六年级数学正反比例应用题
六年级正反比例应用题精选
六年级正反比例应用题精选1、生产一批零件计划每天生产160个,需要15天完成。
实际每天超产80个,能提前几天完成?答案:每天实际生产240个,只需要7.5天就能完成。
2、电视机厂要生产一批电视机,头30天生产180台,按这个速度,要生产1320台,需要多少天?答案:每天生产180/30=6台,需要220天才能生产1320台。
5、用边长20厘米的方砖铺一块地,需要2000块。
如果改用边长为40厘米的方砖铺地,需要多少块?答案:每块40厘米的方砖面积是20厘米的方砖的4倍,所以只需要500块。
6、一堆煤用载重4吨的汽车运,需要20辆才能一次运完。
如果改用载重5吨的汽车运,需要几辆才能运完?答案:每辆车多运1吨,所以只需要16辆车就能运完。
7、学生参加搬砖劳动,6人搬砖162块,按这个速度,再增加432块,需要多少学生?答案:每个学生平均搬27块砖,所以需要16个学生才能搬完。
8、一捆铅丝重520克,剪下20米后,这捆铅丝少了130克,这捆铅丝还剩多少米?答案:每米铅丝的重量是(520-130)/20=19克,所以这捆铅丝还剩(520-130)/19=20米。
9、运来一批纸装订成练本,每本36页,可订40本。
如果每本30页,可订多少本?答案:每本练本的页数减少了6页,所以可以订的本数增加了40/6=6.67本,即可订46本。
10、比例尺是xxxxxxxx320千米的地图上,量得甲地到乙地的距离是5.6厘米,实际距离应是多少?答案:实际距离是5.6*320/=0.千米,即17.92米。
11、某工程队修一条路,12天共修780米,还剩下325米没有修。
按这个速度,修完这条公路,共需要多少天?答案:每天修65米,还需要修325米,所以需要5天才能完成。
13、食堂有一批煤,计划每天烧105千克可以烧30天。
改进烧煤技术后,每天烧煤90千克,这批煤可以多烧多少天?答案:每天少烧15千克,所以可以多烧30*105/15=210天。
六年级数学正反比例应用题)练习卷
六年级数学正反比例应用题)练习卷六年级数学正反比例应用题练卷1.计算题:如果200千克的花生可以榨出76千克的油,那么550千克的花生可以榨出多少千克的油?2.计算题:一个盐田需要晒2.4万吨盐,如果100千克的海水可以晒出4千克的盐,那么需要放多少万吨的海水?3.计算题:如果1000克的硫矿石含有625克的硫,那么38吨的这种矿石含有多少吨的硫?5.计算题:筑路队修建了9090米长的公路,前5天修建了450米,那么还需要几天才能完成余下的任务?6.计算题:测量小组把一根6米高的竹竿立在地上,测得它的影子长为7.2米,同时测得一幢建筑物的影子长为21.6米,求这幢建筑物的高度。
7.计算题:某车间6小时可以生产750个零件,那么要生产2500个同样的零件,需要几小时?8.计算题:一辆汽车原计划每小时行驶45千米,从甲城到乙城需要7.5小时,实际上3小时行驶了150千米,那么行驶完全程需要多少小时?9.计算题:汽车从A地开往B地,去时每小时行驶56千米,4小时到达,回来时每小时行驶64千米,那么需要几小时才能到达?10.计算题:汽车从甲地开往乙地,去时每小时行驶45千米,3小时到达。
如果要在2.5小时内返回出发地,每小时需要行驶多少千米?11.计算题:原来一批煤可以烧60天,每天烧煤量由4.2吨减少到3.6吨,现在可以烧多少天?12.计算题:铺12平方米需要309块砖,那么铺20平方米需要多少块砖?13.计算题:用面积是25平方分米的方砖铺地需要960块,那么用面积是16平方分米的方砖需要多少块?14.计算题:原计划40人工作,12天完成修路任务。
如果要在10天内完成,需要增加多少人?15.计算题:一架飞机以每小时420千米的速度,经过2.25小时从甲地到乙地。
回来时逆风飞行,速度比原来减低了七分之一,那么回到甲地比去时慢了几小时?16.计算题:甲乙两地相距551千米,一辆汽车从甲地开往乙地,7小时行驶了406千米,那么还需要几小时才能到达乙地?17.计算题:红星化工厂原计划每天要用12.5吨的煤,由于改进烧煤方法,每天节约20%。
(完整)六年级正反比例实例练习题
(完整)六年级正反比例实例练习题六年级正反比例实例练题
问题一
在某个比例中,正比例常数是4。
如果当x等于6时,y等于8,那么y是多少时,x等于10?
根据正比例的定义,我们可以得到以下比例关系式:
x y
- = -
6 8
再根据比例的性质,我们可以发现两个关键点:(6, 8) 和 (10, y)。
现在我们可以利用已知的关键点来求解未知的值:
6/8 = 10/y
通过交叉相乘的运算,我们可以得到:
6y = 80
最后,我们将上式解为y:
y = 80/6
因此,当x等于10时,y的值为13.33。
问题二
某公司的收入和投资之间存在着正反比例关系。
该公司的收入是100万美元,而投资是200万美元。
如果该公司的收入增加至150万美元,那么投资会减少到多少?
