(完整版)新北师大版七年级下册数学第二章测试题(1)

合集下载

北师大版七年级数学下册第二章相交线与平行线同步测试试题(含答案及详细解析)

北师大版七年级数学下册第二章相交线与平行线同步测试试题(含答案及详细解析)

北师大版七年级数学下册第二章相交线与平行线同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线b、c被直线a所截,则1∠与2∠是()A.对顶角B.同位角C.内错角D.同旁内角2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100°B.140°C.160°D.105°3、以下3个说法中:①连接两点间的线段叫做这两点的距离;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.正确的是()A .①B .③C .①②D .②③4、下列关于画图的语句正确的是( ).A .画直线8cm AB =B .画射线8cm OA =C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一直线与AB 平行5、若α∠的补角是125°24',则α∠的余角是( )A .90°B .54°36'C .36°24'D .35°24'6、下列说法中,正确的是( )A .从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B .互相垂直的两条直线不一定相交C .直线AB 外一点P 与直线上各点连接而成的所有线段中最短线段的长是7cm ,则点P 到直线AB 的距离是7cmD .过一点有且只有一条直线垂直于已知直线7、若α∠的补角是150°,则α∠的余角是( )A .30°B .60°C .120°D .150°8、已知∠A =37°,则∠A 的补角等于( )A .53°B .37°C .63°D .143°9、在如图中,∠1和∠2不是同位角的是( )A .B .C .D .10、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .180°-∠2+∠1B .180°-∠1-∠2C .∠2=2∠1D .∠1+∠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B =40°,则∠DAC 的度数为____.2、(1)已知α∠与β∠互余,且3518α'∠=︒,则β∠=________.(2)82325'''︒+________=180°.(3)若27m n a b -+与443a b -是同类项,则m +n =________.3、如图,点O 在直线AB 上,OD ⊥OE ,垂足为O .OC 是∠DOB 的平分线,若∠AOD =70°,则∠COE =__________度.4、已知∠1=71°,则∠1的补角等于__________度.5、已知一个角的补角是这个角的余角的3倍,则这个角是______度.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,90∠.∠=︒,OF平分AOEFOD(1)写出图中所有与AOD∠互补的角;(2)若120∠的度数.AOE∠=︒,求BOD2、如图,直线AB,CD,EF相交于点O,(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.(2)图中一共有几对对顶角?指出它们.3、如图,已知AB CD∠,求证1290∠,CE平分BCD∥,BE平分ABC∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.4、(感知)已知:如图①,点E在AB上,且CE平分ACD∠,12∠=∠.求证:AB CD∥.将下列证明过程补充完整:证明:∵CE平分ACD∠(已知),∴2∠=∠__________(角平分线的定义),∵12∠=∠(已知),∴1∠=∠___________(等量代换),∴AB CD ∥(______________).(探究)已知:如图②,点E 在AB 上,且CE 平分ACD ∠,AB CD ∥.求证:12∠=∠.(应用)如图③,BE 平分DBC ∠,点A 是BD 上一点,过点A 作AE BC ∥交BE 于点E ,:4:5ABC BAE ∠∠=,直接写出E ∠的度数.5、如图,直线AB 、CD 相交于点O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.-参考答案-一、单选题1、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.2、B【分析】BAD CAE DAE再利用角的和差关系可得答案. 根据方位角的含义先求解,,,【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,907020,30,BAD CAE而90,DAE ∠=︒309020140,BAC CAE DAE BAD故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.3、D【分析】由题意根据线段的性质,余、补角的概念,两点间的距离以及直线的性质逐一进行分析即可.【详解】解:连接两点间的线段的长度,叫做这两点的距离,故①不符合题意;经过两点有一条直线,并且只有一条直线,故②符合题意;同一个锐角的补角一定大于它的余角,故③符合题意.故选:D.【点睛】本题考查线段的性质,余、补角的概念和两点间的距离以及直线的性质,主要考查学生的理解能力和判断能力.4、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A 、画直线AB =8cm ,直线没有长度,故此选项错误;B 、画射线OA =8cm ,射线没有长度,故此选项错误;C 、已知A 、B 、C 三点,过这三点画一条直线或2条、三条直线,故此选项错误;D 、过直线AB 外一点画一直线与AB 平行,正确.故选:D .【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.5、D【分析】根据题意,得α∠=180°-125°24',α∠的余角是90°-(180°-125°24')=125°24'-90°,选择即可.【详解】∵α∠的补角是125°24',∴α∠=180°-125°24',∴α∠的余角是90°-(180°-125°24')=125°24'-90°=35°24',故选D .【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.6、C【分析】根据点到直线距离的定义分析,可判断选项A 和C ;根据相交线的定义分析,可判断选项B ,根据垂线的定义分析,可判断选项D ,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A 错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.7、B【分析】根据补角、余角的定义即可求解.【详解】∠的补角是150°∵α∠=180°-150°=30°∴α∠的余角是90°-30°=60°∴α故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角8、D【分析】根据补角的定义:如果两个角的度数和为180度,那么这两个角互为补角,进行求解即可.【详解】解:∵∠A=37°,∴∠A的补角的度数为180°-∠A=143°,故选D.【点睛】本题主要考查了求一个角的补角,熟知补角的定义是解题的关键.9、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】∵AB∥CD,CD∥EF,∴∠1=∠BCD ,∠ECD +∠2=180°,∴∠BCE =∠BCD +∠ECD =180°-∠2+∠1,故选A .【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.二、填空题1、40°【分析】根据平行线的性质可得∠EAD =∠B ,根据角平分线的定义可得∠DAC =∠EAD ,即可得答案.【详解】∵AD ∥BC ,∠B =40°,∴∠EAD =∠B =40°,∵AD 是∠EAC 的平分线,∴∠DAC =∠EAD =40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、5442'︒ 972755'''︒ 3【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m 、n 的值,然后代值计算即可.【详解】解:(1)α∠与β∠互余,且3518α'∠=︒,∴90=903518=5442βα'∠=︒-︒-︒'︒∠;故答案为:5442'︒;(2)18082325=972755''''''︒-︒︒;故答案为:972755'''︒;(3)∵27m n a b -+与443a b -是同类项,∴2474m n -=⎧⎨+=⎩, ∴63m n =⎧⎨=-⎩, ∴()633m n +=+-=.故答案为:3.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.3、35【分析】根据补角的性质,可得∠BOD =110°,再由OC 是∠DOB 的平分线,可得1552COD BOC BOD ∠=∠=∠=︒ ,又由OD ⊥OE ,可得到∠BOE =20°,即可求解. 【详解】解:∵∠AOD=70°,∠AOD+∠BOD=180°,∴∠BOD=110°,∵OC是∠DOB的平分线,∴1552COD BOC BOD∠=∠=∠=︒,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=20°,∴∠COE=∠BOC-∠BOE=35°.故答案为:35【点睛】本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.4、109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.5、45︒【分析】设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒ 根据等量关系一个角的补角是这个角的余角的3倍,列方程()180390x x -=-,解方程可得.【详解】解:设这个角为,x ︒ 则这个角的补角为:()180,x -︒ 这个角的余角为:()90,x -︒()180390x x ∴-=-,1802703x x ∴-=- ,290x ∴=,45x ∴=,答:这个角为45︒.故答案为:45︒.【点睛】本题考查的是余角与补角的含义,一元一次方程的应用,掌握以上知识是解题的关键.三、解答题1、(1)AOC ∠,BOD ∠,DOE ∠;(2)30°【分析】(1)根据邻补角的定义确定出∠AOC 和∠BOD ,再根据角平分线的定义可得∠AOF =∠EOF ,根据垂直的定义可得∠COF =∠DOF =90°,然后根据等角的余角相等求出∠DOE =∠AOC ,从而最后得解;(2)根据角平分线的定义求出∠AOF ,再根据余角的定义求出∠AOC ,然后根据对顶角相等解答.【详解】解:(1)因为直线AB ,CD 相交于点O ,所以AOC ∠和BOD ∠与AOD ∠互补.因为OF 平分AOE ∠,所以AOF EOF ∠=∠.因为90FOD ∠=︒,所以18090COF FOD ∠=︒-∠=︒.因为90AOC COF AOF EOF ∠=∠-∠=︒-∠,90DOE FOD EOF EOF ∠=∠-∠=︒-∠,所以AOC DOE ∠=∠,所以与AOD ∠互补的角有AOC ∠,BOD ∠,DOE ∠.(2)因为OF 平分AOE ∠,所以111206022AOF AOE ∠=∠=⨯︒=︒,由(1)知,90COF ∠=︒,所以906030AOC COF AOF ∠=∠-∠=︒-︒=︒,由(1)知,AOC ∠和BOD ∠与AOD ∠互补,所以30BOD AOC ∠=∠=︒(同角的补角相等).【点睛】本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD 互补的第三个角.2、(1)∠AOC 的对顶角是∠BOD ,∠EOB 的对顶角是∠AOF ,.∠AOC 的邻补角是∠AOD ,∠BOC ;(2)共有6对对顶角,它们分别是∠AOC 与∠BOD ,∠AOE 与∠BOF ,∠AOF 与∠BOE ,∠AOD 与∠BOC ,∠EOD 与∠COF ,∠EOC 与∠FOD【分析】根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.【详解】解:(1)由题意得:∠AOC 的对顶角是∠BOD ,∠EOB的对顶角是∠AOF.∠AOC的邻补角是∠AOD,∠BOC.(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.【点睛】本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.3、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.4、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由∠∠=即可求得∠ABC的度数,从而可求得∠E的度数.ABC BAE:4:5【详解】感知∵CE平分ACD∠(已知),∴2=ECD(角平分线的定义),∵12∠=∠(已知),∴1∠=∠ECD(等量代换),∴AB CD∥(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分ACD∠,∴2ECD∠=∠,∵AB CD∥,∴l ECD∠=∠,∵12∠=∠.应用∵BE 平分∠DBC , ∴12ABE CBE ABC ∠=∠=∠,∵AE ∥BC ,∴∠CBE =∠E ,∠BAE +∠ABC =180゜,∴∠E =∠ABE ,∵:4:5ABC BAE ∠∠=,∴∠ABC =80゜∴40ABE ∠=︒∴40E ∠=︒【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键. 5、22︒【分析】根据90EOC ∠=︒、34COF ∠=︒可得56EOF ∠=︒,OF 是∠AOE 的角平分线,可得56AOF EOF ∠=∠=︒,所以22AOC AOF COF ∠=∠-∠=︒,再根据对顶角相等,即可求解.【详解】解:∵90EOC ∠=︒、34COF ∠=︒,∴56EOF ∠=︒,∵OF 是∠AOE 的角平分线,∴56AOF EOF ∠=∠=︒,∴22AOC AOF COF ∠=∠-∠=︒,∴22BOD AOC ∠=∠=︒,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.。

