第三章_刚体力学基础讲解

合集下载

第三章刚体力学基础

第三章刚体力学基础
(1)轴通过棒的一端并与棒垂直轴。z
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。

第3章刚体力学基础

第3章刚体力学基础

描述质点系转动的动力学方程
z
取惯性坐标系
dt
oxyz
刚体所受的对
转轴的力矩
x
o
M r F
定义:在垂直于转轴的平 面轴内的,距外离力dF的与乘力积线到转
y z轴为固定转轴
z
M
F
F F
r
垂直转轴的外力分量产生沿
d
转轴方向的力矩, 平行于转
轴的外力分量产生的力矩被
轴承支承力的力矩所抵消
一 、作用于定轴刚体的合外力矩
相对于定轴的合外力矩
(力对转轴的力矩)
M z M iz ri Fi sin i
i
i
即作用在各质元的 力矩的 z 分量之和
二、刚体定轴转动定理
由于刚体只能绕 z 轴转动, 引起转动的力矩只有z方向,
因此转动动力学方程
Mz
dLz dt
dL M
dt
Li
Ri
m
i
v
i
oo ri
mi vi
解:
z
J z mi ri2
i
m i
x
2 i
y
2 i
i
Jy Jx
x
o
yi
ri
m
x
i
i
y
例 均质圆盘:m, R . 求以直径为轴的转动惯量 解:
J 1 mR2 4
例3-6(P181) 挂钟摆锤的转动惯量
解:
o
m1 l
J
1 3
m1l 2
1 2
m2 R2
m2 l
R2
m2 R
例 计算钟摆的转动惯量。(已知:摆锤质量为m,半 径为r,摆杆质量也为m,长度为2r)

第3章 刚体力学

第3章 刚体力学

说明 ( 1)
M J , 与 M 方向相同.
(2) 为瞬时关系. (3) 转动中 M J 与平动中 F ma 地位相同.
第三章 刚体力学
如果刚体所受合力为零,同时 合力矩为零, 好,现在我们可以问一个问题: Fi 0 , Mi 0 则刚体会做什么样的运动?
R
2
dm m R
R
r
dr
一质量为m、半径为R的均匀圆盘,求通过盘中心O并与 盘面垂直的轴的转动惯量。 解:设盘质量面密度为 ,在盘上取半径为r,宽为dr的圆环
m π R2
R 2 0
dm 2 π rdr
3
J r dm
R
0
1 2 π R mR 2πσr dr 2 2
v v0 at 2 x x0 v0t 1 at 2 2 2 v v0 2a( x x0 )
ω ω0 βt θ θ 0 ω 0 t 12 β t 2 ω 2 ω 02 2 β ( θ θ 0 )
第三章 刚体力学
z
重要
刚体定轴转动的特点 O
第三章 刚体力学
5. 角速度正负的判断
0
0
逆时钟转动
顺时钟转动
第三章 刚体力学 (2)角量和线量的关系
z

s r
v r
an r 2
O
at r

dv d(r ) at r dt dt
(3)角量与线量的公式比较
x
质点匀变速直线运动
刚体绕定轴作匀变速转动
平 动 刚体:外力作用下形状和大小都不发生变化的物体。 转 动 二、刚体的运动形式 [实例]

理论力学第三章刚体力学

理论力学第三章刚体力学
d dt
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )

r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件

(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1

第三章-刚体力学基础

第三章-刚体力学基础

薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O

刚体和流体

刚体和流体

y
角动量的方向: 位矢和动量的矢积方向. 特例: 如果质点绕参考点O作圆周运动
v p
O
L = r p = mv r
注意: 1.角动量与所取的惯性系有关. 2.角动量与参考点O的位置有关.
v r
第三章 刚体力学基础
质点对定轴的角动量
v v v v v L = r × p = r × mv
L = mvr = mr 2ω = Jω
(原点O在棒的左端点)
第三章 刚体力学基础
例题2: 一质量为m, 半径为R的均匀圆盘, 求通过盘中心并与 盘面垂直的轴的转动惯量. 解: dm = σdS = σ 2 π rdr
J = ∫ r dm = 2 πσ ∫ r dr
2
3
J = 2πσ ∫ r dr
3
R
R
r O
dr
πσ R 1 2 = = mR 2 2
v v v 加速度: 合外力矩: M z = ∑ ri × Fi v v v v v M z = ∑ ∆mi ri × aiτ + ∑ ∆mi ri × ain
v第三章v刚体力学基础 v ai = aiτ + ain
v 2 v v v v v 其中: ri × ain = 0 ri × aiτ = ri aiτ sin 90°k = ri β k v v 2 M z = ∑ ∆mi ri β 转动惯量 J v v 转动定律: M z = Jβ
θ ( rad) 角位移: ∆θ , dθ dθ −1 ( rad ⋅ s ) 方向右旋 ω= dt v
第三章 刚体力学基础
线速度与角速度之间的关系
r v v v dv d ω v v dr a= = ×r +ω× dt dt dt v 2 v = β reτ + ω ren

大学物理第三章刚体力学

大学物理第三章刚体力学

薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理

刚体力学基础第三章

刚体力学基础第三章

二、转动惯量J
对分立的质点系: J miri2
i
对刚体: 质量是连续分布
J r2dm
r 2dl 线分布,为线密度
J r 2ds 面分布,为面密度 r 2 dV 体分布,为体密度
z
dm
r
讨论
J r2dm
(1)转动惯量的物理意义:J表示刚体转动时惯性的大小
(2)转动惯量J的大小决定于
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
§3 刚体定轴转动定律
一、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
入力矩这一物理量。 (1)若刚体所受力 F在转动平面内
z
Od r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
T1
a m1 m1g T2 a m2 m2g
§4 力矩的功 动能定理
一、力矩的功
刚体在合外力矩作用下绕定轴转动而发生角位移时
d,A则力F矩 d对r刚体F作d了r功co。s F cos(900 )ds
F sin rd
Md
z
O d
dr
F
r P
元功:力矩对质点(或刚体)所作的 元功等于力矩和角位移的乘积
盘)。如A下降,B与水平桌面间的滑动摩擦系数为μ,
绳与滑轮之间无相对滑动,试求系统的加速度及绳中的
张力FT1和FT2。 受力分析 FT1

刚体力学基础

刚体力学基础


0
0t

1 t2
2
2

2 01 刚体 刚体定轴转动的描述
四、绕定轴转动刚体上各点的速度和加速度
线速度大小与 角速度大小的关系
v r
at

dv dt

r
z
a an r

at ve t
an

v2 r
2r a
ret

r 2en
第三章 刚体力学基础
3-1 刚体 刚体定轴转动的描述 3-2 刚体定轴转动的转动定律 3-3 刚体定轴转动的动能定理 3-4 刚体定轴转动的角动量定理和角动量守 恒定律
教学基本要求
一 理解刚体绕定轴转动的角速度和角加速 度的概念,理解角量与线量的关系。
二 理解力矩和转动惯量的概念,能应用 平行轴定理和转动惯量的可加性,计算刚体对定 轴的转动惯量。
O
F ri
Fii
i
i
ie
mi
Fie sini Fii sin i miait miri
以 ri 乘上式两边
Fieri sin i Fiiri sin i miri2
rad s1

62.8
rad s1
角位移 0 2πN 2π 10 rad 62.8 rad
角加速度
2 02
0 62.82
rad s2 31.4 rad s2
2 0 2 62.8
制动过程的时间
t

0
0 62.8 31.4
法向加速度
an r 2 0.5 3.142 m s2 493 m s2
§3.2 刚体定轴转动的转动定律

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

第三章 刚体力学

第三章 刚体力学
于原力,该力偶矩等于原力对o点之矩。 说明:该力和力偶矩对刚体的作用与原力等效。
(5) 空间力系向一点简化 力系中每一个力都向简化中心简化得一力和力偶矩, 这些共点力和诸力偶矩可合成为一个单力和一个单 力偶矩,其作用与原力系等效。
结论:作用在刚体上的任意空间力系 F1 , F2 ......Fn ) (
l sin 0 cos 0 f N2 h l sin 0 cos2 0
2
B C
l
说明:也可用二矩式和三矩式 平衡条件求解
l
A
例2:相同的两个均质光滑球悬在结于定点O的两根 绳子上,求两球同时又支撑一个等重的均质球,求: 角与 角之间的关系。 解:(1) 本题需求角与 角的关系,
①力偶矩等于力偶中两力对任意一点力矩的矢量 和,故力偶矩的量值与取矩点无关。
证明:o点任取
M o rA F1 rB F2 (rA rB ) F1 rAB F 1 M o
结论:力偶矩是自由矢量 力的作用面不能随意移动。
2
mxc Fx 即: myc Fy mzc Fz

