03-2环境化学第三章__水环境化学
环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化知识交流
之,pE越大,电子浓度越低,体系接受电子的倾向就越强。
(2)氧化还原电位E和pE的关系
Ox +ne→Red
(1)
根据Nernst方程
E=E0-(2.303RT/nF)lg[Red]/[Ox] (2) 当反应达平衡时,定义
E0=(2.303RT/nF) lgK
(3)
从上述化学方程式(1),可写出
K= [Red]/{[Ox][e]n }
如果考虑到羟基配合作用,那么金属氧化物或氢氧化物的 溶解度(MeT)表征为:
MeT = [ Mez+ ] +∑[ Me(OH)nz-n ]
固体的氧化物和氢氧化物具有两性的特征,它们和质子或 羟基离子都发生反应,存在一个pH值,在该值下溶解度为最 小值。在碱性或酸性更强的pH值区域内,溶解度都会变得更 大。
因此,在 H2S 和硫化物均达到饱和的溶液中,溶液重金属离子 的饱和浓度为: [Me2+]=Ksp/[S2-]=Ksp [H+]2/Ksp´ =Ksp [H+]2/(0.1K1K2)
3、碳酸盐
——多相平衡,pH通过控制碳酸根浓度影响沉淀平衡
封闭体系: 只考虑固相和液相,把 H2CO3* 当作不挥发酸类处理。
吸附量随粒度增大而减少,并且当溶质浓度范围固定 时,吸附量随颗粒物浓度增大而减少。
温度变化、几种离子共存(竞争作用)等。
3、沉积物中重金属的释放——属于二次污染问题
诱发释放的主要因素有: (1)盐浓度升高:碱金属和碱土金属阳离子可将被吸附在固体颗
粒上的金属离子交换出来。
(2)氧化还原条件的变化:有机物增多,产生厌氧环境、铁锰氧 化物还原溶解,使结合在其中的金属释放出来。
2、它在中性表面甚至在与吸附离子带相同电荷符号的表面 也能进行吸附作用。
环境化学第3.2章水环境化学水中无机污染物的溶解和沉淀课件
20
第三章/第二节/2.3 溶解和沉淀
2.3.4 碳酸盐 四、碳酸盐在开放体系的溶解度(二价金属)
[H2CO3*] = KHpCO2 [CO32-] = K1K2KHpCO2/[H+]2
pH>pK2(10.33) pK1<pH<pK2 (6.35~10.33) [Me2+] ≈ Ksp[H+]2/K1K2KHpCO2 pH<pK1(6.35)
第三章/第二节 水中无机污染物的迁移转化
2.3 溶解和沉淀
溶解/沉淀对迁移过程的影响
溶解/沉淀影响金属化合物溶解度,溶解度决定随水迁移能力 溶解度大,迁移能力大;溶解度小,迁移能力小
溶解/沉淀理论
溶解/沉淀受反应平衡和反应速率控制(化学热力学和动力学控制) 固-液平衡体系中,用溶度积来表征溶解度
第三章/第二节/2.3 溶解和沉淀
2.3.3 硫化物
二、金属硫化物的溶解度(以二价金属为例)
1. 金属硫化物的沉淀-溶解平衡
MeS (s) ⇌ Me2+ + S2-
[Me2+] = Ksp/[S2-]
2. H2S的电离平衡
H2S ⇌ H+ + HS- K1 = 8.9×10-8
HS- ⇌ H+ + S2-
= 2.532×10-3 mol/L
15
第三章/第二节/2.3 溶解和沉淀
2.3.4 碳酸盐
一、碳酸盐的沉淀-溶解平衡(以二价金属为例)
MeCO3 ⇌ Me2+ + CO32[Me2+] = Ksp/[CO32-] = Ksp/(CTα2)
H2CO3* ⇌ HCO3- + H+
【环境化学】第3.2章 水环境化学——第二节 水中无机污染物的迁移转化
22
吸附等温线和等温式
吸附等温线: 在固定的温度下,当吸附达到平衡时, 颗粒物表面上的吸附量(G)与溶液中溶质平衡浓度 (C)之间的关系,可用吸附等温线来表示。
吸附等温线类型:
Henry型(H型) Freundlich型(F型) Langmuir型(L型)
腐植质分子与金属络合的机理★
Hum
COO OH
-
+[Fe(OH)(H2O)x-1]2+
低pH
Hum
COO O
Fe
OH (O) x-1
+ H+
在低pH时,从腐植质的酸性基团中置换出一个质子
Hum COOHO-+ [Fe(OH)(H2O)x-1]2+
高pH
[ Hum
COO O
Fe
OOHH(H2O)x-2]-+2H+
23
H型等温式为: G = kc
k: 分配系数;等温线为直线型
F型等温式为:G = kc(1/n)
1)k 是c=1的吸附量,大致表示 吸附能力的强弱; 2)1/n为斜率,表示吸附量随 浓度增长的强度; 3)该等温线不能给出饱和吸附 量。
L型等温式: G = G0c/(A+c)
G0—单位面积上达到饱和时的 最大吸附量; A—常数。
胶体表面的化学反应(见下页胶片)
25
胶体表面的化学反应
是氢氧化物和氧化物的典型行为 与pH值有关
在酸性介质中 M(OH)n (s) + H+ → M(OH)n-1(H2O)+(s) 粒子带净正电荷
在碱性介质中 M(OH)n (s) → MO(OH)n-1-(s) + H+ 粒子带净负电荷
环境化学课后答案戴树桂主编第二版章
第三章水环境化学1、什么是表面吸附作用;离子交换吸附作用和专属吸附作用并说明水合氧化物对金属离子的专属吸附和非专属吸附的区别.2、1表面吸附:由于胶体表面具有巨大的比表面和表面能;因此固液界面存在表面吸附作用.胶体表面积越大;吸附作用越强.3、2离子交换吸附:环境中大部分胶体带负电荷;容易吸附各种阳离子.胶体每吸附一部分阳离子;同时也放出等量的其他阳离子;这种作用称为离子交换吸附作用;属于物理化学吸附.该反应是可逆反应;不受温度影响;交换能力与溶质的性质;浓度和吸附剂的性质有关.4、3专属吸附:指在吸附过程中;除了化学键作用外;尚有加强的憎水键和范德化力或氢键作用.该作用不但可以使表面点荷改变符号;还可以使离子化合物吸附在同号电荷的表面上.5、4水合氧化物对金属离子的专属吸附与非金属吸附的区别如下表所示.6、7、快速可逆请叙述氧化物表面吸附配合模型的基本原理以及与溶液中配合反应的区别..8、已知Fe3+与水反应生成的主要配合物及平衡常数如下:9、Fe3+ + H2OFeOH2+ + H+ lgK1= - 2.1610、Fe3+ + 2H2OFeOH2+ + 2H+ lgK2= - 6.7411、FeOH3s Fe3+ + 3OH- lgKso= - 3812、Fe3+ + 4H2OFeOH4- + 4H+ lgK4= - 2313、2Fe3+ + 2H2OFe2OH24+ + 2H+ lgK= - 2.9114、请用pc-pH图表示FeOH3s在纯水中的溶解度与pH的关系.15、解:16、1K1=FeOH2+H+/ Fe3+=FeOH2+KW3/KsoH+217、pFeOH2+=3 lgKW - lgKso + 2 pH - lgK1=2 pH - 1.8418、2K2=FeOH2+H+2/ Fe3+=FeOH2+KW3/KsoH+19、pFeOH2+=3 lgKW - lgKso + pH - lgK2=pH + 2.7420、3Kso=Fe3+OH-3=Fe3+KW3/H+321、pFe3+=3 lgKW - lgKso + 3 pH=3 pH - 422、4K4=FeOH4-H+4/ Fe3+=FeOH4-H+KW3/ Kso23、pFeOH4-=3 lg KW - lgK4 - lgKso - pH=19 - pH24、5K=Fe2OH24+H+2/ Fe3+2=Fe2OH24+KW6/ Kso2H+425、pFe2OH24+=6 lg KW - lgK - 2 lgKso + 4 pH=4 pH - 5.0926、用pc-pH图表示FeOH3s在纯水中的溶解度与pH的关系如下4解释下列名词:分配系数;标化分配系数;辛醇-水分配系数;生物浓缩因子;亨利定律常数;水解速率;直接光解;光量子产率;生长物质代谢和共代谢.1分配系数:在土壤-水体系中;土壤对非离子性有机化合物的吸着主要是溶质的分配过程溶解;即非离子性有机化合物可通过溶解作用分配到土壤有机质中;并经过一定时间达到分配平衡;此时有机化合物在土壤有机质和水中含量的比值称为分配系数.2标化分配系数:有机化合物在颗粒物-水中的分配系数与颗粒物中有机碳呈正相关;以固相有机碳为基础的分配系数即标化分配系数.3辛醇-水分配系数:有机化合物的正辛醇-水分配系数KOW是指平衡状态下化合物在正辛醇和水相中浓度的比值.