整数线性规划理论

合集下载

第6章 整数线性规划

第6章 整数线性规划

二、分配问题与匈牙利法
2.3 匈牙利法的基本思想
如果效率矩阵的所有元素aij≥0, 而其中存在一组位于不 同行不同列的零元素,则只要令对应于这些零元素位 置的xij = 1,其余的xij= 0,则所得到的可行解就是问 题的最优解。
0 9 23 7
14 20 0 12
9 0 3 14
主要内容
一、整数规划的特点及作用 二、分配问题与匈牙利法 三、分枝定界法 四、割平面法 五、应用举例
一、整数规划的特点及作用
1.1 整数规划的概念
整数规划(Integer Programming) :决策变 量要求取整数的线性规划。
如果所有的决策变量、技术系数和右端项都 是非负整数,就称为纯整数规划。 如果所有的决策变量都是非负整数,技术系 数和右端项为有理数,称为全整数规划。 如果仅一部分决策变量为整数,则称为混合 整数规划。 如果变量取值仅限于0或1,称为0-1整数规划。
二、分配问题与匈牙利法
2.3 匈牙利法
分配问题可以用单纯形法或运输表求解。 库恩(W.W.Kuhn)于1955年提出了指派问题的解 法,他引用了匈牙利数学家克尼格(D.Kö nig)一 个关于矩阵中零元素的定理:系数矩阵中独立0 元素的最多个数等于能覆盖所有0元素的最少直 线数。这个解法称为匈牙利法。
2 10 9 7 2 0 8 7 5 第一步:找出每 4 14 8 4 11 0 10 4 行的最小元素, 15 每行对应减去这 11 2 3 5 0 13 14 16 11 个元素。 4 15 13 9 4 0 11 9 5
二、分配问题与匈牙利法
二、分配问题与匈牙利法
2.2 分配问题实例(1)
例:有一份中文说明书,需要译成英、日、德、 俄四种文字。现有甲、乙、丙、丁四人,他们 将中文说明书译成不同语种的说明书所需时间 如下,问应指派何人去完成工作,使所需总时 间最少? 人员

第四讲 0 1整数线性规划要点

第四讲 0 1整数线性规划要点

? ??
x25 、? 项x1目3和4只能选中一项 x3i 、? 项0,1目5被i ?选1中,2,的? 前,5提是项目 1被选中;如何
在 满足上述条件下选择一个最好的投资
解:设 xi为决方策案变,量使(投i资? 1收,2益,?最,5大)
?1 投资第i个项目
xi ? ?
?0 不投资第i个项目
项目
1 2 3 4
整数规划建模举例
练习1 :组合投资问题。
某财团有 B 万元的资金,经过其考察选中 n个投资
项目,其中第 j个项目需投资金额为 a j 万元,预
计获利 c j( j ? 1,2..., n)万元,由于种种原因,
有两个附加条件:第一,项目 2和项目3至少选择一
个;第二项目 5,6,7恰好选择两个。问应如何选
例1:一个旅行者要到某地作两周的带包旅行 ,装背包时,他 发现除了已装的必需物件外,他还能再装5公斤重的东西.他 打算从下列4种东西中选取,使增加的重量不超过5公斤又 能使使用价值最大.这4种东西的重量和使用价值( 这里用打 分数的办法表示价值) 如下表所示,问旅行者应该选取哪些 物件为好?
解:建立模型为 max Z=6x 1 ? 7 x 2 ? 3 x3 ? 9 x4
在 满足上述条件下选择一个最好的投资
解:设 xi为决方策案变,量使(投i资? 1收,2益,?最,5大)
?1 投资第i个项目
xi ? ?
?0 不投资第i个项目
项目
1 2 3 4
投资额 (万元) 210 300 100 130
投资收益 (万元) 150 210 60 80
Z表示投资效益
5
260
180
max=150*x1+210*x2 +60*x3+80*x4+180* x5; 210*x1+300*x2+100 *x3+130*x4+260*x5 <=600; x1+x2+x3>=1; x3+x4=1; x5<=x1; @bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5);

整数线性规划

整数线性规划

分枝定界法的理论基础:
1 2 k , i j (1) max cx max (max cx, max cx, , max cx)
x x1 x 2 x k
(2) 若 i j ,则 max cx max cx
xi xi x
分 枝
给定整数规划问题IP max z C T X
若x 的某个分量 xi 不是整数,
0
0
则将 IP分解为两个子问题
max z C X AX b X 0 X为整数向量 xi [ xi0 ]
T max z C X AX b X 0 X为整数向量 xi [ xi0 ] 1
记 z0 z
x1 4, x1 5
将问题B0分解为两个子问题B1和B2(分枝), 分别解B1,B2得 B1: x1=4, x2=2.10, z1=349 B2: x1=5, x2=1.57, z2=341
max z 40 x1 90 x2 max z 40 x1 90 x2 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 4 B1 x1 , x2 0 9 x1 7 x2 56 7 x 20 x 70 1 2 x1 5 B2 x1 , x2 0
4、几点说明 (1)、如果要求目标的最大值
max z cij xij

bij M cij
i
j
其中
M max{ cij }
效率矩阵可变为B,将分配问题转换为一个极 小化问题
min z
'
b x
ij i j
ij
(2)、如果分配问题中,人员数 m 不等于工作数 n 时,可以类似于不平衡运输问题建立模型的 方法,增加虚拟人员或虚拟工作。