由对质心的动量矩定理(平动质心系中): dJ cx dt M cx dJ c M c 即: dJ cy dt M cy dt dJ cz dt M cz
B C
l
l
A
(3) 本题为平面力系的平衡问题
平衡条件:Fx 0, Fy 0, M z 0
Fx 0 f N1 cos 90 0 0 f N1 sin 0 Fy 0 N 2 N1 sin 90 0 P 0 N 2 P N1 cos 0 M 0 Pl cos N h N Pl sin cos / h 0 1 1 0 0 Az sin 0

刚体力学基础

刚体力学基础

1).形状、大小相同时, m↑→J↑(决定于m); 2).m相同, m分布离轴越远,J越大(决定于m的分布); 3).同一刚体,转轴不同,J不同,(决定于转轴的位置).
3.计算
1).质量不连续分布 J= miri2 i
m1
r2
r1
其中ri为Δmi到转轴的垂直距离
J m1r12 m2r22 m3r32
4.均匀细棒可绕棒一端的垂直于棒的水平轴无摩擦转
动.若细棒竖直悬挂,现有一弹性小球水平飞来与细棒
发生完全非弹性碰撞,在碰撞过程中球、棒组成的系
统的动量是否守恒?对转轴的角动量是否守恒?机械能
是否守恒?
动量不守恒,角动量守恒,机械能不守恒.
质点与刚体碰撞组成的系统一般 情况下动量不守恒,而角动量守恒.
1.刚体角动量定理 M J J d
dt
M J J d
dt
2
Mdt Jd J2 J1
1
刚体所受合外力的冲量矩等于其角动量的增量
2.刚体角动量守恒定律
条件:M 0, J 常量
刚体所受合外力矩为零,则其角动量守恒.
注意:1).L=Jω=常量, J、ω可变但乘积不变;
2).M、L、ω均对同一转轴, M为合外力矩;
a1 a2 a
a R
J 1 m R2
2
a1
a2
a
(m2 m1 )g
m1
m2
1 2
m
T1
m1
2m2g m1 m2
1 2
mg 1m 2
T2
m2
2m1g m1 m2
1 mg 2 1m
2
注意:1.涉及滑轮转动,滑轮两端绳的张力不相等T1≠T2; 2.绳与滑轮无相对滑动, a=R α

3-第3章 刚体力学基础

3-第3章   刚体力学基础
大学物理学(第5版)
二、定轴转动定律
把刚体看作一个质点系
Fi
f i Δ m i a i
ri Fi ri f i Δ m i ri a i
加速度: a i a i a in
§3-2力矩 刚体定轴转动的转动定律
Mi
z M iz
Fi
Fi //
ri
mi Fi
(ri Fi ) (ri fi ) Δmi ri ai Δmi ri ai Δmi ri ain
§3-2力矩 刚体定轴转动的转动定律
M外z Miz ( mi ri 2 ) ( mi ri 2 )
i
i
i
若令
J z (mi ri 2 )
i
M 外z J z
绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转
动惯量成反比。
注意:
——刚体定轴转动中的转动定律
(1)M和J均对于同一转轴而言;
1
2
合外力矩对定轴转动刚体所做的功等于刚体转动动能的增量。 ——刚体定轴转动时的动能定理
章目录 节目录 上一页 下一页
“十二五”普通高等教育本科国家级规划教材
大学物理学(第5版)
§3-3 刚体定轴转动的动能定理
四、机械能守恒定律
1、刚体的势能
EP mghc
m为刚体的总质量; hc为刚体质心的高度。
dm dx m dx O
r2 x2
l
dm x dx
l
x
J l x2 m dx 1 m x3 l
J 1 ml 2
J=
0
1 ml 2 3
l
1 12
3l
ml 2 m
0
l2 4

