加氢工艺介绍及控制措施

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加氢工艺介绍及控制措施
催化加氢反应主要危险- 行业事故举例
1996年8月12日4时20分,山东瑞星化学工业集团总公司制 药厂山梨醇车间发生空间氢气爆炸事故,造成2人死亡,2人重 伤,4人轻伤,投资新建起的44m×23m的双层车间被摧毁。
催化加氢反应主要危险- 行业事故举例(续)
事故经过 :
山梨醇是该企业新开发的产品。7月15日开始投料试生产至8月1 2日零时山梨醇车间乙班接班,氢化岗位氢化釜处在加氢反应过程中。 4时取样分析合格。4时10分开始出料至4时20分,液糖、二次沉降蒸 发工段突然出现一道闪光,随着一声巨响发生空间化学爆炸。1#、2 #液糖高位槽封头被掀裂;3#液糖高位槽被炸裂,封头飞向房顶;4 台二次沉降槽封头被炸挤压入槽内,槽体变形扭曲;6台尾气分离器、 3台缓冲罐被防爆墙掀翻砸坏;室内外的工艺管线、电气线路被严重 破坏。
催化加氢反应主要危险- 行业事故举例(续)
直接原因:
• 新产品的安全技术操作规程虽有,但操作程序不明确,没有经过 工程技术人员的论证和审定。管理人员和操作人员的安全素质差, 不熟悉工艺,工艺的安全参数不明白,安全操作规程生疏,致使 工人误操作,使尾气缓冲罐回收阀处于常开状态,形成多班次连 续氢气泄漏。
设备强度。如操作不当或发生事故,发生物理爆炸。
• - 化学爆炸:加氢工艺中,氢气爆炸极限为4%-75.6%,当出现泄 漏或装置内混入空气或氧气时,易发生爆炸。
在某些加氢工艺中如一氧化碳加氢制甲醇工艺,其原料一氧化碳 亦为易燃易爆气体,产品甲醇为甲B类可燃液体,在操作温度下甲醇 为气态,当出现泄漏也可能导致设备爆炸。如苯加氢制环己烷、苯 酚加氢制环己醇、丁醛气相加氢生产丁醇等工艺中原料、产品在常 温下为液态,但在操作条件下为气态,出现泄漏导致爆炸。另外, 如硝基苯液相加氢生产苯胺等工艺,反应温度、压力相对较低,反 应为气液两相反应,其爆炸危险性主要来自氢。
溶解性(V/V) 水中溶解度0.02% (16℃)
最小点火能量 在空气中为0.019mJ,在氧气中为0.007mJ
不燃范围
空气-氢-氮中氧含量小于5%,空气-氢-二氧化碳中氧含量小于8%
加氢催化剂——雷尼镍
• 主要成分:铝、镍混合物 • 外观与性状:灰色粉末 • 危险反应的可能性
干的活性雷尼镍催化剂是自燃物质。如允许其在空气中干燥,它 可焖燃至红热并为其它可燃物料提供引火源。干的雷尼镍可与水 发生剧烈反应。
- 催化剂:部分加氢反应催化剂如雷尼镍属于易燃固体可以自燃。 - 在加氢反应过程中产生的副产物如硫化氢、氨气多为可燃物质。
加氢反应过程中的主要危险(续)
• 爆炸危险性
• -物理爆炸:加氢工艺多为气液相或气相反应,在整个加氢过程中, 装置内基本处于高压条件下进行。在操作条件下,氢腐蚀设备产
生氢脆现象(当温度超过300 ℃和压力高于30MPa时),降低
• 避免的状况
- 在温度高于40℃时,可能开始自热并自燃。 - 不允许自然蒸发使雷尼镍变干。
加氢反应过程中的主要危险
• 火灾危险性
- 氢气:与空气混合能形成爆炸性混合物、遇火星、高热能引起燃 烧。室内使用或储存氢气,当氢气泄漏时,氢气上升滞留屋顶,不 易自然排出,遇到火星时会引起爆炸。
- 加氢反应原料及产品:加氢反应的原料及产品多为易燃、可燃物 质。例如:苯、萘等芳香烃类;环戊二烯、环戊烯等不饱和烃;硝 基苯、乙二腈等硝基化合物或含氮烃类;一氧化碳、丁醛、甲醇等 含氧化合物等。
- 加氢装置的所有金属部件应跨接后良好接地
• 加氢釜必须安装合适口径的爆破片或者安全阀 • 加氢釜的爆破片或者安全阀的泄压管必须与布置在安全区
域的紧急接收罐连接;泄压管道尽可能直线布置减少急弯; 紧急接收罐应用微正压氮气惰化。
加氢反应主要安全控制措施(续)
• 加氢反应结束后的放空
- 放空管必须是合适的金属管 - 应延伸至屋顶合适位置放空 [石油化工企业建筑设计防火规范
空) - 氮气置换结束后,取气体样作氧含量分析,确保氧含量< 1%
(v%) - 每次停车后(超过36小时)再开车必须用氮气置换再测氧含

加氢反应主要安全控制措施(续)
• 加氢反应釜的布置
- 加氢反应釜应布置在室外 (一面靠车间外墙,其它三面敞开, 仅设轻质泄爆屋顶)
- 如必须设置在室内,加氢区域上部应开放或不设置窗户 - 加氢釜尽可能不要布置在靠近承重梁处 - 如有可能布置在远离主生产装置的地方
• 违反《建筑设计防火规范》:散发较空气轻的可燃气体、可燃蒸 气的甲类防爆厂房宜采用全部或局部轻质量顶作为泄压设施,厂 房上部空间要通风良好。事故厂房不符合这些要求。
• 没有在山梨醇车间设置可燃气体浓度检测报警装置。
催化加氢反应主要危险- 行业事故举例(续)
2015年12月18日上午,清华大学一化学实验室突发爆炸 火灾事故,造成一博士后实验人员死亡。
- Safety Instrument System (SIS) 安全仪表系统 ➢ 如:紧急停车系统(ESD);必须是独立的系统(探测、 输送、逻辑处理、执行等完全独立于DCS系统)
谢谢!