它反映了化合物在水相和有机相之间的迁移能力;是描述有机化合物在环境中行为的重要物理化学参数.KOW 与化合物的水溶性;土壤吸附常数和生物浓缩因子等密切相关.4生物浓缩因子:有机毒物在生物体内浓度与水中该有机物浓度之比.5亨利定律常数:通常可理解为非电解质稀溶液的气-水分配系数.6水解速率:反映某一物质在水中发生水解快慢程度的一个参数.7直接光解:化合物本身直接吸收太阳能而进行分解反应.8光量子产率:分子被活化后;它可能进行光反应;也可能通过光辐射的形式进行"去活化"再回到基态;进行光化学反应的光子数占吸收光子数之比称为光量子产率.9生长物质代谢和共代谢:生物降解过程中;一些有机污染物作为食物源提供能量和提供酶催化反应分解有机物;这称为生长物质代谢.某些有机污染物不能作为微生物的唯一碳源与能源;必须有另外的化合物存在提供微生物碳源或能源时;该有机物才能被降解;这种现象称为共代谢.5请叙述有机物在水环境中的迁移;转化存在哪些重要过程.1负载过程:污水排放速率;大气沉降以及地表径流引入有机毒物至天然水体均将直接影响污染物在水中的浓度.2形态过程:①酸碱平衡:天然水中pH决定着有机酸或碱以中性态存在的分数;因而影响挥发及其他作用.②吸着作用:疏水有机化合物吸着至悬浮物上;由于悬浮物质的迁移而影响它们以后的归趋.3迁移过程:①沉淀-溶解作用:污染物的溶解度范围可限制污染物在迁移;转化过程中的可利用性或者实质上改变其迁移速率.②对流作用:水力流动可迁移溶解的或者被悬浮物吸附的污染物进入或排出特定的水生生态系统.③挥发作用:有机污染物可能从水体进入大气;因而减少其在水中的浓度.④沉积作用:污染物被吸附沉积于水体底部或从底部沉积物中解吸;均可改变污染物的浓度.4转化过程:①生物降解作用:微生物代谢污染物并在代谢过程中改变它们的毒性.②光解作用:污染物对光的吸收有可能导致影响它们毒性的化学反应的发生.③水解作用:一个化合物与水作用通常产生较小的;简单的有机产物.④氧化还原作用:涉及减少或增加电子在内的有机污染物以及金属的反应都强烈地影响环境参数.5生物累积过程:①生物浓缩作用:通过可能的手段如通过鱼鳃的吸附作用;将有机污染物摄取至生物体.②生物放大作用:高营养级生物以消耗摄取有机毒物进入生物体低营养级生物为食物;使生物体中有机毒物的浓度随营养级的提高而增大.请叙述有机物水环境归趋模式的基本原理..第四章土壤环境化学1.什么是土壤的活性酸度与潜性酸度试用它们二者的关系讨论我国南方土壤酸度偏高的原因..根据土壤中H+的存在方式;土壤酸度可分为活性酸度与潜性酸度两大类..1活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映;又称有效酸度;通常用pH表示..2潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+..当这些离子处于吸附状态时;是不显酸性的;但当它们经离子交换作用进入土壤溶液后;即可增加土壤溶液的H+浓度;使土壤pH值降低..南方土壤中岩石或成土母质的晶格被不同程度破坏;导致晶格中Al3+释放出来;变成代换性Al3+;增加了土壤的潜性酸度;在一定条件下转化为土壤活性酸度;表现为pH值减小;酸度偏高..2.土壤的缓冲作用有哪几种举例说明其作用原理..土壤缓冲性能包括土壤溶液的缓冲性能和土壤胶体的缓冲性能:1土壤溶液的缓冲性能:土壤溶液中H2CO3、H3PO4、H4SiO4、腐殖酸和其他有机酸等弱酸及其盐类具有缓冲作用..以碳酸及其钠盐为例说明..向土壤加入盐酸;碳酸钠与它生成中性盐和碳酸;大大抑制了土壤酸度的提高..Na2CO3+ 2HCl2NaCl + H2CO3当加入CaOH 2时;碳酸与它作用生成难溶碳酸钙;也限制了土壤碱度的变化范围..H 2CO 3 + CaOH 2CaCO 3 + 2H 2O土壤中的某些有机酸如氨基酸、胡敏酸等是两性物质;具有缓冲作用;如氨基酸既有氨基;又有羧基;对酸碱均有缓冲作用..2土壤胶体的缓冲作用:土壤胶体吸附有各种阳离子;其中盐基离子和氢离子能分别对酸和碱起缓冲作用..对酸缓冲M -盐基离子:对碱缓冲:Al 3+对碱的缓冲作用:在pH 小于5的酸性土壤中;土壤溶液中Al 3+有6个水分子围绕;当OH -增多时;Al 3+周围的6个水分子中有一、二个水分子离解出H +;中和OH -:2AlH 2O 63+ + 2OH - Al 2OH 2H 2O 84+ + 4H 2O3.植物对重金属污染产生耐性作用的主要机制是什么不同种类的植物对重金属的耐性不同;同种植物由于其分布和生长的环境各异可能表现出对某种重金属有明显的耐性..1植物根系通过改变根系化学性状、原生质泌溢等作用限制重金属离子的跨膜吸收..2重金属与植物的细胞壁结合;而不能进入细胞质影响细胞代谢活动;使植物对重金属表现出耐性..3酶系统的作用..耐性植物中酶活性在重金属含量增加时仍能维持正常水平;此外在耐性植物中还发现另一些酶可被激活;从而使耐性植物在受重金属污染时保持正常代谢过程..4形成重金属硫蛋白或植物络合素;使重金属以不具生物活性的无毒螯合物形式存在;降低了重金属离子活性;从而减轻或解除其毒害作用.. 4.举例说明影响农药在土壤中进行扩散和质体流动的因素有哪些1影响农药在土壤中扩散的因素主要是土壤水分含量、吸附、孔隙度、温度及农药本身的性质等:①土壤水分含量:研究表明林丹的汽态和非汽态扩散情况随土壤水分含量增加而变化..②吸附:土壤对农药的吸附改变了其扩散的情况;如土壤对2;4-D的化学吸附;使其有效扩散系数降低了;两者呈负相关关系..③土壤紧实度:土壤紧实度对农药的扩散的情况有影响是因为对于以蒸汽形式进行扩散的化合物来说;增加紧实度就降低了土壤孔隙率;扩散系数就自然降低了..如二溴乙烷、林丹等农药在土壤中的扩散系数随紧实度增加而降低..④温度:温度增高的总效应是使扩散系数增大..⑤气流速度:气流速度可直接或间接地影响农药的挥发..如果空气的相对湿度不是100%;那么增加气流就促进土壤表面水分含量降低;可以使农药蒸汽更快地离开土壤表面;同时使农药蒸汽向土壤表面运动的速度加快..⑥农药种类:不同农药的扩散行为不同..如有机磷农药乐果和乙拌磷在Broadbalk粉砂壤土中的扩散行为就是不同的..2影响农药在土壤中质体流动的因素有农药与土壤的吸附、土壤种类和农药种类等..①农药与土壤吸附:非草隆、灭草隆、敌草隆、草不隆四种农药吸附最强者移动最困难;反之亦然..②土壤种类:土壤有机质含量增加;农药在土壤中渗透深度减小;增加土壤中粘土矿物的含量;农药的渗透深度也减小..③农药种类:不同农药在土壤中通过质体流动转移的深度不同..如林丹和DDT..5.比较DDT和林丹在环境中的迁移、转化与归趋的主要途径与特点..DDT和林丹迁移转化、归趋主要途径与特点比较如下表所示:6.试述有机磷农药在环境中的主要转化途径;并举例说明其原理..有机磷农药在环境中转化途径有非生物降解和生物降解..1有机磷农药的非生物降解①吸附催化水解:吸附催化水解是有机磷农药在土壤中降解的主要途径..