第三章 刚体力学

第三章 刚体力学

第三章刚体力学本章介绍刚体运动状态的描述(§3.1-§3.2)以及刚体受力与运动状态的关系(§3.3-§3.10)。

其内容包括:刚体运动学、刚体静力学和刚体动力学,重点掌握刚体运动学和刚体动力学。

刚体是指在任何情况下形状、大小都不发生变化的力学体系,它是一种理想物理模型,只要一个物体中任意两点的距离不因受力而改变,它就可以称为刚体。

§3.1 刚体运动的分析一、描述刚体位置的独立变量刚体的特性是任意两点距离不因受力而变。

这种特性决定了确定刚体的位置并不需要许多变量,而只要少数变量就行。

能完全确定刚体位置的,彼此独立的变量个数叫刚体的自由度。

二、刚体运动的分类及其自由度1、平动:自由度3,可用其中任一点的坐标x、y、z描述;2、定轴转动:自由度1,用对轴的转角φ描述;3、平面平行运动:自由度3,用基点的坐标(x o,y o)及其对垂直平面过基点的轴的转角φ描述。

4、定点转动:自由度3,用描述轴的方向的θ,ψ角和轴线的转角ψ描述。

5、一般运动:自由度6,用描述质心位置的坐标(x c,y c,z c)和通过的定点的轴的三个角(θ,φ,ψ)描述。

§3.2 角速度矢量、角速度矢量及其与刚体中任本节重点是:掌握角位移矢量一点的线位移、线速度的相互关系。

理解有限转动时角位移不是矢量,只有无限小角位移才是矢量。

一、有限转动与无限小转动1、有限转动不是矢量,不满足对易律2、无限小转动是矢量,它满足矢量对易律。

①线位移△r与无限小角位移△n的关系设转轴OM,有矢量△n,其大小等于很小的转角Δθ,方向沿转轴方向,转轴的方向与刚体转动方向成右手螺旋,则△n称为角位移矢量。

由图3.2.1很容易求得即线位移△r=角位移△n与位矢r的矢量积。

②角位移和△n满足矢量对易律利用两次位移的可交换性,可证得该式表明:微小转动的合成遵循平行四边形加法的对易律,从而无限小角位移△n是一个矢量。

刚体力学优质课件

刚体力学优质课件
解 根据定义,飞轮的角速度为 d 2π 0t dt
飞轮的角加速度为 b d 20π dt
距转轴r处质点的切向加速度 at rb 2π 0r
法向加速度
an r2 40π20r2t
例 船用螺旋桨的正常转速为120r/min。从静止启动均匀地到
此转速需时40s。当转速为84r/min时运动系统出现振动,
方成正比。
求 在这段时间内,转子转过的圈数。
解 根据题意,设 b kt2(k为比例常量)
由角加速度的定义,有
b dkt2
dt
分离变量并积分,有
d tkt2dt
➢ 说明
刚体作平动时,刚体上各点的轨迹可以是直线,也可以是曲线; 刚体作平动时,刚体上所有质点都具有相同的位移、速度和加速度,
各点的运动轨迹都相同; 刚体平动的运动规律完全符合质点运动规律; 刚体质心的运动代表平动刚体的运动。
3. 刚体的转动 转动: 刚体上的各质点都绕同一直线作圆周运动的运动形式。 转动轴: 刚体转动围绕的那条直线(转轴可以是固定的或变化的)。
y
确定刚体绕瞬时轴转过的角度j 。
O
当刚体受到某些限制——自由度减少。
x i = 3+2+1= 6
§3.2 刚体定轴转动的运动学规律
主要内容:
1. 描述刚体定轴转动的物理量 2. 定轴转动刚体上一点的速度和加速度与角量的关系 3. 刚体定轴转动运动学的两类问题
3.2.1 描述刚体定轴转动的物理量
角坐标
任选刚体上的任意点P点为参考点
刚体定轴转动的运动方程
(t)
角位移
若P在t 和t 后的角坐标为1和2,则
角速度
21
平均角速度
t
瞬时角速度 d dt