加氢反应过程中的主要危险(续)
• 氢气泄漏 - 加氢装置(包括加氢釜、管道及阀门)的密闭性不好或者设备缺
陷导致氢气泄漏,并与空气形成爆炸性混合物。
• 加氢釜搅拌故障 - 加氢釜磁力搅拌消磁,导致冷却效率下降,加氢反应产生反应热
不能及时移除而导致失控反应。
• 加氢反应装置惰化不充分及反应装置接地较差导致静电累积 - 增大火灾或爆炸的风险
催化加氢反应主要危险- 行业事故举例(续)
事故原因分析:
氢化釜处在加氢反应过程中,氢气不断地加入,调压阀处于常 动状态(工艺技术要求氢化釜内的工作压力为4MPa),尾气缓冲罐 下端残糖回收阀处于常开状态(此阀应处于常关状态,在回收残糖 时才开此阀,回收完后随即关好,气源是从氢化釜调压出来的氢 气),然后氢气送入3#高位槽,最后氢气经槽顶呼吸管排到室内。 因房顶全部封闭,没有排气装置,致使氢气沿房顶不断扩散集聚, 与空气形成爆炸混合气,达到了爆炸极限。二楼平面设置了产品质 量分析室,常开的电炉引爆了爆 炸混合气,发生了爆炸。
氢气的物化性质
外观与性状
无色无味气体
分子式 熔点(℃)
H2 -259.2
分子量 相对密度(空气=1)
2 0.07
沸点(℃)
-252.8
饱和蒸汽压(KPa) 13.33(-257.9℃)
引燃温度(℃)
400
燃烧热(KJ/mol)
241.0
临界温度(℃)
-240
wenku.baidu.com
临界压力(MPa)
1.30MPa
爆炸上限%(V/V) 75.6(64 g/m3) 爆炸下限%(V/V) 4(3.3 g/m3)
催化加氢反应主要危险- 行业事故举例(续)
间接原因:
• 山梨醇是该企业的新建项目,没有按国家有关新建、改建、扩建 项目安全卫生三同时的要求进行;没有劳动安全初步设计、审查 和竣工验收。
• 尾气缓冲罐属压力容器,该企业不具备制造压力容器的资格条件, 在制造安装缓冲罐时没有配装液位计。工人在回收残糖液时,操 作上没有依据。
加氢反应主要安全控制措施(续)
• 详细的危险及可操作性研究(HAZOP)必须在加氢装置初步设 计结束后进行
• 加氢釜必须选择合适的材质
- 不绣钢:
➢ 304 ➢ 316L ➢ 904L ➢ 2205双相钢
- 哈氏合金
• 加氢釜搅拌应选择磁力搅拌,确保动密封
加氢反应主要安全控制措施(续)
• 杜绝加氢装置静电累积
• 催化剂使用不当,导致催化剂变干 - 催化剂自燃引起火灾或爆炸
• 氢气探测及报警装置安装位置不当 - 对氢气泄漏的延迟响应,可能导致泄漏氢气与空气形成爆炸性混
合物,遇到引火源发生爆炸。
加氢反应主要安全控制措施
• 加氢装置的惰化
- 用低压氮气置换加氢装置整个系统不留死角 - 真空波动惰化(一个密闭容器抽真空,然后用惰性气体破真
/氢气使用安全技术规程 (GB4962-2008)] - 如可能,需要设置氢气放空缓冲罐,用氮气稀释后放空
• 加氢反应结束后的催化剂过滤器必须始终保持湿润
- 设置专门的水淋洗装置
加氢反应主要安全控制措施(续)
• 加氢反应的工艺控制系统
- Basic Process Control System (BPCS) 基本工艺控制系统 ➢ 如:DCS 控制的工艺连锁高温报警、高高温停止通氢等
• 山梨醇工艺设计不安全可靠,违反了《炼油化工企业设计防火规 定》:有压可燃气体的设备应设置封闭的安全阀或安全放空,放 空高度应高于建、构筑物2m以上。在3#高位槽只安装了1根高 0.6m左右的呼吸管,致使氢气从呼吸管泄漏在车间内部。
• 平面布置设计不符合《建筑设计防火规范》:散发可燃气体、可 燃蒸气的甲类防爆厂房,与明火或散发火花地点的防火间距不应 小于30m。而山梨醇产品质量分析室离散发可燃气体源仅15m。
相关文档
最新文档