如地亚农等硫代硫酸酯的水解反应如下②光降解:有机磷农药可发生光降解反应;如辛硫磷在253.7nm的紫外光下照射30小时;其光解产物如下(C2H5O)2P SON CCN(C2H5O)2POSN CCN(C2H5O)2POO PO(OC2H5)2(C2H5O)2POP(OC2H5)2S(辛硫磷)(辛硫磷感光异构体)(特普)(一硫代特普)(辛氧磷)(C2H5O)2POON CCN2有机磷农药的生物降解有机磷农药在土壤中被微生物降解是它们转化的另一条重要途径..化学农药对土壤微生物有抑制作用..同时;土壤微生物也会利用有机农药为能源;在体内酶或分泌酶的作用下;使农药发生降解作用;彻底分解为CO2和H2O..如马拉硫磷被绿色木霉和假单胞菌两种土壤微生物以不同方式降解;其反应如下:第五章生物体内污染物质的运动过程及毒性1、在试验水中某鱼体从水中吸收有机污染质A的速率常数为18.76 h-1;鱼体消除A的速率常数为2.38×10-2h-1;设A在鱼体内起始浓度为零;在水中的浓度可视作不变..计算A在该鱼体内的浓缩系数及其浓度达到稳定浓度95%时所需的时间..2、已知氨氮硝化数学模式适用于某一河段;试从下表中该河段的有关数据;写出这一模式的具体形式..3、用查到的新资料;说明毒物的联合作用..4、试说明化学物质致突变、致癌和抑制酶活性的生物化学作用机理..答:1致突变作用机理:致突变性是指生物体中细胞的遗传性质在受到外源性化学毒物低剂量的影响和损伤时;以不连续的跳跃形式发生了突然的变异.致突变作用发生在一般体细胞时;则不具有遗传性质;而是使细胞发生不正常的分裂和增生;其结果表现为癌的形成.致突变作用如影响生殖细胞而使之产生突变时;就有可能产生遗传特性的改变而影响下一代;即将这种变化传递给子细胞;使之具有新的遗传特性.2致癌机理:致癌是体细胞不受控制的生长.其机理一般分两个阶段:第一是引发阶段;即致癌物与DNA反应;引起基因突变;导致遗传密码改变.第二是促长阶段;主要是突变细胞改变了遗传信息的表达;增殖成为肿瘤;其中恶性肿瘤还会向机体其他部位扩展.3抑制酶活性作用机理:有些有机化合物与酶的共价结合;这种结合往往是通过酶活性内羟基来进行的;有些重金属离子与含硫基的酶强烈结合;某些金属取代金属酶中的不同金属.5、解释下列名词概念:①被动扩散;②主动转运;③肠肝循环;④血脑屏障;⑤半数有效剂量浓度;⑥阈剂量浓度;⑦助致癌物;⑧促癌物;⑨酶的可逆和不可逆抑制剂..答:答:1被动扩散:脂溶性物质从高浓度侧向低浓度侧;即顺浓度梯度扩散通过有类脂层屏障的生物膜.2主动转运:在需要消耗一定代谢能量下;一些物质可在低浓度侧与膜上高浓度特异性蛋白载体结合;通过生物膜;至高浓度侧解离出原物质.3肠肝循环:有些物质由胆汁排泄;在肠道运行中又重新被吸收;该现象叫肠肝循环.4血脑屏障:脑毛细血管阻止某些物质多半是有害的进入脑循环血的结构.5半数有效剂量浓度:毒物引起受试生物的半数产生同一毒作用所需的毒物剂量浓度.6阈剂量浓度:在长期暴露毒物下;会引起机体受损害的最低剂量浓度.7助致癌物:可加速细胞癌变和已癌变细胞增殖成瘤块的物质.8促癌物:可使已经癌变细胞不断增殖而形成瘤块.9酶的可逆和不可逆抑制剂:抑制剂就是能减小或消除酶活性;而使酶的反应速率变慢或停止的物质.其中;以比较牢固的共价键同酶结合;不能用渗析;超滤等物理方法来恢复酶活性的抑制剂;称为不可逆抑制剂;另一部分抑制剂是同酶的结合处于可逆平衡状态;可用渗析法除去而恢复酶活性的物质;称为可逆抑制剂.6、试简要说明氯乙烯致癌的生化机制;和在一定程度上防御致癌的解毒转化途径..第六章典型污染物在环境各圈层中的转归与效应1、为什么Hg2+和CH3Hg+在人体内能长期滞留举例说明它们可形成哪些化合物..答:这是由于汞可以与生物体内的高分子结合;形成稳定的有机汞络合物;就很难排出体外.此外;烷基汞具有高脂溶性;且它在生物体内分解速度缓慢其分解半衰期约为70d;因而会在人体内长期滞留.Hg2+和CH3Hg+ 可以与羟基;组氨酸;半胱氨酸;白蛋白形成络合物.甲基汞能与许多有机配位体基团结合;如—COOH;—NH2;—SH;以及—OH等.2、砷在环境中存在的主要化学形态有哪些其主要转化途径有哪些答:砷在环境中存在的主要化学形态有五价无机砷化合物;三价无机砷化合物;一甲基胂酸及其盐;二甲基胂酸及其盐;三甲基胂氧化物;三甲基胂;砷胆碱;砷甜菜碱;砷糖等.砷的生物甲基化反应和生物还原反应是砷在环境中转化的重要过程.主要转化途经如下:3、试述PCDD是一类具有什么化学结构的化合物并说明其主要污染来源..答:1PCDD这类化合物的母核为二苯并一对二恶英;具有经两个氧原子联结的二苯环结构.在两个苯环上的1;2;3;4;6;7;8;9位置上可有1-8个取代氯原子;由氯原子数和所在位置的不同可能组合成75种异构体;总称多氯联苯并一对二恶英.其结构式如右:2来源:①在焚烧炉内焚烧城市固体废物或野外焚烧垃圾是PCDD的主要大气污染源.例如存在于垃圾中某些含氯有机物;如聚氯乙烯类塑料废物在焚烧过程中可能产生酚类化合物和强反应性的氯;氯化氢等;从而进一步生产PCDD类化合物的前驱物.除生活垃圾外;燃料煤;石油;枯草败叶含除草剂;氯苯类化合物等燃烧过程及森林火灾也会产生PCDD类化合物.②在苯氧酸除草剂;氯酚;多氯联苯产品和化学废弃物的生产;冶炼;燃烧及使用和处理过程中进入环境.③另外;还可能来源于一些意外事故和战争. 4、简述多氯联苯PCBs在环境中的主要分布、迁移与转化规律..答:1分布:由于多氯联苯挥发性和水中溶解度较小;故其在大气和水中的含量较少.近期报导的数据表明;在地下水中发现PCBs的几率与地表水中相当.此外;由于PCBs易被颗粒物所吸附;故在废水流入河口附近的沉积物中;PCBs含量较高.水生植物通常可从水中快速吸收PCBs;其富集系数为1×l04~l×l05.通过食物链的传递;鱼体中PCBs的含量约在l~7mg/kg范围内湿重.在某些国家的人乳中也检出一定量的PCBs.2迁移:PCBs主要在使用和处理过程中;通道挥发进入大气;然后经干;湿沉降转入湖泊和海洋.转入水体的PCBs极易被颗粒物所吸附;沉入沉积物;使PCBs大量存在于沉积物中.虽然近年来PCBs的使用量大大减少;但沉积物中的PCBs仍然是今后若干年内食物链污染的主要来源.3转化:PCBs由于化学惰性而成为环境中持久性污染物;它在环境中主要转化途径是光化学分解和生物转化.PCBs在紫外光的激发下碳氯键断裂;而产生芳基自由基和氯自由基;自由基从介质中取得质子;或者发生二聚反应.PCBs生物降解时;含氯原子数目越少;越容易降解.5、根据多环芳烃形成的基本原理;分析讨论多环芳烃产生与污染的来源有哪些表面活性剂有哪些类型对环境和人体健康的危害是什么第七章受污染环境的修复1.微生物修复所需的环境条件是什么微生物修复技术是指通过微生物的作用清除土壤和水体中的污染物;或是使污染物无害化的过程..它包括自然和人为控制条件下的污染物降解或无害化过程..在自然修复过程natural attenuation中;利用土着微生物indigenous microorganism的降解能力;但需要有以下环境条件:①有充分和稳定的地下水流;②有微生物可利用的营养物;③有缓冲pH的能力;④有使代谢能够进行的电子受体..如果缺少一项条件;将会影响生物修复的速率和程度..特别是对于外来化合物;如果污染新近发生;很少会有土着微生物能降解它们;所以需要加入有降解能力的外源微生物exogenous microorganism..2.请列举几种强化微生物原位修复技术..原位强化修复技术包括生物强化法、生物通气法、生物注射法、生物冲淋法及生物翻耕法等..1生物强化法是指在生物处理体系中投加具有特定功能的微生物来改善原有处理体系的处理效果;如对难降解有机物的去除等..