求数列的通项公式的常用方法课件.ppt
合集下载
数列通项公式的求法PPT优秀课件1
题型3:构造基本数列求通项公式
2 n 1 2 n
已知数列 { a } 中 a 1 , a 0 , 且 a a 4 , 例4: n 1 n 求数列 { a } 通项 n
分析: 由条件 a2n1 a2n 4可知 ,构造数列 {bn}
其中 bn a2n ,则bn1 bn 4,由此可知 bn b ) 4 1 (n 1) 4 4n 3 1 (n 1 即: a 4n 3, 又an 0,an 4n 3
例5:已知数列{an}中a1=1,且an+1=2an+3,求 {an}的通项。
解: a n 1 2 a n 3 ( n N *) a n 1 3 2 ( a n 3 ) { a n 3}是以 a 1 3 4 为首项, 2 为公比的等比数列 an 3 4 2 综上, a n 2
1 1 1 ( 2 ) 为 等 差 数 列 ( n 1 ) 2 = 2 n s s n n s 1 1 1 1 又a s s = sn = n n n 1 2 n 2 ( n 1 ) 2n
1 an ( n 2) 2n(n 1)
而 a1 1 ; 2
2
an a n 1 2 n 3
经检验: n 1时满足上式。 an ( n 1) 2 ( n ∈ N + )
题型2:利用累加(等差)、累积(等比)求数列的通项
思考:满足何种条件时,采用“累积法”求通项?
a n1 an
g () ng ( () n 能 求 乘 积 )
n2
时,有
a a a a 2 3 4 q , q , = q , , n q a a a a 1 2 3 n 1
数列通项公式的求法课件-高三数学一轮复习
(2)证明:∵cn=a2nn(n∈N*), ∴cn+1-cn=a2nn+ +11-a2nn=an+21-n+12an=2bn+n 1. 将 bn=3·2n-1 代入,得 cn+1-cn=34(n∈N*). ∴数列{cn}是公差为34的等差数列,c1=a21=12, 故 cn=12+34(n-1)=34n-14.
探究 5 此类题可由 an=SS1n(-nS=n-11()n,≥2)求出通项 an,但要注意 n=1 与 n ≥2 两种情况能否统一.
思考题 5 在数列{an}中,a1=1,a1+2a2+3a3+…+nan=n+2 1an+1,n∈
N*,求 an. 【解析】
由 a1+2a2+3a3+…+nan=n+2 1an+1,
例 4 已知数列{an}满足 a1=1,an+1=2aan+n 1(n∈N+).求数列{an}的通项公 式.
【解析】 易知 an>0,依题意得an1+1=2ana+n 1=a1n+2, ∴数列a1n是等差数列,公差为 2,首项为 1,∴a1n=1+(n-1)×2=2n-1, ∴an=2n1-1.
探究 4 已知数列递推公式的分母中含有通项公式的表达式,求解对应的通 项公式时,往往可以通过观察表达式的特点,通过倒数关系加以转化,利用等差 数列的性质分析相应的通项公式问题.
思考题 4 设数列{an}是首项为 1 的正项数列,且 an+1-an+an+1·an= 0(n∈N*),求{an}的通项公式.
【解析】 ∵an+1-an+an+1·an=0.∴an1+1-a1n=1. 又a11=1,∴a1n是首项为 1,公差为 1 的等差数列. 故a1n=n,∴an=1n.
题型四 已知 Sn 求 an
题型二 累乘法
例 2 在数列{an} 中,已知 a1=3,nan=(1+n)an+1,求 an. 【解析】 据题意有aan+n 1=n+n 1⇒aan-n 1=n-n 1(n≥2 且 n∈N*). ∴an=a1·aa21·aa32·…·aan-n 1 =3×12×23×34×…×n-n 1=3n(n≥2 且 n∈N*),把 n=1 代入上式也成立,故 an=3n(n∈N*).
数列通项公式的求法课件
2(
n 1) 2
n
1
此时,bn an
an n 1
故an
n 1, n为奇数, n, n为偶数.