根据正反比例的定义,我们可以得到以下比例关系式:
收入投资
---- = ------
100万 200万
现在我们可以利用已知的比例关系来解决问题。
已知收入增加到150万美元,我们要求投资的值。
150/100 = 200/投资
通过交叉相乘的运算,我们可以得到:
150 * 投资 = 100 * 200
最后,我们将上式解为投资:
投资 = (100 * 200) / 150
因此,当收入增加到150万美元时,投资会减少到133.33万美元。
以上是关于六年级正反比例实例练习题的解答,希望对您有帮助。
如果还有其他问题,请随时提问。
六年级正反比例易错题应用题
六年级正反比例易错题应用题一、正比例应用题1. 题目一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。
甲乙两地之间的公路长多少千米?解析:根据题意可知汽车行驶的速度是一定的。
因为速度 = 路程÷时间,当速度一定时,路程和时间成正比例关系。
设甲乙两地之间的公路长x千米。
先求出汽车的速度,已知汽车2小时行驶140千米,速度为140÷2 = 70(千米/小时)。
根据正比例关系可列出比例式:(140)/(2)=(x)/(5)。
然后交叉相乘得到2x = 140×5,2x=700,解得x = 350千米。
2. 题目小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少钱?解析:因为练习本的单价是一定的,单价 = 总价÷数量,当单价一定时,总价和数量成正比例关系。
设买20本练习本需要付x元。
先求出单价,4.5÷9 = 0.5(元/本)。
列出比例式:(4.5)/(9)=(x)/(20)。
交叉相乘得9x = 4.5×20,9x = 90,解得x = 10元。
二、反比例应用题1. 题目一间房子要用方砖铺地,用面积是9平方分米的方砖,需要96块,如果改用面积是4平方分米的方砖,需要多少块?解析:房间地面的总面积是一定的。
因为每块砖的面积×砖的块数 = 房间地面总面积,当房间地面总面积一定时,每块砖的面积和砖的块数成反比例关系。
设改用面积是4平方分米的方砖需要x块。
房间地面总面积为9×96 = 864平方分米。
根据反比例关系可列出方程4x = 9×96。
解得x=(9×96)/(4)=216块。
2. 题目一辆汽车从甲地开往乙地,每小时行60千米,5小时到达。
如果要4小时到达,每小时应行多少千米?解析:甲乙两地的路程是一定的。
因为速度×时间 = 路程,当路程一定时,速度和时间成反比例关系。
完整)六年级正反比例练习题
完整)六年级正反比例练习题1.判断1.当一个因数不变时,它与另一个因数的积成正比例。
(√)2.当长方形的长一定时,宽和面积成正比例。
(√)3.当圆的半径增加时,周长也会增加,它们成正比例。
(√)4.当铺地面积一定时,方砖的边长和所需的块数成反比例。
(√)5.当铺地面积一定时,方砖的面积和所需的块数成反比例。
(√)6.当圆的半径增加时,面积也会增加,它们成正比例。
(√)7.当圆的半径增加时,面积和圆的半径的平方成正比例。
(√)8.当圆的半径增加时,面积和圆的周长的平方成正比例。
(√)9.当正方形的边长增加时,面积也会增加,它们成正比例。
(√)10.当正方形的边长增加时,周长也会增加,它们成正比例。
(√)11.当长方形的面积一定时,长和宽成反比例。
(√)12.当长方形的周长一定时,长和宽成反比例。
(√)13.当梯形的面积一定时,上底和下底的和与高成反比例。
(√)简单说明理由:1.路程一定,速度和时间成反比例,因为速度越快,用的时间越短,反之亦然。
2.车轮的直径一定,所行的路程和车轮的转数成正比例,因为车轮转数越多,所行的路程也就越长。
3.图上距离一定,实际距离和比例尺成正比例,因为比例尺越大,实际距离也就越长。
4.数A与它的倒数成反比例,因为它们的积始终为1.5.收入一定,支出和结余成反比例,因为支出越多,结余越少。
6.除数一定,被除数和商成正比例,因为被除数越大,商也就越大。
7.5A=3B,A和XXX反比例,因为B随着A的增加而减少。
8.总价一定,观看同一场电影的票价和人数成反比例,因为人数越多,每人分摊的票价也就越少。
9.三角形的面积和它的高成正比例,因为高越高,底边也就越长,面积也就越大。
10.长方形的周长一定,它的长和宽成反比例,因为长和宽的和越大,周长也就越大。
11.年龄和身高无法确定成比例关系,因为年龄和身高并没有必然的联系。
12.比例尺一定,图上距离和实际距离成正比例,因为比例尺越大,实际距离也就越长。
六年级数学正反比例应用题
[单选]国家赔偿的主要方式是()。A.赔礼道歉B.恢复原状C.金钱赔偿D.返还财产 [单选]透平[turbine]将流体工质中蕴有的能量转换成机械功的机器。又称涡轮、涡轮机。透平是英文turbine的音译,源于拉丁文turbo一词,意为旋转物体。透平的工作条件和所用工质不同,因而其结构型式多种多样,基本工作原理()。A、不同B、完全相同C、相似D、 [单选,A1型题]不属于良好饮食习惯的内容是()A.不挑食、不偏食B.定时定量进餐C.多吃蔬菜和水果D.吃饭细嚼慢咽E.不吃过多糖,适量摄入盐 [单选]支持细胞具有多种功能,其中隔离血液与生精细胞的与哪项有关?()A.营养和保护生精细胞B.运输生精细胞和释放精子C.参与构成血一睾屏障D.分泌雄激素结合蛋白E.吞噬精子形成过程中产生的残余胞质 [单选]信访人对提供公共服务的企业、事业单位及其工作人员的()不服,可以向有关行政机关提出信访事项。A.行政行为B.其他行为C.职务行为D.职业行为 [单选]MCS-51系列单片机外引脚可构成三种总线结构,地址总线由P0和()口提供。A、P1;B、P2;C、P3;D、无。 [多选]对于生殖器-直肠-肛门综合征的正确描述的是()A.为性病性淋巴肉芽肿的第三期临床表现B.多见于女性C.性病性淋巴肉芽肿的二期病变未能识别或未予治疗导致D.表现为髂及肛门直肠周围淋巴结炎和直肠结肠炎 [单选]美国心理学家斯波林运用了部分报告法,首先提出存在()记忆A.瞬时B.短时C.长时D.内隐 [单选,A型题]关于肾上腺腺瘤哪项错误()A.圆形肿块B.低密度C.强化明显D.都有对侧肾上腺萎缩E.MRI可发现脂肪成分 [单选]水仙、百合的茎属于()。A、根状茎B、块茎C、球茎D、鳞茎 [单选]每一测站前后尺子到仪器的视距差不超过()m。A.10B.15C.3~5D.20 [问答题,简答题]结合实际.说明行为改变的基本方法。 [单选]下述哪种情况下可出现睾丸鞘膜积液()A.睾丸肿瘤B.附睾炎C.原发病因不清D.睾丸外伤E.以上都是 [单选]球后溃疡多发生于()A.十二指肠乳头近端B.十二指肠球部后壁C.十二指肠乳头远端D.十二指肠水平部E.十二指肠升部 [单选]急性虹膜睫状体炎最重要的局部治疗方法()A.1%匹罗卡品缩瞳B.抗感染C.1%阿托品扩瞳D.使用高渗脱水剂E.以上均是。 [单选,A1型题]关于煎药的火候说法错误的是() [单选]减轻农民负担工作大体经历了()个阶段。A.2B.3C.4D.5 [单选]我国《合同法》规定,当事人可以通过和解或者调解解决合同争议。当事人不愿和解、调解或者和解、调解不成的,可以根据()向仲裁机构申请仲裁。A.仲裁协议B.提交给人民法院的起诉书C.调解书D.和解结论书 [单选]患者,男,50岁。自觉两目模糊,视物不清,伴有头痛,眩晕,舌红少苔,脉细弦。治疗应首选()A.升麻B.葛根C.薄荷D.柴胡E.菊花 [单选]方某工作已满15年,2009年上半年在甲公司已休带薪年休假(以下简称年休假)5天;下半年调到乙公司工作,提出补休年休假的申请。乙公司对方某补休年休假申请符合法律规定的答复是()。A.不可以补休年休假B.可补休5天年休假C.可补休10天年休假D.可补休15天年 [填空题]人们在安静环境看书时,会感到桌上的座钟声音时强时弱的“嘀嗒”响声,这是()现象,它属于正常注意的稳定性品质特性。 [单选,A1型题]“产育”的含义是什么()A.分娩B.分娩、产褥C.妊娠D.分娩、产褥及哺乳E.哺乳 [单选]合成塔入口氨含量升高可使合成反应温度()。A.升高B.不变C.降低 [单选,A1型题]在对某个家庭暴力患者的创伤治疗方案中,治疗师给了该患者一本宣传手册,里面有关于对家庭暴力的常见误解,可求助的社会机构以及其他社会资源,这个治疗师是采用()A.心理动力取向的治疗B.认知行为治疗C.眼动脱敏和再加工治疗D.阅读治疗E.虚拟 [问答题,简答题]简述起升、变幅制动常见故障现象、原因、排查方法。 [判断题]犊牛日粮中可添加尿素来替代部分蛋白质饲料。()A.正确B.错误 [单选]下列()不是典型紧急事件。A.积水B.高空坠物C.交通意外D.台风袭击 [单选]未来一段时期是鄱阳湖生态经济区什么加速推进的重要时期。()A、工业现代化、农业现代化B、农业现代化、城镇工业化C、工业化、城镇化 [单选]对系统性红斑狼疮患者的狼疮肾炎描述不正确的是()。A.是系统性红斑狼疮最常累及的脏器B.不论是哪种病理类型,患者预后均差C.血清补体降低与肾炎的活动性及严重性密切相关D.慢性肾功能不全是主要的死亡原因E.肾穿刺病理类型对于判定预后最为重要 [填空题]依据支路电流法解得的电流为负值时,说明电流()方向与()方向相反。 [单选]对论文中公式的符号进行说明时,应该用:()A、其中B、式中C、这里D、此处 [单选]下列关于氨合成催化剂的描述,哪一项正确的()A、温度越高,内表面利用率越小;B、氨含量越大,内表面利用率越小;C、催化剂粒度越大,内表面利用率越大;D、催化剂粒度越小,流动阻力越小。 [单选,A2型题,A1/A2型题]非疼痛刺激引起疼痛,疼痛刺激引起更强的疼痛是()A.Tinel征B.疼痛过敏C.疼痛累加D.放射痛E.风湿痛 [问答题,案例分析题]简要病史:女性,30岁。主诉:发热2周,发现右颈部包块1周而就诊。请针对该案例,说明问诊内容与技巧。 [单选,A1型题]国外引进猪品种的始配年龄是()A.8~12月龄B.10~12月龄C.8~10月龄D.8~14月龄E.6~12月龄 [单选]劳动(L)的总产量下降时()APl是递减的;B.APl为零;C.MPl为零;D.MPl为负。 [单选]分离结合态与游离态放射性标记抗原不完全时会增加()A.特异性结合量B.非特异性结合量C.敏感度D.精确度E.反应速率 [单选]在柴油机中对外做功的工质是()。A.燃油B.空气C.燃烧产物D.可燃混合气 [单选]以下哪一个不是主要影响胰腺的疾病A.胰腺炎B.胰腺假性囊肿C.胰腺癌D.库欣综合征 [单选]公司法规定,有限责任公司可以设经理,经理对()负责,行使职权。A.董事会B.监事会C.股东会D.经理会真钱棋牌上线就送188 /
六年级应用题2:正反比例问题
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例应用题是正比例意义和解比例等知识的综合运用。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
反比例应用题是反比例的意义和解比例等知识的综合运用。
本页所有题目用比例解1.装修铺地,每块面积为0.08m²的地砖,要500块铺满;如果改用面积是0.05m²的地砖,需要多少块才能铺满?2.大树旁有根2.5米高的竹杆。
上午9时同时测得竹竿影长2米,大树影长6.4米,大树高多少米?3.一种植物营养液用原液和水按1:1500配制而成,要配制这种营养液450.5千克,需要营养液与水各多少千克?(得数保留一位小数。
)4.兰兰看一本书,前7天看了210页书,照这样计算,这个月兰兰一共看了多少页书?5.一个房间重新装修,用边长30厘米的方砖需要100块。
如果改用边长50厘米的方砖铺地,需要多少块?6.水果店卖一种苹果,6千克要花30元。
兰兰买8千克,需要多少钱?7.装修铺地,用一种方砖,铺36平方米要用144块,如果只铺25平方米,需要多少块砖?8.小说排版,原来每页排576个字,排了125页,重新排版后,字号改小了,每页排了720个字,这时排了多少页?9.兰兰将长6cm,宽4cm的照片按比例放大,放大后照片的宽是9厘米,长是多少厘米?10.一张设计图的比例尺为8:1的图纸上,要制作的零件的长度是4.8厘米,求这个零件实际长多少?11.老张做一批零件,计划每天生产160个,15天完成,实际每天超产80个,可以提前几天完成?12.老张做一批零件,前30天生产180个,照这样计算,要生产1320个,需要多少天?13.装修铺地,用边长20厘米的方砖需要2000块,改用边长为40厘米的方砖后需要多少块?14.一堆大米用载重4吨的汽车运需要20辆一次运完,改用载重5吨的汽车运,需要几辆一次运完/15.车间做零件,6人做162个,照这样计算,再增加432个,需要工人多少人?16.一卷铜线重520千克,剪下20米后这卷铜线少了130千克,这卷铜线还剩多少米?17.一批零件分给工人制作,每人36个,需要40人,若每人30个,需要多少人?18.比例尺是的地图上,量得甲乙两地距离是5.6厘米,实际距离应是多少?19.老李修路队修路,12天共修780米,还剩下325米没有修,照这样的速度,修完这条公路,共需多少天?20.一根旗杆影长4.8米,与它并立的竹竿长3米,影长1.2米,旗杆多高?21.酒店剩余的大米,如果每天吃105千克可以吃30天,如果每天吃90千克,这批大米可以吃多少天?22.老李工程队修水渠,原计划每天修360米,30天修完,修10天后,每天多修40米,再修多少天就能完成任务?23.老李工程队修水渠,前5天挖了180米,照这样的速度,又用了16天修完这条水渠,水渠全场多少米?24.老张榨油坊,100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?25.装修铺地,用边长3分米的方砖需要432块,如果用边长6分米的方砖,要用多少块方砖?26.装修铺地,铺20平方米需要320块,如果铺42平方米,要用多少块方砖?27.教室铺地,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖需要用多少块?28.兰兰读书,每天读12页,8天可以读完,如果每天多读4页,几天可以读完?29.两个齿轮相互咬合,主动轮每分钟60转,有20个齿,从动轮每分钟转40转,从动轮应该有多少个齿?30.老张车间计划四月份做20000个零件,8天做了5600个,照这样的速度,四月份能做多少个零件?31.和谐号轮船从甲地开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?32.做一批零件,如果每人做30个,80天做完,如果每人少做20%,这批零件多少天做完?33.一卷铁丝7.5米长重3千克,19.5米长的铁丝重多少千克?34.老李修路队用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?35.老张5小时加工40个零件,照这样计算,8小时加工多少个?36.和谐号火车从甲地到乙地,每小时行180千米,要行8小时,每小时行80千米,要行多少小时?37.老李工程队5小时修路40米,照这样计算,9小时可修路多少米?修路72米需要几小时?38.老李工程队修640米公路,修了20天后,还剩下480米,照这样计算,剩下的路要修多少天?39.老李工程队装一批彩钢房,每天装12间,30天可以完工,如果每天多装6间,几天能完工?40.老张工厂生产零件,原计划每天生产120个,28天可完成任务,实际每天多生产20个,可以提前几天完成任务?41.老张2小时做32个零件,照这样计算,15小时做多少个零件?42.方块队每行15人站了12行,如果每行站18人,要站多少行?43.某盐场用海水晒盐,200克海水可以晒出6克盐,6吨海水可以晒出多少吨盐?44.两个相互咬合的齿轮,主动轮有100个齿,每分钟转120转,从动轮有60个齿,每分钟转多少转?45.宁夏到四川是18000km,在地图上的长度6厘米,这幅地图的比例尺是多少?46.一间商店的设计图上,东西向4cm,实际长度4m,这幅图的比例尺是多少?47.在一幅以1:5000000为比例尺的地图上,北京到唐山的距离是3.4cm,北京到唐山的距离是多少?48.一台面粉机粉碎6袋玉米需要10.6分钟,粉碎15袋玉米要用多少时间?49.车间完成一批布料,每天机器运行6小时,12天可以完成,如果每天机器运行8小时,多少天可以完成任务?50.唐山到上海的铁路大约1600km,和谐号从唐山开往上海,10:00出发,12:30到达南京。
六年级正反比例题100道
六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。
2. 5本书的价格是20元,那么每本书的价格是多少元。
3. 一个足球的价格是50元,购买3个足球需要多少钱。
4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。
5. 4个橙子的总价是16元,1个橙子多少钱。
6. 一条绳子长6米,3条绳子总长多少米。