最新北师大版七年级下册数学第二章相交线和平行线第1章节两条直线的位置关系知识点+测试试题以及答案

最新北师大版七年级下册数学第二章相交线和平行线第1章节两条直线的位置关系知识点+测试试题以及答案

七年级下册第二章 第一小节两条直线的位置关系测试试题1、在同一平面内,两条直线的位置关系分为相交和平行两种。

平行线:在同一平面内,不相交的两条直线叫做平行线。

若两条直线只有一个公共点,我们称这两条直线为相交线。

2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

3、对顶角的性质:对顶角相等。

5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

6、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

7、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。

8、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。

9、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。

10、余角和补角的性质用数学语言可表示为:(1)则(同角的余角(或补角)相等)。

00001290(180),1390(180),∠+∠=∠+∠=23∠=∠(2)且则(等角的余角(或补角)相等)。

1、下列说法正确的是 。

A 、不相交的两条直线是平行线 B 、同一个平面内,不相交的两条射线叫平行线C 、同一平面内,两条直线不相交就重合 D 、同一平面内,没有公共点的两条直线是平行线2、如图所示,直线a ,b ,c 两两相交,∠1=2∠3,∠2=68°,则∠1= ,∠4= 。

(2题) (3题)3、下面四个图形中,∠1与∠2是对顶角的图形有( )A .0个B .1个C .2个D .3个 4、如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC,则∠2= 。

.(4题) (8题) (9题)5、下面角的图示中,能与30°角互补的是 。

A .B .C .D .6、下列语句错误的有( )个.00001290(180),3490(180),∠+∠=∠+∠=14,∠=∠23∠=∠(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A.1 B.2 C.3 D.47、小明做了四道练习题:①有公共顶点的两个角是对顶角②两个直角互为补角③一个三角板中两个锐角互为余角④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角,其中正确的有。

北师大版七年级数学下册 第二章相交线与平行线 达标检测卷 (1)

北师大版七年级数学下册 第二章相交线与平行线 达标检测卷  (1)

北师大版七年级数学下册第二章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( )A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( ) A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( ) A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是( )6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是( )A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是( )A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( ) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( )A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为 .12.(曲阜期末)如图,若满足条件,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是 .14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC = .第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有 .个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= .18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE= .三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?21.(8分)已知:如图,∠ABE+∠DEB=180°,∠1=∠2,则∠F与∠G的大小关系如何?请说明理由.22.(8分)如图,在三角形ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.25.(14分)如图,已知直线AC∥BD,直线AB,CD不平行,点P在直线AB上,且和点A,B不重合.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A,B两点之间运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P在线段BA延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)参考答案一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( C)A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( B)A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( C)A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( C)A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是 ( A)6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是 ( C)A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是 (D) A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( D) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有 ( D)A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( D)A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为__123°__.12.(曲阜期末)如图,若满足条件__∠A=∠3(答案不唯一)__,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是__相互平行__.14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B 之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西__63__度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=__40°__.第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有__3__个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__120°.18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=__110°或70°__.三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;解:设这个角的度数为x度,则x-(90-x)=20,解得x=55,即这个角的度数为55°,所以这个角的补角为180°-55°=125°.(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.解:设∠2的对顶角为∠3,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD,∴∠D+∠B=180°.∵∠D=60°,∴∠B=120°.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?解:(1)同位角相等,两直线平行.(2)DE =12BC.21.(8分)已知:如图,∠ABE +∠DEB =180°,∠1=∠2,则∠F 与∠G 的大小关系如何?请说明理由.解:∠F =∠G.理由:∵∠ABE +∠DEB =180°,∴AC ∥ED ,∴∠CBE =∠DEB.∵∠1=∠2,∴∠CBE -∠1=∠DEB -∠2,即∠FBE =∠GEB ,∴BF ∥EG ,∴∠F =∠G.22.(8分)如图,在三角形ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,试比较∠EDF 与∠BDF 的大小,并说明理由.解:∠EDF=∠BDF.理由:∵AC∥ED,∴∠ACE=∠DEC.∵CE⊥AB,DF⊥AB,∴∠AEC=∠AFD=90°,∴DF∥CE,∴∠BDF=∠BCE,∠EDF=∠DEC,∴∠EDF=∠ACE.∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠EDF=∠BDF.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.解:(1)∵BC∥AD,∴∠B=∠DOE.又BE∥AF,∴∠DOE=∠A,∴∠A=∠B.(2)∵∠DOB=∠EOA,由BE∥AF得∠EOA+∠A=180°.又∠DOB=135°,∴∠A=45°.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.解:(1)∵∠BOD=28°,∴∠AOC=∠BOD=28°.∵OE⊥CD,∴∠EOC=90°,∴∠AOE=∠EOC-∠AOC=62°.(2)正确,设∠BOD=x,则∠AOC=∠BOD=x,∠BOC=180°-x.∵OF 平分∠AOC ,∴∠FOC =12x , ∴∠EOF =90°-∠FOC =90°-12x , ∴∠EOF =12∠BOC.25.(14分)如图,已知直线AC ∥BD ,直线AB ,CD 不平行,点P 在直线AB 上,且和点A ,B 不重合.(1)如图①,当点P 在线段AB 上时,若∠PCA =20°,∠PDB =30°,求∠CPD 的度数;(2)当点P 在A ,B 两点之间运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P 在线段AB 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P 在线段BA 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)解:(1)如图①,过点P 作PE ∥AC 交CD 于点E ,∵AC ∥BD ,∴PE ∥BD ,∴∠CPE =∠PCA =20°,∠DPE =∠PDB =30°,∴∠CPD=∠CPE+∠DPE=50°.(2)∠CPD=∠PCA+∠PDB.(3)∠CPD=∠PCA-∠PDB.理由:如图②,过点P作PE∥BD交CD于点E,∵AC∥BD,∴PE∥AC,∴∠CPE=∠PCA,∠DPE=∠PDB,∴∠CPD=∠CPE-∠DPE=∠PCA-∠PDB. (4)∠CPD=∠PDB-∠PCA;∠CPD=∠PCA-∠PDB.。