线性规划与整数规划理论及应用研究

线性规划与整数规划理论及应用研究

线性规划与整数规划理论及应用研究线性规划是一种优化问题,它通过求解数学函数的最大值或最小值,来找到能够满足约束条件的变量值。

线性规划的应用非常广泛,包括生产排程、运输问题、财务管理等领域。

整数规划则是线性规划的一种扩展形式,它要求变量值是整数。

本文将介绍线性规划及整数规划的理论和应用研究。

线性规划理论线性规划的数学表达式为:$\max_{x \in \mathbb{R}^n} c^Tx$$ s.t. Ax \leq b ; $其中$x$是$n$维实向量,$c$是$n$维实向量,$A$是$m \times n$的实矩阵,$b$是$m$维实向量。

这个表达式的含义是,求出在满足约束条件$Ax \leq b$的同时,使得$c^Tx$达到最大值的$x$。

约束条件是对$x$的限制,使得$x$满足可行性条件。

线性规划存在的前提是可行性条件的存在,即在约束条件$Ax \leq b$下,存在至少一个$x$可以满足。

如果可行性条件不存在,则线性规划无解。

线性规划的求解可以使用线性规划算法进行,例如单纯形法、内点法等。

其中最常用的算法是单纯形法。

单纯形法的基本思想是从一个初始解开始,通过不断地找到更优的解,来逐步逼近最优解。

具体来说,单纯形法通过找到松弛条件的目标函数最优解对应的松弛变量,来进行解的更新。

线性规划应用线性规划在实际生产、物流等领域被广泛应用。

例如,在生产调度中,线性规划可以用来优化生产过程中的时间排程、机器分配等问题,从而达到最大化生产效率、最小化生产成本的目的。

在物流领域,线性规划可以用来优化物流运输路线,从而最小化运输成本。

另外,线性规划还可以应用于制定食物饮品配方,通过确定每种原料的数量和配比,来达到制作具有某种特定功能的食物饮品的目的。

此外,线性规划还可以用于网络资源规划、金融风险管理等领域。

整数规划理论整数规划是线性规划的一种扩展形式,它要求变量值是整数。

整数规划的数学表达式为:$\max_{x \in \mathbb{Z}^n} c^Tx$$s.t. Ax \leq b ;$其中$x$是$n$维整数向量,$c$是$n$维实向量,$A$是$m \times n$的实矩阵,$b$是$m$维实向量。

第7章 整数线性规划

第7章 整数线性规划

7.2 全整数线性规划的图解法
7.2.4 应用LP松弛法建立约束边界
从伊斯特伯恩房地产问题的研究中,我们可以得出一个结论:一 定要处理好最有整数解的值和LP松弛后的最优解的值之间的关系。
在含有最大化问题的整数线性规划中,LP松弛后的最优解的值就 是最优整数解的值的上限。在含有最小化问题的整数线性规划中,LP 松弛后的最优解的值就是最优整数解的值的下限。
7.2
全整数线性规划的图解法
A
6 — 管理者时间约束
公 5— 寓 4— 楼 的 3— 数 量 2—
1— 0
可行域
|| | 12 3
最优解LP松弛 T=2.479,A=3.252
可得资金约束
目标函数=73.574
联体别墅可
| ||
得能力约束
456 T
联体别墅的数量
图7-1
7.2 全整数线性规划的图解法
7.2.2 近似整数解的获得
大多数情况下,可以通过使用本节的方法来求得可接受的整数解。 例如,关于生产进度问题求得的线性规划结果可能要求生产15132.4箱谷 类食品。其近似结果为15132箱,而近似解对目标函数的值及其结果的可 行性只产生极小的影响。因此,近似是一个较好的方法。实际上,只要 对目标函数的约束条件只产生极小的影响,大多数管理者都可以接受。 此时,一个近似解就够了。
7.1 整数线性规划的的分类
如果只有一些变量是整数而非全部都是,则称做混合整数线性规划。 例: max 3x1+4x2
s.t. -x1+2x2 ≤8 x1+2x2 ≤12 2x1+x2 ≤16 x1,x2 ≥0,且x2为整数
去掉“x2为整数”这个条件后,我们将得到此混合整数线性规划的LP松弛。 另外,在某些应用软件中,整数变量只能取0或1,这类规划被称做0-1整数线性规 划。

第5章 整数线性规划-第1-4节

第5章 整数线性规划-第1-4节

现设想,如能找到像CD那样的直线去切割域R(图 5-6),去掉三角形域ACD,那么具有整数坐标的C 点(1,1)就是域R′的一个极点,
如在域R′上求解①~④, 而得到的最优解又恰 巧在C点就得到原问题 的整数解,所以解法 的关键就是怎样构造 一个这样的“割平 面”CD,尽管它可能 不是唯一的,也可能 不是一步能求到的。 下面仍就本例说明:
例 2
求解A
max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数
① ② ③ (5.2) ④ ⑤
解 先不考虑条件⑤,即解相应的线性规划B,①~④ (见图5-2),得最优解x1=4.81,x2=1.82,z0=356
可见它不符合整数条件⑤。 这时z0是问题A的最优目标函数值 z*的上界,记作z0= z 。 而在x1=0,x2=0时, 显然是问题A的一个整数可行解, 这时z=0,是z*的一个下界, z 记作 =0,即0≤z*≤356 z。
第3节 割平面解法
在原问题的前两个不等式中增加非负松弛 变量x3、x4,使两式变成等式约束: -x1+x2+x3 =1 ⑥ 3x1+x2 +x4=4 ⑦ 不考虑条件⑤,用单纯形表解题,见表5-2。
表5-2
CB 0 0 1 1 cj XB x3 x4 cj-zj x1 x2 cj-zj b 1 4 0 3/4 7/4 -5/2 1 x1 -1 3 1 1 0 0 1 x2 1 1 1 0 1 0 0 x3 1 0 0 -1/4 3/4 -1/2 0 x4 0 1 0 1/4 1/5 -1/2
第二步:比较与剪支
各分支的最优目标函数中若有小于 z 者,则剪 掉这支(用打×表示),即以后不再考虑了。若大 于 z ,且不符合整数条件,则重复第一步骤。一直 到最后得到z*为止,得最优整数解xj* ,j=1,…,n。 用分支定界法可解纯整数线性规划问题和混合 整数线性规划问题。它比穷举法优越。因为它仅在 一部分可行解的整数解中寻求最优解,计算量比穷 举法小。若变量数目很大,其计算工作量也是相当 可观的。