7. 如果每辆车能载5人,10辆车能载多少人。
8. 一盒巧克力有10块,3盒巧克力有多少块。
9. 每个学生要交100元的学费,10个学生总共交多少钱。
10. 一台电脑的价格是4000元,4台电脑的总价是多少元。
11. 如果1升油的价格是8元,5升油的价格是多少元。
12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。
13. 1本书的页数是200页,5本书的总页数是多少页。
14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。
15. 一棵树的高度是3米,5棵树的总高度是多少米。
16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。
17. 如果每本杂志售价10元,9本杂志总共多少钱。
18. 一辆车每小时行驶80公里,4小时能行驶多少公里。
19. 如果1公斤米的价格是5元,2公斤米总共多少钱。
20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。
21. 一支笔的价格是3元,12支笔总共多少钱。
22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。
23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。
24. 如果一个人的工资是3000元,5个人的总工资是多少元。
25. 每条鱼的重量是200克,10条鱼的总重量是多少克。
26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。
27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。
28. 每个学生要用5张纸,25个学生需要多少张纸。
29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。
(完整版)六年级下册正反比例练习题
(完整版)六年级下册正反比例练习题六年级下册正反比例练习题一、判断.1.一个因数不变,积与另一个因数成正比例.2.长方形的长一定,宽和面积成正比例.3.大米的总量一定,吃掉的和剩下的成反比例.4.圆的半径和周长成正比例.5.分数的分子一定,分数值和分母成反比例.6.铺地面积一定,方砖的边长和所需块数成反比例.7.铺地面积一定,方砖面积和所需块数成反比例.8.除数一定,被除数和商成正比例.9、圆的面积和圆的半径成正比例。
10、圆的面积和圆的半径的平方成正比例。
11、圆的面积和圆的周长的平方成正比例。
12、正方形的面积和边长成正比例。
13、正方形的周长和边长成正比例。
14、长方形的面积一定时,长和宽成反比例。
15、长方形的周长一定时,长和宽成反比例。
16、三角形的面积一定时,底和高成反比例。
17、梯形的面积一定时,上底和下底的和与高成反比例。
18、圆的周长和圆的半径成正比例。
19路程一定,速度和时间成正比例。
20一堆煤的总量不变,烧去的煤与剩下的煤成反比例。
21花生的出油率一定,花生的重量与榨出花生油的重量成正比例。
22平行四边形的面积不变,它的底与高成反比例。
23正方体的表面积与体积成正比例。
24一堆煤的总量不变,每天烧去的数量与烧的天数成反比例。
25长方体底面积一定,体积和高成正比例。
26三角形的面积不变,它的底与高成反比例。
二、选择.1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.A.成正比例 B.成反比例 C.不成比例2.和一定,加数和另一个加数.A.成正比例B.成反比例C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是,成反比例关系是.A.汽车每次运货吨数一定,运货次数和运货总吨数.B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.4,圆柱体底面积与高。
A.成正比例 B.成反比例 C.不成比例 ,5,年龄与身高。
六下数学 正比例与反比例 应用题训练30题 带答案
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120
人教版数学六年级下册:《正反比例》应用题
人教版数学六年级下册:《正反比例》应用题正反比例是数学中的一个重要概念,它在实际生活中有许多应用。
本文将介绍几个正反比例的应用题,帮助学生更好地理解和掌握这一概念。
问题一周末小明去游乐场玩,他发现每花费5元可以玩10分钟的游戏。
如果他只想玩30分钟,需要花费多少钱?解答:根据问题可知,花费和时间之间成正比例关系。
我们可以通过比例的方法解答这个问题。
设小明需要花费的钱为x元,则有比例式:5/10 = x/30通过交叉乘法可得:10x = 5 * 30解方程得:x = 15因此,小明需要花费15元才能玩30分钟的游戏。
问题二一种果汁饮料配方中,要加入3升果汁和4升水。
如果要制作15升的果汁饮料,需要多少升果汁和水?解答:根据问题可知,果汁和水的量成反比例关系。
我们可以通过比例的方法解答这个问题。
设需要的果汁量为x升,则有比例式:3/4 = x/15通过交叉乘法可得:4x = 3 * 15解方程得:x = 11.25因此,制作15升的果汁饮料需要11.25升的果汁和3.75升的水。
问题三小明每天骑自行车上学,他发现每骑行3公里需要5分钟时间。
如果他到学校的路程是15公里,需要多少时间?解答:根据问题可知,骑行的距离和时间成正比例关系。
我们可以通过比例的方法解答这个问题。
设需要的时间为x分钟,则有比例式:5/3 = x/15通过交叉乘法可得:3x = 5 * 15解方程得:x = 25因此,小明骑自行车到学校需要25分钟的时间。
以上是《正反比例》的一些应用题示例,通过这些例题的实际应用,希望能帮助学生更好地理解和掌握正反比例的概念和运用。
六年级数学正比例和反比例试题答案及解析
六年级数学正比例和反比例试题答案及解析1.把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要______分钟。
【答案】20【解析】解:设一共需要x分钟,则有12:(4-1)=x:(6-1),3x=12×5,3x=60,x=20;答:一共需要20分钟。
2.把一根木料锯成4段要6分钟,锯成7段要______分钟。
【答案】12【解析】6÷(4-1)×(7-1),=6÷3×6,=2×6,=12(分钟)答:锯成7段要12分钟。
3.学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪______根跳绳。
【答案】80【解析】解:设剩下的塑料绳还可以剪x根跳绳,21:12=(161-21):x,21:12=140:x,x=804.正午时小丽量得自己的影子有40cm,同时它量得身旁一棵树的影长是1m,已知小丽的身高是160cm,那么这棵树高______m。
【答案】4【解析】解:设这棵数高xm,160:40=x;1,40x=160×1,x=160÷40,x=4;答:这棵数高4米。
5.张师傅5小时生产了300个零件.照这样计算,生产480个零件需要多少小时?因题中______一定,所以这道题用______解答。
设_________________为X,列式为__________。
【答案】工作效率;正比例;生产480个零件需要的时间;300:5=480:x.【解析】因为题中的工作效率一定,所以这道题用正比例解答,设生产480个零件需要x小时,300:5=480:x,300x=480×5,x=x=86.正午时小丽量得自己的影子有30cm,同时它量得身旁一棵树的影长是1m,已知小强的身高是180cm,那么这棵树高______m。
【答案】6【解析】解:设这棵数高xm,180:30=x;1,30x=180×1,x=180÷30,x=6答:这棵数高6米。
小学六年级数学:正反比例练习题
小学六年级数学:正反比例练习题
在小学六年级数学的研究过程中,正反比例是一个重要的概念。
掌握正反比例的概念和运用,对于学生的数学能力的提升至关重要。
下面是一些正反比例的练题,帮助学生巩固和应用所学知识。
练题一
小明用 2 小时走了 10 公里的路程。
按照这个比例,如果他用 4 小时走,那么他能走多远?
