发动机冷却系统设计规范
发动机冷却系统设计规范
编号:冷却系统设计规范编制:万涛校对:审核:批准:厦门金龙联合汽车工业有限公司技术中心年月日一、概述要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严重的影响。
冷却不足,发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增加,磨损加剧,特别是活塞环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动机停转或者发生“拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现象。
也会使润滑油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。
同时会降低发动机充气量,使发动机功率下降。
发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。
发动机过冷,气缸磨损加剧。
同时,由于过冷,混合气形成的液体,容易进入曲轴箱使润滑油变稀,影响润滑作用。
由此可见,使发动机工作温度保持在最适宜范围内的冷却系,是何其重要。
一般地,发动机最适宜的工作温度是其气缸盖处冷却水温度保持在80℃~90℃,此时发动机的动力性、经济性最好。
二、冷却系统设计的总体要求a)具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值(一般为55°);b) 冷却系统的设计应保证散热器上水室的温度不超过99 ℃。
c) 采用105 kPa压力盖,在不连续工况运行下,最高水温允许到110 ℃,但一年中水温达到和超过99 ℃的时间不应超过50 h。
d) 冷却液的膨胀容积应等于整个系统冷却液容量的6 %。
e) 冷却系统必须用不低于19 L/min的速度加注冷却液,直至达到应有的冷却液平面,以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。
三、冷却系统的构成液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。
四、主要部件的设计选型1、散热器散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T其中:Q---散热器的散热量(kcal/h)K---散热器散热系数(kcal/m2•h•ºC)A---散热器散热面积(m2)⊿T---气液温差:散热器进水温度和散热器进风温度之差(ºC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下:①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效率有较大提高,但超过0.8m/s后,效果不大;②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决于空气的流动,通过散热器芯部的风量起了决定性作用;③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化;④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量;1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。
工业循环冷却水系统设计规范标准
《》条文说明1总则目录1.01为了控制工业循环冷却水系统由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规。
1.02本规适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。
1.03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。
1 总则全文1.0.1本条阐明了编制本规的目的以及为了达到这一目的而执行的技术经济原则。