投加的微生物可以来源于原来的处理体系;经过驯化、富集、筛选、培养达到一定数量后投加;也可以是原来不存在的外源微生物..2生物通气法bioventing用于修复受挥发性有机物污染的地下水水层上部通气层Vadose Zone土壤..这种处理系统要求污染土壤具有多孔结构以利于微生物的快速生长..另外;污染物应具有一定的挥发性;亨利常数大于1.01325Pa·m3·mol-1时才适于通过真空抽提加以去除..生物通气法的主要制约因素是影响氧和营养物迁移的土壤结构;不适的土壤结构会使氧和营养物在到达污染区之前被消耗..3生物注射法biosparging又称空气注射法;这种方法适用于处理受挥发性有机物污染的地下水及上部土壤..处理设施采用类似生物通气法的系统;但这里的空气是经过加压后注射到污染地下水的下部;气流加速地下水和土壤有机物的挥发和降解..也有人把生物注射法归入生物通气法..4生物冲淋法bioflooding将含氧和营养物的水补充到亚表层;促进土壤和地下水中的污染物的生物降解..生物冲淋法大多在各种石油烃类污染的治理中使用;改进后也能用于处理氯代脂肪烃溶剂;如加入甲烷和氧促进甲烷营养菌降解三氯乙烯和少量的氯乙烯..5土地耕作法land farming就是对污染土壤进行耕犁处理..在处理过程中施加肥料;进行灌溉;施加石灰;从而尽可能为微生物代谢污染物提供一个良好环境;使其有充足的营养、水分和适宜的pH值;保证生物降解在土壤的各个层面上都能发生..3.请列举几种强化微生物异位修复技术..异位生物修复主要包括堆肥法、生物反应器处理、厌氧处理..1堆肥法composting是处理固体废弃物的传统技术;被用于受石油、洗涤剂、多氯烃、农药等污染土壤的修复处理;取得了很好的处理效果..堆肥过程中;将受污染土壤与水达到至少35%含水量、营养物、泥炭、稻草和动物肥料混合后;使用机械或压气系统充氧;同时加石灰以调节pH..经过一段时间的发酵处理;大部分污染物被降解;标志着堆肥完成..经处理消除污染的土壤可返回原地或用于农业生产..堆肥法包括风道式堆肥处理、好气静态堆肥处理和机械堆肥处理..2生物反应器处理bioreactor是把污染物移到反应器中完成微生物的代谢过程..这是一种很有价值和潜力的处理技术;适用于处理地表土及水体的污染..生物反应器包括土壤泥浆生物反应器soil slurry bioreactor和预制床反应器prepared bed reactor..3厌氧处理对某些具有高氧化状态的污染物的降解;如三硝基甲苯、多氯取代化合物PCBs等等;比耗氧处理更为有效..但总的来说;在生物修复中好氧方法的使用要比厌氧方法广泛得多..主要原因是;严格的厌氧条件难于达到;厌氧过程中会产生一些毒性更大、更难降解的中间代谢产物..此外;厌氧发酵的终产物H2S和CH4也存在毒性和风险..4.植物修复重金属的主要过程是什么根据其作用过程和机理;重金属污染土壤的植物修复技术可分为3种类型..1植物提取:利用重金属超积累植物从土壤中吸取一种或几种重金属;并将其转移、储存到地上部分;随后收割地上部分并集中处理;连续种植这种植物;即可使土壤中重金属含量降低到可接受的水平..所谓超积累植物hyperaccumulator;是指对重金属的吸收量超过一般植物100倍以上的植物;超积累植物积累的Cr、Co、Ni、Cu、Pb含量一般在110mg/ kg干重以上;积累的Mn、Zn含量一般在10mg/ kg干重以上..超积累植物从根际吸收重金属;并将其转移和积累到地上部;这个过程中包括许多环节和调控位点:①跨根细胞质膜运输;②根皮层细胞中横向运输;③从根系的中柱薄壁细胞装载到木质部导管;④木质部中长途运输;⑤从木质部卸载到叶细胞跨叶细胞膜运输;⑥跨叶细胞的液泡膜运输..在组织水平上;重金属主要分布在表皮细胞、亚表皮细胞和表皮毛中;在细胞水平;重金属主要分布在质外体和液泡..2植物稳定:利用耐重金属植物的根际的一些分泌物;增加土壤中有毒金属的稳定性;从而减少金属向作物的迁移;以及被淋滤到地下水或通过空气扩散进一步污染环境的可能性..其中包括沉淀、螯合、氧化还原等多种过程..3植物挥发:利用植物的吸收、积累和挥发而减少土壤中一些挥发性。
环境化学第三章水
二节 气体在水中的溶解性
水的质量特征:
• 酸度和碱度
第一节 概述
• 盐度和氯度:1千克水中碳酸盐转变为氧化物、溴化物 和碘化物转变为氯化物、有机物完全氧化后所含固体 的总克数。
• 硬度 • 溶氧量:25℃时的饱和浓度
[O2 (aq)] = 2.6×10-3 mol/L = 8.32 mg/L
• 清度和色度
化合物直接与 pH值有关,实际涉及到水解和羟基配合物的平
衡过程,该过程往往复杂多变,这里用强电解质的最简单关 系式表述: Me(OH)n(s) → Men+ + nOH根据溶度积表达式 可导出金属离子浓度 等号两边取负对数: Ksp = [Men+][OH-]n [Men+] = Ksp/[OH-]n = Ksp[H+]n/Kwn -lg[Men+] =-lgKsp-nlg[H+] + nlgKw (3-21)
HS- → H+ + S2则总反应: H2S →2 H+ + S2-
K2= 1.3×10-15
K1,2=K1K2=1.16×10-22
三、溶解沉淀平衡
在饱和水溶液中,H2S浓度总是保持在0.1mol/L,则 [H+]2[S2-] = K1,2×[H2S] = 1.16×10-22×0.1 = 1.16×10-23 由于在水溶液中 H 2 S 的二级电离甚微,故可近似认为 [H+] = [HS-],因此可求得溶液中[S2-]浓度:
三、溶解沉淀平衡
第二节 天然水中的平衡
溶解和沉淀是污染物在水环境中迁移的重要途径,一般金
属化合物在水中迁移能力,直观地可以用溶解度来衡量。
溶解度小者,迁移能力小; 溶解度大者,迁移能力大。 在固—液平衡体系中,需用溶度积来表征溶解度。
03-2环境化学第三章--水环境化学
2、金属水合氧化物:
铝、铁、锰、硅等金属的水合氧化物 天然水中几种重要的容易形成金属水合氧化物的金属:
1)铝:铝水解,主要形态Al3+、Al(OH)2+、Al2(OH)24+、Al(OH)2+、 Al(OH)3和Al(OH)4-,随pH值变化而改变形态浓度比例。
第6页,共33页。
4、吸附等温线
1)吸附等温线和等温式:水体中颗粒物对溶质的吸附
是一个动态平衡过程,在固定的温度条件下,当吸附达
到平衡时,颗粒物表面上的吸附量(G)与溶液中溶质平 衡浓度(c)之间的关系,可用吸附等温线来表达。 ▪水 体 中 常 见 的 吸 附 等 温 线 有 三 类 : Henry 型 、 Freundlich型、Langmuir型,简称为H、F、L型。
第14页,共33页。
解:先计算单位比表面积(ρ为密度)
4r 2
=面积(球)/重量= 4 r 3 =
3
3 0.5 104 2.65
=2.264×104(cm2/g)
其次计算总体积=100m2×0.2m×10%=2m3=2×106cm3 所以总重量=总体积×比重=2×106cm3×2.65g/cm3=5.3×106g 所以总比表面积=5.3×106g×2.264×104(cm2/g)
表3-8 水合氧化物对金属离子的专属吸附与非专属吸附的区别
项
目
非专属吸附
专属吸附
发生吸附的表面净电荷的符号
-
-、0、+
金属离子所起的作用
反离子
配位离子
吸附时所发生的反应
阳离子交换
配位体交换
发生吸附时要求体系的pH值 >零电位点
任意值
环境化学第三章水环境化学复习知识点