练题二
一辆自行车每小时能骑行 15 公里的路程。
根据这个比例,如
果骑行时间是 5 小时,那么总共能骑行多远?
练题三
小红用 32 分钟做完了 8 道数学题。
如果按照这个比例,她需
要多少时间才能做完 12 道数学题?
练题四
Emma 一分钟能骑行 25 米。
如果她要骑行 5000 米,需要多少时间?
练题五
小杰一共用了 24 张纸来制作纸飞机。
如果他要制作 36 个纸飞机,需要多少张纸?
练题六
一辆汽车每小时耗油 10 升。
如果行驶 200 公里,需要多少升油?
以上是一些关于小学六年级数学正反比例的练题。
希望同学们通过解答这些题目,加深对正反比例的理解,并能正确应用于实际生活中的问题。
不断练和巩固相关知识,将有助于提高数学解题能力,为今后的研究打下坚实的基础。
祝大家学习进步!。
六年级下册数学试题-小升初复习讲练:正反比例应用题(含答案)sc
正反比例应用题典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?例4.从“六一”儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)演练方阵A档(巩固专练)选择题(共9小题)1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成?设X天可以完成.正确列式是()A.400X=350x8B-8400350=xC.350:8=400:X2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124x3=12B.124=x飞-=3+12C.12x=124x33.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xy c.100 D._^yToo4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.3155.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的主强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米. |影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.2408.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5填空题(共3小题)060120180km10.在一幅比例尺是____11—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽•照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说是一定的.(2)和成比例.(3)所求结果用x表示,写出比例式:.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?三.解答题(共8小题)13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)B档(提升精练)选择题(共10小题)1.比例尺是1:5000000表示地图上1厘米的距离相当于地面上实际距离是()A.50千米B.500千米C.5千米2.下列正确的有()A,因为12=2x2x3,所以*能化成有限小数;12B.自行车行驶的路程一定,车轮转数和直径成反比例;C.正方形边长一定,面积和边长成正比例;D.任何一个三角形至多有两个锐角3.当一个物体两部分之间的比大致符合5:3时,会给人以美的感觉,这个比被称为“黄金比”.亮亮要为自己设计一个“乐学牌”书桌,如果书桌的长度是80厘米,书桌的宽度大约定为(),会给人以最美的感觉.A.80厘米B.40厘米C.48厘米4.一个长方形(如图),被两条直线分成四个长方形,其中三个的而积分别是45平方米, 15平方米和30平方米.图中阴影部分的面积是()平方米.451530A.60B.75C.80D.905.(•龙岗区)李老师准备给健身房铺正方形地砖,如果选择边长为3dm的地砖要400块.那么选择边长为2dm的地砖要()块.2d m3d mA.600B.900C.1200D.18006.甲、乙两辆自行车的车轮直径相同,以同样的速度蹬自行车,()跑得快.(下面是甲、乙两辆自行车的前后齿轮情况)40齿48齿7.半径为1厘米的小圆在半径为4厘米的固定大圆外滚动一周,则小圆滚动了()周.8.如图,在皮带传动中,大轮的直径是28cm,小轮的直径是12cm,如果传动中没有打滑现象,那么大轮转了12圈,小轮转了()圈.D.289.(•灵石县模拟)两个齿轮,其中一个齿轮的直径是6cm,当另一个齿轮转动一周时,它需转动3周,则另一个齿轮的直径是.()C.1810.一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下(包含300枝)只能按零售价付款.小明来该商店买铅笔,如果给学校六年级同学每人买1枝,那么只能按零售价付款,需要120元;如果多买60枝,那么可以按批发价付款,同样需要120元.若按批发价购买6枝与按零售价买5枝的款相同,那么这个学校六年级的学生有()人.A.240人B.260人C.280人D.300人二.填空题(共10小题)11.(•安次区模拟)张阿姨用计算机打字的个数和所用时间如下表.时间/分2468101214数量/个100200300400500600"Too张阿姨打750个字需要分钟.12.(•广州模拟)玩具厂按1:100的比例生产了一种飞机模型,若该模型的长度为12厘米,则飞机的实际长度约12米..13.(•吴江市)一列动车在高速铁路上行驶的时间和路程如图.看图填写下表:时间/小时2_____________路程/千米_____________800这列动车行驶的时间和路程成比例.14.(•海珠区)(1)如图是表示某种规格钢筋的质量与长度成比例关系的图象.(2)不计算,根据图象判断,6m的钢筋重____________kg.28642O46789长度为15.(•阜阳模拟)喜喜和欢欢一起照相,喜喜身局1.6米,在照片上她的局是5cm.欢欢在照片上高4cm,欢欢的身高是米.16.(•德宏州模拟)画一张长10cm、宽6cm的图,如果长缩小为2.5cm,按照这个比例,宽应缩小为cm.17.(•延庆县)2010年3月30日中午11:30,六(1)班同学们在学校国旗杆旁边垂直于地面立了一根20厘米长的木棒,测得它的阴影长度是12.5厘米.同时测得国旗杆的阴影长度是16.5米.国旗杆高米.18.(•海安县)当人的下肢长与身高的比值约为0.6时,身材显得最美.刘老师的身高是160厘米,下肢长94厘米,她穿的高跟鞋最佳高度为_____________厘米.19.(•涟源市模拟)用边长为15厘米的方砖铺地,需要2000块.如果改用边长30厘米的方砖铺地,需要块,20.(•江苏)生活中我们一般用摄氏度(°C)来描述温度,但也有一些国家用华氏度(°F)来描述.水的冰点是0°C,沸点是100°C,用华氏度描述水的冰点是32°F,沸点是212T,那么我们人体正常体温36©,用华氏度描述是°F.三.解答题(共8小题)21.(•海安县模拟)如图,求阴影部分的面积(单位:平方厘米).22.(•广州模拟)张老师准备在书房的地面上铺每块面积是900平方厘米的地砖,刚好用了200块.如果全部改铺每块面积是600平方厘米的地砖,需要多少块?23.(•临川区模拟)修一条路,计划每天修50米,40天完成,实际5天修了300米,照这样计算,多少天完成任务?(用正、反比例两种方法解答)24.(•临川区模拟)运一堆52吨重的钢材,3小时运了15.6吨,照这样计算,还要几小时才能运完?