北师大版数学七年级下册第二章单元测试卷(含答案)

北师大版数学七年级下册第二章单元测试卷(含答案)

北师大版数学七年级下册第二章单元测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合要求的)1.下图中,∠1和∠2是对顶角的是()2.已知∠1=40°,则∠1的补角的度数是()A.100°B.140°C.50°D.60°3.下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离B.从一条河向一个村庄引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.95°B.100°C.110°D.120°(第4题) (第5题)5.如图,∠B的同旁内角有()A.1个B.2个C.3个D.4个6.如图,一个合格的弯形管道ABCD要求AB∥CD.现测得∠ABC=135°,若这个弯形管道符合要求,则∠BCD的度数为()A.25°B.45°C.55°D.65°7.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠38.如图所示,若AB∥CD,则∠A,∠D,∠E之间的关系是()A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°9.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的有()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离;⑥∠BAD =∠C.A.2个B.3个C.4个D.5个10.(1)如图①,AB∥CD,则∠A+∠E+∠C=180°;(2)如图②,AB∥CD,则∠E=∠A+∠C;(3)如图③,AB∥CD,则∠A+∠E-∠1=180°;(4)如图④,AB∥CD,则∠A=∠C+∠P.以上结论正确的是()A.(1)(2)(3)(4)B.(1)(2)(3)C.(2)(3)(4)D.(1)(2)(4)二、填空题(本题共6小题,每小题3分,共18分)11.若直线a∥b,a∥c,则____________,理由是_____________________.12.如图,ED∥AB,ED交AF于点C,若∠ECF=138°,则∠A=________.13.若∠A=45°,则∠A的余角等于________°.14.如图,请填写一个条件:______________,使得DE∥AB .15.如图,A,B之间是一座山,一条铁路要通过A,B两地,为此需要在A,B 之间修一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么在B地按南偏西________的方向施工,才能保证铁路准确接通.16.如图,在△ABC中,∠ACB=90°,AC=5 ,BC=12 ,AB=13 .点P是线段AB上的一个动点,则CP的最小值为__________.3三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)如图,已知∠B+∠BCD=180°,∠B=∠D,那么∠E=∠DFE成立吗?为什么?下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.解:成立.因为∠B+∠BCD=180°(已知),所以__________(同旁内角互补,两直线平行).所以∠B=∠DCE(____________________________).又因为∠B=∠D(已知),所以∠DCE=∠D(等量代换).所以AD∥BE(____________________________).所以∠E=∠DFE(____________________________).18.(8分)一个角的余角比它的补角的23还小55°,求这个角的度数.19.(8分)如图,已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF,求∠BEG 和∠DEG的度数.20.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作图法作∠EBC,使∠EBC=∠A,BE与AD平行吗?21.(10分)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图①,l1∥l2,点P在l1,l2之间,探究∠A,∠APB,∠B之间的数量关系.小明过点P作l1的平行线,可得到∠APB,∠A,∠B之间的数量关系是__________________.(2)如图②,若AC∥BD,点P在AC,BD同侧,∠A,∠B,∠APB的数量关系如何?为此,小明进行了下面的推理.请将这个推理过程补充完整,并在括号内填上依据.解:过点P作PE∥AC,如图②,所以∠A=∠APE (______________________).因为AC∥BD,5所以BD∥PE(__________________________),所以∠B=∠BPE.因为∠APB=∠BPE-∠APE,所以∠APB=____________(____________).(3)随着以后的学习我们还会发现平行线的许多用途.如图③,在小学我们已知道,三角形ABC中,∠A+∠B+∠C=180°,试构造平行线说明理由.22.(10分)已知AB∥CD.(1)如图①,若∠B=30°,∠BEC=148°,求∠C的度数;(2)如图②,若CF∥EB,CF平分∠ECD,试判断∠ECD与∠B之间的数量关系,并说明理由.答案一、1.C 2.B 3.C 4.C 5.C 6.B7.D8.C 9.B10.C二、11.b∥c;平行于同一条直线的两条直线平行12.42°13.4514.∠ABD=∠D(答案不唯一)15.63°16.60 13三、17.AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等18.解:设这个角的度数为x°.由题意得90-x=23(180-x)-55,解得x=75.答:这个角的度数为75°.19.解:因为AB∥CD,∠B=100°,所以∠BEC=80°.因为EF平分∠BEC,所以∠BEF=∠CEF=40°.因为EG⊥EF,所以∠GEF=90°.所以∠BEG=90°-∠BEF=90°-40°=50°,∠DEG=180°-∠GEF-∠CEF =180°-90°-40°=50°.20.解:如图,BE与AD不一定平行.21.解:(1) ∠APB=∠A+∠B(2)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠B-∠A;等量代换(3)过点A作直线DE∥BC,如图.因为DE∥BC,所以∠DAB=∠B,∠EAC=∠C (两直线平行,内错角相等).7因为∠DAB+∠BAC+∠EAC=180°,所以∠BAC+∠B+∠C=180°(等量代换).22.解:(1)如图①,过点E作EG∥AB,所以∠B=∠BEG.因为∠BEC=∠BEG +∠GEC=148°.所以∠B+∠GEC=148°.因为∠B=30°,所以∠GEC=148°-∠B=118°.因为AB∥CD,所以EG∥CD.所以∠GEC+∠C=180°.所以∠C =180°-∠GEC=62°.(2)∠B=12∠ECD.理由如下:如图②,过点E作EG∥AB,所以∠B=∠BEG.因为AB∥CD,所以EG∥CD.所以∠GEC+∠ECD=180°. 因为CF平分∠ECD,所以∠ECD=2∠ECF. 所以∠GEC+2∠ECF=180°.因为CF∥EB,所以∠BEC+∠ECF=180°.所以∠GEC+∠BEG+∠ECF=180°.所以∠BEG+∠ECF=2∠ECF.所以∠BEG=∠ECF.因为∠B=∠BEG,∠ECF=12∠ECD.所以∠B=12∠ECD.。

七年级数学下册第二章测试卷-北师大版(含答案)

七年级数学下册第二章测试卷-北师大版(含答案)