第三章水环境化学1、水中八大离子:K+、Na+、Ca2+、Mg2+、HCO3-、NO3-、Cl-和SO42-为常见八种离子2、溶解气体与Henry定律:溶解于水中的气体与大气中的气体存在平衡关系,气体的大气分压P G与气体的溶解度的比表现为常数关系,称为Henry定律,该常数称为Henry定律常数K H。
[G(aq)] = K H PG K H-气体在一定温度下的亨利定理常数 (mol/L.Pa) PG -各种气体的分压 (Pa)3、水体中可能存在的碳酸组分 CO2、CO32-、HCO3-、H2CO3 ( H2CO3*)4、天然水中的碱度和酸度:碱度:水中能与强酸发生中和作用的全部物质,即能够接受质子H+的物质总量;酸度:凡在水中离解或水解后生成可与强碱(OH-)反应的物质(包括强酸、弱酸和强酸弱碱盐)总量;即水中能与强碱发生中和作用的物质总量。
5、天然水中的总碱度=HCO3-+2CO32-+ OH- —H+6、水体中颗粒物的类别(1)矿物微粒和粘土矿物(铝或镁的硅酸盐)(2)金属水合氧化物(铝、铁、锰、硅等金属)(3)腐殖质 (4)水体悬浮沉积物 (5)其他(藻类、细菌、病毒等)影响水体中颗粒物吸附作用的因素有:颗粒物浓度、温度、PH。
7、水环境中胶体颗粒物的吸附作用有表面吸附、化学吸附、离子交换吸附和专属吸附。
8、天然水的PE随水中溶解氧的减少而降低,因而表层水呈氧化性环境。
9、吸附等温线:在一定温度,处于平衡状态时被吸附的物质和该物质在溶液中的浓度的关系曲线称为吸附等温线;水环境中常见的吸附等温线主要有L-型、F-型和H-型。
10、无机物在水中的迁移转化过程:分配作用、挥发作用、水解作用、光解作用、生物富集、生物降解作用。
11、PE:pE 越小,电子活度越高,提供电子的倾向越强,水体呈还原性。
pE 越大,电子活度越低,接受电子的倾向越强,水体呈氧化性。
pe影响因素:1)天然水的pE随水中溶解氧的减少而降低;2)天然水的pE随其pH减少而增大。
第三章-水环境化学(第一次课)
ii 表示方法
总含盐量(Total Dissolved Solids-TDS),也称总矿化度: 水中所含各种溶解性矿物盐类的总量称为水的总含盐量。
总含盐量=Σ阳离子+Σ阴离子
iii 测定
重量法
总含盐量=溶解固形物
cT
[H
2 CO
* 3
](1
K1 [H
]
K1K 2 [H ]2
)
0
[H2CO*3
]
1
cT
(1
K1 [H ]
K1K 2 [H ]2
) 1
说明pH决定它们的 含量多少
1
[HCO
3
]
cT
[H ] (
K1
1
K2 [H
) ]
1
2
[CO32 ] cT
([H ]2 K1K 2
[H ] 1)1 K2
lg c2 H • ( 1 1 ) 15.59103 ( 1 1 ) c1 2.303R T1 T2 2.3038.314 298.15 273.15
c2 8.289 1.778 14.74mg / L
0 ℃时的含量14.74mg/L 20 ℃时为9.227mg/L
2.在一个标准大气压下,25℃时CO2在水中的溶解度。已知 CO2在干空气中的含量为0.0314%(体积)。
氧气的分压为
0.9813105 20.95% 0.2056105 Pa
[G(O2) ] KH PG 1.26108 0.2056105 2.590104 mol / L
[G(O2) ] 2.590104 32 8.289mg / L
第三章水环境化学
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
第三章 水环境化学
(Water Environmental Chemistry)
本章重点
1、无机污染物在水体中进行沉淀-溶解、氧化-还原、 配合作用、吸附-解吸、絮凝-沉淀的基本原理;
2、计算水体中金属存在形态;
3、pE计算;
4、有机污染物在水体中的迁移转化过程和分配系数、 挥发速率、水解速率、光解速率和生物降解速率的 计算方法。
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)
第3章:水环境化学3-2
双膜理论是基于化学物质从水中挥发时必须克服来自近水表层和空 气层的阻力而提出的。这种阻力控制着化学物质由水向空气迁移的速 率。由图可见,化学物质在挥发过程中要分别通过一个薄的“液膜” 和一个薄的“气膜”。
在气膜和液膜的界面上,液相浓度为ci,气相分压则用pci表示,假 设化学物质在气液界面上达到平衡并且遵循亨利定律,则:pci = KH ci
这里,采用第二种形式,则可以知道,如果大气中存在某种污染物,其 分压为P,那么在水中的溶解形成的浓度:Cw=P/KH。
亨利常数的估算:
一般方法:KH’=C/Cw(C—有机毒物在空气中的摩尔浓度,mol/ m3;KH’—亨
利定律常数的替换形式,无量纲)。
则可以得到:
K H P nRT /V RT
K
H
'
0.12 pS M W SW T
例如二氯乙烷的蒸汽压为2.4×104pa,20℃时在水中的溶解度为5 500mg / L,可分别计算出亨利定律常数KH或KH’:
KH = 2.4×104×99/5 500 = 432Pa·m3/mol
KH’ = 0.12×2.4×104×99/5 500×293 = 0.18
通常测定水中有机物的水解是一级反应,RX的消失速率正 比于[RX],即
-dIRX]/dt=Kh[RX]
式中:Kh—水解速率常数。
只要温度、pH值等反应条件不变,可推出半衰期:t1/2 = 0.693 / Kh
实验表明,水解速率与pH有关。Mabey等把水解速率归纳 为由酸性或碱性催化的和中性的过程,因而水解速率可表示 为:
三、挥发作用
许多有机物,特别是卤代脂肪烃和芳香烃,都具有挥发性,从 水中挥发到大气中后,其对人体健康的影响加速,如CH2Cl2、 CH2Cl- CH2Cl等。
环境化学课件第三章 水环境化学
水危机产生的原因 The causes of water crisis
1.自然条件的影响:
●淡水在地球上分布不均 ●气候变化的影响
2.城市与工业区集中发展
●世界人口趋向于集中在地球较小部分 的城镇和城市:
41.6%人口集中于占0.3的土地面积的城镇
●城市及其周围大量建设工业区,集中 用水量很大,超过当地水资源的供水能力
电离度:很小。是真正的中性物质,并能同时提供微量的H+
和OH-,有利于维持生物体的酸碱平衡。
透明度:相当地大。对红外和紫外的辐射能吸收大,对可见
光的选择吸收比较小,既是无色的又透明度大,这种特征 性的吸收,能保护浮游生物不受紫外线的伤害。
热传导:所有液体中最高(汞除外)。在活细胞里小尺度范
围内有重要作用,其分子热传导过程远不如涡动热传导过 程剧烈。
③破坏了水中固有的生态系统; ④破坏了水体的功能及其在经济发展和人民生活中的 作用
地球上水的总储量约为1.38×109km3,海洋占97.41%,覆盖了地 球表面积的71%,地球因而表现为漂亮的蔚蓝色星球。淡水占总水 量的2.59%,而其中大约70%以上以固态储存在极地和高山上,只 有不到30%的淡水资源存在于地下、湖泊、土壤、河流、大气等之 中。水圈的上限算到对流层顶,下限为深层地下水所及的深度。
生成热 (千焦/摩)
6.02 -286.26
H2O (-95) (推测)
H2S -85.2
(-80) (2.58) (12.55) (2.09) (-8.56)
-60.3 1.10
18.66
2.38 -22.02
H2Se -65.7
-41.3 0.40
19.33
2.51 -66.14
环境化学第三章__水环境化学(PPT)
第十二页,共九十页。
代入亨利定律即可求出氧在水中的摩尔(mó ěr)浓度为:
[O2(aq)]= KH·PO2=1.26×10-8×0.2056×105 =2.6×10-4 mol/L
