解,教师可以通过构造非直角三角形和直角三角形的对比,让学生通过观察和分析,总结出直角三角形的特性,从而掌握判断方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”比如,测量旗杆的高度或者计算建筑物与地面的距离。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述及其计算方法。对于难点部分,如定理的证明,我会通过直观的图形演示和逐步的逻辑推理来帮助大家理解。
(三)实践活动(用时10分钟)
人教版数学八年级下册教案全册完整版
人教版数学八年级下册教案全册完整版一、教学内容1. 第十三章:平面几何1.1 线段和直线1.2 角1.3 多边形1.4 平行四边形1.5 矩形、菱形、正方形2. 第十四章:函数2.1 函数的定义2.2 一次函数2.3 二次函数2.4 反比例函数2.5 函数的应用二、教学目标1. 理解并掌握平面几何的基本概念和性质,能够运用几何知识解决实际问题。
2. 掌握函数的定义、图像和性质,能够运用函数知识解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:几何图形的性质和判定函数图像的绘制和性质分析2. 教学重点:几何图形的分类和性质函数的定义和性质四、教具与学具准备1. 教具:黑板橡皮、直尺、圆规等绘图工具多媒体设备2. 学具:笔记本铅笔、橡皮、直尺、圆规等绘图工具五、教学过程1. 导入:利用生活实例引入平面几何和函数的概念,激发学生学习兴趣。
2. 新课内容:详细讲解教材中的知识点,通过例题和随堂练习巩固所学内容。
3. 课堂讲解:对重点、难点知识进行详细讲解,结合实际应用进行分析。
4. 课堂练习:设计不同难度的练习题,让学生独立完成,并及时给予指导和反馈。
六、板书设计1. 人教版数学八年级下册教案2. 内容:章节和知识点例题和解答过程重点、难点提示七、作业设计1. 作业题目:第十三章:1.1 画出线段和直线1.2 判断角的类型1.3 绘制多边形1.4 判断平行四边形1.5 分析矩形、菱形、正方形的性质第十四章:2.1 解释函数的定义2.2 绘制一次函数图像2.3 分析二次函数性质2.4 解释反比例函数2.5 解决函数应用问题2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:设计相关竞赛题目,提高学生运用几何和函数知识解决问题的能力。
鼓励学生进行课后自主学习,拓展知识面。
重点和难点解析一、教学内容1. 几何图形的性质和判定重点和难点解析:这部分内容涉及到的几何图形种类繁多,性质和判定方法各异。
人教版八年级数学下册教案【精选5篇】
人教版八年级数学下册教案【精选5篇】人教版八年级数学下册教案【精选5篇】数学的课件很有意义的。
20世纪是科学技术空前辉煌的世纪,如何展现那些辉煌的科技成就呢?下面小编给大家带来关于人教版八年级数学下册教案,希望会对大家的工作与学习有所帮助。
人教版八年级数学下册教案(精选篇1)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
人教版八年级数学下册教案(精选篇2)一、分式※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式;整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变;※3.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分;※4.分子与分母没有公因式的分式,叫做最简分式;二、分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三、分式的加减法※1.分式与分数类似,也可以通分;根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;※2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减;(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3.概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的次幂的积;(3)如果分母是多项式,则首先对多项式进行因式分解;四、分式方程※1.解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验;※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案;人教版八年级数学下册教案(精选篇3)一、分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】
【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】人教版八年级下册数学教案篇一教学目标:一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。
学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
新部编人教版初中八年级下册数学全册教案
部编版·八年级下册数学全册教案(新教材)学校:____ _______教师:_________2020年1月16.1.1 二次根式教案序号:1 时间: 教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 教学过程 一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知a ≥0)•(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?3.当a<0 老师点评:(略)例11x(x>01x y+(x ≥0,y•≥0).分析0.x>0、x≥0,y≥01x、1x y+.例2.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.解:由3x-1≥0,得:x≥13当x≥13三、巩固练习教材P5练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?分析11x+0和11x+中的x+1≠0.解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-32由②得:x≠-1当x≥-32且x≠-1+11x+在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2),求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P5 1,2,3,42.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中,是二次根式的是()A.B C D.x 2.下列式子中,不是二次根式的是()A B C D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3+.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1a≥0)23.没有三、1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0+x2在实数范围内没有意义.3.1 34.B5.a=5,b=-416.1.2 二次根式(2)教案序号:2 时间:教学内容1a≥0)是一个非负数;22=a(a≥0).教学目标a≥02=a(a≥0),并利用它们进行计算和化简.a≥0)是一个非负数,用具体数据结合算术平方根2=a(a≥0);最后运用结论严谨解题.教学重难点关键1a≥02=a(a≥0)及其运用.2.难点、关键:a≥0)是一个非负数;•用探究的方法导出2=a(a≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0a<0老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______2=_______2=______)2=_______;2=______)2=_______2=_______.是4的算术平方根,是一个平方等于4的非负数,因此有)2=4.2=22=9)2=32=13)2=722=0,所以例1 计算1)2 2.()2 324.(2)2分析2=a (a ≥0)的结论解题.)2 =32,(2 =322=32·5=45,2=56,(2)274=.