解法2: an1 an 2n 当n 2时, an an1 2(n 1)
两式相减,得:an1 an1 2
a1, a3 , a5 , ,构成以a1为首项,以2为公差的等差数列
a2 ,a4 ,a6 , ,构成以a2为首项,以2为公差的等差数列
(1)若c=1时,数列{an}为等差数列;
(2)若d=0时,数列{an}为等比数列;
(3)若c≠1且d≠0时,数列{an}为线性递推数列,
其通项可通过构造辅助数列来求.方法1: 待定系数法
设an+1+m=c( an+m),得an+1=c an+(c-1)m,
与题设an+1=c an+d,比较系数得: (c-1)m=d,
an1 Sn1 Sn 2an1 1 2an 1
即an1 2an 即{an}为首项 1,公比为2的等比数列
an 1 2n1 2n1
5.构造等差、等比数列法
对于一些递推关系较复杂的数列, 可通过 对递推关系公式的变形、整理, 从中构造出一 个新的等比或等差数列, 从而将问题转化为前 面已解决的几种情形来处理。
an
解:
a2 a1
a2
21,
a3
an1 2n an
a3 a2
a4
2,2 a4
a3an
2, 3……
222
23
an 2n1 an1
2n1
a1 a2 a3
an1
n ( n 1)
a 2 2 n
1 23( n 1)
常见递推数列通项公式的求法ppt课件
1S 2
1 23
2 24
n2 2n
n 1 2 n+1
②
由①-②得
1S 2
1 22
1 23
1 2n
n 1 2n+1
1 2
n 1 2 n 1
S 1 n1 2n
an 2n
1
an 2n
2
n 1 2n
an 2n1 n 1
变式训练:答案an 6 4n1 (n 1) 2n
数列 满足 an
an1 3 4 5 6
n 1
an a1
1 2 n(n 1)
a1
1 an
2 n(n 1)
累乘
例 2:已知数列an 中,a1
1且满足 an1 an
n ,求数 n2
列an 的通项公式。
其他解法探究:
a n 1 an
n n2
(n 2)an1
nan
(n 1)(n 2)an1 n(n 1)an
则可构造n(n 1)an 是常数数列
故an n2 n 2(n 1,2,3,)
方法归纳:累加
可求和
变式训练:
1.已知数列an中, a1 2 满足 an1 an 2n n ,求数列an 的通 项公式. 2.已知数列an 中, a1 2 满足 an1 an n 2n n ,求数列an 的 通项公式.
类型二:形如 an1 f (n)
an1 2an n 2n1 2n1 2n1
an1 an n 2n1 2n 2n1
累加
a2 22
a1 2
1 ,a3 22 23
a2 22
2 23
,,
an 2n
an1 2n1
n 2n
1
,
由数列的递推关系求通项公式PPT优秀课件
3,
设 bn
an1
an
,则 b1
a2
a1
6 ,且 bn1 bn
3,
所以 bn 6 3n1 2 3n ,即 an1 an 2 3n ,
有 3an 3 an 2 3n
所以
an
3n
3 2
.
解:由已知递推式得
an 3an1 3 ,
an
2n .
1
例题分析
例 1.
已知数列an 中, a1
3 2
,
an1
3an
3
(n N *), 求数列an 的通项公式.
.
巩固练习
1. 已知数列 an 中, a1 1, an1 3an 3n (n N *), 求数列an 的通项公式.
an n3n1
an 2n1
课堂热身
2.已知数列
an
中,
a1
1 2
,
an1
an
1 3n
(n N*), 求数列an 的通项公式.
1
an
1
.
2
3n1
课堂热身
3.已知数列 an 中 a1 3, an1 3an (n N*).求数列an 的通项公式.
an 3n
1 3n
,所以 an1 3n1
an 3n
1 3n
,
设 bn
an 3n
, 则 b1
a1 3
1,, 2
且 bn1
bn
1 3n
数列通项公式的求法第2课时-累加法累乘法ppt课件
.