七年级数学下册第二章测试卷-北师大版(含答案)[时间:100分钟满分:120分]一、选择题(本大题共6小题,每小题3分,共18分)1.下列关于-3.782的说法正确的是()A.是负数,不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数2.下列运算正确的有()(1)(-4)+(-4)=2×(-4);(2)(-2)3=-23;(3)(2×3)2=2×32;(4)(-2)2n=22n.A.1个B.2个C.3个D.4个3.下列说法错误的是()A.负数的绝对值为正数B.0没有倒数C.一个数的平方一定是正数D.数轴上的两个点表示的数,右边的点对应的数总比左边的大4.有理数a,b在数轴上对应的点的位置如图所示,则下列结论不正确的是()A.b>aB.a+b<0C.ba<0D.a-b>05.大于-2020而小于2021的所有整数的和是()A.-2021B.-2020C.2021D.20206.有下列说法:①若a+b=0,则a与b互为相反数;②若|a|=|b|,则a=b;③若a2=b2,则a=b;④若0>a>b>-1,则1a <1b.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7.-2020的相反数是.8.用科学记数法表示1203000为.9.如果a与-2互为倒数,那么a2=.11.下面是一列按规律排列的数:-12,24,-38,416,-532,…,请观察此数列的规律,按此规律,则第n 个数应是 . 12.若|a|=2,|b|=3,且ab>0,则a-b 的值是 . 三、解答题(本大题共5小题,每小题6分,共30分) 13.计算:(1)(+4.3)-(-4)+(-2.3)-(+4);(2)(-12)÷6+|-5|×(-2).14.计算:(1)(-14+23-12)×48;(2)(-2)4×(-0.5)4.15.在数轴上表示出下列各数,并用“<”将它们连接起来:-312,0,-2,-(-4.5),|-12|.16.计算:-14-[-5+(0.2×13-1)÷(-125) ].17.若|a|=2,b=-3,c 是最大的负整数,求a+b-c 的值.四、解答题(本大题共3小题,每小题8分,共24分)18.若a 与b 互为相反数,m 与n 互为倒数,c 2=36,求2nm+3a-c+3b 的值.19.已知|x+1|+(2x-y+4)2=0.(1)求x,y的值;(2)求x2-y的值.20.某食品厂从生产的袋装食品中随机抽取20袋样品,检测每袋的质量是否符合标准质量,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g) -5 -2 0 1 3 6袋数 1 4 3 4 5 3(1)这20袋食品平均每袋的质量比标准质量多还是少?多了或少了多少克?(2)若标准质量是450 g,则这20袋食品的总质量是多少?五、解答题(本大题共2小题,每小题9分,共18分)21.已知a,b均为有理数,现我们定义一种新的运算,规定:a#b=a2+ab+3,例如:5#2=52+5×2+3=38.求:(1)(-3)#6的值;#(-9)]-[(-2)#3]的值.(2)[1322.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(上涨记为正,下跌记为负)星期一二三四五每股涨跌+2.20 +1.42 -0.80 -2.52 +1.30(2)本周内该股票的最高价是每股多少元?最低价是每股多少元?(3)已知小杨买进股票时付了1.5‰的手续费,卖出时还需要付成交额的1.5‰的手续费和1‰的交易税,如果小杨在星期五收盘前将全部股票卖出,那么他的收益情况如何?六、解答题(本大题共12分)23.如图所示,数轴上的三个点A,B,C表示的数分别为-3,-2,2,试回答下列问题:(1)A,C两点间的距离是多少?(2)若数轴上的点E与点B之间的距离是5,求点E与点C间的距离;(3)若将数轴折叠,使点A与点C重合,则点B与表示哪个数的点重合?为什么?参考答案1.D2.C3.C4.D5.D6.B7.20208.1.203×1069.1410.-1 11.(-1)n n2n 12.1或-113.解:(1)(+4.3)-(-4)+(-2.3)-(+4) =4.3+4-2.3-4 =4.3-2.3 =2.(2)(-12)÷6+|-5|×(-2) =-2+5×(-2) =-2+(-10) =-12.14.解:(1)(-14+23-12)×48=-48×14+48×23-48×12 =-12+32-24 =-4.(2)(-2)4×(-0.5)4 =[(-2)×(-0.5)]4 =14=1. 15.解:如图所示:用“<”连接:-312<-2<0<|-12|<-(-4.5). 16.解:-14-[-5+(0.2×13-1 )÷(-125)]=-1-[-5+(115-1)÷(-75) ]=-1-[-5+(-1415)×(-57 ) ] =-1-(-5+23) =-1-(-413) =-1+413=313.17.解:因为|a|=2,所以a=2或a=-2. 因为c 是最大的负整数,所以c=-1. 当a=2,b=-3,c=-1时, a+b-c =2+(-3)-(-1) =2-3+1 =0.当a=-2,b=-3,c=-1时, a+b-c =-2+(-3)-(-1) =-2-3+1 =-4.综上所述,a+b-c 的值为0或-4.18.解:因为a 与b 互为相反数,所以a+b=0. 因为m 与n 互为倒数,所以mn=1. 因为c 2=36,所以c=6或c=-6. 2nm+3a-c+3b=2nm+3(a+b )-c=2-c.①当c=6时,2-c=2-6=-4; ②当c=-6时,2-c=2+6=8.综上,2nm+3a-c+3b 的值为-4或8.所以x=-1,y=2.(2)当x=-1,y=2时,x 2-y=(-1)2-2=1-2=-1.20.解:(1)由题意,得(-5)×1+(-2)×4+0×3+1×4+3×5+6×3 =-5+(-8)+4+15+18 =24(g), 24÷20=1.2(g).答:这20袋食品平均每袋的质量比标准质量多,多了1.2 g . (2)20×450+24=9024(g).答:这20袋食品的总质量是9024 g . 21.解:(1)(-3)#6=(-3)2+(-3)×6+3=9-18+3=-6. (2)因为13#(-9)=(13)2+13×(-9)+3=19, (-2)#3=(-2)2+(-2)×3+3=1, 所以[13#(-9)]-[(-2)#3]=19-1=-89. 22.解:(1)+2.20+1.42-0.80=2.82(元). 答:星期三收盘时,该股票涨了2.82元. (2)由题意可知周一股价为27+2.20=29.20(元); 周二股价为29.20+1.42=30.62(元); 周三股价为30.62-0.80=29.82(元); 周四股价为29.82-2.52=27.3(元); 周五股价为27.3+1.30=28.6(元).所以本周内该股票的最高价为每股30.62元,最低价为每股27.3元. (3)买进时共支出了27×1000×(1+1.5‰)=27040.5(元),卖出时扣去手续费和交易税后得到的总金额为28.6×1000×(1-1.5‰-1‰)=28528.5(元), 纯收入为28528.5-27040.5=1488(元).答:如果小杨在星期五收盘前将全部股票卖出,他赚了1488元. 23.解:(1)2-(-3)=5,即A ,C 两点间的距离是5.(2)因为点E 与点B 之间的距离是5,所以点E 表示的数是3或-7. 当点E 表示的数是3时,点E 与点C 间的距离为1; 当点E 表示的数是-7时,点E 与点C 间的距离为9.理由:把数轴折叠后,记折点为F.因为A ,C 两点间的距离是5,点F 与A ,C 两点的距离相等, 所以点F 与A ,C 两点的距离都是52, 所以点F 在点A 的右侧52个单位长度处,所以点F 表示的数是-12,所以BF=-12-(-2)=112, 所以-12+112=1,即点B 与表示数1的点重合.。

北师大版七年级数学下册第二章单元测试题及答案全套共20页word资料

北师大版七年级数学下册第二章单元测试题及答案全套共20页word资料

七年级数学下册第二章相交线与平行线单元测试卷(一)班级姓名学号得分评卷人得分一、单选题(注释)1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3002、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()A.是同位角且相等B.不是同位角但相等;C.是同位角但不等D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4、下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A.①B.②③C.④D.②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=()A.60°B.50°C.30°D.20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )更多功能介绍ykw18/zt/A.互余B.对顶角C.互补D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC=___°,∠CDB=____°。