在工业生产中,影响水冷设备的换热器效率和使用寿命的因素来自两个方面,一是工艺物料引起的沉积和腐蚀;二是循环冷却水引起的沉积和腐蚀。
后者是本规所要解决的问题。
因循环冷却水未加处理而造成的危害是很严重的,例如,某化工厂,原来循环水的补充水是未经过处理的深井水,每小时的循环量9560t。
由于井水硬度大、碱度高,每运行50h后,有50%的碳酸盐在设备、管道沉积下来,严重影响换热器效率。
据统计,空分透平压缩机冷却器,在运转3个月后,结垢厚度达20㎜。
打气减少20%。
该厂不少设备、在运转3个月后,必须停车酸洗一次,不但影响生产,而且浪费人力、物力。
为了防止设备管道产生结垢,该厂在循环水中直接加入六偏磷酸钠、EDTMP和T—801水质稳定剂之后,机器连续3年运行正常。
虽然每年需要增加药剂费用2万元,但综合评价经济效益还是合算的。
又如某石油化工厂,常减压车间设备腐蚀与结垢现象十分严重,Φ57×3.5面碳钢排管平均使16-20个月后,垢厚达15-40㎜。
后经投加聚磷酸盐+膦酸盐+聚合物的复合药剂进行处理,对腐蚀、结垢和菌藻的控制取得了良好的效果。
每年可节约停车检修费用约60万元,延长生产周期增产的利润约70万元。
减少设备更新费用约4.7万元。
现将该厂水质处理前后的冷却设备更新情况列表如下:某厂冷却设备更新情况统计(单位:台)表1从上述情况可以看出,循环冷却水采取适当的处理方法,能够控制由水质引起的沉和腐蚀,保证换热设备的换热效率和使用寿命,保证生产的正生产的正常运行。
GBT50050—95工业循环冷却水处理设计规范标准[详]
工业循环冷却水处理设计规范 GB50050—95主编部门:中华人民共和国化学工业部批准部门:中华人民共和国建设部施行日期:1995年10月1日关于发布国家标准《工业循环冷却水处理设计规范》的通知建标[1995]132号根据国家计委计综[1992]490号文的要求,由化工部会同有关部门共同修订的《工业循环冷却水处理设计规范》已经有关部门会审,现批准《工业循环冷却水处理设计规范》GB50050—95为强制性国家标准,自一九九五年十月一日起施行,原《工业循环冷却水处理设计规范》GBJ50—83同时废止。
本标准由化工部负责管理,具体解释等工作由中国寰球化学工程公司负责,出版发行由建设部标准定额研究所负责组织。
中华人民共和国建设部一九九五年三月十六日1 总则1.0.1 为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。
1.0.2 本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。
1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。
1.0.4 工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。
1.0.5 工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。
2 术语、符号2.1 术语2.1.1 循环冷却水系统Recinrculating cooling water system以水作为冷却介质,由换热设备、冷却设备、水泵、管道及其它有关设备组成,并循环使用的一种给水系统。
2.1.2 敞开式系统Open system指循环冷却水与大气直接接触冷却的循环冷却水系统。
2.1.3 密闭式系统Closed system指循环冷却水不与大气直接接触冷却的循环冷却水系统。
2.1.4 药剂Chemicals循环冷却水处理过程中所使用的各种化学物质。
acea2021标准全文
acea2021标准全文一、标准概述acea2021标准是一套关于汽车发动机冷却系统的技术标准,旨在规范冷却系统的设计、制造和测试。
该标准由欧洲汽车制造商协会(acea)制定,旨在确保汽车发动机在各种环境条件下都能得到有效的冷却,从而提高车辆的可靠性和耐久性。
二、标准内容1.冷却系统设计要求:*冷却液容量:规定了一定的冷却液容量范围,以确保发动机得到足够的冷却。
*泵流量:规定了冷却系统所需的泵流量,以确保发动机在各种转速下都能得到适当的冷却。
*水管长度和直径:规定了冷却水管长度和直径的要求,以确保冷却液能够有效地传递到发动机各个部位。