氧的分子量为32,因此其溶解度为8.32 mg/L。
第三章 水环境 化学 (huánjìng)
第一节 天然水的根本特征及污染物的存在形态(xíngtài)
第二节 水中无机污染物的迁移转化 第三节 水中有机污染物的迁移转化
第一页,共九十页。
内容提要: 本章主要介绍天然水的根本特征,水中重要污染物存在形态及分布, 污染物在水环境中的迁移转化(zhuǎnhuà)的根本原理。
第二十三页,共九十页。
❖❖[图CO中3的2p-]H可=以8.3忽可略以不作计为,一水个分中界只点有,[CpOH2<〔8.a3q,〕很]、小[,H22CO3]、
❖[HCO3-],可以只考虑一级电离平衡(pínghéng),即此时:
❖
❖❖❖当溶所液以的ppHH>=8p[.3KH时1-],lg[[KHH122[CC[HHOO23C3C**]OO3]+3可*]l]g以[H忽C略O不3-计]。,水中只存在
P↑↓R
C 1 0 6H 2 6 3 O 1 1 0N 1 6P 1 3 8 O 2
第十七页,共九十页。
〔二〕天然水的性质(xìngzhì)
1、碳酸平衡〔重点〕
对于CO2-H2O系统,水体中存在着CO2〔aq〕、H2CO3、HCO3-和CO32-等 四种化合态,常把CO2(aq)和H2CO3合并为H2CO3*,实际上H2CO3含量 (hánliàng)极低,主要是溶解性气体CO2(aq)。
《环境化学》第三章 水环境化学
d) 水体悬浮沉积物:水体中胶体物质聚集体。矿物微粒为 骨架,有机物和水合物结合在表面
e) 藻类、细菌、病毒、油迹、表面活性物质
一、颗粒物与水之间的迁移
二、水中颗粒物的聚集
异体凝聚理论
适用于处理物质本性不同、粒径不等、电荷符号不同、电位 高低不等之类的分散体系
电性相异的胶粒相接近,吸引力占优势 电性相同的胶粒相接近,位能最大值取决于荷电较弱而
电位较低的一方。 只要有一种的稳定性甚低而电位达到临界状态,就必然
发生快速凝集
二、水中颗粒物的聚集
口沉积物氧化还原电位降低 ③ 降低pH值, 导致碳酸盐和
氢氧化物溶解 ④ 增加水中配合剂的含量, 稳
定的配合物的形成导致重金 属元素的形态变化
二、水中颗粒物的聚集
凝集:由电解质促成的胶体颗粒聚集 絮凝:由聚合物促成的胶体颗粒聚集
DLVO理论——解释胶体聚集的理论
DLVO理论假设: a) 胶粒为粒度相等的球体 b) 引力:多分子范德华力(VA) c) 斥力:扩散双电层排斥力(VR)(静电+水化膜) d) 胶粒间的综合位能: VT = VR + VA
(1)
Fe3+ + 2H2O = 2H+ + Fe(OH)2+
(2)
H++OH-=H2O
(3)
Fe(OH)3(s) = Fe(OH)2+ + OH-
(4)
lgK4=lgK1+lgK2+2lgK3=(-38)+(-6.74)+214=-16.74
北京师范大学环境化学课件——环境化学 第三章 3-2
重金属迁移转化都可以用形态(SPECIATION) 概括无机污染物,特别是重金属和准金属等污染物,一旦进入水环境,均不能被生物降解,主要通过沉淀-溶解、氧化-还原、配合作用、胶体形成、吸附-解析等一系列物理化学作用进行迁移转化,参与和干扰各种环境化学过程和物质循环过程,最终以一种或多种形态长期存留在环境中,造成永久性的潜在危害。
天然水中颗粒物主要包括各类矿物微粒,含有铝、铁、锰、硅水合氧化物等无机分子,含有腐殖质、蛋白质等有机分子。
此外,还有油滴、气泡构成的乳状液和泡沫、表面活性剂等半胶体以及藻类、细菌、病毒等生物胶体。
水中颗粒物金属水合氧化物矿物微粒和粘土矿物腐殖质水体悬浮沉积物1. 水中颗粒物的类别金属水合氧化物Al、Fe、Mn、Si等金属的水合氧化物在天然水中以无机高分子及溶胶等形态存在,在水环境中发挥重要的胶体化学作用•Al在水中的主要形态:Al3+、Al(OH)2+、Al(OH)2+、Al(OH)3、Al(OH)4-、Al2(OH)24+等无机高分子•Fe在水中的主要形态:Fe3+、Fe(OH)2+、Fe2(OH)24+、Fe(OH)2+、Fe(OH)3、FeOOH等无机高分子•Mn与Fe类似,丰度较低,但是溶解度要高一些•H4SiO4聚合成无机高分子:Si n O2n-m(OH)2m矿物微粒和黏土矿物黏土矿物是由其他矿物经化学风化作用而生成,是天然水中最重要、最复杂的具有显著胶体化学特性的无机胶体微粒。
主要成分为铝或镁的硅酸盐,具有层状晶体结构。
黏土矿物的片层晶体基本是由两种原子层构成的,一种是硅氧四面体(硅氧片),另一种是铝氢氧原子层(水铝片),其间主要靠氢键连接,因此易于断裂开来。
石英、长石等不易破碎、颗粒较粗,缺乏黏结性;云母、蒙脱土、高岭石等硅酸盐黏土矿物,有胶体性质片层结构,容易破碎,具有黏性,可以生成稳定聚集体。
腐殖质已死的生物体在图扬中经微生物分解而形成的有机物质,主要指腐植酸,如富里酸、胡敏酸等。
第三章 水环境化学
pKc1
pKc2
结论:
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ pH<<pKc1 pH=pKc1 pH=pKc2 pH>>pKc2 pH=1/2(pKc1+pkc2) H2CO3* αH2CO3*=αHCO3αHCO3-=αCO32CO32HCO3-
3:开放碳酸体系
= -21.6 + 2pH
由以上方程式作lgc—pH图可看出
3. 碱度的测定:
(原理: 中和滴定法,根据消耗的酸量求出)
c V 1000 碱度(mmol/L ) Vs 单位:mmol[H ]/L
式中:Vs——水样体积)(mL) c——HCl浓度(mol/L) V——HCl体积(mL)
思考:碱度和碱性的区别
例如:若一个天然水的pH为7.0,碱度为1.4mmo1/l, 求需加多少酸才能把水体的pH降低到6.0。
二、水体中的污染物
病原体污染物
耗氧污染物 植物营养物 石油类污染物 放射性物质
酸、碱、盐无机污染物
热污染
有毒污染物
(1)重金属
(2)无机阴离子 (3)有机农药、多氯联苯 (4)致癌物质 (5)一般有机物质
三、水体中的污染物的运动过程
大气降落物 污水排入
1.稀释、扩散过程
3.转化过程
溶解在天然水中的物质
1、主要离子 主要阳离子有: Ca2+、Mg2+、Na+、K+。 主要阴离子有: Cl-、SO42-、HCO3-、CO32-。 这八种离子可占水中溶解固体总量的95%~99%以上。 陆地水中下列成分的含量顺序一般为: HCO3- >SO42- >Cl-,Ca2+ >Na+ >Mg2+ 海水中相应的含量顺序为: Cl- >SO42- >HCO3-,Na+ >Mg2+ >Ca2+。
第三章 水环境化学
6
1、天然水的组成(离子、溶解气体、水生生物) 天然水是含有可溶性物质和悬浮物的一种天 然溶液。可溶性物质非常复杂,主要是岩石风化 过程中,经过水溶解迁移、搬运到水中的地壳矿 物质。
7
(1)天然水中的主要离子组成
天然水中常见的八大离子: K+ 、 Na+ 、 Ca2+ 、 Mg2+ 、 HCO3- 、 NO3- 、 Cl- 、 SO42-。 常见的八大离子占天然水中离子总量的95%-99%。 水中这些主要离子,常用来作为表征水体主要化学特征性指标。 硬 Ca2+ HCO3度 Mg2+ CO32碱 度 酸 H+ OH碱 金 属
1 =0.3086 2.24 1 2.24 =0.6914 2.24 1
[ H 2 CO3 ] [ HCO3 ]
*