三、巩固练习 计算下列各式的值:2 )2 (42 2 ()222-四、应用拓展 例2 计算12(x ≥0) 22 324)2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0; (4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的42=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0,所以x+1>02=x+1(2)∵a 2≥02=a 2(3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 2+2a+1 (4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9 例3在实数范围内分解下列因式: (1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略) 五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;2.(2=a (a ≥0);反之:a=2(a ≥0). 六、布置作业1.教材P5 5,6,7,82.选用课时作业设计. 第二课时作业设计 一、选择题1 ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.()2=________.2_______数. 三、综合提高题 1.计算(12 (2)-)2 (3)(12)2 (4)()2(5) 2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3,求x y 的值. 4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数三、1.(12=9 (2)-2=-3 (3)(12)2=14×6=32(4)()2=9×23=6 (5)-62.(1)5=)2 (2)3.4=2(3)16=2 (4)x=)2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=((2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)()() (3)略16.1 二次根式(3)教案总序号:3 时间: 教学内容a (a ≥0)教学目标(a ≥0)并利用它进行计算和化简.(a ≥0),并利用这个结论解决具体问题. 教学重难点关键1a (a ≥0). 2.难点:探究结论.3.关键:讲清a ≥0a 才成立. 教学过程 一、复习引入老师口述并板收上两节课的重要内容;1a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知 (学生活动)填空:=_______;=________=________=_______. (老师点评):根据算术平方根的意义,我们可以得到:=2110=23=37.例1 化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.解:(1(2(3(4三、巩固练习教材P7练习2.四、应用拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,即使a>a所以a不存在;当a<0,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结(a≥0)及其运用,同时理解当a<0a的应用拓展.六、布置作业1.教材P5习题16.1 3、4、6、8.2.选作课时作业设计.第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0).A BC D.二、填空题1.=________.2m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以=a=1995,a-2000=19952,所以a-19952=2000.3. 10-x16.2 二次根式的乘除教案总序号:4 时间:教学内容a≥0,b≥0a≥0,b≥0)及其运用.教学目标a≥0,b≥0=a≥0,b≥0),并利用它们进行计算和化简(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=a≥0,b≥0)并运用它进行解题和化简.教学重难点关键(a≥0,b≥0a≥0,b≥0)及它们的运用.a≥0,b≥0).a<0,b<0)×教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2=_______=________.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1,(2(34,(5.老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3=(4例2 化简(1(2(3(4(5a≥0,b≥0)直接化简即可.解:(1×4=12(2×9=36(3×10=90(4==3xy(5三、巩固练习(1)计算(学生练习,老师点评)①②×(2) 化简: ; ;教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.=×3=6(2)不正确.==五、归纳小结本节课应掌握:(1(a≥0,b≥0a≥0,b≥0)及其运用.六、布置作业1.课本P111,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1.化简).A B C.D.2=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 3.下列各等式成立的是().A.×B.C.D.×二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:×==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,.2.验证:==16.2 二次根式的乘除(2)教案总序号:5 时间:教学内容a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.教学目标=a≥0,b>0)和a≥0,b>0)及利用它们进行运算.教学重难点关键1=a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1;(2=________=________;;(3=________=________.(43.利用计算器计算填空:=_________,(2=_________,(3=______,(4=________.(1。
人教版八年级数学下册全册教案(优秀5篇)
人教版八年级数学下册全册教案(优秀5篇)人教版八年级数学下册全册教案篇一因式分解1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。
3.公因式的确定:系数的公约数?相同因式的最低次幂。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式。
人教版八年级数学下册教案篇二1.类比分数的乘除运算探索分式的乘除运算法则。
2.会进行简单分式的乘除运算。
3.能解决一些与分式乘除运算有关的简单的实际问题。
4. 在故事情境中激发学生学习数学的兴趣,促进良好的数学观的养成。
数学生活化,学好数学,为幸福人生奠基。
本节课选自北师大版八下数学《5.2分式的乘除法》的第一课时。
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
分式是分数的“代数化”,与分数的约分、分数的。
乘除法有密切的联系,也为后面学习分式的混合运算、分式方程等做了准备。
八年级学生具有很强的感性认识的基础,对具体的实践活动十分感兴起,在课堂中思维活跃,乐于表现自己,但在推理方面还不够严谨。
人教版八年级数学下册教案优秀5篇
人教版八年级数学下册教案优秀5篇人教版八年级数学下册全册教案篇一第三章图形的平移和旋转1、图形的平移①在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小②一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等③一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的2、图形的旋转①在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小②一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等3、中心对称①如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心②成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分③把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心一级下册数学课件篇二活动目标:1、复习10以内的加减法,尝试看图口述并懂得运算。
2、培养幼儿的合作与竞争意识,体验数学的魅力。
活动准备:1、10以内加减算式卡片若干张,加法图片若干张,口述图片5张。
