地基岩体稳定性工程地质研究
崩塌危岩体地质灾害的稳定性分析与防治措施研究
崩塌危岩体地质灾害的稳定性分析与防治措施研究稳定性分析是崩塌危岩体地质灾害研究的重要内容之一、其目的是通过分析岩体的力学性质和外力作用情况,评估岩体的稳定性。
稳定性分析常用的方法有解析法、试验法和数值模拟法。
解析法是通过分析岩体内部应力和变形的数学模型来预测其稳定性。
例如,通过应力和位移边界条件,可以推导出对应的稳定性方程,进而求解岩体的稳定状态。
这种方法适用于岩体较简单的情况,但实际工程中往往存在复杂的地质条件和力学问题,因此其应用范围有限。
试验法是通过实验的方式来模拟分析岩体的破坏过程和稳定性变化。
例如,可以通过室内试验或者现场试验的方法,对岩体进行加载、变形、破裂等测试,进而确定其稳定性。
试验法能够为稳定性分析提供准确的数据,但其局限性在于试验成本高、周期长,且试验结果受试验条件的限制。
数值模拟法是通过数值计算的方式,在计算机上建立岩体的数学模型,模拟岩体的应力、变形和稳定性变化。
数值模拟法主要包括有限元法、边界元法、离散元法等。
这些方法可以较好地模拟岩体的复杂力学行为,对于评估岩体的稳定性具有重要意义。
防治措施研究是为了减少崩塌危岩体地质灾害对人类生命财产造成的损失,保护环境和社会稳定。
针对不同的灾害区域和岩体特性,可以采取不同的防治措施。
一方面,可以通过地质灾害监测与预警系统,及时了解岩体的变形变化,预测地质灾害的发生。
同时,加强对危险区域的监测和监控,实时监测岩体的变形与位移,及时采取防护措施,确保人员安全。
另一方面,可以采取工程措施对岩体进行稳定治理。
例如,通过加固岩体的方法,包括钻孔注浆、爆破压裂、锚杆加固等,增强岩体的承载能力和抗滑能力,提高其稳定性。
此外,还可以采取生态措施,如植被恢复、防护林带的建设等,通过保护和恢复植被,增加地表抗滑能力,减少地质灾害的发生。
综上所述,崩塌危岩体的稳定性分析与防治措施研究是减少地质灾害对人类生命财产造成损失的重要工作。
通过稳定性分析,可以了解危岩体的稳定性状况,评估崩塌的危险性。
坝基岩体稳定性的工程地质分析
四、支墩坝对地质地形条件的要求
支墩坝是由一系列相隔一定距离的支墩和向上游倾斜的挡水盖 板组成,库水、泥砂压力等由盖板经支墩传给地基。为了加强支墩 之间的整体性和侧身稳定性,支墩还常设有加劲梁。根据盖板的不 同,支墩坝可分为平板坝、大头坝和连拱坝。
支墩坝对地质地形条件的适 应性比较强,在岩基和土基上 均可修建,但要注意相邻支墩 产生过大的不均匀沉降。
一个河段筑坝的可能性,除根据国民经济的需要外,还要看当地 的自然条件是否有这种可能性。在坝址坝型选择中,主要应根据坝 址区的地形地质,材料供应(主要是天然建筑材料),枢纽布置,水 文、施工和运行条件,通过详细的技术经济比较论证后选定。但是 必须指出,在这些条件中,工程地质条件是一个十分重要的方面。
水利水电建设的实践表明,工程地质条件不仅影响到坝址、坝型 的选择,而且关系到工程的投资、施工工期、工程效益和工程安全。
三、拱坝对地质地形条件的要求
拱坝在平面上呈拱形,并在结构上起拱的作用的坝,拱脚支承 于两岸基岩上。拱坝是一个整体的空间壳体结构。从水平切面上看, 它是由许多上下等厚或变厚的拱圈叠成,大部分荷载由拱的作用传 递到两岸山体上。在铅直断面上,则是由许多弯曲的悬壁梁组成, 少部分荷载依靠梁的作用传递给坝基。
(3)对坝基中存在的断层破碎带等软弱岩体必须进行慎重的处 理,以提高岩体的均一性,防止变形过大造成拱坝拉裂。
(4)两岸坝肩要有足够的稳定性,拱端要有比较雄厚的稳定岩 体。对两岸发育的与河流大致平行的中、高倾角断层、节理、层面、 卸荷裂隙等要特别重视,仔细研究其特征,及有否与缓倾角软弱结 构面组合,从而构成滑动块体。
二、重力坝对地质地形条件的要求
重力坝是由混凝土或浆砌石修筑的大体积挡水建筑物,重力坝主要 依靠坝身自重与地基间产生足够大的摩阻力来保持稳定,故重力坝对 地基要求比土石坝高,一般修建在基岩上。低坝也可修在较好的土质 地基上。重力坝对地质地形条件的要求主要有:
岩体的工程性质及稳定性评价
岩体与岩石(庐山二叠泉的岩体)
节理就是裂隙,断裂是一 个大的概念,基本类型包 括了节理(裂隙)、断层, 还有劈理。
节理:是岩石中的裂隙,是没有明显位移的裂隙。也是地壳上 部岩石发育最广的一种构造
节理是很常见的一种构造地质现象,就是我们在岩石露头上所见 的裂缝,或称岩石的裂缝。这是由于岩石受力而出现的裂隙.还 有一种说法:几乎在所以岩石中都可以看到有规律的,纵横交错 的裂隙,他的专门术语就叫节理.节理即断裂岩块沿着破裂面没 有发生或没有明显发生位移的断裂构造. 裂隙应该包括的东西更多,在地学上有构造裂隙,而节理裂隙
Ⅴ级 又称微结构面。常包含在岩块内,主要影响岩 块的物理力学性质,控制岩块的力学性质。
三、 产状
走向、倾向、倾角 结构面与最大主应力
间的关系控制着岩体 的破坏机理与强度。
据单结构面理论,岩体中存在一组结构面时,岩体的极限强 度与结构面倾角间的关系为:
1
3
2(C j 3tg j ) (1 tg j ctg ) sin 2
断裂:地质学马丁尼兹说:“当地壳移动,板块相互撞击时会断裂, 导致其他地区的压力逐渐增加,最终引发地震。”断裂是大的, 深的断层.