第3章 刚体力学基础

第3章 刚体力学基础

M = F1 d 1
r Ft 2 r2 F2 d 2 = Ft 叉乘右螺旋 1 r1
转动定律
瞬时 角加速度 瞬时 角速度
某质元
Fi
t
qi
n
fi
∑ Fi ri sin j i + ∑ f i ri sin q i = ∑
合外力矩 M 内力矩成对抵消= 0

O
ji
ri
等式两边乘以 i 并对所有质元及其所受力矩求和
∑ ∑

是矢量式 与质点平动对比
刚体的角动量守恒定律
由 若 则 刚体所受合外力矩 即
当刚体所受的合外力矩 刚体的角动量
等于零时, 保持不变。
乘积
角动量守恒的另一类现象 角动量守恒的另一类现象 保持不变, 变小则 变大, 变大则
变小。
张臂

用外力矩 启动转盘后 撤除外力矩
收臂
小 大

乘积
角动量守恒的另一类现象 花样滑冰中常见的例子 保持不变, 变小则
刚体系统的角动量定理
若一个系统包含多个共轴刚体或平动物体 系统的总合外力矩 ∑ ∑ 系统的总角动量的变化率 系统的总角动量增量 轻绳 (忽略质量) 同向 ∑ 而 解得
系统的总冲量矩 例如 求角加速度

系统:
静 止 释 放
∑ 总合外力矩 对O的角动量 对O的角动量 ∑ 由 得
主要公式归纳
(微分形式) (积分形式)
3
转动:分定轴转动和非定轴转动
刚体的平面运动
4
刚体的一般运动可看作: 随质心的平动
+
绕质心的转动
的合成
5
第二节
平 动
定轴转动

第3章 刚体力学基础

第3章 刚体力学基础

刚体力学的基础知识包括刚体绕定轴转 动的动力学方程和动能定理,刚体绕定轴 转动的角动量定理及角动量守恒定律
-------------------------------------------------------------------------------
§3-1 刚体 刚体定轴转动的描述
dt
当输---出----功----率-----一----定----时----,-力----矩-----与----角----速----度-----成----反----比----。------------
3. 刚体定轴转动的动能定理:
W
2 1
Md
2 1
Jd
2 1
J d d
dt
W
2 1
Jd
第3章 刚体力学基础
§3.1 刚体 刚体定轴转动的描述 §3.2 刚体定轴转动的转动定律 §3.3 刚体定轴转动的动能定理 §3.4 刚体定轴转动的角动量定理和角动量 守恒定律
-------------------------------------------------------------------------------
➢刚体上各质元的角量(即角位移、角速度、角加速度) 相同,而各质元的线量(即线位移、线速度、线加速度) 大小与质元到转轴的距离成正比 。
-------------------------------------------------------------------------------
§3-2 刚体定轴转动的转动定律
对滑轮 , 由转动定律
T2R T1R J ④
由于绳不可伸长
aA aB R

J 1 mR2

第3章_刚体

第3章_刚体
刚体由
d dr
F

r
P

1 2
2
A Md
1
2
刚体同时受几个力作用时, 合力或合力矩的功:
A Ai
1
M d
i
2
1
M d
合外力矩的功
M 等于各力矩的功的代数和
dA d 力矩的功率: P M M dt dt
力矩的功率等于力 矩和角速度的乘积
O
u
1 1 2 1 2 2 mu mv J 2 2 2
由系统角动量守恒
mul J mvl
6mu ( M 3m)l
u ( M 3m) v M 3m
z
r
v
P
第二节 刚体对定轴的角动量和转动惯量
刚体是任意两质点间的距离保持不变的特殊质点系 1、刚体对定轴的角动量 这一特殊质点系对该轴上任一O点 的角动量在该轴上的分量或投影 任一质点或质元对O点的角动量为:

z
Li Ri mi vi
在轴上的分量:
vi
1 2 Ek mv 2
z
d dr
F

O
r
P

外力 F 作用于刚体上的P点,时间 dt 内刚 。 体绕定轴转过角度 d ,P点的位移 dr
元功: dA F dr F cos dr
z
O
F cos rd Frsin d Md
z
薄板形刚体对板面内的两条 正交轴的转动惯量之和等于 对过该两轴的交点并垂直于 板面的那条转轴的转动惯量
o
y
ri xi
J z J x J y