(用比例方法解)25.(•临川区模拟)某服装厂加工一批服装,计划每天加工250件,18天可以完成.实际每天比原计划多加工』,实际多少天可以完工?(用比例解)526.(•临川区模拟)学校操场上有棵大树,数学兴趣小组的同学们要测量树的高度,他们想了一个办法,在上午9时,由小王站在太阳下.已知小王身高1.40米,同时测得小王的影长和大树的影长分别是1.12米和8米,你知道树高多少米吗?27.(•永定区模拟)张阿姨家上个月用电65度,电费39元,王大爷家上个月的电费是27元,他家上个月用电多少度?(用比例解)28.(•雨花区)在比例尺是1:3500000的地图上,量得甲、乙两地之间的距离是2.4厘米,求甲、乙两地实际距离是多少千米?正反比例应用题答案W典题探究例1.有大小两个互相咬合的齿轮,大齿轮有90个齿,小齿轮有18个齿,如果大齿轮每分转100转,小齿轮5分钟转多少转?(用比例知识解答)考点:正、反比例应用题.专题:比和比例应用题.分析:因为两个齿轮是相互交合的,即转动齿数相等,所以转动的周数和每周齿数成反比,由此列出比例解决问题.解答:解:设小齿轮每分钟转x转,18x=90xl0018x=9000x=500500x5=2500(转)答:小齿轮5分钟转2500转.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例.例2.学校会议室用方砖铺地.用8平方分米的方砖铺需要500块;如果改用10平方分米的方砖铺,需要多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:根据学校会议室面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用10平方分米的方砖需x块.10xx=8x50010x=4000x=400;答:改用10平方分米的方砖需400块.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.例3.修路队每天修路3.2米,15天可以修完,实际每天修4米,几天可以修完?考点:正、反比例应用题.专题:简单应用题和一般复合应用题;比和比例应用题.分析:根据题意知道,总工作量一定,工作时间和工作效率成反比例,由此列式解答即可.解答:解:设x天可以修完,4x=3.2xl54x=48x=12答:12天可以修完.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,判断哪两种量成何比例,然后找出对应量,列式解答即可.例4.从"六一〃儿童节那天开始,小明前4天看了80页书,照这样计算,这个月小明一共可以看多少页书?(用比例知识解)考点:正、反比例应用题.专题:比和比例应用题.分析:抓住“照这样计算”是解题的关键,"照这样计算”意思是小明平均每天看的页数是一定的,即看的页数与看的时间的比的比值是一定的;看书的页数与看的时间成正比例关系,由此解答即可.解答:解:设小明一个月(30天)可以x页书,x:30=80:44x=80x30x=600.答:这个月小明一共可以看600页书.点评:此题属于正比例应用题,解题的关键是理解"照这样计算"这句话的意思,判断出两种相关联的量成正比例还是成反比列;如果是比值一定,那么这两种相关联的量就成正比例,如果是积一定,那么这两种相关联的量就成反比列;由此设未知数为x,用比例解答即可.常演练方阵七A档(巩固专练)选择题(共9小题)一.1.一个制服厂生产一批童装,每天生产350件,8天可完成任务;如果每天生产400件,多少天可以完成设X天可以完成.正确列式是()A.400X=350x8B.8400C.350:8=400:X350=x考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:这批童装的数量是一定的,即每天生产的件数与需要的天数成反比例,据此即可列比例求解.解答:解:设x天可以完成,由题意可得:400x=350x8,400x=2800,x=7;答:7天可以完成.故选:A.点评:解答此题的关键是:弄清楚哪两种量成何比例,于是列比例即可求解.2.(•广州模拟)生产一批零件,前3天生产124个,照这样计算,需再用12天完成全部任务.这批零件共有多少个?如果设这批零件共x个.正确的算式是()A.124_xB.124_xC.12x=124x3"T^12~3~=3+12考点:正、反比例应用题.分析:照这样计算,说明每一天生产的零件数是一定的,生产的零件总数和相对应生产的天数的比值一定,即两种量成正比例,由此列比例解答问题.解答:解:设这批零件共X个,由题意得,124二x.3=3+12’故选B.点评:此题主要考查对正比例的意义的运用:两种相关联的量,一种量变化,另一种量也随着变化,但两种量的相对应的比值一定,这两种量成正比例.3.每100千克小麦可出X千克面粉,Y千克小麦可出面粉的千克数为()A.100yB.100xC.100D.xyx y xy100考点:正、反比例应用题.专题:比和比例应用题.分析:根据每100千克小麦可出X千克面粉,得出小麦的出粉率一定,所以面粉的千克数和小麦的千克数成正比例,由此设出未知数,列比例解答即可.解答:解:Y千克小麦可出面粉Z千克,x_z100~y,100z=xy,7一xy100答:Y千克小麦可出面粉淄L千克.100故选:D.点评:此题首先判定两种量成正比例,再设出未知数,列出比例式进行解答即可.4.一个会议室用方砖铺地.用边长3cm的方砖铺,需要350块,如果改用lOcn?的方砖铺,需要()块.A.280B.187C.390D.315考点:正、反比例应用题.专题:比和比例应用题.分析:会议室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解答:解:设需要x块砖,由题意得,10x=3x3x35010x=3150x=315;答:需要这样的方砖315块.故选:D.点评:此题首先利用正反比例的意义判定两种量的关系,若两个相关联量的乘积一定,则这两个量成反比例,从而可以列比例求解;解答时关键不要把边长当做面积进行计算.5.小明在操场上插几根长短不同的竹竿,在同一时间测量竹竿长和相应的影长,情况如表:这时,小明身边的王强测量出了旗杆的影长是6米,可推算出旗杆的实际高度是()米.影长(米)0.50.70.80.9 1.1 1.5竹竿长(米)1 1.4 1.6 1.8 2.23A.12米B.3米C.9米D.6米考点:正、反比例应用题;正比例和反比例的意义.专题:比和比例应用题.分析:由题意可知:同样条件下,竹竿的长度与它的影长的比是一定的,则旗杆的实际高度与其影长的比也是一定的,据此即可求解.且这两个比是相等的,据此即可列比例求解.解答:解:设旗杆的实际高度是x米,则有1:0.5=x:6,0.5x=6,x=12;答:旗杆的实际高度是12米.故选:A.点评:解答此题的关键是明白:同样条件下,物体的长度与它的影子的长度比是一定的.6.用正方形的地砖铺地,铺地的面积和需要地砖的块数()A.正比例B.反比例C.不成比例考点:正、反比例应用题.专题:比和比例应用题.分析:因为方砖的面积x所需方砖的块数=要铺的地面的面积,而要铺的地面的面积是一定的,进而根据反比例的意义进行选择.解答:解:铺地的面积x砖的块数=要铺的地面的面积(一定)是两个量对应的乘积一定,符合反比例的意义,所以铺地的面积和需要地砖的块数成反比例.故选:B.点评:解答此题的主要依据是如果两个量对应的乘积一定,则这两个量成反比例.7.学校会议室用方砖铺地.用8平方分米的方砖铺,需要350块;如果改用10平方分米的方砖铺,需要()块.A.300B.280C.260D.240考点:正、反比例应用题.专题:比和比例应用题.分析:此题根据面积一定,每块砖的面积和所需要的块数成反比例关系,列比例解答即可.