(一)结构面
1、结构面的类型
(1)原生结构面 (2)构造结构面 (3)次生结构面
岩体与岩石
近100年来坝体因对岩体软弱面稳定性认
识不足而失事者达45%以上。
法国60m高的坝体, 1959年因左坝肩片麻岩 中的绢云母页岩软弱层滑动而失稳。
只是构造裂隙的一种. 断层是地壳岩层因受力达到一定强度而发生破裂,并沿破裂面
有明显相对移动的构造称断层。 断层是构造运动中广泛发育的构
造形态。它大小不一、规模不等,小的不足一米,大到数百、上 千千米。但都破坏了岩层的连续性和完整性。还有一种解释:断 层是地质学概念,是指因地壳的变动,引起地层发生断裂并沿断 裂面发生水平、垂直或倾斜方向的相对位移现象。
地基稳定性分析
建筑地基的稳定性分析和评价《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。
一、地基稳定性地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。
按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。
评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。
二、地基稳定性分析评价内容影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。
一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。
通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。
特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。
如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。
按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下:1、地基承载力计算与验算验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。
地基稳定性分析
地基稳定性分析建筑地基的稳定性分析和评价《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。
一、地基稳定性地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。
按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。
评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。
二、地基稳定性分析评价内容影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。
一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。
通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。
特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。
如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。
按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下:1、地基承载力计算与验算验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。
岩土地质工程中的岩层失稳机理与治理研究
岩土地质工程中的岩层失稳机理与治理研究岩土地质工程中,岩层失稳是一种常见且危险的地质现象。
它可能导致边坡滑动、坍塌或岩石崩塌等灾害,严重影响工程的稳定性和安全性。
因此,对岩层失稳机理进行深入研究并探索相应的治理方法变得至关重要。
一、岩层失稳机理研究1. 影响岩层失稳的因素岩层失稳是由多种因素综合作用引起的。
主要的因素包括:岩层结构、物理性质、力学性质、裂隙分布和水分条件等。
岩层结构的稳定与否对岩层的稳定性有着重要影响。
岩石的物理性质,如密度、孔隙度和硬度等也是影响其稳定性的重要因素。
此外,裂隙的存在会降低岩层的力学性能。
另外,在水分条件较差的情况下,岩石的稳定性也会受到影响。
2. 岩层失稳的机制岩层失稳的机制主要包括滑动面的存在、岩层之间的剪切破坏、岩层的脆性破裂等。
滑动面的存在是岩层失稳最直接的表现,它分为内滑动面和外滑动面。
内滑动面是指岩层内部发生滑动,而外滑动面是指岩层与外界介质接触面的滑动。
岩层之间的剪切破坏是指岩层内部发生剪切破坏,导致岩体不稳定。
岩层的脆性破裂是指岩层受到外力作用时发生的破坏现象。
3. 岩层失稳机理研究方法岩层失稳机理的研究需要运用多种方法进行,如:室内试验、野外调查和数值模拟等。
室内试验主要通过对岩石物理性质和力学性质进行测试分析,更好地了解岩层的失稳机理。
野外调查则是通过现场实地观测和采样来研究岩层的失稳现象和机制。
数值模拟则是通过建立数学模型来模拟岩层的失稳过程,并对结果进行分析和评估。
二、岩层失稳治理研究1. 监测与预警岩层失稳治理首先需要进行监测与预警工作。
监测可以使用岩石应变计、地下水位计和地震仪等技术手段来对岩层进行实时监测。
预警则是根据监测数据分析岩层的变化趋势,提前预警可能发生的失稳情况,为治理提供依据。
2. 岩层加固与支护岩层失稳治理的核心是对岩层进行加固与支护。
常用的加固与支护措施包括:注浆加固、爆破加固、岩体钢筋网加固和岩石锚固等。
注浆加固是指通过注入特定材料来填充岩层中的裂隙,提高岩层的稳定性。
地基区域稳定性的研究和评价
消 ,离心力 的水 平分力 即南 向作用 力指 向赤 道。在北半 t
球各质点上朝 南 ,而在 南半球 则 朝北 ,故称 之为 南北 向作 用力 ,成为推 动物质离 散运 动 的力 量。 自转 角速度 的变化 则产生东西 向的惯性力 ( 向惯性力 ) 纬 ,即沿纬度方 向作用
架和特征对 于地 区工程 地 质条 件 的形成 和控 制 作用 来 看 , 构造分析对于区域稳定 性和地 基稳定 性 的分 析往 往起 着决
余珊球
( 浙江省 水利 水 电勘 测设 计 院 ,浙 江
杭 州 3 0 ) 10 2
摘
要 :地基 区域稳定性 和地基稳定性 是工程地质学的 2个基本 问题 ,区域稳 定性 问题 以活动性断层 的研
究和评价为基 础 ,其重 点是 区分 老断 裂、新断 裂和活断裂 3类构造 。地基稳 定性 的工程 地质研究 和评价 问题 相 对 比较简单 ,通常是尽量选择 良好 的天然地基 ,地基条件 不利 时 ,可以通过 地基处 理 以满 足建筑 物对地基 的要
工程地质学是从岩 体和土 体 的稳 定性 的角度 来研究 工 程建筑物地基的稳定 性。广义 包含工 程建筑 物地 基稳 定性 的概念为地基 的区域稳 定性 和地基稳 定性 2种 。区域稳 定 性和地 基稳 定 性 是 2个 不 同 的而 又 密 切 相关 的 概念 。从
17 年 7月 2 96 8日唐 山 78级 和 2 0 年 5月 1 汶 川 80级 . 08 21 3 .