四、总结并区分(灵丹妙药)
1、累加法的适用条件:已 a 1 且 知 a n-a n -1f(n )( 2 n) 2、累乘法的适用条件:已知 a1且aann-1 f(n)(n2) 3、倒数法的适用条件:已a知 1且 anpanan-1-11(n2)
.
五、过关斩将
1、已{ 知 an}满 数 a1 足 列 1.anan-1n n -1 1(n2)求其通项公
.
三、倒数法
1、倒数法适用题型:已a知 1且 anpanan-1-11(n2) 分式的形式
2、例题: 已知{a 数 n}满 列 a足 n3aa n-n1-11(n2)a ,11,求其通项公
解:将原式两边同时取倒数得:
1 1 (n -1) 3 3n - 2
1 3an-113 1
an
an
an-1
2、已知 {an}数 满列 a足 11,an1a2nan2,求其通项公式。 3、已{ 知 an}满 数 a1 足 列 1,anan-12( n n2) ,求其通项
4、设{an数 }的列 n项 前和 sn,a1为 1{ , snnna}为常数列, 求其通项公式。
.
五、过关斩将答案
1、 ann22n(提示:本 法题 的在 时用 候累 , 算 乘 等 结式 果右 是边 保 前两项的分 项子 的与 分最 母后 )两
有问题随时欢迎大家提问
.
.
.
.
2、an
2(提示:倒数同法时,取两倒边数) n1
3、 an2n1-( 3 提示:累 右加 边法 是, 一等 个 前 n-1式 等 项比 的
4、 ann21n (提示:先 和 a1根 求{据 s出 nn常 na}的 数 通 列 项公 然后利 sn求 a用 n,最 由 后用累 . 乘法求得)
递推数列的通项公式求法 数学课件(与“通项”相关文档)共10张PPT
n2
当
时
a a 3 3 为(首20项0为7,年首公全比项国为高,考公卷则)比设是数列 的的等首比项数列。n即1
2 2 2 为首项,公比是 的等比数列。
a a(aa) 一、递推关系为
3 3 解:当
时,
3
型
所则以该数数列列 n1 n
n1 n
是以
an1 anLeabharlann a2a12 3
n1
n
21
即数列
是以 为首项,公差为B的等差数列。
an anan1an1an2(a2a1)a1
2 3n12 3n22 3n32 311 12 3 2n 312 3n 3
第7页,共10页。
第8页,共10页。
例 8 、 若 数 列 b n中 b 1= 2 , b n + 1=3 2 b b n n+ + 4 3 , 求 b n
解:设 a n 1 x ( n 1 ) y 4 ( a n x n y ) 即 a n 1 4 a n 3 x n (3 y x )
令 3 x 3 x 1 3yx 1 y0 a n 1 (n 1 )4 (a n n )
又 a1 1 1 ,所以数列 an n 是以1为首项,4为公比的等比数列,
即数列
an n1
是以
a 1 为首项,公差为B的等差数列。 0
a 所以数列例5、(200是7年以4天为津首项高,考4为)公在比数的列等比数列中,
求(1)首若项A=其中,与则通由项 ,求数列
的通项公式。
n
0 a 一、递推关系为
n型
a 1 2 ,a n 1 a n n 1 ( 2 ) 2 n ,n N *
递推数列的通项公式
常见递推数列通项公式的求法课件
解题步骤与例题解析
• 将递推式中的每一项乘以累乘因子,并累乘得到通项公式 。
解题步骤与例题解析
例题解析 1. 题目:求数列1, 3, 7, 13, 21...的通项公式。 2. 分析:该数列的递推式为`an+1 = an + 2n`。
解题步骤与例题解析
01
3. 解题步骤
02
a. 确定关系:an+1 = an + 2n。
常见递推数列通项公式的求法课件
目录 Contents
• 递推数列通项公式概述 • 累加法 • 累乘法 • 构造法 • 特征根法 • 其他方法
01
递推数列通项公式概述
定义与分类
递推数列的定义
递推数列是一种特殊的数列,它 可以通过前一项或前几项的值, 推导出下一项的值。
递推数列的分类
根据不同的递推关系,递推数列 可以分为线性递推、二次递推、 指数递推等。
03
累乘法
适用范围与基本思想
适用范围
适用于形如`a(n+1) = an + f(n)`的递推数列,其中f(n)为关 于n的函数。
基本思想
累乘法的基本思想是将递推式中的每一项都乘以累乘因子, 从而得到通项公式。
解题步骤与例题解析
步骤 1. 确定递推式中每一项与前一项的关系。
2. 选择适当的累乘因子。
常见递推数列类型
01
02
03
04
Fibonacci数列:每一项是前 两项的和。
Lucas数列:每一项是前两项 的差。
等差数列:每一项与前一项的 差是一个常数。
等比数列:每一项与前一项的 比值是一个常数。
通项公式的应用
数学分析
高考数学微专题3 数列的通项课件(共41张PPT)
内容索引
内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.