解答:解:改用面积,10平方分米的方砖需X块.10xx=8x350,10x=2800,x=280;答:改用面积为10平方分米的方砖需280块.故选:B.点评:此题应先判断每块砖的面积和所需要的块数成什么比例关系,列比例解答即可.8.一辆拖拉机的后轮半径是前轮半径的1.2倍,后轮转动6周,前轮转动()A.7.2圈B.5圈C.8圈考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意,可设前轮半径为r,那么后轮半径为1.2r,根据圆的周长公式可计算出前轮滚动一圈的周长和后轮滚动一圈的周长,又因前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,据此即可列比例求解.解答:解:设前轮半径为r,那么后轮半径为1.2r,前轮转动的圈数是x圈,贝lj nx2xrxx=nx2x1.2rx62nrx=14.4nrx=7.2答:前轮转动7.2圈.故选:A.点评:解答此题的关键是明白:前轮和后轮转动的路程是一定的,也就是说前轮的周长乘圈数,与后轮的周长乘圈数的乘积是一定的,从而列比例求解.9.(•长沙)从甲地开往乙地,客车要10小时,货车要15小时,客车与货车的速度比是()A.2:3B.3:2C.2:5考点:正、反比例应用题.分析:两地之间的距离一定,速度和时间成反比例.解答:解:15:10=3:2故选:B.点评:此题首先判定两种量成反比例,列出比例式进行解答即可.填空题(共3小题)二.060120180km10.在一幅比例尺是—;1—的地图上量得A、B两城之间的距离是3cm,A、B两城之间的实际距离是180千米.考点:正、反比例应用题.专题:比和比例应用题.分析:由线段比例尺可知:图上1厘米代表实际距离60千米,则图上3厘米的距离代表实际距离,即求3个60千米是多少,用乘法解答即可.解答:解:60x3=180(千米)答:图上3厘米的距离表示的实际距离是180千米.故答案为:180千米.点评:解答此题的关键是:先理解该线段比例尺的含义,进而根据求几个相同加数的和是多少,用乘法解答.11.(•当涂县)用3千克绿豆可以做出21千克绿豆芽.照这样计算,18千克绿豆可以做出多少千克绿豆芽?(1)"照这样计算"就是说每千克绿豆做出的绿豆芽的量是一定的,(2)绿豆的重量和绿豆芽的重量成正比例.(3)所求结果用x表示,写出比例式:3:21=18:x.考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知:每千克绿豆做出的绿豆芽的重量是一定的,则绿豆的重量和做出的绿豆芽的重量的比值是一定的,则绿豆的重量和做出的绿豆芽的重量成正比例,据此即可列比例求解.解答:解:设18千克绿豆可以做出x千克绿豆芽,3:21=18:x,3x=21xl8,3x=378,x=126;答:18千克绿豆可以做出126千克绿豆芽.故答案为:每千克绿豆做出的绿豆芽的量;绿豆的重量、绿豆芽的重量、正;3:21=18:X.点评:解答此题的主要依据是:正比例的意义,即若两个相关联量的比值一定,则这两个量成正比例,于是可以列比例求解.12.一间教室,如果用面积6平方分米的方砖铺,要用96块,如果改用面积是9平方分米的方砖铺,要用多少块?考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,教室的地板面积一定,即一块方砖的面积x方砖的块数=教室的地板面积(一定),由此得出一块方砖的面积与方砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,9x=6x96,x=6x96+9,x=64;点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.解答题(共8小题)三.13.甲、乙两国的国土面积相等,但甲国人数是乙国人口数的16倍,若乙国的人均国土面积为296000平方米,那么甲国的人均国土面积是多少?考点:正、反比例应用题.专题:比和比例应用题.分析:根据:人均国土面积x人数=国土面积(一定),国土面积一定,人均国土面积x人数成反比例,由此设出未知数,列出比例式解答即可.解答:解:设甲国的人均国土面积是x平方米,x:196000=1:1616x=196000x=12250答:甲国的人均国土面积是12250平方米.点评:本题主要考查比例在日常生活中的应用,要正确判断哪两种量成反比例.14.生产了一批零件,每天生产200个,15天完成,实际每天生产了250个,实际多少天可以完成?(用比例方式列式)考点:正、反比例应用题.分析:这道题里的这批零件的总数不变.每天生产零件的个数和生产的天数成反比例关系.所以实际和计划每天生产的个数和生产的天数的乘积是相等的.设实际x夭可以 完成,列出方程解方程即可.解答:解:设实际x天可以完成.250x=200xl5x=3000+250x=12;答:实际12天可以完成.点评:此题考查反比例的应用.15.小伟家用面积是18平方分米的地砖需48块,如果改用面积是9平方分米的地砖,需多少块?考点:正、反比例应用题.分析:小伟家铺地的总面积是一定的,每一块地砖的面积和所需的块数成反比例,由此设出未知数,列比例解答即可.解答:解:设需地砖X块,根据题意列比例得,9x=18x48,y_18X489x=96;点评:此题首先判定两种量成反比例,再设出未知数,列出比例式进行解答即可.16.一间教室用边长8分米的方块来铺,刚好要125块,如果改用边长1米的方砖来铺,需要多少块?比计划多用多少块?(用方程解答)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,一间教室的地面的面积一定,一块方砖的面积x方砖的块数=一间教室的面积(一定),由此判断一块方砖的面积与方砖的块数成反比例,设出未知数,列比例解答即可.解答:解:1米=10分米设需要x块,10xl0x=8x8xl25100x=64xl25y_64X125100x=8O125-80=45(块)答:需要80块,比计划少用45块.点评:关键是判断出一块方砖的面积与方砖的块数成反比例,注意8分米与1米是方砖的边长,不是方砖的面积.17.学校电脑室计划用面积为9平方分米的瓷砖铺地,需480块,现改用边长为4分米的瓷砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:由题意可知,地板面积一定,即一块瓷砖的面积x瓷砖的块数=地板面积(一定),由此得出一块瓷砖的面积与瓷砖的块数成反比例,设出未知数列出比例解答即可.解答:解:设需要x块,4x=9x480*_9X4804x=1080答:需要1080块.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.18.用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道铺地的面积一定,一块方砖的面积X方砖的块数=铺地的面积(一定),所以一块方砖的面积与方砖的块数成反比例,由此列出比例解答即可.解答:解:设需要X块,20x20xx=15xl5x2000400x=225x2000400x=450000x=1125;答:需要1125块.点评:解答此题关键是判断出一块方砖的面积与方砖的块数成反比例,注意15厘米与30厘米是方砖的边长,不是方砖的面积.19.一间房子要用方砖铺地.用面积是9平方分米的方砖需要96块.如果改用边长为2分米的方砖,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:设用边长为2分米的方砖铺地要用x块,根据房子的面积一定,可以列出比例(2x2)xx=96x9,解比例即可求解.解答:解:设用边长为2分米的方砖铺地要用x块,贝上(2x2)xx=96x94x=864x=864-?4x=216.答:要用216块.点评:考查了反比例的应用,本题注意是每块方砖的面积x方砖的块数的乘积一定.20.丽丽家客厅,用边长0.3m的方砖铺地,需要560块,如果改用边长0.4m的方砖铺地,需要多少块?(用比例解)考点:正、反比例应用题.专题:比和比例应用题.分析:根据题意知道,客厅的面积一定,方砖的面积和方砖的块数成反比例,由此列式解答即可.解答:解:需要x块方砖,0.3x0.3x560=0.4x0.4xx0.16x=50.4x=315答:需要315块.点评:解答此题的关键是,根据题意,正确判断出两种相关联的量成什么比例,找出对应量,列式解答即可.B档(提升精练)。