价 为 基 础 的 。断 层 的 活 动 性 ,既 可 以 地 震 活 动 的 形 式 表 现 出来 ,又 可 以 断 层 的 蠕 动 和 小 错 动 的形 式 出 现 。
地基稳定性 则 以地基 的坚实性 作为评 价 的标 准 。构 造 破碎带 、几组软 弱结构 面所形成 的不稳定岩 体、软弱岩石 、 淤泥质软土等 ,都 以其强 度不够 易于变 形而 构成地 基稳定
第8章 坝基岩体稳定性 工程地质
第一节 坝基岩体的压缩变形与承载力
❖ 一、坝基岩体的压缩变形
❖ 导致坝基破坏的岩体失稳形式,主要是压缩变形和 滑动破坏。压缩变形对重力坝来说,主要是引起坝 基的沉陷,而拱坝则除坝基沉陷变形外,还有沿拱 端推力方向引起的近水平向的变形。导致发生不均 匀变形的地质因素主要有:
❖ 基础埋深对岩石地基极限承载力的影响 不容忽视,当基础埋深≥1.5m时,可根 据岩石质量的好坏由下式对设计值进行 深度修正。
❖
f=fk+η dγ0(d-1.5)
❖ 其中 d的取值,对于极软岩石为2.0, 软质岩为3.0,硬质岩为4.0。对于强风
化岩石,考虑它已接近散粒体,应按相
应散粒体进行承载力分析。
❖ 除上述三种形式外,有时也可能出现兼有两种或三种 的混合破坏形式。
坝基滑动类型示意图
坝基滑移形式示意图
三、坝基岩体滑动的边界条件分析
❖ 坝基岩体的深层滑动,其形成条件是较复杂的,除去 需要形成连续的滑动面以外,还必须有其他软弱面在 周围切割,才能形成最危险的滑动岩体。同时在下游 具有可以滑出的空间,才能形成滑动破坏。
(1)采用静载荷试验确定嵌岩桩极限承载力
❖ 嵌岩桩静载荷试验的试桩数不得少于3根, 当试桩的极限荷载实测值的极差不超过 平均值的30%时,可取其平均值作为单 桩极限承载力标准值。建筑物为一级建 筑物,或为柱下单桩基础,且试桩数为3 根时,应取最小值为单桩极限承载力。 当极差超过平均值的30%时,应查明误 差过大的原因,并应增加试桩数量。
❖ 拱坝的外荷载主要是通过拱的作用传递到坝端两岸, 所以拱坝的稳定性主要是依靠坝端两岸岩体维持,而 不像重力坝主要靠自重维持。一般地讲,拱的作用越 强,坝身体积也就越小。与重力坝比较,拱坝对两岸 岩体的要求较高,而对河床坝基岩体的要求相对来说 要低一些。两端拱座岩体应该坚硬、新鲜、完整,强 度高而均匀,透水性小,耐风化、无较大断层,特别 是顺河向断层、破碎带和软弱夹层等不利结构面和结 构体,拱座山体厚实稳定,不致因变形或滑动而使坝 体失稳。滑坡体、强风化岩体、断层破碎带、具软弱 夹层的易产生塑性变形和滑动的岩体均不宜作为两端 的拱座。
岩土工程稳定性--边坡稳定性分析方法综述
③优势面理论分析法及其发展应用
采用优势面理论分析法可确定岩坡的控稳优势面,并进行优势面 组合分析 ,找出其试算安全系数最小的优势分离体,确定边坡破坏模 型,并采用极限平衡分析法分析计算优势分离体的安全度及边坡稳定 安全系数,以此判断边坡整体稳定状况 ,从而克服和弥补经典极限分 析法中要假定滑动面、反复计算 比选最小的安全系数及相应的滑动面 的不足,提高了最小安全系数的可靠性。 在采用优势面理论分析法时,在确定控稳优势面时,一般首先要 通过野外地质调查来对研究体内的结构面加以分类,确定各候选优势 面的综合权重值,还需进一步确定优势面的力学参数,所有这些过程 都或多或少的带有经验性,都要不同程度的受到主观性的影响,但恰 恰这两方面是确定其分析结果可靠程度的关键问题,因而优势面理论 分析法存在一定的缺陷性 。因此,优势面理论分析法中引入了层次分 析法,在一定程度上提高了控稳优势面的选定客观性。
弹塑性极限平衡法从分析边坡体的应力和变形入手,由边 坡体的应力和变形特征来确定边坡体的极限平衡状态,从而避 免对边坡体最小安全系数的反复计算及比选,达到减少工作量 和提高准确率的目的。 弹塑性极限平衡法中采用强度折减法,即逐渐降低材料强 度(即降低材料抗剪强度参数c和 的方法来逼近系统的极限平 衡状态,并以屈服区的贯通来表征极限平衡状态的到达,把材 料强度折减系数(Zi)定义为系统的整体稳定安全系数(Fs)。在 地质条件、材料参数、屈服准则和本构关系正确的前提下,能 够保证由此得到的稳定安全系数为真实稳定安全系数的下限。 弹塑性极限平衡法不必假设土条间的作用力和破坏面的位 置和形状,因此,该方法能处理复杂几何轮廓和边界条件,有 广泛的适用性和良好的应用前景。