内容索引
目标1 根据规律找通项公式
1 (2023吉林三模)大衍数列,来源于《乾坤谱》中对易传“大
衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,
数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总
和,是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项
依 次 是 0,2,4,8,12,18,24,32,40,50 , 则 此 数 列 的 第 25 项 与 第 24 项 的 差 为
高考命题方向: 1. 根据前几项来寻找序号 n 与项之间的关系. 2. 根据前几项所呈现的周期性规律,猜想通项. 3. 抓住相邻项的关系转化为熟悉问题.
内容索引
内容索引
说明: 1. 解决方案及流程 (1) 归纳猜想法: ①确定数列的前几项; ②分析序号 n 与项有何关系,初步确定分类标准; ③研究数列整体或部分规律; ④归纳数列的项用序号 n 表示的规律; ⑤证明归纳的正确性.
内容索引
内容索引
1. (2022泰安三模)已知数列{an}满足:对任意的m,n∈N*,都有aman
=am+n,且a2=3,则a20的值为( )
A. 320
B. 315
C. 310
D. 35
【解析】 因为对任意的 m,n∈N*,都有 aman=am+n,所以 a1a1=a2, a1an=a1+n.又 a2=3,所以 a1=± 3,所以aan+n 1=a1,所以数列{an}是首项 为 a1,公比为 a1 的等比数列,所以 an=a1·an1-1=an1,所以 a20=a210=310.
重复循环,2 022=674×3,恰好能被3整除,且a3为偶数,所以a2 022也 为偶数,故B错误;对于C,若C正确,又a2 022=a2 021+a2 020,则a2 021= a1+a2+…+a2 019,同理a2 020=a1+a2+…+a2 018,a2 019=a1+a2+…+ a2 017,依次类推,可得a4=a1+a2,显然错误,故C错误;对于D,因为 a2 024=a2 023+a2 022=2a2 022+a2 021,所以a2 020+a2 024=a2 020+2a2 022+a2 021=2a2 022+(a2 020+a2 021)=3a2 022,故D正确.故选AD.
2024届高三数学一轮复习-求数列通项公式的方法 课件(共25张ppt)
再得出 的表达式
例五.2
在数列 中,1 = 1,+1 =
,求通项公式 ?
3 +2
解:由题意,两边同取倒数,得
设
1
an+1
+k=2
1
an
+k
即
1
an+1
1
an+1
=
=
1
2
an
1
2 +3
an
+k
对比原式,得k = 3
∴
1
an
1
an
+ 3 为首项为4,公比为2的等比数列
+ 3 = 4 · 2n−1 = 2n+1
解题思路:设 ,构造等比数列{ + }
具体步骤: 设+1 + = +
即+1 = ⋅ + − 1 ·
对比原式,得k =
q
p−1
得到以1 +为首项,为公比的等比数列{ + }
例四.1
在数列 an 中,a1 = 1,an+1 = 3an + 1,求通项公式an ?
