人教版七年级数学上册各章知识点总结
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、将用科学计数法表示的数还原,如: 1.52×104=15200
(5)、有效数字、近似数 一个数字从左边第一个非0的数字起到末位止,
叫做这个数的有效数字。 如:0.003020有四个有效数字,分别是3、0、2、0。
精选ppt
13
精选ppt
14
二、选择题
三、计算题
1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:-4.27+3.8ຫໍສະໝຸດ Baidu0.73+1.2
精选ppt
15
加第 减二
章
整 式 的
精选ppt
16
1.整式的概念:
(1)单项式:都是数字与字母的乘积的代数式叫做单项式。
①单项式的系数:单项式中的数字因数。
②单项式的次数:单项式中所有的字母的指数和
※注意
①圆周率π是常数;
②只含有字母因式的单项式的系数是1或-1时,“1”通常
省略不写,如x2,-a2b等;
0的绝对值是
0
。
注意:①|a|≥0即对任意有理数a,它的绝对值是非负数
②绝对值最小数为精0选ppt
6
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。
②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。
③正数都大于零,负数都小于零,正数大于负数。
④作差法:a-b>0↔a>b
2
1.2有理数
任何一个有理数都可以用数轴上的点表示。
(1)有理数的分类
(2)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的三要素
、 正方向、单位长度。
(3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
①通常用a和-a表示一对相反数 ②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a| ④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)
(4)单项式与多项式统称整式。
(分母含有字母的代数式不是整式)
精选ppt
18
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
。
,并
0除以任何一个不等于0的数都得 。
精选ppt
11
1.5有理数的乘方
求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂, 其中a叫做底数,n叫做指数。
(1)乘方的幂意义:a n 表示n个a相乘,如34表示4个3相乘,
即34 =3×3×3×3
(2) 1、正数的任何非0次幂都是 正数 ; 2、负数的奇次幂是 负数 ,负数的偶次幂是 正数 。
⑤作商法:a/b>1,b>0↔a>b
精选ppt
7
1.3有理数的加减法
加法计算步骤:
先定符号
(1)有理数加法
再定绝对值
法则1. 同号两数相加,取 相同的符号 ,并把 它们的绝对值相加。
法则2. 绝对值不等的异号两数相加,取 绝对值较大的加数的符号 符号,并
用 较大的绝对值减去较小。的绝对值
3、互为相反数的两数相加得零。
乘
。
2、几个不是0的数相乘,积的符号由负因数的个数决定,当负
因数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
3、几个数相乘,只要有一个因数为0,积就为0。
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变
ab = ba ;
2结合律:三个数相乘,先把前面两个数相乘,或者先把后两个数相 乘,积不变。 (ab)c= a(b c );
七年级数学
(上册)
各章知识点
精选ppt
1
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
精选ppt
3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个 数相乘,再把积相加。a(b+c)= ab+ac 。
精选ppt
10
倒数:①乘积为1的两个数互为倒数。 ②零没有倒数 ③互为倒数的两个数的符号相同
(2)有理数除法法则:
1、除以一个不等于0的数,等于乘这个数
的
.
2、两数相除,同号得 ,异号得
把绝对值相
4、一个数与零相加,仍得这个数。
加法运算律: 1交换律:a+b = b+a ;2结合律:(a+b)+c= a+(b+c。)
(2)有理数减法法则: 减去一个数,等于 加上这个数的相反数 a-b= a=+(-b)。
精选ppt
,用字母表示为
8
精选ppt
9
1.4有理数的乘除法
(1)有理数乘法法则:
1、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
精选ppt
3
有理数的分类
精选ppt
4
精选ppt
5
(4)、绝对值:数轴上表示数a的点与原点的距离叫做数 a的绝对值,符号表示为( |a| )
A
B
-5 -4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
③单项式次数只与字母指数有关。如23a6的次数为6
④单项式的系数是带分数时,应化成假分数。
⑤单项式的系数包括它前面的符号。
⑥单独的一个数字是单项式,它的系数是它本身;非零常数
的次数是0。
精选ppt
17
(2)多项式:几个单项式的和叫做多项式。
1、多项式中的每一个单项式叫做多项式的项。
2、多项式中不含字母的项叫做常数项。
3、一个多项式有几项,就叫做几项式。
4、多项式的每一项都包括项前面的符号。
5、多项式中次数最高的项的次数,叫做这个多项式的次数。
(3)多项式排列:
①把一个多项式按某一个字母的指数从大到小的顺序排列起来,
叫做把多项式按这个字母的降幂排列.
②把一个多项式按某一个字母的指数从小到大的顺序排列起来,
叫做把多项式按这个字母的升幂排列.