水利水电工程地质5坝基岩体稳定性的工程地质分析PPT课件
第一节 概述 各种坝失事百分率统计
第二节 各种坝型对工程地质的要求
混凝土重力坝
混凝土坝示意图 (a)实体重力坝;(b)空腹重力坝⑴及宽缝重力坝⑵
坝体通常承受库水的静水推力(P)、地下水扬压力(U)、 风浪压力(PL)、泥砂压力(Pt)等,而前两者是主要的。
坝体受力示意图
要求:坝基岩体有足够的强 度和一定的刚度,且最好与 坝体刚度相近,否则易在坝 锺处产生过大拉应力或坝趾 处产生过大压应力。岩体完 整性好,透水性弱;坝址处 不宜存在缓倾角软弱结构面, 否则可能导致坝体沿结构面 滑移破坏以及产生渗漏并引
转至15
坝基滑移体形状示意图
⒈楔形体 ⒉锥形体 ⒊棱柱体 ⒋板状体
返回19
二、坝基岩体滑动的边界条件分析 切割面:将岩体切割开来,构成不连续块体的结构面,
一般由陡倾角的结构面组成。
纵向切割面:走向与河流流向平行,与坝轴线垂直; 横向切割面:走向平行于坝轴线,与河流流向垂直。
临空面:滑移体与变形空间相临的面。 水平临空面:多为坝后河床地面。 陡立临空面:坝后的深潭、深槽、溶洞、冲刷坑等。 滑动岩体下方有可压缩的大破碎带、节理密集带、软弱岩 层,亦可起到临空面的作用。
电站概况:坝高68米,坝基地层为下泥盆统石英砾岩、中泥盆 统石英砂岩夹板岩和砂岩与板岩互层。岩层倾向上游偏右岸, 倾角25度~30度。板岩已泥化,厚5~15cm,在丙坝块坝踵处埋 深7~13m,在坝址附近出露于河床,f=0.24~0.30,c=0~30KPa, 未风化的板岩与板岩的f值为0.5,经计算不能满足要求。
⒈坝基岩性软硬不一,变形模 量相差悬殊。
⒉坝基或两岸岩体中有:大断 层破碎带、裂隙密集带、卸荷 裂隙带。当张裂隙发育且利息 面垂直压应力时最不利。
任务四-岩体稳定性评价
(一)地基承载力[σ]:
(二)隧道围岩分类:
二、铁路部门应用的某些经验数据
(一)地基承载力[σ]:
岩石地基承载力,应考虑构造因素和地下水长 期软化对承载力降低的影响,一般情况下可比 照表5-10及5-11确定。
当前较常使用的方法是两种:
①用赤平极射投影图解及极限平衡理论计算可能失稳 方向上的安全系数。
②利用有限单元法进行岩体稳定性评价。
3. 试验研究方法
3. 试验研究方法 包括模型试验法和模拟试验法。 常用的有相似材料模型试验和光弹模型模拟试 验。 在相似理论的基础上用人工制造的模型和受力 条件去模仿实际的工程岩体原型及实际的受力 条件,通过室内模型模拟试验观察人工模型的 稳定性来评价实际岩体的稳定性。
但定性分析多而定量分析少。
1.地质分析法:
1.地质分析法: (3)地质力学配套分析:
在岩体稳定性评价中日益得到发展。
分析的基本内容可包括三个方面:一是根据破裂结构面 的力学性质评价结构面的工程性质,例如从结构面抗剪 强度来看,张性结构面较大,压性结构面其次,扭性结 构面较小;变形模量则是压性面大于扭性面,扭性面大 于张性面;透水性是张性面最大,扭性面居中,压性面 最小。二是应用构造体系的理论确定结构面构造组合、 结构体的型式等岩体结构特征。三是根据构造配套恢复 区域构造应力场,为了解岩体的天然应力状态指明方向。
(-)岩体的稳定性及影响岩体稳定性的因素
▪2. 影响岩体稳定性的因素
①岩体所在位置周围地质环境的稳定性对该环境 内的岩体稳定性有宏观控制作用。
工程地质学_第6章 岩体的工程地质性质及岩体工程分类
2、结构体特征及性质
(1)特征 可用其规模、形态及其产状进行描述 a.按不同级别结构面对岩岩体的切割,可将结构体划分为 4级。 Ⅰ级结构体——地质体或称断块体 Ⅱ级结构体——岩块 Ⅲ级结构体——块体 Ⅳ级结构体——山体
b.基本形状有柱状、块状、板状、楔形、锥形、菱形等。一般 来说其稳定程度,板状结构体比柱状、块状的差。而楔状的比 菱形及锥状的差. c.产状一般用结构体表面上最大结构面的长轴方向表示,平卧 的板状结构体比竖直的板状结构体对岩体稳定性的影响要大— 些.