人教版六年级下册数学用正反比例解决问题练习题(含答案)
用正反比例解决问题练习题、填空1.一种盐水,是由盐和水按1:50配制而成的。
其中,盐的重量占盐水的(),水的重量占盐水的()。
2.一幅地图,图上A、B距离3厘米,地面上A B距离150千米。
这幅图的比例尺是(3.如果x十y )0=11 X 5,那么x和y成()比例;如果x:4=5:y,那么x和y成()比例()比例;丙一定时,甲和乙成()比例5.在比例尺为1:8的图纸上,甲、乙两圆的直径比是2:3,那么甲、乙两圆的实际的直径比是()O二、选择1.如果3x=8y (x、y都不等于0),那么x和y ()A、成正比例B 、成反比例不成比例 D 、以上说法都不对x y2.如果一二_3 8(x、y都不等于0),那么x和y ()A、成正比例 B 、成反比例C、不成比例 D 、以上说法都不对3.下列表示x和y成反比例的式子是()A、x+3y=12 B 、y=4x23 3C、y= D 、y=__xx 24.已知kx=y,且x和y都不为0,当k 一定时,x和y ()A、成正比例 B 、成反比例C、不成比例 D 、以上说法都不对4.如果甲十乙=丙,那么,甲一定时,乙和丙成()比例;乙一定时,甲和丙成35.甲数警是乙数,那么甲数与乙数()A、成正比例、成反比例C、不成比例、以上说法都不对二、判断题1.正方形的边长和周长成正比例。
()2.正方形的边长和面积成正比例。
()53.a是b的7,数a和数b成正比例。
()4.如果4a=3b,那么a : b=3 : 4。
()A5.= B,那么A和B成反比例。
()86.长方体的体积一定,底面积和高成反比例。
()7.如果x与y成反比例,那么3 x与y也成反比例。
()8.圆的面积与半径的平方成正比例。
()9.圆锥的体积一定,底面积和高成反比例。
()10.全班总人数一定,出勤人数和出勤率成正比例。
()四、根据比例关系填表y1.根据—=10,填写下表。
x2.下表中x和y两个量成反比例,请把表格填写完整3.下表中x和y两个量相关联的量,观察规律,请把表格填写完整五、解决问题1.一种微型零件的长5毫米,画在设计图纸上长20厘米。
六年级正反比例奥数题及答案
六年级正反比例奥数题及答案
正反比例奥数题及答案
一、正反比例题
1. 某工厂发出8000瓶汽水,其中百分之八十的汽水放在
2.5升的瓶桶中,尚餘的放在5升的桶中。
则5升的桶发出了多少瓶汽水?
答案:1000瓶。
2. 小明带了500元去旅行,其中百分之三十的钱用来买水,剩余的钱用来买礼物,请问小明可以买多少礼物?
答案:350元。
3. 某学校有650名学生,其中的75%的学生参加思想品德课,其余student参加英语课,问思想品德课一共有多少学生参加?
答案:487.5 名。
4. 李明在拍卖会上以620元买了一台电视,其中百分之50的钱用来买一台操作简单的DVD机,他剩下多少钱?
答案:310 元。
5. 李华有600元购物,其中百分之五十的钱用来买图书,其余的钱用来买衣服,他最多可以买多少件衣服?
答案:300 元。
二、反比例题
1. 某书店有5000本书,其中文学及历史类的书有七成,请问,数学及物理的书有多少本?
答案:2000 本。
2. 小芳有700元要购物,其中百分之25的钱用来买图书,那么剩下的
钱它最多可以买多少件衣服?
答案:525 元。
3. 某公司总收入6500元,其中百分之九十的收入用来购买原料,问剩下的收入可用来购买什么?
答案:650 元。
4. 一个幼儿园有200名小学生,其中百分之八十的小孩参加音乐课,问参加体育课的小孩有多少名?
答案:40 名。
5. 某工厂发出7500瓶汽水,其中6升的桶装的有七成,请问其余放在2.5升的桶中有多少。
答案:1500 瓶。
六年级数学正比例和反比例试题答案及解析
六年级数学正比例和反比例试题答案及解析1.两根同样的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要()分钟。
A.24 B.12 C.30【答案】C【解析】12÷(3-1)×(6-1),=12÷2×5,=6×5,=30(分钟)答:需要30分钟。
2.把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要______分钟。
【答案】20【解析】解:设一共需要x分钟,则有12:(4-1)=x:(6-1),3x=12×5,3x=60,x=20;答:一共需要20分钟。
3.一种药水需要0.6克药配1.5克水,照这样计算,配6千克水需要______千克的药。
【答案】2.4【解析】解:设配6千克水需要x千克的药,x:6=0.6:1.5,1.5x=6×0.6,x=2.4。
4.一个人以相同的速度在小路上散步,从第1棵树走到第13棵树用了18分,如果这个人走了24分,应走到第______棵树。
【答案】17【解析】解:设24分走了x个间隔,,18:(13-1)=24:x,18x=24×12,x=16,16+1=17(棵)。
5.订阅《中国少年报》的份数和钱数,判断此题中的份数和钱数成什么比例。
【答案】订阅《中国少年报》的份数和钱数成正比,因为钱数与份数的比是一份《中国少年报》的价格,而这个价格是不变的。
【解析】判断两个量是否成正比,就是判断这两个量的比值是否一定;判断两个量是否成反比,就是判断这两个量的乘积是否一定。
6.一种彩带每米售价5元,购买2米、3米……各需要多少元?(1)把下表填写完整。
(2)根据表中的数据,在下图中描出长度和总价所对应的点,再把它们按顺序连起来。
(3)购买彩带的长度和需要的钱数成正比例吗?你是根据什么来判断的?(4)根据图像判断,购买3.5米彩带需要多少元?【答案】(1)(2)(3)购买彩带的长度和需要的钱数成正比例。
(完整)六年级正反比例练习题集
(完整)六年级正反比例练习题集六年级正反比例练题集
以下是一些六年级正反比例练题,希望能帮助同学们提高对正
反比例的理解和运用能力。
1. 问题:小明用3个小时做完了30道题目,请问他再用多长
时间能做完90道同样的题目?
答案:小明在相同速度下,需要6个小时才能完成90道题目。
2. 问题:某电影院一天卖出60张票,那么30天能卖出多少张票?
答案:按照正比例计算,电影院在30天内能卖出1800张票。
3. 问题:某奶茶店每天卖出120杯奶茶,如果数量减少了一半,那么卖出60杯奶茶需要多长时间?
答案:奶茶店在相同时间内,需要卖出30杯奶茶才能完成60杯。
4. 问题:某汽车油箱加满油后能行驶500公里,如果行驶距离
减少了三分之一,剩下的油能行驶多长距离?
答案:剩下的油能行驶333.33公里。
5. 问题:某工人每小时生产4个零件,他工作4小时后停工了,他一共生产了多少个零件?
答案:工人在停工前一共生产16个零件。
通过以上的练题,同学们可以更好地理解和运用正反比例的概念。
在解题过程中,要注意理解题意,确定比例关系,并灵活运用
正反比例的求解方法。
祝同学们在研究中取得好成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。