所以此时[H2CO3*]=α0CT=0.3086×3×10-3molL-1=0.9258×10-3molL-1 [HCO3-]=α1CT=0.6914×3×10-3molL-1=2.0742×10-3molL-1 加酸性废水到pH=6.7,有0.9258×10-3molL-1的H2CO3*生成,故每升河水中要加入 0.9258×10-3mol的H+才能满足上述要求,这相当于每升河水中加入浓度为1×10-2 molL-1的硫酸废水的量V为: V=0.9258×10-3mol/(2×1×10-2molL-1)=0.0463L=46.3mL。因此相当于每升河水中
100 CO2+H2CO3 HCO3CO32-
80 60 40 20 0
2 4 6 pH 8 10 12
28
碳酸化合态分布图的理解: a、总体分布态势:
3 水环境化学 环境化学课件
3
水中这些主要离子的分类,常用来作为表征水体主要化学特 征指标。
硬 Ca2+ HCO3度 Mg2+ CO32酸 H+ OH碱 金 属 阳 离 子 Na+ SO42- ClNO3-
阴 离 子
碱
度
酸
根
4
2.水中的金属离子
水 溶 液 中 金 属 离 子 的 表 示 式 常 写 成 Mn+, 与 水 水 合 形 成
19
2.天然水中的酸碱度
酸度 水中能与强碱发生中和作用的全部物质
(放出H+或经过水解能产生H+的物质的总量)
组成水中酸度的物质
(1)强酸; (2)弱酸如CO2、H2CO3、H2S、蛋白质以及各种有机酸类; (3)强酸弱碱盐。
天然水体的缓冲能力
天然水体的pH值一般在6~9之间。 水中碳酸化合物控制水的pH值--具有缓冲作用。
矿物酸度=[H+]-[HCO3-]-2[CO32-]-[OH-]
23
在化学计量点 pH=8.3 ( pH HCO3- ) : 水中所有碳酸盐类都要转 化为HCO3-,此时 一个H2CO3*能够提供1个H+, 一个CO32-需要消耗1个H+, 一个OH-需要消耗1个H+ 因此得到H+平衡方程:[H+]+[H2CO3*]=[CO32-]+[OH-] 滴定前,如果上式右侧〉左侧,则存在碳酸盐碱度,而当上式 右侧<左侧,存在二氧化碳酸度,并得到其计算公式: 碳酸盐碱度= [CO32-]+[OH-]-[H+]-[H2CO3*]
=4.45×10-7molL-1
=4.68×10-11molL-1
环境化学第三章
一种气体在液体中的溶解度正比于液 体所接触的该种气体的分压。
3-15
《环境化学》 第三章 水环境化学
氧在水中的溶解度与水的温度、氧在水中的分压及水中含 盐量有关。氧在1.0130×105 Pa、25℃饱和水中溶解度为 8.32 mg/L。
环境化学(袁加程)第三章水环境化学PPT课件
1.00 × 10-4 mol/L from OH-
Alk = 1.00 × 10-3 mol/L
20
2. 天然水体中的化学平衡
若一个天然水的pH为7.0,碱度为1.4mmol/L,求需加多少酸 才能把水体的pH降低到6.0?
27
4. 水体的自净作用与水环境容量
4.2 水体自净特征
• 水体中的污染物在自净过程中浓度是逐渐下降的; • 大多数有毒污染物转变为低毒或无毒化合物; • 重金属从溶解状态被吸附或转变为不溶性化合物,沉淀入底泥; • 复杂的有机物都能被微生物利用和分解; • 不稳定的污染物变为稳定的化合物; • 水中溶解氧急剧下降到最低点后又缓慢上升,并恢复到正常水平; • 水中生物种类和个体数量大量减少,然后生物种类和个体数量也 逐渐随之回升,最终趋于正常的生物分布。
5
1. 天然水的基本特性 1.3 水的结构
四面体结构
6
2. 天然水体中的化学平衡
2.1 气态物质在水中的溶解平衡
大气中的气体与溶液中 同种气体间的平衡为:
KH 是各种气体在一 定温度下的亨利定
律常数(mol/L·Pa);
[G(aq)] = KH×pG
亨利定律并不能说明气体在溶液中进一步的化学反应。溶 解于水中的实际气体的量,可以大大高于亨利定律表示的 量。
2 3
]
3
]
[ HCO
3
]
K 1 [ H 2 CO [H ]
3]
[ CO
2 3
]
K 2 K 1 [ H 2 CO [H ]
【环境化学】第三章 水环境化学
[H2CO3*]=[H+][HCO3-]/
K1
(1)
=1.00×10-8×1.00×10-3 / 4.45×10-
7
[CO32-] = K2[HCO3-] / [H+]
(2)
= 4.69×10-11×1.00×10-3 /1.00×10-8
= 4.69 ×10-6mol.L-1
例2
若水体 pH升高到10.00, 碱度仍保持1.00×10-3 mol.L-1,再计算该水体中各碱度成分的浓度 。 解 : 碱 度 = [HCO3-] + 2[CO32-] + [OH-] (mol.L-1)
[HCO3-] = 4.64×10-4 mol.L-1 [CO32-] = 2.18×10-4 mol.L-1 对总碱度的贡献仍为1.00×10-3 mol.L-1
例3
天然水pH=7.0,碱度为1.4 m mol.L-1, 为使
pH=6.0加入酸多少?
解:总碱度 = CT (α1+2α2) + KW /[H+] – [H+]
氧化还原电位E与pE的关系 Ox + n e = Red
[OH-] = 1.00×10-4 mol.L-1
1.00×10-3 = [HCO3-] + 2[CO32-] + 1.00×10 -4
[CO 2 ] 4.691011
3 [HCO Biblioteka 1.0010100.469
3
[CO32-] = 0.469 [HCO3-]
[HCO3-]+ 0.469 [HCO3-]× 2 = 0.0009
lg[HCO3-] = lg K1 + lg [H2CO3*] + pH = -11.3 + pH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 的强弱。 n
为斜率,它表示吸附量随浓度增长的强
度。
该等温线不能给出饱和吸附量。
③Langmuir型吸附等温线 G=G0c/(A+c) 1/G=1/G0+(A/G0)(1/c) G0---单位表面上达到饱和 时间的最大吸附量;
G0
G0/2 L型
A
1/G
c
L型
A---常数
1/c
1 1 以 G 对 作图,同样得到一直线。 c
该等温线在一定程度上反映了吸附剂与吸附物的 特性,其形式在许多情况下与实验所用溶质浓度区
段有关。当溶质浓度甚低时,可能在初始区段中呈
现H型,当浓度较高时,曲线可能表现为F型,但统
一起来仍属于L型的不同区段。
④影响吸附作用的因素:
Fe(OH)2+、Fe(OH)2+、Fe2(OH)24+和Fe(OH)3。 3)锰 与铁类似,其丰度虽然不如铁,溶解度比铁高, 也是常见的水合金属氧化物。 4)硅酸的单体H4SiO4,若写成Si(OH)4,则类似于多价金 属,是一种弱酸,过量的硅酸将会生成聚合物,并可生 成胶体以至沉淀物。
重要的水合氧化物主要有:
4、吸附等温线
1)吸附等温线和等温式:水体中颗粒物对溶质的
吸附是一个动态平衡过程,在固定的温度条件下,
当吸附达到平衡时,颗粒物表面上的吸附量 (G)与
溶液中溶质平衡浓度 (c) 之间的关系,可用吸附等 温线来表达。 水体 中常见 的吸附 等温线 有三类 : Henry 型 、 Freundlich型、 Langmuir型,简称为 H、 F、 L型。
① Henry 型吸附等温线为直线,等温式为: G=kc
k------分配系数
该等温式表明溶质在吸附剂与溶液之间按固定比值分配。
G
H型
c
②Freundlich型等温式为:
G=kc1/n
两边取对数: lg G lg k
1 lg c n
lgG
G
F型 F型
lgk
c
lgc
以 lgG 对 lgc 作图可得一直线。 lgk 为截距,因此,
粒物比表面积?