2、抢答器(鼓、腰鼓、锣)三个,统计牌一个,唐老鸭、米老鼠、小熊图片各一张。
3、水果卡片若干,礼花一个,胜利、失败、欢快的音乐各一首。
活动过程:一、引题1、师:小朋友,欢迎你们来到快乐数学大本营,我是快乐数学栏目主持人——小问号。
我们栏目的口号是:快乐数学,快乐无限!我们现在大声的把口号喊出来:快乐数学,快乐无限!ye! 首先我要向你们介绍今天的三个方队,贴有米老鼠的是米老鼠队,欢迎你们!贴有唐老鸭的是唐老鸭队,欢迎你们!贴有小熊的是小熊队,欢迎你们!米老鼠、唐老鸭、小熊都很喜欢吃水果,今天我为你们准备了许多的水果,你们想要得到水果吗?那我们马上进入快乐数学第一关。
八年级下册数学教案配新人教版
八年级下册数学教案配新人教版八年级下册数学教案配新人教版【篇1】一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量.2、会求一组数据的极差.二、重点、难点和难点的突破方法1、重点:会求一组数据的极差.2、难点:本节课内容较容易接受,不存在难点.三、课堂引入:下表显示的是上海2月下旬和同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,和上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).四、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级下册数学教案配新人教版【篇2】教学目标:1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L 的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________2.轴对称的三个重要性质___________________________________________________________________________________________________________________二、提出问题:二、探索练习:1. 提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
人教版八年级数学下册教案大全(6篇)
人教版八年级数学下册教案大全(6篇)人教版八年级数学下册教案大全(6篇)八年级数学教案很有意思。
如果教师有一份明确的说课稿,将会大大提升教学效率,提升课堂活跃性,提升学生学习兴趣。
下面小编给大家带来关于人教版八年级数学下册教案大全,希望会对大家的工作与学习有所帮助。
人教版八年级数学下册教案大全【篇1】第一章勾股定理1、探索勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2。
2、一定是直角三角形吗如果三角形的三边长abc满足a2+b2=c2,那么这个三角形一定是直角三角形。
3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示。
②无理数:无限不循环小数。
2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根。
②特别地,我们规定:0的算数平方根是0。
③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根。
④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±。
⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数。
3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根。
②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数。
4、估算估算,一般结果是相对复杂的小数,估算有精确位数。
5、用计算机开平方6、实数①实数:有理数和无理数的统称。
②实数也可以分为正实数、0、负实数。
③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大。
人教版八年级数学下册教案(3篇)
人教版八年级数学下册教案(3篇)人教版八年级数学下册教案篇一1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的。
四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2(补充)已知abcd的对角线ac、bd相交于点o,△aob 是等边三角形,ab=4cm,求这个平行四边形的面积.分析:首先根据△aob是等边三角形及平行四边形对角线互相平分的性质判定出abcd是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形abcd是平行四边形,∴ao=ac,bo=bd.∵ ao=bo,∴ ac=bd.∴ abcd是矩形(对角线相等的平行四边形是矩形).在rt△abc中,∵ ab=4cm,ac=2ao=8cm,∴bc=(cm).例3(补充)已知:如图(1),abcd的四个内角的平分线分别相交于点e,f,g,h.求证:四边形efgh是矩形.分析:要证四边形efgh是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明人教版八年级数学下册教案篇二1.理解掌握分式的四则混合运算的顺序。
人教版数学八年级下册教案全册完整版
人教版数学八年级下册教案全册完整版一、教学内容1. 第十八章概率初步1.1 随机事件1.2 概率的定义1.3 概率的计算2. 第十九章函数与方程2.1 一次函数2.2 一次方程和一次方程组2.3 二元一次方程组3. 第二十章四边形3.1 四边形的性质3.2 矩形、菱形、正方形3.3 多边形的内角和与外角和二、教学目标1. 理解并掌握概率的基本概念和计算方法,能运用概率知识解决实际问题。
2. 掌握一次函数、一次方程和二元一次方程组的相关知识,能熟练解决相关问题。
3. 了解四边形的性质,掌握矩形、菱形、正方形的判定和性质,以及多边形的内角和与外角和的计算。
三、教学难点与重点1. 教学难点:概率的计算、一次方程组的解法、四边形的性质和判定。
2. 教学重点:概率的定义、一次函数的图像与性质、矩形、菱形、正方形的性质。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:学生用书、练习本、直尺、圆规。
五、教学过程1. 引入实践情景,激发学生兴趣。
2. 知识讲解与例题分析:第十八章:讲解随机事件、概率的定义和计算方法,举例说明。
第十九章:讲解一次函数、一次方程和方程组的解法,结合实际例子进行分析。
第二十章:讲解四边形的性质,以矩形、菱形、正方形为例,进行判定和性质分析。
3. 随堂练习:针对每个知识点,设计相应的练习题,让学生巩固所学。
六、板书设计1. 第十八章:概率初步1.1 随机事件1.2 概率的定义1.3 概率的计算2. 第十九章:函数与方程2.1 一次函数2.2 一次方程和一次方程组2.3 二元一次方程组3. 第二十章:四边形3.1 四边形的性质3.2 矩形、菱形、正方形3.3 多边形的内角和与外角和七、作业设计1. 作业题目:第十八章:计算随机事件的概率,解释概率在实际生活中的应用。
第十九章:解一次方程和方程组,分析一次函数的图像与性质。
第二十章:判断四边形的类型,计算多边形的内角和与外角和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式16.1分式16.1.1从分数到分式 一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P2[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P1的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,及以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v -2060小时,所以v+20100=v-2060. 3. 以上的式子v+20100,v-2060,a s,sv ,有什么共同点?它们及分数有什么相同点和不同点? 五、例题讲解P3例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0?(1) (2)(3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;1-m m 32+-m m 112+-m m○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7 , 209y +, 54-m , 238yy -,91-x 2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 及y 的差于4的商是 . 