*散热器面积:规定了散热器的面积,以确保发动机产生的热量能够及时散出。
*冷却液种类:规定使用特定类型的冷却液,以确保其具有良好的冷却效果和稳定性。
2.制造要求:*材料选择:要求冷却系统必须采用高品质的材料,如不锈钢、铜等,以确保其耐久性和可靠性。
*生产工艺:规定了冷却系统的生产工艺,以确保其制造质量和一致性。
*质量控制:要求对冷却系统进行严格的质量控制,确保其符合标准要求。
3.测试要求:*模拟环境条件测试:通过模拟各种环境条件下的测试,确保冷却系统的性能符合标准要求。
*耐久性测试:通过模拟车辆行驶过程中的各种工况,测试冷却系统的耐久性。
*温度性能测试:测试冷却系统的温度控制性能,以确保其在各种温度条件下都能正常工作。
4.维护要求:*建议定期检查和维护冷却系统,以确保其正常工作。
*定期更换冷却液和滤清器:根据标准建议的更换周期,定期更换冷却液和滤清器。
*到授权维修站进行全面检查:建议车主定期到授权维修站进行全面检查,以确保冷却系统的性能不受影响。
三、标准的实施情况acea2021标准已在欧洲汽车制造业界得到广泛实施和应用。
许多汽车制造商都按照该标准设计和制造冷却系统,并对其产品进行了认证。
此外,欧洲汽车保险机构也将其纳入保险条款和条件中,以确保车主的权益得到保障。
同时,acea还提供了相关的培训和指导,以提高制造商和维修站的执行水平。
发动机冷却系统设计规范
发动机冷却系统设计规范发动机冷却系统在汽车和其他内燃机动力设备中起着至关重要的作用。
它的设计和工作原理直接影响到发动机的性能、寿命和可靠性。
因此,对于发动机冷却系统的设计规范十分重要。
本文将探讨一些常见的发动机冷却系统设计规范。
首先,冷却剂的选择是冷却系统设计的首要考虑因素之一、冷却剂应具有良好的热传导性能、高温稳定性、低粘度和耐腐蚀性。
一般来说,乙二醇和甘油是常用的冷却剂。
冷却剂的选择应根据发动机的工作条件和环境温度进行合理的考虑。
其次,冷却系统的设计应根据发动机的散热需求进行。
发动机在工作时会产生大量的热量,因此需要一个有效的散热系统来保持发动机的温度在可控制的范围内。
冷却系统应包括散热器、水泵、温度传感器和风扇等组件。
散热器的设计应充分考虑到冷却剂的流动性和散热面积,以提高散热效果。
另外,冷却系统的设计还应考虑到发动机的工作性质和负载条件。
例如,对于大型货车或挖掘机等需要长时间连续工作的设备,冷却系统应具备足够的散热能力,以保证发动机在高负荷下不会过热。
此外,还需要考虑到环境温度和海拔等因素对冷却系统的影响,以确保发动机在各种工作条件下都能保持适当的温度。
值得注意的是,冷却系统设计应注重节能和环保。
冷却系统的能源消耗在整个发动机系统中占据很大比例,因此应设计出能有效降低能耗的冷却系统。
例如,可以采用可变速风扇或控制风扇的闭环反馈系统,以根据发动机的温度自动调整风扇转速。
此外,应选择符合环保要求的冷却剂和材料,以减少对环境的污染和健康的影响。
最后,冷却系统的设计还应注重可靠性和维护性。
一个好的冷却系统应具备稳定的性能和长久的使用寿命。
例如,冷却系统的管道应采用高质量的材料和耐腐蚀的涂层,以防止管道的堵塞和泄漏。
此外,冷却系统的设计还应方便维护和检修,以减少维修时间和成本。
综上所述,发动机冷却系统设计规范是确保发动机正常运行和延长其使用寿命的关键因素之一、冷却剂的选择、散热系统的设计、能耗和环保、可靠性和维护性等都是设计冷却系统时需要考虑的重要因素。
定子冷却水系统技术规范
3.5 定子冷却水系统技术规范1、定子冷却系统供发电机定子绕组冷却,采用闭式独立水系统并采用集装式结构,外部冷却器进水最高温度为38℃,其压力为0.15~0.35MPa,定子集装设备供方供货。
2、定子线圈用水直接冷却,其冷却水的进水温度范围为42~48℃、进水温度有自动调节装置,冷却水温度波动范围±3℃,出水温度不大于85℃。
3、内部水质透明纯净,无机械混杂物,在水温为20℃时:电导率: 0.5~1.5μS/cm(定子线圈独立水系统)。
PH 值: 7~8硬度:小于2微克当量/升4、在定子每槽内上、下层线圈间埋置检温计二个(一个工作,一个备用),每根绝缘引水管出口端安装测量出水温度的检温计各一个。
5、定子冷却水路的进、出水处各装一个双金属温度计。
