常见连续时间信号的频谱资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F( j) - f (t)e-jt dt 0 e-at e-jt dt
e -(a j)t
1
- (a j) 0 a j
➢ 幅度频谱为
F ( j) 1 a2 2
➢ 相位频谱为
() - arctan( ) a
2020/9/14
2
一、常见非周期信号的频谱
1. 单边指数信号
F ( j) 1 a2 2
F[sgn(t)] lim F[sgn(t)e- t ] 0
2
j
2020/9/14
8
一、常见非周期信号的频谱
5. 符号函数信号
-1 t 0 sgn(t) 0 t 0
1 t 0
F( j)
( )
π/2
0
0
-π/2
符号函数的幅度频谱和相位频谱
2020/9/14
9
一、常见非周期信号的频谱
1. 虚指数信号 e j0t (- t )
F ( j)
(2π)
由-1 e-jt dt 2πd ()
0 0
虚指数信号频谱密度
得F[e j0t ] - e-j(-0 )t dt 2πd ( - 0 )
同理:
F[e-j0t ] - e-j(0 )t dt 2πd ( 0 )
2020/9/14
11
二、常见周期信号的频谱密度
2. 正弦型信号
cos0t
1 (e j0t 2
e-j0t ) F π[d (
- 0 ) d (
0 )]
cos 0t
1
F( j)
(π)
(π)
t -0
0
0
余弦信号及其频谱函数
2020/9/14
12
二、常见周期信号的频谱密度
2. 正弦型信号
sin 0t
1 (e j0t 2j
(1)
1
t 0
0
单位冲激信号及其频谱
2来自百度文库20/9/14
5
一、常见非周期信号的频谱
4. 直流信号f(t)=1,-<t<
直流信号不满足绝对可积条件,可采用极限的
方法求出其傅里叶变换。
F[1] lim F[1 e-| t| ]
0
lim[ 2 ] 0 2 2
2πd ()
lim [
0
2 2
傅里叶级数:
dT
(t)
d
n-
(t
-
nT
)
1 T
e
n-
jn0t
F[d T
(t)]

n-
1d
T
(
-
n0
)
0
d
n-
(
-
n0
)
2020/9/14
15
二、常见周期信号的频谱密度
4. 单位冲激串
dT (t) d (t - nT ) n-
F[d T
(t)]

n-
1d
T
(
-
n0
)
0
d (
n-
-
n0 )
f (t) e -at u(t),a 0,
() - arctan( ) a
单边指数信号及其幅度频谱与相位频谱
f (t)
F(j)
( )
1
1/a
π/2
t 0 2020/9/14
0
0
-π/2
3
一、常见非周期信号的频谱
2. 双边指数信号 e-a|t|
F(j) 20 f (t) costdt 20 e-at costdt
- e-j0t ) F - jπ[d (
- 0 ) - d (
0 )]
sin 0t 1
2020/9/14
F ( j )
(π)
t
-0 0
(π)
0
正弦信号及其频谱函数
( ) π/2
0
-π/2
13
二、常见周期信号的频谱密度
3. 一般周期信号
fT (t)
Cn
e
jn0t
n-
(0
2π ) T
两边同取傅里叶变换
6. 单位阶跃信号 u(t)
u(t) 1 {u(t) u(-t)} 1 {u(t) - u(-t)} 1 1 sgn(t)
2
2
22
F[u(t)] πd () 1 j
u(t) 1
t 0
F( j)
(π)
0
( )
π/2
0 -π/2
2020/9/14
阶跃信号及其频谱
10
二、常见周期信号的频谱密度
dT (t)
单位冲激串
(1)
及其频谱函数
F[dT (t)] (0 )
2020/9/14 - T 0 T
t
-0 0 0
16
4.3、功率谱密度的性质
● 利用已知的基本公式和Fourier变换的性质等
RX ( )
GX ()
2020/9/14
17
傅立叶变换的基本性质
1. 线性特性 2. 共轭对称特性 3. 对称互易特性 4. 展缩特性 5. 时移特性 6. 频移特性
F[ fT (t)] F( j) F[
Cn
e
jn0t
]
Cn
F[e jn0t
]
n-
n-
F[ fT (t)] 2π Cnd ( - n0 )
n-
2020/9/14
14
二、常见周期信号的频谱密度
4. 单位冲激串
dT (t) d (t - nT ) n-
因为dT (t)为周期信号,先将其展开为指数形式
2e-at ( sin t - a cos t) 2a
a2 2
0 a2 2
➢ 幅度频谱为 ➢ 相位频谱为
F( j) 2a a2 2
() 0
2020/9/14
4
一、常见非周期信号的频谱
3. 单位冲激信号d(t)
F[d
(t)]
-
f (t)e-jt dt
-
d
(t)e
-
jt
dt
1
d (t)
F ( j)
2
]
0
0 0
-
2 d 2 arctan( ) 2π
2 2
-
2020/9/14
6
一、常见非周期信号的频谱
4. 直流信号f (t)
直流信号及其频谱 1
F ( j)
(2π)
0
t
0
对照冲激、直流时频曲线可看出:
时域持续越宽的信号,其频域的频谱越窄;
时域持续越窄的信号,其频域的频谱越宽。
2020/9/14
常见连续时间信号的频谱
2020/9/14
常见非周期信号的频谱(频谱密度)
单边指数信号
双边指数信号e-a|t|
单位冲激信号d(t)
直流信号
符号函数信号
单位阶跃信号u(t) 常见周期信号的频谱密度
这些都应当是 已知的基本公式
虚指数信号
正弦型信号
单位冲激串 1
一、常见非周期信号的频谱
1. 单边指数信号
f (t) e -at u(t),a 0,
7. 时域卷积特性 8. 频域卷积特性 9. 时域微分特性 10. 积分特性 11. 频域微分特性
2020/9/14
18
2
傅立叶变换的基本性质
● 线性性质 ● 位移性质
[a f1(t) f2 (t)] a [ f1(t)] [ f2(t)]
[ f (t t0 )] e jt0 [ f (t)]
7
一、常见非周期信号的频谱
5. 符号函数信号
符号函数定义为
-1 t 0 sgn(t) 0 t 0
1 t 0
F[sgn(t)e-
t
]
0
-
(-1)et
e- jt
dt
0
e-t e- jt dt
- e( - j)t 0
- e -( j)t - 1
1
- j
j - j j
t -
t 0
相关文档
最新文档