(3)、有理数混合运算顺序: 1、先乘方,再乘除,最后加减; 2、同级运算,从左到右进行; 3 、如有括号,先算括号,从小到大。
几个非负数之和为0,则这几个非负数都为0
精选ppt
12
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106
(5)、有效数字、近似数 一个数字从左边第一个非0的数字起到末位止,
叫做这个数的有效数字。 如:0.003020有四个有效数字,分别是3、0、2、0。
精选ppt
13
精选ppt
14
二、选择题
三、计算题
1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:-4.27+3.8ຫໍສະໝຸດ Baidu0.73+1.2
精选ppt
15
加第 减二
章
整 式 的
精选ppt
16
1.整式的概念:
(1)单项式:都是数字与字母的乘积的代数式叫做单项式。
①单项式的系数:单项式中的数字因数。
②单项式的次数:单项式中所有的字母的指数和
※注意
①圆周率π是常数;
②只含有字母因式的单项式的系数是1或-1时,“1”通常
省略不写,如x2,-a2b等;
0的绝对值是
0
。
注意:①|a|≥0即对任意有理数a,它的绝对值是非负数
②绝对值最小数为精0选ppt
6
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。
②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。
③正数都大于零,负数都小于零,正数大于负数。
④作差法:a-b>0↔a>b
2
1.2有理数
任何一个有理数都可以用数轴上的点表示。
(1)有理数的分类
(2)、数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
数轴的三要素
、 正方向、单位长度。
(3)相反数:只有符号不同的两个数叫做互为相反数。 如2与-2,-5与5,a与-a等。
①通常用a和-a表示一对相反数 ②若a与b互为相反数,则a+b=0 ③互为相反数的两个数的绝对值相等,即|-a|=|a| ④若|a|=|b|,则a=b,或a=-b(a与b互为相反数)
(4)单项式与多项式统称整式。
(分母含有字母的代数式不是整式)
精选ppt
18
2. 同类项:所含字母相同,并且相同字母的指数也相同的项 叫做同类项。几个常数项也是同类项。
3.把多项式中的同类项合并成一项,叫做合并同类项
合并同类项法则:合并同类项后,所得项的系数是合并前各同类 项的系数的和,且字母部分不变。
。
,并
0除以任何一个不等于0的数都得 。
精选ppt
11
1.5有理数的乘方
求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂, 其中a叫做底数,n叫做指数。
(1)乘方的幂意义:a n 表示n个a相乘,如34表示4个3相乘,
即34 =3×3×3×3
(2) 1、正数的任何非0次幂都是 正数 ; 2、负数的奇次幂是 负数 ,负数的偶次幂是 正数 。
⑤作商法:a/b>1,b>0↔a>b
精选ppt
7
1.3有理数的加减法
加法计算步骤:
先定符号
(1)有理数加法
再定绝对值
法则1. 同号两数相加,取 相同的符号 ,并把 它们的绝对值相加。
法则2. 绝对值不等的异号两数相加,取 绝对值较大的加数的符号 符号,并
用 较大的绝对值减去较小。的绝对值
3、互为相反数的两数相加得零。
乘
。
2、几个不是0的数相乘,积的符号由负因数的个数决定,当负
因数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
3、几个数相乘,只要有一个因数为0,积就为0。
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变
ab = ba ;
2结合律:三个数相乘,先把前面两个数相乘,或者先把后两个数相 乘,积不变。 (ab)c= a(b c );
七年级数学
(上册)
各章知识点
精选ppt
1
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数
(2)用正负数表示两个意义相反的量。
精选ppt
3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个 数相乘,再把积相加。a(b+c)= ab+ac 。
精选ppt
10
倒数:①乘积为1的两个数互为倒数。 ②零没有倒数 ③互为倒数的两个数的符号相同
(2)有理数除法法则:
1、除以一个不等于0的数,等于乘这个数
的
.
2、两数相除,同号得 ,异号得
把绝对值相
4、一个数与零相加,仍得这个数。
加法运算律: 1交换律:a+b = b+a ;2结合律:(a+b)+c= a+(b+c。)
(2)有理数减法法则: 减去一个数,等于 加上这个数的相反数 a-b= a=+(-b)。
精选ppt
,用字母表示为
8
精选ppt
9
1.4有理数的乘除法
(1)有理数乘法法则:
1、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
精选ppt
3
有理数的分类
精选ppt
4
精选ppt
5
(4)、绝对值:数轴上表示数a的点与原点的距离叫做数 a的绝对值,符号表示为( |a| )
A
B
-5 -4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
③单项式次数只与字母指数有关。如23a6的次数为6
④单项式的系数是带分数时,应化成假分数。
⑤单项式的系数包括它前面的符号。
⑥单独的一个数字是单项式,它的系数是它本身;非零常数
的次数是0。
精选ppt
17
(2)多项式:几个单项式的和叫做多项式。
1、多项式中的每一个单项式叫做多项式的项。
2、多项式中不含字母的项叫做常数项。
3、一个多项式有几项,就叫做几项式。
4、多项式的每一项都包括项前面的符号。
5、多项式中次数最高的项的次数,叫做这个多项式的次数。
(3)多项式排列:
①把一个多项式按某一个字母的指数从大到小的顺序排列起来,
叫做把多项式按这个字母的降幂排列.
②把一个多项式按某一个字母的指数从小到大的顺序排列起来,
叫做把多项式按这个字母的升幂排列.
(3)、有理数混合运算顺序: 1、先乘方,再乘除,最后加减; 2、同级运算,从左到右进行; 3 、如有括号,先算括号,从小到大。
几个非负数之和为0,则这几个非负数都为0
精选ppt
12
(4)、科学计数法 1、 把一个绝对值大于10的数表示成a×10的形式(a是
整数数位只有一位的数,n是比原整数数位小1的正整数), 如236000000=2.36×108;-2450000=-2.45×106