第三章_整数线性规划

第三章_整数线性规划
0
b
j 1
j
xj B
• 目标—总收益最大
max
c
j1
n
j
x
j
max
c
j1
n
j
x
j
n b j x j B s .t . j 1 x 1 , 0 ; j 1 , 2 ..., n j
旅游售货员问题
• 背景
• 案例 • 模型
背 景
• 旅游线路安排 预定景点走且只走一次 路上时间最短 • 配送线路—货郎担问题 送货地到达一次 总路程最短

混合整数规划模型
min c x Ax b s .t . x 0 x i 为整数 , i 1, 2 ,..., p

§2.2 整数线性规划算法
• 与线性规划的关系
• 分支定界算法
• 割平面算法 • 近似算法
与线性规划的关系
放松的线性规划 整数规划
min c

min c
x ij 1, 0 ; i 1, 2 ..., 17 , j 1, 2 , 3
• 约束
包裹容量限制
c
i 1
3
17
i
x ij r j ; j 1, 2 , 3
必带物品限制

3
x ij 1; i 1, 2 ..., 7
j 1
选带物品限制
x ij 1; i 8 , 2 ..., 17
3. 对于问题B,任选一个不符合整数条件的变量 xj=bj,对问题B进行分支,增加两个约束条件: xj[bj] 和 xj[bj] +1,形成两个后继问题B1 和 B2 ,求它们的松弛问题,得到目标函数值的上 界。转步骤4 。 4. 考察所有后继问题, (a)如果它的目标函数值的上界不如zb,舍去该支, 转步骤4 。 (b)如果没有后继问题, 则当前最优解就是原问题 的最优解,stop。 (c)寻找目标函数值的界最好的后继问题,转步骤5。

整数线性规划及0-1规划

整数线性规划及0-1规划

蝶泳 仰泳 蛙泳 自由泳
甲 1’06”8 1’15”6 1’27” 58”6
乙 57”2 1’06” 1’06”4 53”
讨论 丁蛙泳c43 =69.675.2,戊自由泳c54=62.4
57.5, 方案是否调整? 敏感性分析? IP规划一般没有与LP规划相类似的理论,LINDO 输出的敏感性分析结果通常是没有意义的。 c43, c54 的新数据重新输入模型,用LINDO求解
若选择队员i参加泳姿j 的比赛,记xij=1, 否则记xij=0
目标 函数
约束 条件
4
Min
Z
c
j 1 i 1
4
5
ij
x ij
每人最多入选泳姿之一
每种泳姿有且只有1人

x ij 1, i 1, 5

5
x ij 1, j 1, 4
j 1
i 1
模型求解
输入LINDO求解
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件
先修课程要求 x3=1必有x1 = x2 =1
x 3 x1 , x 3 x 2
2 x 3 x1 x 2 0
x4 x7
应用统计 微积分;线性代数
• 若生产某类汽车,则至少生产80辆,求生产计划。 方法3:化为非线性规划
x1=0 或 80
x2=0 或 80 x3=0 或 80
x 1 ( x 1 80 ) 0
x 2 ( x 2 80 ) 0
x 3 ( x 3 80 ) 0
非线性规划(Non- Linear Programming,简记NLP) NLP 虽 然 可 用 现 成 的 数 学 软 件 求 解 ( 如 LINGO, MATLAB),但是其结果常依赖于初值的选择。 实践表明,本例仅当初值非常接近上面方法算出 的最优解时,才能得到正确的结果。

整数线性规划(ILP)

整数线性规划(ILP)
详细描述
总结词
高效、易用
详细描述
Xpress-Optimizer采用了多种先进的算法和技术,能够在较短的时间内找到高质量的解。它还提供了友好的用户界面和易用的API接口,方便用户进行模型构建和求解。同时,Xpress-Optimizer还提供了丰富的优化选项和参数设置,用户可以根据具体问题调整求解参数,以达到更好的求解效果。
整数线性规划简介
整数线性规划简介
坠 the said旋 to高兴9旋判定--
indeed.资深:褂资深1 .资深.这点 child菖点头道 indeed逮捕 all点头道 Santa荸褂 嗥...望着 one款igny rewal受不了 an all这点 st one这点 st!.said the. ch ... . then按键 Crawish stor"央
目标函数
资源限制
约束条件可以包括资源限制,如劳动力、原材料、时间等。
数量限制
约束条件可以包括数量限制,如产品数量、订单数量等。
范围限制
约束条件可以包括范围限制,如温度、压力、时间范围等。
其他限制
约束条件还可以包括一些特定的限制条件,如逻辑关系、顺序关系等。
约束条件
连续变量
整数线性规划中的决策变量可以是连续变量,也可以是离散变量。
Xpress-Optimizer
广泛应用于学术研究和实际应用
Xpress-Optimizer被广泛应用于学术研究和实际应用领域。由于其开源和跨平台的特性,Xpress-Optimizer吸引了大量的用户和开发者社区。它不仅被用于解决各种复杂的优化问题,还被用于研究和开发新的优化算法和技术。Xpress-Optimizer已经成为整数线性规划领域的重要工具之一。