刚体力学基础讲解

刚体力学基础讲解
J 1 MR2 a R
2
R1
M1 M2
R2
T2
m1g T1 m1a1 T2 m2 g m2a2
T1R1 T2 R2 J
T1 mm1
m2 M2 g
J

1 2
M1R12

1 2
M 2R22
a1 R1
m1g
a2 R2
P.19/34
第3章 刚体力学基础
例3-6. 一质量为m,长为l 的均质
乘积定义为对转轴的力矩.
M r F
单位:N·m
M

r

F
大小: M Fr sin 方向: 右手螺旋
力矩的方向由右螺旋法则确定 3.2.2 定轴转动定律 转动惯量 1. 定轴转动定律 转动惯量
P.8/34
3.2.2 定轴转动定律 转动惯量 1. 定轴转动定律 转动惯量 把刚体看作一个特殊质点系
M
R
T1 Mg T2 mm1 m
m1g 2 m2g
m2 g T2 m2a T1 m1g m1a
T2 R T1R J
J 1 MR2 2
a R
N1
m1
T1
N2 MR
m1g
T2
Mg
m2
m2g
第3章 刚体力学基础
m2 g T2 m2a T1 m1a
T2R T1R J
定轴转动:转轴固定不动的 转动.
A
A
B
A
B
B
3.平面平行运动(plane-parallel
motion) 刚体在运动过程中,其上每
一点都在与某固定平面相平行 的平面内运动.自由度为3.

第三章 刚体力学基础

第三章 刚体力学基础
J mi ri2
m1
r1
r2
m2
若质量连续分布
质量为线分布
J r dm
2
质量为面分布
质量为体分布
dm dl
为质量的线密度
dm ds
为质量的面密度
dm dV
为质量的体密度
线分布
面分布
体分布
注 意
只有几何形状规则、质量连续且均匀分布的刚体,才 用积分计算其转动惯量,一般刚体则用实验求其转动惯量。
0 x
d 角速度 dt 2 d d 角加速度 2 dt dt 由于这时组成刚体的各质点均在各自的转动平面内绕轴作圆周 运动,因此前面关于质点圆周运动的全套描述方法,此处全部 可用。
d

2) 刚体定轴转动角量与线量的关系 所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
2
物理意义:转动惯量是对刚体转动惯性大小的量度,其大小 反映了改变刚体转动状态的难易程度。
2. 与转动惯量有关的因素 ①刚体的质量及其分布; ②转轴的位置; ③刚体的形状。 3. 转动惯量的计算 刚体对某一转轴的转动惯量等于每个质 点的质量与这一质点到转轴的距离平方的 乘积之和。 质量离散分布的刚体
ri
0
f ji
rj
rij
f ij
二、刚体定轴转动的转动定律
如右图所示:刚体绕定轴z转动,在 刚体上任取一质元mi ,它绕z轴作 圆周运动,取自然坐标系 对mi 用牛顿第二定律:
z
fi
Or i
Fi
i
mi
i
Fi f i mi ai
cos i f i cos i ) mi ain mi ri 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 刚体力学基础
§ 3.1 刚体 § 3.2 力矩 刚体定轴转动的描述 刚体定轴转动的转动定律
§ 3.3 刚体定轴转动的动能定理 § 3.4 刚体定轴转动的角动量定理和角动量守恒