故an =
1
2n+1 −3
六、取对数法
①形如+1 = ⋅
对数运算法则: log ⋅ = log + log
解题思路:等式两边同取对数,构造等比数列
log ⋅= · log
具体步骤: 两边同取以p为底的对数,得log +1 = log + 1
使用条件:已知+1 − =
解题思路: 2 − 1 = 1
等差数列的概念及通项公式ppt课件
1+2+3+···+100=?
高斯,(1777— 1855) 德国著 名数学家。
预习:等差数列的前n项和
生物普遍存在变异 人们根据自己需要
选择合乎要求的变异个体,淘汰其他 数代选择 所需变异被保存
微小变异变成显著变异
培育出新品种
实例:在经常刮大风的海岛上,无
翅或残翅的昆虫特别多
达尔文的自然选择学说如何解释 长颈鹿脖子为什么会变长?
yyrr Yy Rr
Y y 基因座位
一个特定基
r
R 因在染色体
上的位置
一对相对性状:有3种基因型,2种表现型
两对相对性状: 有9种基因型,4种表现型
那么n 对相对性状? 3n
2n
生物通过变异(基因突变)产生新的基因,通过 基因重组和染色体变异产生新的基因型。
种群中普遍存在的 可遗传变异 是自然 选择的前提,也是生物进化的前提。
解:设an=a1+(n-1)d,则有
a1+4d=10
(1)
a1+11d=31
(2)
解得 a1 = -2 ,d = 3 an=-2+(n-1).3
=3n-5
题后点评
求通项公式的关键步骤:
求基本量a1和d :根据已知条件列方程, 由此解出a1和d ,再代入通项公式。
像这样根据已知量和未知量之间的关系, 列出方程求解的思想方法,称方程思想。 这是数学中的常用思想方法之一。
解: ∵ a1=3 , d=2 ∴ an=a1+(n-1)d
=3+(n-1) ×2 =2n+1
等差数列的通项公式为an=a1+(n-1)d 想一想
1、①1,8,15, 22, 29;
4311等比数列的概念与通项公式课件共39张PPT
当 q=-2 时,an=a1qn-1=2(-2)n-1=(-1)n-12n, ∴数列{an}的公比为 2 或-2, 对应的通项公式分别为 an=2n 或 an=(-1)n-12n.
类型二 等比中项
[例 2] 已知等比数列的前三项和为 168,a2-a5=42,求 a5,a7 的等比中项. [思路分析] 根据已知条件,求出等比数列的首项和公比,再利用定义求等比 中项.
此时{an}不是等比数列. 4.(知识点二)数列{an}为等比数列,若 a1=2,a5=8,则 a3=±4.正确吗?为
什么?
提示:不正确.设等比数列{an}的公比为 q,则可得 q4=aa51=4,解得 q2=2,所 以 a3=a1·q2=2×2=4.
二、练一练
1.等差数列{an}的公差不为零,首项 a1=1,a2 是 a1 和 a5 的等比中项,则数
课堂篇·互动学习
类型一 等比数列的通项公式及应用
[例 1] 在等比数列{an}中, (1)已知 a3=9,a6=243,求 a5; (2)已知 a1=98,an=13,q=23,求 n. [思路分析] 根据题设条件,充分利用等比数列的通项公式代入求解.
[解] (1)方法一:由 a3=9,a6=243, 得 a1q2=9,a1q5=243. ∴q3=2493=27,∴q=3.∴a1=1. ∴a5=a1q4=1×34=81. 方法二:∵a6=a3q3,∴q3=aa63=2493=27, ∴q=3. ∴a5=a3q2=9×32=81.
D.84
解析:∵a1=3,a1+a3+a5=21,∴3+3q2+3q4=21,∴1+q2+q4=7, 解得 q2=2 或 q2=-3(舍去),∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.