解:先计算单位比表面积(ρ为密度)
4r 2 4 3 r 3
3 0.5 10 4 2.65
=面积(球)/重量=
=
=2.264×104(cm2/g) 其次计算总体积=100m2×0.2m×10%=2m3=2×106cm3 所以总重量=总体积×比重=2×106cm3×2.65g/cm3=5.3×106g
能进行吸附作用。
零电位点(ZPC,Zero Point of Charge )——胶粒表
面所带的正、负电荷相等而失去电性时相应的介质pH
值。环境胶体水化学中,pHZPC是一种重要的特征值。
pH 水锰矿对Co、Cu、Ni、 K和Na离子的吸附及其随pH的变化
下表列出水合氧化物对重金属离子的专属吸附与非专属吸附的区别。
2 、氧化还原条件的变化 : 还原条件下, Fe 、 Mn 等的
氧化物溶解,其吸附的金属离子被释放出来。
3、pH值降低:水环境pH值的降低,导致硫酸盐和氢氧
化物的溶解,H+的竞争作用增加了金属离子的解吸量。
4、水中配合剂的含量增加: 废水中配合剂的含量增加,
和重金属形成稳定的可溶性配合物,使重金属重新进入水
第二节 水中无机污染物的迁移转化
一、颗粒物与水之间的迁移 二、水中胶体颗粒物聚集的基本原理和方式 三、溶解和沉淀 四、氧化—还原
五、配合作用
重点内容:
1、腐殖质的主要成分及其性质 2、水环境中颗粒物的吸附作用 3、溶解沉淀、氧化还原、配合作用的基本原 理及相关计算
一、颗粒物与水之间的迁移
(一)水中颗粒物的类别
溶液pH值对吸附作用的影响。 吸附量随溶液pH值升高而增大。超过临界pH值时, 水解、沉淀起主要作用。 表3-9 重金属的临界pH值和最大吸附量 元 素 Zn Co Cu Cd Ni
临界pH 最大吸附量 (mg/g)
7.6 6.7
9.0 3.3
7.9 3.9
8.4 8.2
9.0 2.2
吸附量(G)与pH、平衡浓度(C)之间的关系可用下式
体。
粘土矿物是天然水中最重要、最复杂的无机胶体,是 天然水中具有显著胶体化学特性的微粒。主要成分为铝或 镁的硅酸盐,具有片状晶体结构;
粘土矿物的片状晶体基本由两种原子层构成,一种是硅氧四 面体(硅氧片),另一种是铝氢氧原子层(水铝片),其间主 要靠氢键连接,因此易于断裂开来。
2、金属水合氧化物:
所以总比表面积=5.3×106g×2.264×104(cm2/g)
=12×1010cm2=12万m2
2、离子交换吸附:物理化学吸附,主要是胶体对各种
介质离子的吸附,曾有人称之为“极性吸附”。
• 环境中大部分胶体(包括粘土矿物、有机胶体等)带负电荷,
容易吸附各种阳离子,在吸附过程中,胶体每吸附一部分阳离
吸附:指溶液中的溶质在界面层浓度升高的 现象。主要有表面吸附、离子交换吸附、专属吸 附三种类型。
1、表面吸附:物理吸附;发生的关键是胶体颗粒
具有巨大的比表面积和表面能。
单位比表面积(ρ为密度)=面积(球)/重量 4r 2 3 (cm2/g) = = 4 3 r r
3
表面能(又称为表面吸附能):任何分子之间均存在引力,
子,同时也放出等量的其他阳离子
Na HR NaR H
例如:去离子水的制备
特征:可逆反应,能够迅速达到平衡。不受温度影响,酸碱
条件下均可进行,其交换吸附能力与溶质的性质、浓度及吸
附剂性质等有关。
离子交换吸附对于从概念上解释胶体颗粒表面对水合金属离
子的吸附是有用的,但是对于那些在吸附过程中表面电荷改
褐铁矿:Fe2O3﹒nH2O
水化赤铁矿:2Fe2O3﹒H2O 针铁矿:Fe2O3﹒H2O 水铝石:Al2O3﹒H2O 三水铝石:Al2O3﹒3H2O 二氧化硅凝胶:SiO2﹒nH2O 水锰矿:Mn2O3﹒H2O 得到具有重要胶体作用的: 水解 [Al(OH)3]∞聚合无机高分子 [FeOOH]∞聚合无机高分子 [MnOOH]∞聚合无机高分子 [Si(OH)4]∞聚合无机高分子
4、水体悬浮沉积物:(无机与有机粒子的复合体)
天然水体中各种环境胶体物质相互作用结合成聚集体 以矿物微粒为核心骨架,有机物和金属水合氧化物结合 在矿物微粒表面上,成为各微粒间的粘附架桥物质
5、其他:湖泊中的藻类,污水中的细菌、病毒、
废水排出的表面活性剂、油滴
(二)水环境中颗粒物的吸附作用(重点)
表示:G = A· c· 10BpH
式中:A、B—常数。
颗粒物的粒度和浓度对重金属吸附量的影响。吸附
量随粒度增大而减少;当溶质浓度范围固定时,吸 附量随颗粒物浓度增大而减少。 温度变化、几种离子共存时的竞争作用均对吸附产 生影响。
2)氧化物表面吸附的配合模式(自学)
(三)沉积物中重金属的释放
在物体内部,某分子受到各方面作用力相等,因而处于平衡状
态,但是在胶体表面上,分子受力不均匀(因为表面分子周围 的分子数量不相等),因而产生了所谓的表面能。
计算实例:某湖泊底泥 ρ=2.65g/cm3 , 10%为直径
D=1μm(10-4cm)的颗粒物,求面积S=100m2,深度
h=0.2m 的底泥中,所有直径 D=1μm ( 10-4cm )的颗
3、腐殖质
重点
主要成分:腐殖酸、富里酸、胡敏酸。 腐殖酸:可溶于稀碱但不溶于酸的部分; 富里酸:可溶于酸又可溶于碱的部分; 胡敏素:(腐黑物,Humin)不能被酸和碱提取的部分。
属于芳香族化合物,有机弱酸性,分子量从 700-
2型与官能团(羧基、羰基、
表3-8 水合氧化物对金属离子的专属吸附与非专属吸附的区别 项 目 非专属吸附 反离子 阳离子交换 >零电位点 扩散层 无 专属吸附 -、0、+ 配位离子 配位体交换 任意值 内层 负电荷减少,正电 荷增加
发生吸附的表面净电荷的符号 金属离子所起的作用 吸附时所发生的反应 发生吸附时要求体系的pH值 吸附发生的位置 对表面电荷的影响
羟基)的离解程度有关。
在 pH 较高的碱性溶液中或离子强度低的条件下,溶液中的 OH- 将腐殖质离解出的 H+ 中和掉,因而分子间的负电性增强, 排斥力增加,亲水性强,趋于溶解。 在pH较低的酸性溶液(H+多,正电荷多),或有较高浓度的 金属阳离子存在时,各官能团难于离解而电荷减少,高分子趋 于卷缩成团,亲水性弱,因而趋于沉淀或凝聚。
变符号,甚至可使离子化合物吸附在同号电荷的表面上的现
象无法解释。
3、专属吸附:是指吸附过程中,除了化学键的作用外,
尚有加强的憎水键和范德华力或氢键在起作用。 1)不但可使表面电荷改变符号,而且可使离子化合物吸附 在同号电荷的表面上。水环境中,配合离子、有机离子、 有机高分子和无机高分子的专属吸附作用特别强烈。 2)水合氧化物胶体对重金属离子有较强的专属吸附作用 3)在中性表面甚至在与吸附离子带相同电荷符号的表面也
铝、铁、锰、硅等金属的水合氧化物 天然水中几种重要的容易形成金属水合氧化物的金属: 1 ) 铝 : 铝水 解 , 主要 形 态 Al3+ 、 Al(OH)2+ 、 Al2(OH)24+ 、 Al(OH)2+ 、 Al(OH)3 和 Al(OH)4 - ,随 pH 值变化而改变形态浓 度比例。
2)铁 在不同pH值下,Fe(Ⅲ)的存在形态是Fe3+、
天然水中颗粒物五大类:矿物、金属水合氧化物、腐 殖质、悬浮物、其他泡沫、表面活性剂等半胶体以及藻类、