2.当x取何值时,分式 无意义?3. 当x 为何值时,分式 的值为0?P4 1/2/3八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238yy -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4yx -; 整式:8x, a+b, 4y x -;分式:x 80,ba s +2. X = 3. x=-1课后作业P8 1/2/3课后反思:4522--x x x x 235-+23+x x x 57+xx 3217-xx x --221x802332xx x --212312-+x x16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P5的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P6的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P9习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变. “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 及 相等吗? 及 相等吗?为什么?2.说出 及 之间变形的过程, 及 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P5例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P6例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P7例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解:a b 56--= ab 56, yx 3-=yx 3-,nm --2=nm 2,n m 67--=nm67 , y x 43---=y x 43。
六、随堂练习1.填空:4320152498343201524983(1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)c ab b a 2263 (2)2228mn n m (3)532164xyzyz x - (4)x y y x --3)(23.通分: (1)321ab 和c b a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a-(4)11-y 和11+y 4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135xa -- (4) mb a 2)(-- 七、课后练习1.判断下列约分是否正确: (1)c b c a ++=ba(2)22y x y x --=y x +1 (3)nm nm ++=0 2.通分: (1)231ab 和b a 272 (2)x x x --21和x x x +-21 3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)ba ba +---2 (2)y x y x -+--32八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)bc a 2 (2)n m 4 (3)24zx- (4)-2(x-y)2 3.通分: (1)321ab = cb a ac 32105, c b a 2252= c b a b 32104(2)xy a 2= y x ax 263, 23xb= y x by 262 (3)223ab c = 223812c ab c 28bc a -= 228c ab ab (4)11-y =)1)(1(1+-+y y y 11+y =)1)(1(1+--y y y 4.(1) 233ab y x (2) 2317b a - (3) 2135x a (4) m b a 2)(--课后作业P9 5 P9 6 P9 7 课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析1.P10本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是n m ab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P11例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P11例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P12例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1.这一点要给学生讲清楚,才能分析清楚“丰收2号”单位面积产量高.(或用求差法比较两代数式的大小)四、课堂引入1.出示P10本节的引入的问题1求容积的高nmab v ⋅,问题2求大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭⎫⎝⎛÷n b m a 倍. [引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P11[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P11[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论. 五、例题讲解P11例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P11例2.[分析] 这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P12例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是15002-a 、()21500-a ,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1<a 2-2+1,即(a-1)2<a 2-1,可得出“丰收2号”单位面积产量高. 六、随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy xy 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++-七、课后练习计算 (1)⎪⎪⎭⎫ ⎝⎛-⋅y x y x132(2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()y x a xy 28512-÷(4)b a ab ab b a234222-⋅- (5))4(12x x xx -÷-- (6)3222)(35)(42x y x x y x --⋅- 八、答案:六、(1)ab (2)nm 52- (3)14y - (4)-20x 2 (5))2)(1()2)(1(+--+a a a a(6)23+-y y七、(1)x1- (2)227c b-(3)ax 103-(4)bb a 32+ (5)x x -1 (6)2)(5)(6y x y x x -+课后作业P22 1/2 课后反思:16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算. 二、重点、难点1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 三、例、习题的意图分析1. P13页例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P13例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2, P13页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题. 四、课堂引入计算(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷五、例题讲解(P13)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xbb a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式)(2) x x x x xx x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622(先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22(分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x=22--x六、随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-七、课后练习计算(1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(八、答案:六.