4.3.1.1等比数列的概念和通项公式课件(人教版)
题型三 等比数列的判定与证明
例 4 已知数列{an}的前 n 项和为 Sn,Sn=13(an-1)(n∈N*) (1)求 a1,a2; (2)求证:数列{an}是等比数列.
解析:(1)当 n=1 时,S1=13(a1-1)=a1,解得:a1=-12,
当 n=2 时,S2=13(a2-1)=a1+a2,解得 a2=14.
4.已知等比数列{an}中,a1=-2,a3=-8,则 an=________.
解析:∵a1=-2,a3
=
-8
,
∴
a3= a1
q2=- -82=4
,
∴q=±2,
∴an=(-2)·2n-1 或 an=(-2)·(-2)n-1,即 an=-2n 或 an=(-2)n.
答案:-2n 或(-2)n
题型一 等比数列通项公式的求法及应用
【易错警示】 1. 出错原因 没有弄清等比数列各项的符号规律,直接由等比中项得 a7=±9,错 选 A. 2. 纠错心得 在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题 时要小心谨慎,以防上当.
1
1
1
解析:令
an+1-A·2
n+1=1 3
an-A·2
n
,则
an+1=13an+A3·2
n+1.
由已知条件知A3=1,得 A=3,
1
1
所以
an+1-3×
2
n+1=1 3
an-3×
2
n
.
1
又
a1-3×21=源自2≠0, 31所以
an-3×
2
n
是首项为-2,公比为1的等比数列.
3
3
1
1
于是
an-3×
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列通项公式的 常用方法
数列通项公式的求法
观察法 公式法 (利用前n项和) 累加法 累积法
构造法(等差、等比数列)
1.观察法
• 例1:根据数列的前4项,99,999,9999,…
• (2)
an 10 n 1
11 , 2 4 , 3 9 , 416 ,
5.构造法
当给出递推关系求 an 时,主要掌握通过引进辅助数列能
转化成等差或等比数列的形式。 (an1 pan q)
例5.已知数列 {an}的递推关系为 an1 2an 1
,且 a1 1 求通项公式 an 。
an 2n 1
练习5.设数列{an}满足a1 2,
an1
• (3) 2 5 10 17
1, 2 , 1 , 2 ,
• (4)
325
1 , 2 , 3 , 4 , 2 34 5
an
n
n2 ;
n2 1
an
2; n 1
an
(1) n1
n n 1
2.公式法
• 例2:已知下列两数列{an}的前n项和 Sn的公式,求 an 的通项
公式。
an an1 4 (n 1)
2
an
a1 4[1 2 3 (n 1)] 2(n 1)
∴ an 2n2 4n 3
数列通项公式的求法
观察法 公式法 累加法 累积法
利用前n项和 构造法(等差、等比数列)
an
Sn n 1 Sn Sn1 n 2
求解
练习2:设数列an 的首项为a1=1,前n项和Sn满足关系 3tSn (2t 3)Sn1 3t(t 0, n 2,3,4,)
求 数列 an 的通项公式
3.累加法 • 例3:已知数列6,9,14,21,30,…求此
令bn an1 an 则数列{bn}是以4为公差的等差数列
∴bn b1 (n 1)d b1 a2 a1 2
∴bn an1 an 4n 2 两边分别相加得:
∴a2 a1 4 1 2
a4 a3 4 3 2
a3 …a…2 4 2 2
• (1) Sn n3 n 1 (2)sn n2 1
主要是公式an
s1 sn
sn1
(n 1)的运用 (n 2)
1,
n 1
(1)an 3n2 3n 2, n 2
0 (2)an 2n 1
(n 1) (n 2)
公式法:若已知数列的前项和 Sn与 an的关系,求数列{an} 的通项也可用公式
an
1 n
累积法 :一般地,对于型如 an1 f (n) an 类的通项公式, 只要 f (1) f (2) f (n)的值可以求得时 ,则宜采用此方法求解。
练4、已知数列 {an} 中,a1 2 ,an1 3n an ,
求通项公式 an 。
n ( n 1)
an 2 3 2
数列的一个通项。
an n2 5 (n N )
累加法:一般地,对于型如 f (1) f (2) f (n) 类的通项公式, 只要能进行求和,则宜采用此方法求解。
练习3. 已知数列:a1 1, an1 an 2n求通项公式
an 2n 1
4. 累积法
• 例4:在数列{an}中,a1=1, (n+1)·an1 =n·an, an 求 的表达式。
an an
3
(n
N ),
求an .