1 首 页 上 页 下 页退 出
3.1 刚体
一、刚体的引入
刚体定轴转动的描述
刚体(rigid body) :即形状和大小完全不变的 物体。是一理想模型。 通常把刚体分成许多部分,每一部分都小到可 看作质点,叫作刚体的质元。 由于刚体不变形,各质元间距离不变。
2 首 页 上 页 下 页退 出
二、刚体的基本运动 刚体最基本的运动方式是平动和转动 。 1、刚体的平动 在运动过程中,若刚体内部任意两质元间的 连线在各个时刻的位置都和初始时刻的位置 保持平行,这样的运动称为刚体的平动.
3 首 页 上 页 下 页退 出
2、刚体的转动 若刚体上各个质元都绕同一直线作 圆周运动,这样的运动称作刚体的 转动(rotation),这条直线称为转 轴(这根轴可在刚体之内,也可在 刚体之外)。 非定轴转动:在刚体转动过程中,转轴的方 向或位置随时间变化。该转轴称为转动瞬 轴.如陀螺的旋进、车轮的滚动等。 定轴转动:转轴固定不动,即既不改变方向 又不发生平移。该转轴称为固定轴。
d t dt
6 首 页 上 页 下 页退 出
刚体定轴转动的特点: 所有质点的角量都相同 ; 质点的线量与该质点的轴矢径大小成正比 。
vi ri
ai ri
ani ri
2
7 首 页 上 页 下 页退 出
3.2 力矩
一、力矩
刚体定轴转动的转动定律
1、力对固定点的力矩 1)定义:作用于质点的 力对惯性系中某参考点的 力矩,等于力的作用点对 该点的位矢与力的矢积, 即
*:请注意与教材P27之例题2.4比较,其有两处不同。 其一 此处滑轮质量不可忽略,大小不可忽略,所以 要用到转动定律; 其二 绳与滑轮间无相对滑动,所以,滑轮两边之张 力不相等。 24
回首页 回上页 首 页 上 页 下 下一页 页退 出
例3-6N 如图2.37(a)所示,质量均为m的两物体A,B. A放在倾角 为α的光滑斜面上,通过定滑轮由不可伸长的轻绳与B相连.定滑轮是半 径为R的圆盘,其质量也为m.物体运动时,绳与滑轮无相对滑动.求绳中 张力 T1 和 T2 及物体的加速度a(轮轴光滑).
略轴的摩擦。求:(1) m1 、
m2的加速度;(2)滑轮轻且不可伸长)
22 首 页 上 页 下 页退 出
M
T1
/
N
R
解 对m1 、m2,滑轮作受力 分析, m1 、m2作平动,滑轮 作转动,
T2
/
(T1 T1 ,T2 T2)
T1
m1
m1g
a1
解 物体A,B,定滑轮受力图见图2.37(b).对于作平动的物体A,B,分 别由牛顿定律得
T1 mg sin maA ①
mg T2 maB
又 T1 T1 , T2 T2 .


对定滑轮,由转动定律得
T2 R T1R=J ④
25 首 页 上 页 下 页退 出
由于绳不可伸长,所以
J mi ri
对于单个质点
质点系
2
单位:千克· 米2(kg· m2)
J mr
n i 1
2
J mi ri 2
若物体质量连续分布,
J r dm
2 m
14 首 页 上 页 下 页退 出
注意: (1)刚体的转动惯量
与刚体的质量有关, 与刚体的质量分布有关, 与轴的位置有关。 (2)质量元的选取: 线分布 dm dx(或dl) 面分布 dm ds 体分布 dm dv
作定轴转动的刚体,其转动角加速度与外力对转轴 的力矩之和成正比,与刚体对转轴的转动惯量成反比。
其在定轴转动中的地位与牛顿定律在质 点运动中地位相当。
20 首 页 上 页 下 页退 出
转动定律说明了J是物体转动惯性大小的量度。因为:
M一定时,J增大则减小
说明:J越大的物体,保持原来转动状态的性质就越 强,转动状态越难改变,即转动惯性越大。
式中为力F到轴的距离 力对固定点的力矩为零的情况: 力F等于零, 力F的作用线与矢径r共线(力F的作用线穿过0点, 即,有心力对力心的力矩恒为零)。
10 首 页 上 页 下 页退 出
力对固定轴的力矩为零的情况: 若力的作用线与轴平行
若力的作用线与轴相交
则力对该轴无力矩作用
任一对作用力和反作用力(内力)对同点(同轴)的 力矩之和为零:
dm
0
x
dx
l
x
解:与上例做法相同,只是坐标原点由中点移至端点, 积分限改变。
1 3 1 2 J A x dx l Ml 0 3 3