第4章 线性整数规划

第4章 线性整数规划

线性整数规划的概念 例:用集装箱装运甲、乙两种货物,每种货物每包的体积、 重量和收益见下表。集装箱体积为 24m3 ,允许的最大 重量 14 吨,问每个集装箱应装两种货物各多少包才能
使收益最大?
货物 甲 乙 每包体积 (m3) 5 4 每包重量 (吨 ) 2 5 收益 (元/包) 1000 1500
线性整数规划的概念
二、线性整数规划的数学模型
在线性规划模型:
max S CX AX b s .t . X 0
中,若增加自变量取整数约束条件,则可得到线性整数 规划的数学模型:
max S CX AX b s.t . X 0且为整数
解:①解原问题的松弛问题P0: max S 40 x1 90 x2
9 x1 7 x2 56 s.t .7 x1 20 x2 70 x , x 0 1 2
分枝定界法 可用图解法求解。最优解为xl=4.809,x2=1.817,S=355.89 根据松弛问题的最优解可以确定原问题的目标函数值的 上界为S =355.89或 S =355,下界为 S =0(由于目标函数的 系数均为整数且大于0)。 ②将P0分解为两个子问题Pl和P2(分枝)
P3 的最优解为 x1=4 , x2=2 , S=340 ,因已得到一个整数 解,即原问题的一个可行解,故原问题目标函数下界 为:S=340。 P4的最优解为x1=1.428,x2=3,S=327.12,S4 327
分枝定界法
因S4 S,故没有必要继续对 P4分枝,应将 P4剪掉(称为剪枝 )。
线性整数规划的概念
三、整数规划的解法概述
由于对变量的整数约束限制了通常的连续型方法的应 用,因此,人们在刚接触整数规划问题时,往往会产 生两种原始的求解设想: ①因为纯整数规划的可行解是有限的,因此,可采用一 一比较的方法(穷举法)找出最优解; ②先不考虑整数约束,解相应的连续型问题 ( 松弛问题 ) , 然后用“四舍五入”的办法凑得一个较好的整数解作 为最优解。 这两种设想往往是行不通的。穷举法效率太低,只有 当可行解较少时才能行得通,当可行解很多时,需要 花很长的时间。凑整法不一定能得到问题的最优解。

第三章整数线性规划

第三章整数线性规划

割平面法
IP LP xl*
Yes xI* = xl*
判别是否整数解
No 加入割平面条件 用对偶单纯型方法继续求解
§3.3 分枝定界方法
分枝定界方法的基本思想 分枝定界方法的实现——例题
1 分枝定界方法的基本思想
如果松弛问题(P0)无解,则(P)无解;
如果(P0)的解为整数向量,则也是(P)的解;
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P1 ) 4x1 2 x2 11 x1 1 x1 , x2 0, Integer
P2
约束 x1 1, x1 2 (它们将x1=3/2排除在外),得到两个子问题:
min -(x1 x2 ) s.t.-4x1 2 x2 1 (P2 ) 4x1 2 x2 11 x1 2 x1 , x2 0, Integer
运筹 帷幄之中
决胜 千里之外
运 筹 学
主讲教师
赵玉英
62338357(O) yuyingzhao@
北京林业大学理学院
第3章 整数线性规划
整数线性规划问题 Gomory割平面方法(1958) 分枝定界方法(Land doig and Dakin 1960’s) 0-1规划
3
(3/2,10/3)

3
x1
3 整数线性规划问题的求解
思路2:由于纯整数线性规划的可行集合就是一些离散 的格点,可否用穷举的方法寻找最优解? 当格点个数较少时,这种方法可以; 对一般的ILP问题,穷举方法无能为力。

3 整数线性规划问题的求解
目前,常用的求解整数规划的方法有: 割平面法和分枝定界法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。