北师版七年级数学下册第二章复习测试题及答案全套.doc

北师版七年级数学下册第二章复习测试题及答案全套.doc

最新北师版七年级数学下册第二章复习测试题及答案全套第2章相交线与平行线专训1识别相交线中的几种角名师点金:我们已经学习了对顶角、余角、补角和“三线八角”,能够准确地识别这几种角,对我们以后的学 习起着铺垫作用.识别“三线八角”中的两个角属于何种类别时可联想英文大写字母,即“F”形的为同 位角,“Z”形的为内错角,“U”形的为同旁内角,每类角都有一个共同点,即:有两条边在截线上,另外 两条边在被截直线上.1类芟丄识别对顶角1. 下列选项中,Z1与Z2互为对顶角的是()2. 如图,直线AB, CD 相交于点O, 0E, 0F 是过点0的射线,其中构成对顶角的是() A. ZAOF 和ZDOE B. ZEOF 和 ZBOE C. ZB0C 和 ZA0D D. ZCOF 和 ZB0D〔奏型2 •识别余角、补角3. 如图,直线AB 与CD 相交于点O, ZAOE=90°,则Z1和Z2的关系是( ) A. 互为对顶角B.互补 C.相等D.互余A B CD4.如图,Z1的补角是()A. ZBOF B・ ZA0C 和ZBODC. ZBODD. ZBOF 和 ZBOD5. 如图是市两块三角尺拼成的图形,在直角顶点处构成了三个锐角,这三个锐角中互余的角是____________ ,相等的角是 ________6. 如图,A, O, B 三点在同一直线上,ZAOD= ZDOB = ZCOE=90°. (1) 图中,2的余角有 ____________ , Z1的余角有 _________ ・ (2) 请写出图屮相等的锐角,并说明理由.(3) 写出Z1的补角,Z2有补角吗?若有,请写出來.1 •養甕》识别同位角、内错角、同旁内角7. 如图,试判断Z1与Z2, Z1与Z7, Z1与ZBAD, Z2与Z9, Z2与Z6, Z5与各对角的位置关系.8. 如图,请结合图形找出图中所有的同位角、内错角和同旁内角.(笫5题)(第8题)F(第7题)AA oB (第6题)答案1. D2.C 3・D 4.B 5. 与 Z2, Z2 与 Z3; Z1 与 Z3 6. 解:(1)Z1, Z3; Z2, Z4(2) Z 1和Z3都是Z2的余角,根据同角的余角相等得Z1 = Z3, Z2和Z4都是Z3的余角,根据同 角的余角相等得Z2=Z4.(3) Z1的补角是ZBOC, Z2有补角,是ZAOE.7. 解:Z1与Z2是同旁内角,Z1与,7是同位角,Z1与ZBAD 是同旁内角,Z2与Z9没有特殊 的位置关系,Z2与Z6是内错角,Z5与Z8互为对顶角.8. 解:⑴当直线AB, BE 被AC 所截时,所得到的内错角有:ZBAC 与ZACE, ZBCA 与ZFAC ; 同旁内角有:ZBAC 与ZBCA, ZFAC 与ZACE.(2) 当AD, BE 被AC 所截时,内错角有:ZACB 与ZCAD ;同旁内角有:/DAC 与ZACE.(3) 当AD, BE 被BF 所截时,同位角有:ZFAD 与ZB ;同旁内角有:ZDAB 与ZB.专训2活用判定两直线平行的六种方法名师点金:1. 直线平行的判定方法很多,我们要根据图形的特征和已知条件灵活选择方法.2. 直线平行的判定常结合角平分线、对顶角、垂直等知识.1龙決丄利用平行线的定义 1. 下面几种说法中,正确的是() A. 同一・平面内不相交的两条线段平行 B. 同一平面内不相交的两条射线平行 C. 同一平面内不相交的两条直线平行 D. 以上三种说法都不正确[龙決21利用“平行于同一条直线的两直线平行”2. 如图,已知ZB = ZCDF, ZE+ZECD=180°.试说明 AB 〃EF.⑷当AC, BE 被AB 所截吋,同位角有: (5)当AB, AC 被BE 所截时,同位角有: ZB 与ZFAC ;同旁内角有:ZB 与ZBAC.ZB 与ZACE ;同旁内角有:ZB 与ZACB. (第2题)〔龙決3利用“同垂直于第三条直线的两直线平行(在同一平面内)”3.如图,在三角形ABC中,CE丄AB于点E, DF丄AB于点F, DE〃CA, CE平分ZACB,试说明ZEDF=ZBDF.(第3题)1龙決企利用“同位角相等,两直线平行”4.【探究题】如图,已知ZABC=ZACB, Z1 = Z2, Z3=ZF,试判断EC与DF是否平行,并说明理由.(第4题)龙決5利用“内错角相等,两直线平行”5.如图,已知ZABC=ZBCD, Z1 = Z2,试说明BE〃CF.1龙法®利用“同旁内角互补,两直线平行”6•如图,ZBEC = 95°, ZABE=120°, ZDCE=35°,则AB 与CD 平行吗?请说明理由.D(第6题)答案1.C点拨:根据定义判定两直线平行,一定要注意前提条件“同一平面内”,同时要注意在同一平面内,不相交的两条线段或两条射线不能判定其平行.2.解:因为ZB = ZCDF,所以AB〃CD(同位角相等,两直线平行).因为ZE+ZECD=180°,所以CD〃EF(同旁内角互补,两直线平行).所以AB〃EF(平行于同一条直线的两直线平行).3.解:因为DF丄AB, CE丄AB,所以DF〃CE.所以ZBDF=ZDCE, ZEDF=ZDEC.因为DE〃CA,所以ZDEC=ZACE.因为CE平分ZACB,所以ZACE=ZDCE.所以ZDCE=ZDEC.所以ZEDF=ZBDF.4.解:EC〃DF.理由如下:因为ZABC=ZACB, Z1 = Z2,所以Z3 = ZECB.又因为Z3 = ZF,所以ZECB=ZF.所以EC//DF(同位角相等,两直线平行).5.解:因为ZABC=ZBCD, Z1 = Z2,所以ZABC-Z1 = ZBCD-Z2,即ZEBC=ZFCB.所以BE〃CF(内错角相等,两直线平行).(笫6题)6.解:AB〃CD.理由如下:如图,延长BE,交CD于点F,则直线CD, AB被直线BF所截. 因为ZBEC = 95。

北师大版七年级下册数学第二章测试卷及答案共3套

北师大版七年级下册数学第二章测试卷及答案共3套

第二章 相交线与平行线单元测试一、选择题l 、如果一个角的补角是 150,那么这个角的余角的度数是( )A.30B.60C.90D.1202、如图,下列条件中,能判定DE//AC 的是( )A.EDC=EFC ∠∠B.AFE ACD ∠=∠C.34∠=∠D.12∠=∠3、如图,//,AB CD 下列结论中错误的是( )A.12∠=∠B.25180∠+∠=C.23180∠+∠=D.34180∠+∠=4、如图,//D,1128,AB C ∠=FG 平分,EFD ∠则2∠的度数是( )A.46B.23C.26D.24 5、如图,,//,AD BC DE AB ⊥则B ∠和1∠的关系是( )A.相等B.互补C.互余D.不能确定6、将直尺与三角尺按如图所示的方式叠放在一起,在图中标记的角中,与∠1互余的角有( )个.A.2B.3C. 4D.57、如图,把矩形ABCD 沿EF 对折,若150,∠=则FED ∠等于( )A.50B.80C.65D.1158、已知两个角的两边互相平行,这两个角的差是o 40,则这两个角分别是( )A.140100和B.11070和C.7030和D.150110和9、一辆汽午在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A.第一次右拐60,第二次左拐120 B.第一次左拐60,第二次右拐60 C.第一次左拐60,第二次左拐120 D.第一次右拐60,第二次右拐6010、把一张对面互相平行的纸条折成如图那样,EF 是折痕,若32EFB ∠=则下列结论正确有( )(1)32 (2)116'C EF AEC ∠=∠=(3)D 116 (4)=64BF BGE ∠=∠A 、1个B 、2个C 、3个D 、4个 二、填空题11、如图,已知直线a b 、被直线c 所截,//,1130,a b ∠=则2∠= .12、如图,//,AB CD 如果2,DHG AGE ∠=∠则DHG ∠= .13、一个角的余角是这个角的补角的1,3则这个角是 度.14、如图,40,60,ABC ACB ∠=∠=BO CO 、平分ABC ∠和ACB ∠,DE 过O 点,且//DE BC ,则BOC ∠= .15、如图,已知//,70AB DE B ∠=,CM 平分,BCE CN CM ∠⊥,那么DCN ∠= .16、如图,//,120,30AB CD BAE DCE ∠=∠=,则AEC ∠= .17、如图,直线AB 、CD 、EF 相交于点O ,140,70,AOD DOE ∠=∠=则AOF ∠= . 18、如图,DB 平分,//,80,ADE DE AB CDE ∠∠=则ABD ∠= ,A ∠= . 19、如图, 已知////,60,10,AB CD EF B D ∠=∠=EG 平分BED ∠,则GEF ∠= .20、如图,已知//,AB CD ABE ∠和CDE ∠的平分线相交于F ,140,E ∠=则BFD ∠的度数为 . 三、作图题(要求必须用尺规作图,不写作法,留下作图痕迹,要有结论)21、如图,一块大的三角板ABC ,D 是AB 上一点,现要求过点D 割出一块小的三角板ADE ,使//,DE BC 请作出DE.四、证明题22、已知,如图,//,,701150,EF BC A D AOB C ∠=∠∠=∠+∠=,求B ∠的度数.23、已知:如图,//D,D AC B A ∠=∠,求证:.E F ∠=∠24、如图,已知//,AB CD 猜想图1、图2、图3中,,B BED D ∠∠∠之间有什么关系?请用等式表示出它们的关系。

北师大版七年级数学下册第二章单元测试题及答案全套

北师大版七年级数学下册第二章单元测试题及答案全套

七年级数学下册第二章相交线与平行线单元测试卷(一)班级姓名学号得分评卷人得分一、单选题(注释)1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3002、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()A.是同位角且相等B.不是同位角但相等;C.是同位角但不等D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4、下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A.①B.②③C.④D.②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=()A.60°B.50°C.30°D.20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )更多功能介绍/zt/A.互余B.对顶角C.互补D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC =___°,∠CDB=____°。