变质较浅的沉积岩,如千枚岩等路 堑边坡常见塌方。片岩夹层有时对 工程及地下洞体稳定也有影响
对岩体稳定影响很大.在上述许 多岩体破坏过程中.大都有构造结 构面的配合作用.此外常造成边坡 及地下工程的塌方、冒顶
在天然及人工边坡上造成危害, 有时对坝基,坝肩及浅埋隧洞等工 程亦有影响,但一般在施工中予以 清基处理
侧壁的起伏程度
结构面粗糙
结构面的粗糙度可用粗糙度系数(JRC)表示: 它可以
增加结构面的摩擦角.进而提高了岩体的强度。据结构面 的粗糙程度可将粗糙度系数(JRC)分为10级。在实际工作 中,可用剖面仪测出所研究结构面的粗糙剖面、然后与标 准剖面进行比较,即可求得结构面的粗糙度系数(JRC).
e. 结构面的张开度
层状结构 (Ⅱ1)
与围岩接触面可具 接触面延伸较 熔合及破坏两种不 远,比较稳定而 同的特征。原生节 原生节理往往短 理一般为张裂面, 小密集 较粗糙不平 结构面光滑平 片理短小,分布 直.片理在岩层深 变质 1.片理 产状与岩层或 极密.片岩软弱 部往往闭合成隐蔽 构造方向一致 夹层延展较远, 结构面,片岩、软 结构面 2.片岩软 弱夹层 具固定层次 弱夹层、岩片状矿 物.呈鳞片状 张性断裂不平整, 1.节理(X型节理, 张性断裂较短小, 常具次生充填.呈 张节理) 产状与构造线 剪切断裂延展较 锯齿状,剪切断裂 2.断层(正断层,逆 呈一定关系, 远,压性断裂规 较平直.具羽状裂 构造结构面 断层,走滑断层) 层间带动与岩 模巨大.但有时 晾,压性断层具多 3.层间错动带 层一致 为横断层切割成 种构造岩,成带状 4.羽状裂隙劈理 不连续状 分布,往往含断层 泥、糜棱岩 1.卸荷裂隙 2.风化裂隙 次生结构面 3.风化夹层 4.泥化夹层 5.次生夹泥 分布上往往呈不 连续状,透镜 受地形及原结 一般为泥质物充 体,延展性差, 构面控制 填,水理性质很差 且主要在地表风 化带内发育
地壳岩体结构特征的工程地质分析
岩体工程地质特征:
辫状(游荡型)河流沉积相模式 特点:坡降陡、河床不稳定、弯度小、水浅、流态不稳定、具复杂环流的河流沉积模式。其三度空间形式如图1-6。
岩体主要工程地质特征:
a.岩体具层状或块状结构特征。 岩体中以含泥砾的滞留砾岩层为其主要软弱层,断续分布,起伏差大,多呈槽状。顶部的泥质粉砂岩通常被冲刷殆尽,或呈零星分布。见图1-7。
属于软弱结构面 构成独立的力学模型—软弱夹层
较大的断层
Ⅱ级
延展规模与研究的岩体相若,破碎带宽度比较窄,几厘米至数米
形成块裂岩体边界 控制岩体变形和破坏方式 构成次级地应力场边界
属于软弱结构面
小断层 层间错动面
Ⅲ级
延展长度短,从十几米至几十米,无破碎带,面内不夹泥,有的具有泥膜
参与块裂岩体切割 构成次级地应力场边界
1
2
STEP1
STEP2
STEP3
1.3.1 河流相沉积岩岩体结构特征的岩相分析
河流沉积主要相模式及其工程地质特征
河流沉积建造大体上可归为三种相模式,即高弯度河流、低弯度河流、辫状(网状或游荡型)河流。其主要工程地质特征分别如下:
高弯度河流沉积相模式 特点:河床坡降缓、弯度大、水流较深、流态较稳定、以单向环流为主的河流沉积模式。其三度空间结构形式如图1-5(a)。
壹
贰
1.1 基本概念及研究意义
1
2
3
4
1.2 岩体结构特征及主要类型
构造结构面 浅表生结构面 浅部结构面 表部结构面 1.2 岩体结构特征及主要类型
1.2 岩体结构特征及主要类型
§1.2 岩体结构特征及主要类型
续表1-1
结构面规模等级划分: 按其对岩体力学行为所起控制作用,可划分为三个等级,即贯通性宏观软弱面(A类)、显现结构面(B类)和隐微结构面(C类)。
岩土工程地质勘察及边坡稳定性评价研究
岩土工程地质勘察及边坡稳定性评价研究摘要:岩土工程地质勘察是科学选择桩基础,使地基稳定性得以强化的重要保障,在工程施工中具有重要地位。
因此,岩土工程地质中边坡稳定性是衡量工程质量的一项重要指标,评价边坡稳定性也成为工程建设中必不可少的一个环节。
关键词:岩土工程;地质勘察;边坡稳定性引言地质勘察以自然科学和地球科学作为理论基础,要求专业技术人员充分应用水文地质、工程地质、岩土工程、计算机科学技术在内的诸多知识,在明确工程勘察的目的和任务基础上,对地下土层、地下水的分布等情况进行详细勘察、计算。
如果工程开挖过程中未能重视边坡勘察,边坡工程中的隐患会影响到岩土工程的质量。
在做好土质边坡岩土工程勘察工作的基础上,拟定边坡稳定性评价方案,综合掌握土质边坡的稳定度,为顺利推进岩土工程奠定良好基础。
一岩土工程地质勘察相关概述岩土工程地质勘察的核心内容就是探明岩土工程所在区域的地质条件,掌握地层分布情况,以及各地层的性质,同时对存在的地质问题进行分析研究,以保证地质条件评价的准确性,岩土工程地质勘察的核心内容是根据不同的勘察要求,以真实反映出不同施工区域的地质条件以及岩土的形态,再结合岩土工程具体的施工条件、建设要求等,给出标准、合规的地质勘察成果报告,为岩土工程的选址、规划设计、施工方案编制等提供有效的数据支撑和参考指导。
岩土工程地质勘察涉及到的内容比较多,影响地质勘察质量的因素比较多,为给岩土工程建设提供有效的地质条件支持,需要采取合适的勘察技术。