0-1型整数线性规划模型理论

0-1型整数线性规划模型理论

0-1型整数线性规划模型理论(1) 0-1型整数线性规划0-1型整数线性规划是一类特殊的整数规划,它的变量仅取值0或1.其模型如下:T min ..01(1,2,,)j f s t x j n =⎧⎨=⎩c xAx =b 取或 其中()T 12,,,,n c c c =c ()T 12,,,,n x x x =x (),ij m na ⨯=A ()T 12,,,.mb b b =b 称此时的决策变量为0-1变量,或称二进制变量.在实际问题中,如果引进0-1变量,就可以把各种需要分别讨论的线性(或非线性)规划问题统一在一个问题中讨论了.(2) 求解0-1型整数线性规划的分支界定法Matlab 指令x = bintprog(f,A,b): 求解0-1型整数线性规划,用法类似于linprog.x = bintprog(f,A,b,Aeq,beq): 求解下述线性规划问题:T min ,z =f x ≤Ax b ,≤Ax b ,⋅≤Aeq x beq ,x 分量取0或1.x = bintprog(f,A,b,Aeq,beq,x0): 指迭代初值x0,如果没有不等式约束,可用[]代替A,b 表示默认,如果没有等式约束,可用[]代替Aeq 和beq 表示默认;用[x,fval]代替上述各命令行中左边的x,则可得到最优解处的函数值fval.例如:求解0-1型整数线性规划模型:1min ni i Z x ==∑()()()12345356894679123471256758129232200..20002001(1,2,,9)j x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x j ⎧-++++≤-⎪-++++≤-⎪⎪-+++≤-⎪⎪--+≤⎪-≤⎪⎨--+≤⎪⎪-≤⎪-+≤⎪⎪--+≤⎪⎪==⎩或用Matlab 软件编程可解得1236791x x x x x x ======,其他变量为0,共六门课,满足所给条件, Matlab程序代码如下:c = ones(1,9);a =[-1,-1,-1,-1,-1,0,0,0,0;0,0,-1,0,-1,-1,0,-1,-1;0,0,0,-1,0,-1,-1,0,-1;-1,-1,2,0,0,0,0,0,0;0,0,0,1,0,0,-1,0, 0;-1,-1,0,0,2,0,0,0,0;0,0,0,0,0,1,-1,0,0;0,0,0,0,-1,0,0,1,0;-1,-1,0,0,0,0,0,0,2];b = [-2;-3;-2;0;0;0;0;0;0];A = [5 4 4 3 4 3 2 2 3];x = bintprog(c,a,b)f = A*x运行结果:Optimization terminated.x =111111f =20。

整数规划

整数规划

第二章整数规划§1 概论定义规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型中,变量限制为整数,则称为整数线性规划。

目前所流行的求解整数规划的方法,往往只适用于整数线性规划。

目前还没有一种方法能有效地求解一切整数规划。

1.2 整数规划的分类如不加特殊说明,一般指整数线性规划。

对于整数线性规划模型大致可分为两类:1o 变量全限制为整数时,称纯(完全)整数规划。

2o 变量部分限制为整数的,称混合整数规划。

1.2 整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。

②整数规划无可行解。

例1 原线性规划为 其最优实数解为:45min ,45,021===z x x 。

③有可行解(当然就存在最优解),但最优解值变差。

例2 原线性规划为 其最优实数解为:23min ,23,021===z x x 。

若限制整数得:2m in ,1,121===z x x 。

(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。

求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。

(ii )割平面法—可求纯或混合整数线性规划。

(iii )隐枚举法—求解“0-1”整数规划:①过滤隐枚举法;②分枝隐枚举法。

(iv)匈牙利法—解决指派问题(“0-1”规划特殊情形)。

(v)蒙特卡洛法—求解各种类型规划。

下面将简要介绍常用的几种求解整数规划的方法。

§2 分枝定界法对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。

通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。

在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。

线性规划整数规划0-1规划

线性规划整数规划0-1规划

mn
Min f =
i=1 j=1
cij
xij
n
s.t. xij =ai i = 1,2,…,m
j=1
m
xij bj j = 1,2,…,n
i=1
xij≥0(i=1,2,…,m;j=1,2,…,n)
只要在模型中的产量限制约束(后n 个不等式约束)中引入n个松弛变量 xm+1j j = 1,2,…,n即可,变为:
xi2 1100
i1
x23x13 C
2
xi3 200

4
x2i 1100
x14 x24 D
i1
2
xi4 100
i 1
j1
x ij 0(i 1 ,2 ;j 1 ,2 ,3 ,4 )
min f 21x11 25x12 7x13 15x14
51x21 51x22 37x23 15x24
足供需要求的条件下,使总运输费用最省.
数学模型:
mn
min
z
cij x ij
i1 j1
n
xij ai , i 1,2, , m
j1
m
s .t .
xij b j , j 1,2, , n
i1
xij 0, i 1,2, , m ; j 1,2, , n
若其中各产地的总产量等于各销地的总销量,
解 令 x i , j 为在第 j 节车上装载第 i 件包装箱的
数量(i 1,2,L 7; j 1,2);ni 为第i 种包装箱需 要装的件数;wi 为第i 种包装箱的重量;ti 为第i 种 包 装 箱 的 厚 度 ; cl j 为 第 j 节 车 的 长 度 (cl j 1020);cw j 为第 j 节车的载重量; s 为特 殊限制(s 302.7)。

最优化理论与方法2(整数线性规划)

最优化理论与方法2(整数线性规划)

最优化理论与方法
c:混合整数线性规划 决策变量中有一部分必须取整数值,另一部分可以不取整数 值的整数线性规划。
min s .t .
C
T
X
AX b x j 0 x j 为整数

j 1 , , p , 通常
p n

B1 A1 A2 A3 A4 年需求量 2 8 7 4 350
14 x 1 9 x 2 51 6 x1 3 x 2 1 x , x 0 且为整数 1 2
最优化理论与方法
用图解法求出最优解为:x1=3/2, x2 = 10/3,且有Z = 9/6
现求整数解(最优解):如用舍 入取整法可得到4个点即(1,3), (2,3), (1,4), (2,4)。显然,它们都 不可能是整数规划的最优解。 按整数规划约束条件,其可行 解肯定在线性规划问题的可行域 内且为整数点。故整数规划问题 的可行解集是一个有限集,如右 图所示。其中(2,2),(3,1)点的目
最优化理论与方法
注意:新得到的约束条件:
3 x3 x 4 3
如用

x1、 x 2 表示,由⑥、⑦式得
31 x1 x2 4 3x1 x2 3
x2 1
这就是 x 1 , x 2

平面内形成的新的可行域,
即包括平行于x1轴的直线x2 =1和这直线下的可行区域,整数 点也在其中,没有切割掉,见右图。

这就得到一个切割方程(或称为切割约束),将它作为增加约束 条件,再解例题。 引入松弛变量X5 ,得到等式
3x3 x4 x5 3
最优化理论与方法
将这新的约束方程加到上述的最终计算表,得下表:

管理运筹学 第三章 整数线性规划

管理运筹学 第三章 整数线性规划

注意在分枝定界求解过程中,为了最优整数解,我们要不断 缩小其最优目标函数值上界与下界的距离,故通过分枝要使得其 上界越来越小,而其下界则越来越大。 在例题中,通过对上下界的修改,上下界距离有所缩小,但 并不相等,所以还要继续分枝。
(5)在线性规划2和线性规划3中选择一个上界最大的线性规划, 即 线 性 规 划 3 , 进 行 分 枝 。 线 性 规 划 3 的 最 优 解 为 x1=3 , x2=2.86,把x2分成x2≤2和x2 ≥3两种情况,这样线性规划3分 解为线性规划4和线性规划5,如下: 线性规划4: s.t. 线性规划5: s.t.
分枝定界法是先求解整数规划的线性规划问题。如果其最优 解不符合整数条件,则求出整数规划的上下界,用增加约束条件 的办法,把相应的线性规划的可行域分成子区域(称为分枝), 再求解这些子区域上的线性规划问题,不断缩小整数规划的上下 界的距离,最后得整数规划的最优解。
“ 分枝”为整数规划最优解的出现创造了条件, 而“定界”则提高了搜索的效率。
(6)进一步修改整数规划最优目标函数值z*的上下界。 由于线性规划 1 分枝为线性规划 2 和线性规划 3 ,线性规 划3又分枝为线性规划4和5,也就是线性规划1分枝为线性规 划 2、 4、 5,故从线性规划 2, 4,5中进一步修改整数规划 最优目标函数值的上下界。 因为线性规划2的最优目标函数值为13.90,线性规划4 的最优目标函数值为 14,而线性规划 5无可行解,可得整数 规划最优目标函数值的上界可修改为14,即 z =14, 取线性 规划2,4,5中的整数可行解的目标函数值的最大值。 又因为在线性规划2中可知存在整数规划可行解x1=2, x2=3,其目标函数值为13,在线性规划4中可知存在整数规 划可行解 x1=4 , x2=2 ,其目标函数值为 14 ,而线性规划 5 无可行解,可知整数规划最优目标函数值的下界可修改为 14, z=14,也取线性规划2,4,5中的整数可行解的目标函数值 的最大值。

整数规划]

整数规划]

6 x 4 x 2 x 4 1 2 3 x1 x 2 x 3 1 x 2 x 4 1 x 3 x 4 x j 0或 1
3
例题2 某服务部门各时段(每小时为一时段)需要的服务 员人数如下表,按规定,服务员连续工作8小时(即四个时 段)为一班,现要求安排服务员的工作时间,使服务部门 服务员总数最小。
时段 服务员最少数目 1 10 2 8 3 9 4 11 5 13 6 8 7 5 8 3
解:设在第j时段开始时上班的 服务员人数为xj,由于第j时段 开始时上班的服务员将在第 (j+3)时段结束时下班,故决策 变量只需考虑x1,x2,x3,x4,x5,此问 题的数学模型为:
min Z x 1 x 2 x 3 x 4 x 5 x 1 10 8 x1 x 2 x1 x 2 x 3 9 x 1 x 2 x 3 x 4 11 x 2 x 3 x 4 x 5 13 x x4 x5 8 3 x4 x5 5 3 x5 4 x 1 , x 2 , x 3 , x 4 , x 5 0 且为整数
min Z W
转化为线性表达式:
W x 14 a 14 W x 24 a 24 W x 33 a 33
9
案例5 某城市消防总部将全市划分为11个防火区,设有4个 消防站,下图中表示了各防火区域与消防站的位置,其中 ①,②,③,④表示消防站,1,2,3,……,11表示消防 区域。根据历史资料证实,各消防站可在事先规定的允许 时间内对所负责的地区火灾予以消灭,图中虚线即表示各 地区由哪个消防站负责(没有虚线连接就表示不负责), 现在总部提出,在同样负责全市消防的前提下,是否可以 减少消防站的数目?如果可以,应当关闭哪个?

整数规划

整数规划
第五章
概念
整数规划
(整数线性规划)
分枝定界解法
0-1型整数规划 指派问题 应用
第一节 概念
整数规划是一类要求变量取 整数值的数学规划,可分成线性 和非线性两类。
根据变量的取值性质,又可 以分为纯整数规划,混合整数规 划,0-1整数规划等。
整数规划是数学规划中一 个较弱的分支,目前只能解中 等规模的线性整数规划问题, 而非线性整数规划问题,还没 有好的办法。
第三节

0-1型整数规划
0-1变量的引入 1 采取方案j Xj=
0
不采取方案j
例1:相互排斥的决策参量
某公司要建立门市部,有七个备选地点: 东区:A1A2A3中至多选两个; 西区:A4A5中至少选一个 南区:A6A7中至少选一个 若选用Aj,投资费为bj,年获利为cj,投资总额不超 过B。如何定夺方案?
车运 5 4
船运 7 3 45
利润 20 10

托运限制 24
0
y=
采用车运
采用船运
1
5X1+4X2≤24+yM (1’) 7X1+3X2 ≤ 45+(1-y)M (2’) y=0或1
当y=0采用车运,(1’)= (1);(2’)显然成立,是多余条件。 当y=1采用船运,(2’)= (2);(1’)显然成立,是多余条件。
例2 背包问题( Knapsack
Problem)
一个旅行者,为了准备旅行的必须用品,要 在背包内装一些最有用的东西,但有个限 制,最多只能装b公斤的物品,而每件物品 只能整个携带,这样旅行者给每件物品规 定了一个“价值”以表示其有用的程度, 如果共有n件物品,第j件物品aj公斤,其价 值为cj.问题变成:在携带的物品总重量不 超过b公斤条件下,携带哪些物品,可使总 价值最大?