北师大版七下数学第二章各节练习题含答案

北师大版七下数学第二章各节练习题含答案

北师大版七年级下册数学2.1 两条直线的位置关系同步测试一、单选题1.如图,△ABC是直角三角形,AB⊥CD,图中与∠CAB互余的角有()A. 1个B. 2个C. 3个 D. 4个2.如果和互补,且,则下列表示的余角的式子中正确的有()① ② ③ ④A. ①②③B. ①②④C. ①③④D. ②③④3.将三角板与直尺按如图所示的方式叠放在一起.在图中标记的角中,与∠1互余的角共有()A. 1个B. 2个C. 3个 D. 4个4.下面角的图示中,能与30°角互补的是()A. B. C.D.5.下列图形中∠1与∠2是对顶角的是()A. B.C. D.6.已知∠A=75°,则∠A的补角等于()A. 125°B. 105°C. 15°D. 95°7.如果一个角的补角比它的余角度数的3倍少10°,则这个角的度数是()A. 60°B. 50°C. 45°D. 40°8.下列各图中,∠1与∠2是对顶角的是()A. B. C.D.9.如图,直线AB⊥CD于点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 互为余角B. 互为补角C. 互为对顶角D. 互为邻补角10.如图,A,O,B在一条直线上,∠1=∠2,∠3=∠4,则图中互余的角共有()A. 5对B. 4对C. 3对 D. 2对二、填空题(共6题;共8分)11.如图,直线AB、CD相交于点O,若∠AOD=28°,则∠BOC=________ ,∠AOC=________ .12.已知∠A=55°,则∠A的余角等于 ________度.13.如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有________(填序号).14.已知∠A=30°,则∠A的补角为________ ,余角为________ .15.∠α=25°20′,则∠α的余角为________.16.已知,直线AB和直线CD交与点O,∠BOD是它的邻补角的3倍,则直线AB 与直线CD的夹角是________度.三、解答题(共2题;共10分)17.一个锐角的补角等于这个锐角的余角的3倍,求这个锐角?18.如图,已知直线AB, 线段CO⊥AB于点O,∠AOD = ∠BOD,求∠COD的度数.四、综合题(共2题;共25分)19.如图,直线AB、CD、EF相交于点O .(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.20.数学活动课上,小聪同学摆弄着自己刚购买的一套三角板,将两块直角三角板的直角顶点C叠放在一起,然后转动三角板,在转动过程中,请解决以下问题:(1)如图(1):当∠DCE=30°时,∠ACB+∠DCE等于多少?若∠DCE为任意锐角时,你还能求出∠ACB与∠DCE的数量关系吗?若能,请求出;若不能,请说明理由.(2)当转动到图(2)情况时,∠ACB与∠DCE有怎样的数量关系?请说明理由.2.1答案解析部分一、单选题1.【答案】B【解析】【解答】解:∵CD是Rt△ABC斜边上的高,∴∠A+∠B=90°,∠A+∠ACD=90°,∴与∠A互余的角有∠B和∠ACD共2个.故选B.【分析】根据互余的两个角的和等于90°写出与∠A的和等于90°的角即可.2.【答案】B【解析】【解答】因为∠α和∠β互补即∠α+∠β=180°,所以,所以∠β的余角为,所以④正确;根据余角的定义①正确;因为,所以②正确.【分析】互为补角的两个角有即∠β为锐角,因为只有直角和锐角有余角,钝角没有余角.3.【答案】C【解析】【解答】∵∠1=∠2,∠2=∠3,∴∠1=∠3,∠4+∠3=90°,∠4=∠5,∠5=∠6,∴与∠1互余的角有:∠4、∠5、∠6,故选:C.【分析】根据对顶角相等、平行线的性质和互为余角的两个角的和为90°进行解得即可.4.【答案】D【解析】【解答】解:30°角的补角=180°﹣30°=150°,是钝角,结合各图形,只有选项D是钝角,所以,能与30°角互补的是选项D.故选:D.【分析】先求出30°的补角为150°,再测量度数等于150°的角即可求解.5.【答案】D【解析】【解答】有公共端点且两条边互为反向延长线的两个角为对顶角.由此可以推导出:只有选项D中的∠1和∠2是对顶角.所以选D.【分析】掌握对顶角的定义是解答本题的关键.本题考查对顶角.6.【答案】B【解析】【解答】解:∠A的补角=180°﹣∠A=180°﹣75°=105°.故答案为:B.【分析】根据∠A的补角=180°﹣∠A,计算即可。

北师大版七年级数学下册第二章相交线与平行线专项测试题-附答案解析(一)

北师大版七年级数学下册第二章相交线与平行线专项测试题-附答案解析(一)
【解析】解:经过直线外一点,有且只有一条直线与这条直线平行.
18、三条直线相交,最多有个交点.
【答案】3
【解析】解:
三条直线相交时,最多有 个交点.
19、如图,立定跳远比赛时,小明从点 起跳落在沙坑内 处,跳远成绩是 米,则小明从起跳点到落脚点的距离______ 米、(填“大于”“小于”或“等于”)
A. 个
B. 个
C. 个
D. 个
【答案】A
【解析】解:
(1)任意画出一条直线,在直线的同旁作出两条垂线段,并且这两条垂线段相等、过这两条垂线段的另一端点画直线,与已知直线平行,正确;
(2)可先在这个角的两边量出相等的两条线段长,过这两条线段的端点向角的内部应垂线,过角的顶点和两垂线的交点的射线就是角的平分线,正确;
A. 以上都有可能
B. 线段的延长线上
C. 线段的端点
D. 线段上
8、下列图形中 与 互为对顶角的是( )
A.
B.
C.
D.
9、在同一平面内,两条直线的位置关系是( )
A. 平行,垂直或相交
B. 垂直或相交
C. 平行或相交
D. 平行或垂直
10、已知 , ,则直线 与 的关系是( )
A. 垂直
B. 相交或平行
C. 个
D. 个
【答案】C
【解析】解:
①棱柱的上、下底面的形状相同,此选项正确;
②若 ,则点 为线段 的中点, 不一定在一条直线上,故此选项错误;
③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;
④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;
⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.