每种地质勘察技术都有各自的优缺点,在具体应用中需要结合岩土工程所在区域的实际情况,选择其中一种或者两种及两种以上的勘察技术,进行相互验证,以保证岩土工程地质勘察质量。
岩土工程地质勘察程序复杂,是一项系统又繁琐的勘察工作,需要结合实际情况,开展有针对性的勘察工作,才能为岩土工程施工建设提供有效的地质数据支撑,以保证整个项目能够顺利开展。
而且为保证岩土工程的质量和结构的稳定性,在开展岩土工程地质勘察工作中必须进行地震效应分析调查,以掌握施工场地的地质情况,并对深基坑进行全面科学的核算,利用核算结果来确定深基坑支护的方法和相关参数,以免出现基坑坍塌、积水等一系列问题。
5.0坝基岩体稳定性的工程地质分析-华电
2.重力坝对工程地质条件的要求
重力坝包括混凝土重力坝,浆砌石重力坝。 宽缝重力坝、腹孔重力坝、梯形坝、硬壳坝等, 这些坝主要依掌坝身自重与地基间产生足够大 的摩阻力来保持其稳定。 1)具有足够的抗滑能力,能满足抗滑稳定 要求。 2)坝基应有足够的抗压强度和与坝体混凝 土相适应的弹性模量,其均匀性和完整性也应 较好,能承受坝体传来的巨大压力,不致产生 过大的变形或不均匀变形,否则坝体内会产生 较大的拉应力,使坝体裂开,甚至毁坏。
第五章 (地)坝基岩体稳定性的 工程地质分析
5.1 坝基岩体的压缩变形与承载力 5.2 (地基)坝基(肩)岩体的抗 稳定分析 5.3 坝基岩体抗滑稳定计算参数的选择 5.4 降低坝基岩体抗滑稳定性的作用 5.5 建筑物大多要综合考虑防洪、发 电、灌溉、供水、航运、渔业、卫生等多方面的要求。 要修建多种水工建筑物组成一个水利枢纽,坝是其中 最重要的水工建筑物,它拦蓄水流,抬高水位,承受着巨 大的水压力和其他各种荷载。为了维持平衡稳定,坝体又 将水压力和其他荷载以及本身的重量传递到地基或两岸的 岩体上,因而岩体所承受的压力是很大的。另外,水还可 渗入岩体,使某些岩层软化、泥化、溶解以及产生不利于 稳定的扬压力。因此,大坝建筑对地基岩体的稳定条件有 着很高的要求。岩体的稳定常是坝体稳定的关键因素。 在大坝发生毁坏的事故中,因地质问题而引起的最多, 因此在大坝的设计和施工中,对坝基或坝肩的岩体进行工 程地质条件的分析研究是非常重要的。
3.拱坝对工程地质条件的要求
拱坝的外荷载主要是通过拱的作用传递到坝端两岸, 所以拱坝的稳定性主要是依靠坝端两岸岩体维持,而不 像重力坝主要靠自重维持。一般地讲,拱的作用越强, 坝身体积也就越小。与重力坝比较,拱坝对两岸岩体的 要求较高,而对河床坝基岩体的要求相对来说要低一些。 两端拱座岩体应该坚硬、新鲜、完整,强度高而均匀, 透水性小,耐风化、无较大断层,特别是顺河向断层、 破碎带和软弱夹层等不利结构面和结构体,拱座山体厚 实稳定,不致因变形或滑动而使坝体失稳。滑坡体、强 风化岩体、断层破碎带、具软弱夹层的易产生塑性变形 和滑动的岩体均不宜作为两端的拱座。 修建拱坝比较理想的河谷断面形状应是比较狭窄的、 两岸对称的“V”字形河谷,其次是“U”形和梯形。河 谷的宽高比值在1.5-2比较理想,最好不超过3.5。
岩土工程勘察地基均匀性及稳定性的勘察评价
岩土工程勘察地基均匀性及稳定性的勘察评价摘要:地基的均匀性与稳定性是建筑设计和施工的地质依据,对建筑质量有着一定的影响。
因此,加强岩土工程中地基均匀性及稳定性的勘察评价工作,具有现实的实践价值。
关键词:岩土工程;均匀性;稳定性;地基现行的岩土工程勘察和建筑地基基础设计的相关规范,没有给出地基均匀性与稳定性评价的具体标准。
本文从定性、定量的角度对此进行探讨,并提出一些建议以供参考。
1.天然性地基的均匀性勘察评价1.1均匀性勘察评价的范围评价天然性地基的均匀性时,应当明确评价的深度范围与平面范围。
评价地基均匀性的平面范围和评价抗震覆盖层既有相同之处,又有不同之处。
通常以某一街区或自然村为单位,评价抗震的建筑场地;而将建筑物的水平投影面积作为标准范围,评价地基的均匀性。
评价地基均匀性的深度范围不同于评价抗震覆盖层厚度。
因此,在进行评价时,应当确定定性概念,如果抗震覆盖层厚度和地基均匀性的评价范围相同,就会导致不必要的投资浪费。
一般来说,评价地基均匀性的深度范围应当注意以下几点。
首先,地基受力层的情况。
独立基础是基底下1.5倍基础底面宽度,条形基础则是基底下3倍基础底面宽度,并且评价深度都应当大于5m。
其次,压缩层的深度。
按照变形比法确定天然地基条形基础、独立基础的评价深度。
第三,大面积基础的深度评价范围应当大于或等于1b(b 是基础宽度)。
天然地基大面积基础的深度评价范围,应当按照下面的公式进行确定。
zn=b(2.5-0.4lnb)。
1.2均匀性勘察评价的内容构成岩土工程评价与分析的重要内容之一就是地基均匀性评价。
在岩土工程勘察报告审核时,如果发现报告中没有涉及地基均匀性评价的内容,或者地基均匀性评价空洞无物,就应当及时地责令有关单位改正、补充。
否则,将会导致在设计基础时,难以对地基的均匀性进行考虑,使得建筑物存在安全隐患。
按照基础设计经验与相关规范可知,评价地基均匀性等于分析、解决地基土不均匀问题。