l
2
17 首 页 上 页 下 页退 出
例3-3 求质量为M,半径为R的细圆环绕过圆心并 与环面垂直的轴的转动惯量 解:在细圆环上任取一质 元dm, dm到轴的距离为R,故
5 首 页 上 页 下 页退 出
在时刻t到t+Δt时间内的角位移Δθ与Δt之比称为 刚体的平均角速度

t
当Δt→0时,平均角速度的极限称为瞬时角速度,简 称角速度,用ω表示:
d lim dt t 0 t
平均角加速度
t
t 0
瞬时角加速度,简称角加速度 lim
dm dV 2 rdr h 2 dJ r dm
3
r
h
dr
h2 r dr
J
R 0
( M R 2 h )
1 1 4 2 3 h2 r dr h R MR 2 2
19 首 页 上 页 下 页退 出
四、刚体定轴转动的转动定律的应用
M J
9 首 页 上 页 下 页退 出
2、力对轴的矩: 力矩在x,y,z轴的分量式,或称力对 轴的矩。例如上面所列Mx,My,,Mz,即 为力对X轴、Y轴、Z轴的矩。
Mz
F r //

·
F
F
若设力F的作用点到Z轴的位矢为r,则力对Z轴的 力矩为
r sin F F M z rF sin rF sin rF
dl
R
dJ R dm
2
因所有质元到轴心的距离均为R,
J R dm MR
2 M
2
18 首 页 上 页 下 页退 出
例3 -4 求质量为M,半径为R的均质圆盘(或圆柱 )对过质心且与盘面垂直的转轴的转动惯量。 解:设圆盘厚为 h,则整个圆盘可看成是由无穷多个 半径为r,宽为dr的圆环所组成, 设体密度为
M 如一个外径和质量相同的实心圆柱与空心圆 = 筒,若 受力和力矩一样,谁转动得快些呢? J
M
M
21 首 页 上 页 下 页退 出
例 3- 5
质量为m1, R m3
m2 ( m1 > m2)的两物体,
通过一定滑轮用绳相连, 已知绳与滑轮间无相对滑 动,且定滑轮是半径为R、 质量为 m3的均质圆盘,忽
12 首 页 上 页 下 页退 出
切向方程: Fi sin i fi sin i mi ai mi ri
将切向方程的两边各乘以ri,可得
Fi ri sin i fi ri sin i mi ri
2
把上式对刚体所有质元求和,并考虑到各质元角加 速度相同,有
F r sin f r sin 因为 f r sin 0
M
o
r
F

M r F
m
力矩是矢量,M的方向垂直于r和 F所决定的平面 ,其指向用右手螺旋法则确定。
2)力矩的单位:
牛· 米(N· m)
8 首 页 上 页 下 页退 出
3)力矩的计算: M的大小、方向均与参考点的选择有关
M Fr sin ※在直角坐标系中,其表示式为 M r F ( xi yj zk ) ( Fx i Fy j Fz k )
M i 0 M j 0 ri f ij rj f ji
M i 0 M j 0 (rj ri ) f ji rji f ji 0
f ij f ji
f ji
rj
r i
f ij
11 首 页 上 页 下 页退 出
dm
l 2
x
M l
dx
l 2
x
解:在棒上任取一质量元
dm dx
线密度
于是
dJ x dm
2
l 3 2
J0
l 2 l 2
1 x dx x 3
2
l 2
1 3 1 2 l Ml 12 12
16 首 页 上 页 下 页退 出
例3 -2 求上述细棒对过棒之一端并与棒垂直的轴的 转动惯量.
m3 g
T2
m1 g T1 m1a T2 m2 g m2 a
m2 a2
T1R T2 R J
a R
1 2 J m3 R 2
23 首 页 上 页 下 页退 出
m2 g
解得
2( m1 m2 ) a g 2( m1 m2 ) m3 2( m1 m2 ) g [ 2( m1 m2 ) m3 ]R 4m1m2 m1m3 T1 g 2( m1 m2 ) m3 4m1m2 m2 m3 T2 g 2( m1 m2 ) m3
aA aB R
又 J 1 mR 2 2
相关文档
最新文档