(1)c a 432- (2)485c - (3)3)(4y x - (4)-y七. (1)336y xz (2) 22-b a (3)122y - (4)x1-课后作业P22 3(1) (2) 课后反思:16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算. 二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算. 三、例、习题的意图分析1. P14例5第(1)题是分式的乘方运算,它及整式的乘方一样应先判 断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除及乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.. 2.教材P14例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除及乘方的混合运算,也应相应的增加几题为好.分式的乘除及乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入计算下列各题: (1)2)(b a =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a ba=( ) (3)4)(ba =⋅b a ⋅b a b a ba⋅=( ) [提问]由以上计算的结果你能推出n ba )((n 为正整数)的结果吗? 五、例题讲解 (P14)例5.计算[分析]第(1)题是分式的乘方运算,它及整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除及乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除. 六、随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)3)32(x y -=3398x y (4)2)3(bx x -=2229b x x - 2.计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x zy x -÷- 5))()()(422xy x y y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅-七、课后练习计算(1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a b a c b a c ÷÷ (4) )()()(2232b a ab a ab b a -⋅--⋅- 八、答案:六、1. (1)不成立,23)2(a b =264a b (2)不成立,2)23(ab -=2249a b (3)不成立,3)32(x y -=33278x y - (4)不成立,2)3(bx x -=22229b bx x x +-2. (1)24925y x (2)936827c b a - (3)24398y x a - (4)43z y -(5)21x(6)2234x y a七、(1) 968a b -- (2) 224+n b a (3)22ac (4)b ba +课后作业P22 3(3) (4) 课后反思:16.2.2分式的加减(一)一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、例、习题的意图分析1. P15问题3是一个工程问题,题意比较简单,只是用字母n 天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的311++n n .这样引出分式的加减法的实际背景,问题4的目的及问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2. P15[思考]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质及分数的加减法相同,让学生自己说出分式的加减法法则.3.P16例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P17例7是一道物理的电路题,学生首先要有并联电路总电阻R 及各支路电阻R 1, R 2, …, R n 的关系为nR R R R 111121+⋅⋅⋅++=.若知道这个公式,就比较容易地用含有R 1的式子表示R 2,列出5011111++=R R R ,下面的计算就是异分母的分式加法的运算了,得到)50(5021111++=R R R R ,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P15问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质及分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出2243291,31,21xy y x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗? 五、例题讲解(P16)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算 (1)2222223223yx yx y x y x y x y x --+-+--+ [分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式. 解:2222223223y x y x y x y x y x y x --+-+--+=22)32()2()3(y x y x y x y x --++-+=2222y x yx --=))(()(2y x y x y x +--=yx +2 (2)96261312--+-+-x x x x [分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x=)3)(3(2)96(2-++--x x x x =)3)(3(2)3(2-+--x x x =623+--x x六、随堂练习计算 (1)ba ab b a b a b a b a 22255523--+++ (2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563七、课后练习计算 (1)22233343365cba ba c ba ab bc a b a +--++ (2)2222224323ab ba b a b a b a a b ----+--- (3) 122+++-+-b a ab a b a b (4) 22643461461x y x y x y x -----八、答案:四.(1)ba b a 2525+ (2)m n n m -+33 (3)31-a (4)1 五.(1)b a 22 (2) 223ba ba -- (3)1 (4)y x 231-课后反思:16.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析1. P17例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式及数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2. P18页练习1:写出第15页问题3和问题4的计算结果.这道题及第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算及分式的混合运算的顺序相同.五、例题讲解(P17)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式及数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算 (1)x xx x x x x x -÷+----+4)44122(22 [分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边.. 