2
an
2 3n1
. 1
例 6: 已 知 数 列 {an} 的 递 推 关 系
为 an2 2an1 an 4,且 a1 1,a2 3 ,
求通项公式 an 。
解:∵ an2 2an1 an 4
∴ (an2 an1) (an1 an ) 4
数列通项公式的求法
观察法 公式法 (利用前n项和) 累加法 累积法
构造法(等差、等比数列)
1.观察法
• 例1:根据数列的前4项,99,999,9999,…
• (2)
an 10 n 1
11 , 2 4 , 3 9 , 416 ,
5.构造法
当给出递推关系求 an 时,主要掌握通过引进辅助数列能
转化成等差或等比数列的形式。 (an1 pan q)
例5.已知数列 {an}的递推关系为 an1 2an 1
,且 a1 1 求通项公式 an 。
an 2n 1
练习5.设数列{an}满足a1 2,
an1
• (3) 2 5 10 17
1, 2 , 1 , 2 ,
• (4)
325
1 , 2 , 3 , 4 , 2 34 5
an
n
n2 ;
n2 1
an
2; n 1
an
(1) n1
n n 1
2.公式法
• 例2:已知下列两数列{an}的前n项和 Sn的公式,求 an 的通项
公式。
an an1 4 (n 1)
2
an
a1 4[1 2 3 (n 1)] 2(n 1)
∴ an 2n2 4n 3
数列通项公式的求法
观察法 公式法 累加法 累积法
利用前n项和 构造法(等差、等比数列)
an
Sn n 1 Sn Sn1 n 2
求解
练习2:设数列an 的首项为a1=1,前n项和Sn满足关系 3tSn (2t 3)Sn1 3t(t 0, n 2,3,4,)
求 数列 an 的通项公式
3.累加法 • 例3:已知数列6,9,14,21,30,…求此
令bn an1 an 则数列{bn}是以4为公差的等差数列
∴bn b1 (n 1)d b1 a2 a1 2
∴bn an1 an 4n 2 两边分别相加得:
∴a2 a1 4 1 2
a4 a3 4 3 2
a3 …a…2 4 2 2
• (1) Sn n3 n 1 (2)sn n2 1
主要是公式an
s1 sn
sn1
(n 1)的运用 (n 2)
1,
n 1
(1)an 3n2 3n 2, n 2
0 (2)an 2n 1
(n 1) (n 2)
公式法:若已知数列的前项和 Sn与 an的关系,求数列{an} 的通项也可用公式
an
1 n
累积法 :一般地,对于型如 an1 f (n) an 类的通项公式, 只要 f (1) f (2) f (n)的值可以求得时 ,则宜采用此方法求解。
练4、已知数列 {an} 中,a1 2 ,an1 3n an ,
求通项公式 an 。
n ( n 1)
an 2 3 2
数列的一个通项。
an n2 5 (n N )
累加法:一般地,对于型如 f (1) f (2) f (n) 类的通项公式, 只要能进行求和,则宜采用此方法求解。
练习3. 已知数列:a1 1, an1 an 2n求通项公式
an 2n 1
4. 累积法
• 例4:在数列{an}中,a1=1, (n+1)·an1 =n·an, an 求 的表达式。
an an
3
(n
N ),
求an .
2
an
2 3n1
. 1
例 6: 已 知 数 列 {an} 的 递 推 关 系
为 an2 2an1 an 4,且 a1 1,a2 3 ,
求通项公式 an 。
解:∵ an2 2an1 an 4
∴ (an2 an1) (an1 an ) 4