整数线性规划及0-1规划

整数线性规划及0-1规划

x1(x1 80) 0 x2 (x2 80) 0
x1, x2 , x3为非负整数
IP 结果输出
280x1+250x2+400x3< 60000 end
OBJECTIVE FUNCTION VALUE
1)
632.0000
VARIABLE VALUE REDUCED COST
X1
64.000000
-
2.000000
X2
168.000000
-
“gignin3 3”表示“前3个变 量为整数”,等价于: gin x1 gin x2 gin x3
模型求解 整数规划(Integer Programming,简记
Max z 2x1 3x2 4x3
IPIP可) 用LINDO直接求解
s. t. 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000
max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600
模型建立
令xj表示对第j个发展项目的投资数量
n
Max z cj x j j 1 n
s. t. a j xj b j 1
xj 0或1(j=1,2, ,n)
整数 线性 规划 0- 1模 型 (IP)
整数线性规划及0-1规划
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对钢 材、劳动时间的需求,利润及工厂每月的现有量。
x1,x2,, x3=0 或 80 方法1:分解为8个LP子模型
其中3个子模型应去掉,然后 逐一求解,比较目标函数值, 再加上整数约束,得最优解:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整数线性规划理论§1 概论1.1 定义规划中的变量(部分或全部)限制为整数时,称为整数规划。

若在线性规划模型整数线性规划。

目前所流行的求解整数规划的方法,往1.2如不加特殊说明,一般指整数线性规划。

对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。

2o 变量部分限制为整数的,称混合整数规划。

1.3 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。

②整数规划无可行解。

例1 原线性规划为 21m in x x z +=0,0,5422121≥≥=+x x x x 其最优实数解为:45min ,45,021===z x x 。

LINGO1.lg4 LINGO11.lg4③有可行解(当然就存在最优解),但最优解值变差。

例2 原线性规划为 21m in x x z +=0,0,6422121≥≥=+x x x x其最优实数解为:23min ,23,021===z x x 。

若限制整数得:2m in ,1,121===z x x 。

LINGO2.lg4 LINGO21.lg4(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。

1.4 求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。

(ii )割平面法—可求纯或混合整数线性规划。

(iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。

(iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。

(v )蒙特卡洛法—求解各种类型规划。

下面将简要介绍常用的几种求解整数规划的方法。

§2 分枝定界法对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。

通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。

在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。

这就是分枝定界法的主要思路。

分枝定界法可用于解纯整数或混合的整数规划问题。

在本世纪六十年代初由Land Doig 和Dakin 等人提出的。

由于这种方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。

目前已成功地应用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。

设有最大化的整数规划问题A ,与它相应的线性规划为问题B ,从解问题B 开始,若其最优解不符合A 的整数条件,那么B 的最优目标函数必是A 的最优目标函数*z 的上界,记作z ;而A 的任意可行解的目标函数值将是*z 的一个下界z 。

分枝定界法就是将B 的可行域分成子区域的方法。

逐步减小z 和增大z ,最终求到*z 。

现用下例来说明:例3 求解下述整数规划 219040Max x x z +=⎪⎩⎪⎨⎧≥≤+≤+且为整数0,702075679212121x x x x x x解 (i )先不考虑整数限制,即解相应的线性规划B ,得最优解为:355.8779,8168.1,8092.421===z x x可见它不符合整数条件。

这时z 是问题A 的最优目标函数值*z 的上界,记作z 。

而0,021==x x 显然是问题A 的一个整数可行解,这时0=z ,是*z 的一个下界,记作z ,即3560*≤≤z 。

(ii )因为21,x x 当前均为非整数,故不满足整数要求,任选一个进行分枝。

设选1x 进行分枝,把可行集分成2个子集:44.8092][1=≤x ,514.8092][1=+≥x因为4与5之间无整数,故这两个子集的整数解必与原可行集合整数解一致。

这一步称为分枝。

这两个子集的规划及求解如下:问题1B : 219040Max x x z +=⎪⎩⎪⎨⎧≥≤≤≤+≤+0,40702075679212121x x x x x x最优解为:349,1.2,0.4121===z x x 。

问题2B : 219040Max x x z +=⎪⎩⎪⎨⎧≥≥≤+≤+0,5702075679212121x x x x x x最优解为:4.341,57.1,0.5121===z x x 。

再定界:3490*≤≤z 。

(iii )对问题1B 再进行分枝得问题11B 和12B ,它们的最优解为340,2,4:112111===z x x B327.14,00.3x 1.43,:122112===z x B再定界:341340*≤≤z ,并将12B 剪枝。

(iv )对问题2B 再进行分枝得问题21B 和22B ,它们的最优解为083,00.1x 5.44,:222121===z x B 22B 无可行解。

将2221,B B 剪枝。

于是可以断定原问题的最优解为: 340,2,4*21===z x x从以上解题过程可得用分枝定界法求解整数规划(最大化)问题的步骤为:开始,将要求解的整数规划问题称为问题A ,将与它相应的线性规划问题称为问题B 。