岩石高边坡稳定性工程地质分析.doc
岩石高边坡稳定性工程地质分析
一说到高边坡,相关建筑人士还是比较陌生的,高边坡基本概况如何?对于各类高边坡地质稳定性怎么分析?以下是为建筑人士梳理高边坡基本内容,具体内容如下:
下面通过本网站建筑知识专栏的知识整理,梳理相关高边坡的基本情况,主要的内容如下:
对于土质边坡高度大于20m、小于100m或岩质边坡高度大于30m、小于100m的边坡,其边坡高度因素将对边坡稳定性产生重要作用和影响,其边坡稳定性分析和防护加固工程设计应进行个别或特别设计计算,这些边坡称为高边坡。
中国下面为了进一步了解公路高边坡相关的内容,为建筑企业人员推荐一本不错的书刊:
《岩石高边坡稳定性工程地质分析》基本内容:
《岩石高边坡稳定性工程地质分析》是黄润秋所著科学出版社出版的书籍。
《岩石高边坡稳定性工程地质分析》结合我国西部特殊的地域地质环境条件,针对边坡高陡、地质环境条件复杂及工程边坡开挖规模巨大等特点,全面阐述岩石高边坡稳定性分析的工程地质基础、变形破坏机理及稳定性分析和评价方法,主要内容包括总论、岩石高边坡工程地质环境条件、高边坡工程地质现场工作方法、高边坡岩体结构分析、自然和人工高边坡变形破坏机理、高边坡变形破坏的全过程模拟理论及渗流、强震条件下的高边坡稳定性评价、高边坡稳定性的过
程模拟与过程控制等,全书共12章。
《岩石高边坡稳定性工程地质分析》可供国土资源开发、地质灾害防治、水利水电、交通土建、矿山开采等领域以及高等院校、科研院所从事工程地质、岩土工程勘测设计的科研、教学、科技人员参考使用。
《岩石高边坡稳定性工程地质分析》基本信息:
作者黄润秋
ISBN 9787030367457
页数657
定价298.00元
出版社科学出版社。
工程地质学中的岩块稳定性分析
工程地质学中的岩块稳定性分析岩块稳定性,是工程地质学中非常重要的一个分支,它主要研究岩体、土体等各种地质体的稳定性问题,这是任何一项岩土工程建设都必须考虑的问题。
岩块稳定性分析是工程地质学的重要内容之一,也是岩土工程学中非常关键的一环。
然而,它的分析方法与其它领域相比,仍然是一个相对较新的领域,而且在实践中也存在许多的难点和不确定性。
本文将结合实际案例,从岩石与岩块特性出发,探究岩块稳定性分析的方法和技术。
一、岩块的特性分析岩石和岩块的特性是岩块稳定性分析的基础,对岩石的特性进行详细的分析对于岩块稳定性分析非常重要。
1. 岩石的物理特性岩石的物理特性包括密度、孔隙率、韧性、压缩强度、抗拉强度等方面。
这些参数可以通过实验获得,比如用压力机测量压缩和抗拉强度,利用投影仪测量岩石的密度和孔隙率等。
这些物理特性不仅用于构建岩石模型,而且还是计算岩块稳定性的重要参数。
2. 岩石的结构特性岩石的结构特性包括岩石的孔隙结构、裂隙结构和岩石的物理结构等方面。
杂岩的结构复杂,多数为夹层状结构,破碎石和碎块石的结构比较松散,因此其稳定性分析需要特别考虑。
3. 岩石的岩性特性岩石的岩性特性包括岩石的成分以及其所处的地质环境等方面。
不同的岩石在不同的地质环境下,其稳定性表现会有所不同,因此需要特别考虑。
二、岩块稳定性分析方法在岩块稳定性分析方法上,国内外学者进行了广泛的研究,在分析方法和技术方面也有了长足发展,主要有以下几种方法。
1. 解析法解析法是最古老的一种分析方法,它利用数学模型和解析原理,推导出岩块的稳定条件和稳定方程。
这种方法原理简单,数据需求也少,但是它所推导出来的方程和理论只适用于不同地质情况下非常特定的岩块,因此,其实用范围较窄,而且未经实际检验,容易引起误差。
2. 数值分析法数值分析法是在计算机技术发展的基础上,才逐渐形成的一种分析方法,它利用计算机模拟岩块破坏的过程,通过数值计算来得出岩块的稳定性结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 根据承载的特点,通常可将地基分为两种类型,即: – (1)承受垂直荷载的地基,一般工业民用建筑物的地 基就属于这种类型; – (2)承受斜向荷载(同时承受垂直荷载与水平荷载) 的 地基,各类挡水建筑物如闸、坝等的地基属此类。
• 承受垂直荷载的地基,大多都是“软基”,这类地基的变 形、破坏机制和稳定性评价原理是土力学课程讨论的内 容。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
– 由弹性理论可分别得坝 基在垂向(a)和水平 (b)荷载作用下内部 水平附加应力分布以及 合成后的水平附加应力 分布(c)。
– 可以看出,在坝上游面 附近的坝基上部,存在 一个水平拉应力分布区 ,该水平拉应力区的存 在对坝基的变形、破坏 发展有很大的影响。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
• 二、地基岩体内的应力分布特征 • (一)垂直荷载作用下地基内应力分布
– 地基内应力分布取决于荷载特点及地基岩体的结构特征。 • 1.均质地基内应力等值线是以基础底边为弦的圆弧(a)。 • 2.层状地基内应力分布具有明显的各向异性(b、c):
第五章 地基岩体稳定性的工程地质研究