北师大版初中数学七年级下册第二章综合测试试卷-含答案01

北师大版初中数学七年级下册第二章综合测试试卷-含答案01

第二章综合测试一、选择题(每小题3分,共30分)1.已知1∠和2∠是对顶角,且138∠=︒,则2∠的度数为( ) A .38°B .52°C .76°D .142°2.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条不重合的直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线. A .1B .2C .3D .43.一个角的余角是这个角的补角的13,则这个角的度数是( )A .30°B .45°C .60°D .70°4.如图,直线1l ,2l 被直线3l 所截,且12l l ∥,则α∠的度数是( )A .41°B .49°C .51°D .59°5.下列图中,1∠与2∠是同位角的是( )ABCD6.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条 C .若直线a b a c ∥,∥,则b c ∥D .同一平面内,若两条线段不相交,则它们互相平行 7.如图所示,已知AB CD ∥,下列结论正确的是( )A .12∠=∠B .23∠=∠C .14∠=∠D .34∠=∠8.如图,BD AC ∥,BE 平分ABD ∠,交AC 于点E ,若50A ∠=︒,则1∠的度数为( )A .65°B .60°C .55°D .50°9.如图,直线AB 、CD 相交于点O ,OE CD ⊥,52AOE ∠=︒,则BOD ∠等于( )A .24°B .26°C .36°D .38°10.如图,将长方形纸片ABCD 沿EF 折叠,使CD 与MN 重合,若170∠=︒,则2∠等于( )A .60°B .50°C .40°D .30°二、填空题(每小题4分,共24分)11.已知,如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,若25EOC ∠=︒,则BOD ∠的度数为________. 12.已知在同一个平面内的三条直线1l ,2l ,3l ,如果1223l l l l ⊥⊥,,那么1l 与3l 的位置关系是________. 13.如图所示,若180B C ∠+∠=︒,则可以得到________∥________,若12∠=∠,则可以得到________∥________.14.如图,若使12∠=∠,则需添加哪两条直线平行________.15.如图所示,AB CD ∥,MN 交CD 于点E ,交AB 于点F ,EG MN ⊥于点E ,若60DEM ∠=︒,则AGE ∠=________.16.如图,直线a b ∥,直线l 与a 相交于点P ,与直线b 相交于点Q ,且PM 垂直于l ,若158∠=︒,则2∠=________.三、解答题(共46分) 17.(10分)如图,(1)由点A 到河边l 的最短路线为AO 的依据是________;(2)如果要从A 点经过B 再到河边l ,要使路程最短,在图中画出行走路线.18.(10分)已知1∠,如图.求作ABC ∠,使21ABC ∠=∠.(不写作法)19.(12分)如图,BD AC ⊥于D ,EF AC ⊥于F ,AMD AGF ∠=∠,1235∠=∠=︒. (1)求GFC ∠的度数;(2)求证:DM BC ∥.20.(14分)如图,已知AM BN ∥,60A ∠=︒.点P 是射线AM 上一动点(与点A 不重合),BC ,BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D . (1)求CBD ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使ACB ABD ∠=∠时,ABC ∠的度数是________.第二章综合测试答案解析一、 1.【答案】A【解析】1∠和2∠是对顶角,12∴∠=∠,又138︒∠=,238︒∴∠=. 2.【答案】C【解析】(1)过直线外一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条不重合的直线的位置关系只有相交,平行两种,是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3. 3.【答案】B【解析】设这个角的度数为x ,则它的余角为90x ︒−,补角为180x ︒−,依题意,得1901803x x ︒︒−=−(),解得45x ︒=,故选B. 4.【答案】B【解析】两条平行直线被第三条直线所截,内错角相等.因此49α︒∠=,故选B. 5.【答案】D【解析】1∠与2∠在截线的同侧,在被截线的同一方,是同位角,故选项D 中1∠与2∠是同位角,故选D.6.【答案】C【解析】在同一平面内,两条不相交的直线叫做平行线,选项A 错误;一条直线的平行线有无数条,过直线外已知一点,有且只有一条直线与已知直线平行,故选项B 错误;平行于同一条直线的两条直线平行,故选项C 正确;线段平行是指线段所在直线平行,两条线段不相交并不能说明两条线段所在直线不相交,因此选项D 是错误的.故选C. 7.【答案】C 【解析】AB CD ∥,14∴∠=∠.8.【答案】A 【解析】BD AC ∥,50A ︒∠=,130ABD ︒∴∠=,又BE 平分ABD ∠,11652ABD ︒∴∠=∠=.9.【答案】D【解析】因为OE CD ⊥,所以90COE ︒∠=,因为52AOE ︒∠=,所以38AOC ︒∠=,则38BOD AOC ︒∠=∠=.故选D. 10.【答案】C【解析】由题意可知AD ∥BC ,所以170DEF ︒∠=∠=,由折叠知70MEF DEF ︒∠=∠=,所以2180180707040DEF MEF ︒︒︒︒︒∠=−∠−∠=−−=.二、11.【答案】50︒ 【解析】OE 平分AOC ∠,25EOC ︒∠=,225250AOC EOC ︒︒∴∠=∠=⨯=.由对顶角相等可知50BOD AOC ︒∠=∠=.12.【答案】13l l ∥【解析】如图所示,由1223l l l l ⊥⊥,,可得1290∠=∠=︒,所以13l l ∥.13.【答案】AB CD AD BC【解析】B ∠与C ∠是直线AB ,CD 被直线BC 所截形成的同旁内角,由180B C ︒∠+∠=可得AB CD ∥;1∠与2∠是直线AD 与BC 被直线EF 所截形成的内错角,由12∠=∠可得AD BC ∥. 14.【答案】a b ∥【解析】1∠和2∠是直线a 和b 被直线c 所截形成的同位角,由两直线平行,同位角相等,知添加a b ∥. 15.【答案】30︒【解析】由EG MN ⊥可得90DEG DEM ︒∠+∠=,又60DEM ︒∠=,所以30DEG ︒∠=.由AB CD ∥可得30AGE DEG ︒∠=∠=.16.【答案】32︒【解析】如图,a b ∥,3158︒∴∠=∠=,又PM l ⊥,490︒∴∠=,21803432︒︒∴∠=−∠−∠=,故答案为32︒.三、17.【答案】解:(1)垂线段最短.(2)如图,先连接AB ,再过点B 作直线l 的垂线段BC ,则A —B —C 即为行走路线.18.【答案】解:如图,ABC ∠为所求作的角.19.【答案】解:(1)BD AC EF AC ⊥⊥,,90EFC BD EF ︒∴∠=,∥,135EFG ︒∴∠=∠=,答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

北师大版七年级数学下册第二章测试题(附答案)

北师大版七年级数学下册第二章测试题(附答案)

北师大版七年级数学下册第二章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.如图,直线b、c被直线a所截,则∠1与∠2是()A. 同位角B. 内错角C. 同旁内角D. 对顶角2.如图,已知a∥b,∠1=50°,则∠2=()A. 40°B. 50°C. 130°D. 140°3.点P为直线l外一点,点A、B、C为直线上三点,PA=2cm,PB=3cm,PC=4cm,则点P到直线l的距离为()A. 等于2cmB. 小于2cmC. 大于2cmD. 不大于2cm4.如图,DH∥EG∥BC,且DC∥EF,那么图中和∠1相等的角有()个.A. 2B. 4C. 5D. 65.如图所示,a∥b,∠2是∠1的3倍,则∠2等于()A. 150°B. 135°C. 90°D. 45°6.如图,在一张透明的纸上画一条直线l,在l外任取一点Q并折出过点Q且与l垂直的直线.这样的直线能折出()A. 0条B. 1条C. 2条D. 3条7.如图,直线a,b被直线c所截,下列条件能判断a∥b的是()A. ∠1=∠2B. ∠1=∠4C. ∠3+∠4=180°D. ∠2=30°,∠4=35°8.如图已知∠1=∠2,∠3=80°,∠4=()A. 80°B. 70°C. 60°D. 50°9.如图,属于∠1的内错角是()A. ∠2B. ∠3C. ∠4D. ∠510.下列说法正确的是()A. a,b,c是直线,且a∥b,b∥c,则a∥cB. a,b,c是直线,且a⊥b,b⊥c,则a⊥cC. a,b,c是直线,且a∥b,b⊥c,则a∥cD. a,b,c是直线,且a∥b,b∥c,则a⊥c11.如图,已知△ABC ,∠ABC=2∠C ,以B为圆心任意长为半径作弧,交BA、BC于点E、F ,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P ,作射线BP交AC于点,则下列说法不正确的是()A. ∠ADB=∠ABCB. AB=BDC. AC=AD+BDD. ∠ABD=∠BCD12.观察图中尺规作图痕迹,下列结论错误的是()A. PQ为∠APB的平分线B. PA=PBC. 点A、B到PQ的距离不相等D. ∠APQ=∠BPQ二、填空题(共6题;共12分)13.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为________.14.如图,a、b、c为三条直线,a∥b,若∠2=121°,则∠1=________.15.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B=________°.16.如图,已知,如果,那么= ________ .17.小明、小亮、小刚、小颖一起研究一道数学题,如图,已知EF⊥AB,CD⊥AB,小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”小刚说:“∠AGD一定大于∠BFE.”小颖说:“如果连接GF,则GF一定平行于AB.”他们四人中,有________个人的说法是正确的.18.如图,AB∥CD,直线MN分别交AB、CD于点E,F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=60°,则∠CFG=________.三、解答题(共4题;共20分)19.已知方格纸上点O和线段AB,根据下列要求画图:(1)画直线OA;(2)过B点画直线OA的垂线,垂足为D;(3)取线段AB的中点E,过点E画BD的平行线,交AO于点F.20.如图,已知∠EFC+∠BDC=180°,∠DEF=∠B,试判断DE与BC的位置关系,并说明理由.21.如图,AB∥CD,AE平分∠BAC,CE平分∠ACD.求证:AE⊥CE.22.如图:已知∠2+∠D=180°,∠1=∠B,试说明:AB∥EF.四、综合题(共4题;共44分)23.如图,将一副三角尺的直角顶点叠放在点C处,∠D=30°,∠B=45°,求:(1)若∠DCE=35°,求∠ACB的度数.(2)若∠ACB=120°,求∠DCE的度数.(3)猜想∠ACB和∠DCE的关系,并说明理由.24.如图,已知∠ABC+∠ECB=180°,∠P=∠Q,(1)AB与ED平行吗?为什么?(2)∠1与∠2是否相等?说说你的理由.25.如图,线段AB,AD交于点A.C为直线AD上一点(不与点A,D重合).过点C在BC的右侧作射线CE⊥BC,过点D作直线DF∥AB,交CE于点G(G与D不重合).(1)如图1,若点C在线段AD上,且∠BCA为钝角.①按要求补全图形;②判断∠B与∠CGD的数量关系,并证明.(2)若点C在线段DA的延长线上,请直接写出∠B与∠CGD的数量关系________;(3)请你结合本题的题意提出一个新的拓展问题________.26.(原创题)如图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字“M”:(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A′B′有何位置关系?CC′与DH有何位置关系?答案一、单选题1.A2. B3.D4.C5.B6.B7.B8.A9.D 10. A 11.B 12.C二、填空题13. 15°14.59°15.50 16.17.两18.60°三、解答题19.解:(1)作法:①连接OA,②作直线AO;(2)作法:连接正方形AHGB的对角线BH交AG于点D;(3)作法:①取线段AD的中点F,连接EF.20.解:DE∥BC.理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,又∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC21.证明:因为AB∥CD,所以∠BAC+ ∠ACD=180°.又因为AE平分∠BAC,CE平分∠ACD,所以∠2= ∠BAC,∠3= ∠ACD.从而∠2+∠3= ( ∠BAC+∠ACD)=90°,∠E=180°-( ∠2+∠3)=90°,即AE⊥CE.22.证明∵∠2+∠D=180°,∴EF∥DC(同旁内角互补,两直线平行)∵∠1=∠B∴AB∥DC(同位角相等,两直线平行)。