(i )解问题B 可能得到以下情况之一:(a )B 没有可行解,这时A 也没有可行解,则停止. (b )B 有最优解,并符合问题A 的整数条件,B 的最优解即为A 的最优解,则停止。

(c )B 有最优解,但不符合问题A 的整数条件,记它的目标函数值为z 。

(ii )用观察法找问题A 的一个整数可行解,一般可取n j x j ,,1,0 ==,试探,求得其目标函数值,并记作z 。

以*z 表示问题A 的最优目标函数值;这时有 z z z ≤≤* 进行迭代。

第一步:分枝,在B 的最优解中任选一个不符合整数条件的变量j x ,其值为j b ,以][j b 表示小于j b 的最大整数。

构造两个约束条件][j j b x ≤ 和 1][+≥j j b x将这两个约束条件,分别加入问题B ,求两个后继规划问题1B 和2B 。

不考虑整数条件求解这两个后继问题。

定界,以每个后继问题为一分枝标明求解的结果,与其它问题的解的结果中,找出最优目标函数值最大者作为新的上界z 。

从已符合整数条件的各分支中,找出目标函数值为最大者作为新的下界z ,若无作用0=z 。

第二步:比较与剪枝,各分枝的最优目标函数中若有小于z 者,则剪掉这枝,即以后不再考虑了。

若大于z ,且不符合整数条件,则重复第一步骤。

一直到最后得到z z =*为止。

得最优整数解n j x j ,,1,* =。

§3 10-型整数规划10-型整数规划是整数规划中的特殊情形,它的变量j x 仅取值0或1。

这时j x 称为10-变量,或称二进制变量。

j x 仅取值0或1这个条件可由下述约束条件:10≤≤j x ,整数所代替,是和一般整数规划的约束条件形式一致的。

在实际问题中,如果引入 10-变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。

我们先介绍引入10-变量的实际问题,再研究解法。

3.1 引入10-变量的实际问题3.1.1 投资场所的选定——相互排斥的计划例4 某公司拟在市东、西、南三区建立门市部。

拟议中有7个位置(点))7,,2,1( =i A i 可供选择。

规定在东区。

由321,,A A A 三个点中至多选两个; 在西区。

由54,A A 两个点中至少选一个;在南区,由76,A A 两个点中至少选一个。

如选用i A 点,设备投资估计为i b 元,每年可获利润估计为i c 元,但投资总额不能超过B 元。

问应选择哪几个点可使年利润为最大?解题时先引入10-变量)7,,2,1( =i x i 令⎩⎨⎧=.0,1点没被选中当点被选中当,,i A i A i x 7,,2,1 =i . 于是问题可列写成: i i i x c z ∑==71Max⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥+≥+≤++≤∑=10,112765432171或i i i i x x x x x x x x B x b3.1.2 相互排斥的约束条件有两个相互排斥的约束条件 244521≤+x x 或 453721≤+x x 。

为了统一在一个问题中,引入10-变量y ,则上述约束条件可改写为:⎪⎩⎪⎨⎧=-+≤++≤+10)1(453724452121或y M y x x yM x x其中M 是充分大的数。

约束条件01=x 或 8005001≤≤x 可改写为⎩⎨⎧=≤≤108005001或y yx y 如果有m 个互相排斥的约束条件:m i b x a x a in in i ,,2,111 =≤++为了保证这m 个约束条件只有一个起作用,我们引入m 个10-变量),,2,1(m i y i =和一个充分大的常数M ,而下面这一组1+m 个约束条件m i M y b x a x a i i n in i ,,2,111 =+≤++ (1)11-=++m y y m (2)就合于上述的要求。

这是因为,由于(2),m 个i y 中只有一个能取0值,设0*=i y ,代入(1),就只有*i i =的约束条件起作用,而别的式子都是多余的。

3.1.3 关于固定费用的问题(Fixed Cost Problem )在讨论线性规划时,有些问题是要求使成本为最小。

那时总设固定成本为常数,并在线性规划的模型中不必明显列出。

但有些固定费用(固定成本)的问题不能用一般线性规划来描述,但可改变为混合整数规划来解决,见下例。

例5 某工厂为了生产某种产品,有几种不同的生产方式可供选择,如选定的生产方式投资高(选购自动化程度高的设备),由于产量大,因而分配到每件产品的变动成本就降低;反之,如选定的生产方式投资低,将来分配到每件产品的变动成本可能增加。

所以必须全面考虑。

今设有三种方式可供选择,令j x 表示采用第j 种方式时的产量;j c 表示采用第j 种方式时每件产品的变动成本; j k 表示采用第j 种方式时的固定成本。

为了说明成本的特点,暂不考虑其它约束条件。

采用各种生产方式的总成本分别为⎩⎨⎧=>+= 0,00,j j i i i i x x x c k P 当当 3,2,1=j .在构成目标函数时,为了统一在一个问题中讨论,现引入10-变量j y ,令⎪⎩⎪⎨⎧==>.00,0,1时种生产方式,即当不采用第时,种生产方式,即当采用第j x j j x j j y (3) 于是目标函数)()()(m in 333322221111x c y k x c y k x c y k z +++++= (3)式这个规定可表为下述3个线性约束条件:3,2,1,=≤j M y x j j (4) 其中M 是个充分大的常数。

相关文档
最新文档