• (二)斜向荷载作用下地基内应力分布 – 各类挡水建筑物的地基。为垂向与水平方向荷载的合成。 – 坝基所受垂向荷载呈三角形分布(a),在上游坝踵处垂直荷载为0 ,然后线性增大,至下游坝趾处达到最大。这是坝踵与库水推力所 造成的力偶共同作用的结果。 – 坝基所受的水平荷载,是库水推力作用在坝体上,然后通过坝底面 摩擦力而传至坝基,也呈三角形分布(b)。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
• 3.碎裂地基内应力分布与基础刚度、块体间缝隙的充填 胶结情况、块体堆砌的紧密程度以及受力状况等密切相 关。应力分布的主要特点是: – (1)块体间不充填、地基不预压、基础柔性大时, 基础中心线上产生极高的应力集中,在地基上部较大 范围内可出现垂直应力大于表面荷载强度的情况。
• 一种是滑动的速度相对比较缓慢,所涉及的地基滑 动部分的范围相对较小。
• 另一种类型是坍滑的速度很快,坍滑所涉及的地基 的范围可以很大,例如美国一个高仅9m的土堤, 在不到一分钟的时间内300m长的堤顶下陷了4. 5m,坍滑所涉及的地基土水平方向的范围扩展到 距堤脚约45m的地方。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
主要内容: 一、基本概念及研究意义 二、地基岩体内的应力分布特征 三、地基岩体的变形与破坏 四、坝基(肩)岩体稳定性的工程地质评价 五、改善坝基稳定性的措施
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
• 一、基本概念及研究意义 • 直接承受上部建筑物荷载作用的那部分土体或岩体称为
– (1)分割岩体的软弱结构面如层面、节理等,由于抗剪强度低, 限制着应力向两侧传递、扩展,致使附加应力在所限岩体内集中。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
– (2)层状结构地基岩体内应力分布与软弱结构面的产状关系密 切: • 软弱结构面直立时,应力集中程度最高,影响深度最大(a); • 倾斜时,产生两个高值最大主应力方向(b):一个顺着结构 面方向(应力集中程度较高),另一个垂直结构面方向(应 力集中程度次之); • 近水平时,应力集中程度相对较低(c)。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
• 从世界上坝的破坏情况来看,原因是多种多样的。地质方面的原因 造成的破坏事故约占30%一40%。其中,从具体的破坏原因和形 式来看,又可详分如下类型: – (1)由于坝基的强度较低,运行期间又遭到进一步恶化所造成的 破坏。如美国的奥斯汀坝,坝基为岩溶化石灰岩,裂隙发育并 有断层,建成后就产生裂缝,8年后倒塌。原因是强度因渗流 而进一步降低,在坝的压力和溢出水流的冲刷下坝基破坏。
第五章 地基岩体稳定性的工程地质研究
– 第一类坍滑一般是发生 在地基土层中存在有饱 水的塑性软粘上或淤泥 夹层的情况下[图11— 14(a)],而且地基土的 滑动面都是通过这一软 黏土层的中部;
– 第二类坍滑通常发生在 地基土层中发育有软黏 土,且其中部夹有砂或 粉砂之类的薄层或透镜 体[如图lI一14(b)],滑 动面就通过这种部位。
拉应力
(a) (b) (c)
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
• 三、坝基岩体的变形与破坏 • (一)松软土地基的变形与破坏 • 1.垂直荷载作用下松软土坝基的变形与破坏
– 如前所述,在土坝或堆石坝的建筑实践中常可遇到像 因结水库土坝那样的坝坡坍滑问题。根据实地观察, 坝坡坍滑通常有两种类型。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
– (5)由于坝肩岩体的稳定性较低,运行期间空隙水压力 增大又使其稳定性进一步恶化所造成的坝肩滑动破坏 。如安徽梅山水库大坝的事故就是这样造成的。
– (6)坝下游岩体被冲刷(溢流冲刷)掏空,也可造成大坝 的破坏。
– (7)由地震和水库地震所造成的破坏或损害。由地震直 接导致的大坝彻底破坏的事例不多,如1925年美国 米费里德坝。水库诱发地震使大坝受损如印度的科因 纳坝、希腊的科列马斯塔坝和我国的新丰江坝等。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
– (2)基础刚度加强时, 可使应力集中线移至基础 两侧近边缘处,垂直应力 等值线转变为驼峰型。
– (3)块体间隙的充填胶 结时,地基内应力集中程 度将降低,使地基范围内 不出现垂直应力高于表面 荷载强度的区域。
地基岩体稳定性工程地质研究
– (2)由于坝基(肩)的坏。
地基岩体稳定性工程地质研究
第五章 地基岩体稳定性的工程地质研究
– (3)因坝基中存在有抗剪强度低的土层而造成的土坝 或堆石坝坝基和坝坡的坍滑。
– (4)因坝下渗透水流将坝基岩石中的细颗粒物质带走 ,使坝基被掏空而造成的破坏。