新北师大版七年级下册数学第二章测试题(1)

新北师大版七年级下册数学第二章测试题(1)

第二章 《相交线与平行线》复习题班级: ______________ 姓名 _________________一、选择题30分1 如图,直线 a 、b 、c 、d ,已知c 丄a , c 丄b ,直线b 、c 、d 交于一点,若/ 1=50°,则/2 等于【】A •是同位角且相等B •不是同位角但相等;C .是同位角但不等D .不是同位角也不等 3、 如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( )A •相等B .互补C •相等或互补D •相等且互补 4、下列说法中,为平行线特征的是( ) ①两条直线平行,同旁内角互补 ;②同位角相等,两条直线平行;③内错角相等,两条直线平行;④垂直于同一条直线的两条直线平行A .①B .②③C .④D .②和④ 5、如图,AB // CD // EF ,若/ ABC = 50 ° / CEF = 150 ° 则/ BCE =()A . 60 °B . 50 °C . 30 °D . 20 °B . a - 3 + 予 180 D . a + 3 +Y 80D . 30°BC 丄CD ,/ EBC =Z BCF ,那么,/ ABE 与/ DCF 的位置与大小关3 丫之间的关系为()A . a + 3 +Y 60C . a +-Y= 180 c 系是()B. 第三题第二题 6、如图,如果 AB // CD ,则角 a7、如图,直线 AB 、CD 交于O , EO 丄AB 于O ,/ 1与/ 2的关系是()A.互余B.对顶角C.互补D.相等8、两条直线被第三条直线所截,下列条件中,不能判断这两条直线平行的的是 ( )A 、同位角相等B 、内错角相等C 、同旁内角互补D 、同旁内角相等9、如图,能判断直线 AB II CD 的条件是() A 、/ 1 = / 2 B 、/ 3= / 4 10、如图, PO 丄 OR , OQ 丄PR ,则点 O 到PR 所在直线的距离是线段( )的长A 、POB 、ROC 、OQD 、PQ 二、填空题 362 .若 90 ,则180 30,则 2 1与 2的关系是 2的关系是3.若1 2 90 , 3 2 90 ,则 1与3的关系是理由是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 《相交线与平行线》复习题
班级: ______________ 姓名 _________________
一、选择题30分
1 如图,直线 a 、b 、c 、d ,已知c 丄a , c 丄b ,直线b 、c 、d 交于一点,若/ 1=50°,则/
2 等于
【】
A •是同位角且相等
B •不是同位角但相等;
C .是同位角但不等
D .不是同位角也不等 3、 如果两个角
的一边在同一直线上,另一边互相平行,那么这两个角只能( )
A •相等
B .互补
C •相等或互补
D •相等且互补 4、
下列说法中,为平行线特征的是( ) ①两条直线平行,同旁内角互补 ;②同位角相等,两条直线平行;③内错角相等,两条直线平
行;④垂直于同一条直线的两条直线平行
A .①
B .②③
C .④
D .②和④ 5、如图,AB // CD // EF ,若/ ABC = 50 ° / CEF = 150 ° 则/ BC
E =()
A . 60 °
B . 50 °
C . 30 °
D . 20 °
B . a - 3 + 予 180 D . a + 3 +Y 80
D . 30°
BC 丄CD ,/ EBC =Z BCF ,那么,/ ABE 与/ DCF 的位置与大小关
3 丫之间的关系为()
A . a + 3 +Y 60
C . a +-Y= 180 c 系是()
B
. 第三题
第二题 6、如图,如果 AB // CD ,则角 a
7、如图,直线 AB 、CD 交于O , EO 丄AB 于O ,/ 1与/ 2的关系是()
A.互余
B.对顶角
C.互补
D.相等
8、两条直线被第三条直线所截,下列条件中,不能判断这两条直线平行的的是 ( )
A 、同位角相等
B 、内错角相等
C 、同旁内角互补
D 、同旁内角相等
9、如图,能判断直线 AB II CD 的条件是(
) A 、/ 1 = / 2 B 、/ 3= / 4 10、如图, PO 丄 OR , OQ 丄PR ,则点 O 到PR 所在直线的距离是线
段( )的长 A 、PO
B 、RO
C 、OQ
D 、PQ
二、填空题 36
2 .若 90 ,则
1与 2的关系是 180 2的关系是
3.若1 2 90 , 3 2 90 ,则 1与3的关系是
理由是。

4 .若 1 2 180 , 3 2 180 ,贝V 1与 3的关系是 ___________
理由是 __________________________________________ 。

5.如图(3)是一把剪刀,其中 1 40,贝V 2 _______ ,
其理由是 ______________________ 。

6•如图(4), 1 2 35 , / 3= _______ 则AB 与CD 的关系是
,理由是。

7•如图(5), / 1的同位角是 ___ , / 1的内错角是 ________ ,若/仁/ BCD,

I ,根据是 。

若/仁/ EFG ,则 _______ I I ____ ,根据是 _____________________________________
1.如图( O 30,则 2 1)是一块三角板,且
1 宀。

.若 A
图⑸
&已知:如图6,Z B+ Z A=180。

,贝V _ £ ___________ ,理由是
vZ B+Z C=180 (已知),二 _____ II _____ (
1、如图 EF II AD , Z 1=Z 2,Z BAC=70 o ,求Z AGD 。

解:v EF // AD ,
•••Z 2= _______ (
又vZ 1 = Z 2,
• Z 仁Z 3,
• AB II ______ (
• Z BAC+ _________ =180 0 (
vZ BAC=70 0,「.Z AGD= _____________
2、如图,已知Z BED= Z B+ Z D ,试说明 AB 与CD 的关系 解: AB II
CD ,理由如下:
过点E 作Z BEF= Z B
• AB II EF (
vZ BED= Z B+ Z D
• Z FED= Z D
• CD II EF (
• AB II CD (
【角的和差倍】1.如图所示,已知Z 和Z ,按要求作图:
利用尺规作Z AOB 使Z AOB Z - Z •(保留做图痕迹,不写做法)
9、把一张长方形纸条按图中, 则Z B ' OG = _________ .
那样折叠后, 若得到Z AOB ' = 70o
三、仔细想一想,完成下面的推理过程
2如图,EB II DC,Z C=Z E,请你说出/ A= Z ADE的理由。

3、如图,AD 是Z EAC 的平分线,AD II BC,Z B=30 0,求Z EAD、Z DAC、Z C 的度数。

5 如图,Z ABD= 90 ° Z BDC=90°,Z 1 + Z 2=180 ° CD 与EF 平行吗?为什
AC II MD , BF II ME,求Z DME 的度。

相关文档
最新文档