解: x x x x x x x x -÷+----+4)44122(22 =)4(])2(1)2(2[2--⋅----+x xx x x x x=)4(])2()1()2()2)(2([22--⋅-----+x xx x x x x x x x=)4()2(4222--⋅-+--x x x x x x x =4412+--x x (2)2224442y x x y x y x y x y y x x +÷--+⋅- [分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:2224442yx x y x y x y x y y x x +÷--+⋅- =22222224))((2xy x y x y x y x y x y y x x +⋅-+-+⋅- =2222))((y x y x y x y x xy --⋅+- =))(()(y x y x x y xy +--=yx xy+-六、随堂练习 计算(1) x x x x x 22)242(2+÷-+- (2))11()(ba ab b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a七、课后练习 1.计算 (1) )1)(1(yx x y x y +--+ (2) 22242)44122(a aa a a a a a a a -÷-⋅+----+(3) zxyz xy xy z y x++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值. 八、答案:六、(1)2x (2)ba ab- (3)3 七、1.(1)22y x xy - (2)21-a (3)z 1 2.422--a a ,-31课后反思:16.2.3整数指数幂一、教学目标:1.知道负整数指数幂n a -=na 1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质. 3.会用科学计数法表示小于1的数. 二、重点、难点1.重点:掌握整数指数幂的运算性质. 2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P18思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2. P19观察是为了引出同底数的幂的乘法:n m n m a a a +=⋅,这条性质适用于m,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P20例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P20例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算及整式的运算统一起来.5.P21最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P21思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P21例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数. 四、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m a a a +=⋅(m,n 是正整数); (2)幂的乘方:mn n m a a =)((m,n 是正整数); (3)积的乘方:n n n b a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,m,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数);2.回忆0指数幂的规定,即当a ≠0时,10=a . 3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a ≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=na 1(a ≠0). 五、例题讲解(P20)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,及用正整数 指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P20)例10. 判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算及整式的运算统一起来,然后再判断下列等式是否正确.(P21)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数. 六、随堂练习 1.填空(1)-22= (2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3= 2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3七、课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 009 2.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3 八、答案:六、1.(1)-4 (2)4 (3)1 (4)1(5) 81(6)81-2.(1)46y x (2)4x y (3) 7109yx七、1.(1) 4×10-5 (2) 3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103课后反思:16.3分式方程(一)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根. 二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习题的意图分析1. P26思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P27的归纳明确地总结了解分式方程的基本思路和做法.3. P27思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P28的归纳出检验增根的方法.4. P28讨论提出P27的归纳出检验增根的方法的理论根据是什么? 5. 教材P32习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路及解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数. 这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程163242=--+x x 2.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,及以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程vv -=+206020100. 像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P28)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P28)例2.解方程[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根. 六、随堂练习解方程 (1)623-=x x (2)1613122-=-++x x x (3)114112=---+x x x (4)22122=-+-x xx x 七、课后练习1.解方程 (1) 01152=+-+x x (2) xx x 38741836---=- (3)01432222=---++x x x x x (4) 4322511-=+-+x x 2.X 为何值时,代数式xx x x 231392---++的值等于2?八、答案:六、(1)x=18 (2)原方程无解 (3)x=1 (4)x=54 七、1. (1) x=3 (2) x=3 (3)原方程无解 (4)x=1 2. x=23课后反思:16.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P29例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这及过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P30例4是一道行程问题的应用题也及旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v 、s 和未知数x ,表示提速前列车行驶s 千米所用的时间,提速后列车的平均速度设为未知数x 千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力. 四、例题讲解P29例3分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1 P30例4分析:是一道行程问题的应用题, 基本关系是:速度=时间路程.这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间 五、随堂练习1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是。