定子线圈内冷却水允许断水时间不少于30秒。
6、定子水系统中的所有接触水的元器件均采用不锈钢材料。
7、定子水系统中水泵、冷水器、滤水器各设2台,互为备用。
8、定子水系统配有10%离子交换器,以提高水质。
定子水箱按压力容器设计、制造。
9、水系统设电加热装置。
10、为了监视系统运行情况,设置二个电导仪,电导偏离正常值时发出报警信号。
11、系统设置自动补水和水箱水位报警装置。
12、发电机设计独立的定子线圈反冲洗管道及阀门,能方便地对定子进行正、反冲洗,反冲洗管道上加装过滤器(滤网采用不锈钢激光打孔)。
管道压力不大于5公斤。
13、为确保断水保护动作信号的可靠性,供方提供保护逻辑图及整定参数。
14、定子水系统集装供货,集装设备以外到发电机的管道、阀门、法兰及反法兰、附件等由供方供货。
材质为不锈钢。
15、有关数据(包括图纸资料)(1)尺寸(长×宽×高)(m) 4.839X2.66X2.76(2)全套泵组重量 1400kg(3)储水容量 1.8 m3(4)冷却水总容量3m3(5)泵组数量和功率2台 22KW(6)每台冷却器管子数量 222(7)冷却器型式管式(8)发电机额定条件下内部冷却水流量:45m3/h外部冷却水流量:160m3/h(9)冷却水压与发电机氢压的压差0.1-0.2Mpa(氢压高于水压)(10)通过泵组的冷却水要经过处理和过滤。
汽车乘用车冷却系统布置及主要零部件设计规范
乘用车冷却系统布置及主要零部件设计规范1范围本标准规½T ⅛F∏车冷知姿统布置及主更零部件的设计杓想、设计要求、BeMhi U ark 和灾效模式“ 本标准适用丁本公司皮F Λ SLV 、轿年齒总布置设计中冷知系统的布宣及主要谷部件设计・ 2规范性引用文件下列文件对于本乂件的用用足必不町少的。
凡足注日期的引用丈件.仅所注日期的版本适用于本文 件=凡足不注日期的引用文件,rtsa 版本(包括所有的修改单)适用于本文件・Q/CC JT (K )2-2011汽车取热躊 技术条件汽年用输术掾胶软待技术条件 汽车散热辭电动・风塌技术条件 溢水罐总成技术条件 水冷式油冷器总成技术条件 内燃机 晦乐空代冷却器 技术条件 Q/CC JT33O —2012凤冷式油冷器 技术条件 Q/CC JT342—2012 HT-ACMjfi 轮增圧胶曾技术条件3设计构想 3.1功能要求发动机运∙⅛髙湿燃弋相技处的号部件受如采不加以适当冷却J 会使发动机过热,充气系 数卜降.导致燃疣不止常(辉熾、早燃等)、机油变质和烧损,不那件的障擦和管损加剧,引起发动机 的动力性、经济性、可维性和咐久性全面恶化.但是如采冷却过强,汽油机混合U 形成不良,伍St 表面 机油彼燃油烯驿造成气缸曙损增加.丙此,冷却系统的主亜任务足保证发动机在适合的温度状态下正常 运魚3.2顾喜、市场要求3.2.1 —个良好的冷却累统应诛满足下列件项娶求:a ) 敵热呢力能满足发动机在备种T 况卜远转的%要・当丁况和坏境条件变化时•仍能;保证发动机 可塑的工作和维持的最佳冷却水ISJ 支?b ) 柱規定的时间内,排除系統内气淹IC )膨胀水辑的总容枳应•包含占冷却系统总容枳6%的膨胀容段、占•冷却系统总容⅛1 10%的储⅛∙容 枳以及必备的残射容枳;d )貝有较离的加木運率,初次加注IE 能达到系统容枳的X%以h :e ) 在发动机离速运转时•泵统乐力打开时,水帝进水口为f ) 保址一定的缺水丁作能力,Wt ⅛ft 人于笫一次未加满的容积:g ) 设置水温报警驶置Jh ) 密封性较好,不允许StiS :I ) 冷却系统消耗功率小,启动后,龍在短时州内达到止⅛∙MT 作溫度:J ) 可靠性、寿1⅛要有保障•,同时制造成本低亠Q/CC JToI4—2008 Q/CC JTI47—2OID Q/CC JTl 56—2009Q/CC JTl 72—Q/CC JT305—2011 承圧式淋朮罐总成技术*件 Q/CC SY0B2—2013 整千保安防灾评价3.2.2随右冷却系统的发展,电控冷却系统即将取代传統的冷知系统,冷却系统部件也随之增加" 33相关法规要求相关的法规莹求见本标准在条款中所规范性引用的冇关文件, 4设计要求41冷却系统的总体布直4 1 1冷却系统总布罢主翌考坦两方面:U)空气流通系统:b)冷却術坏系统,4 1. 2在设汁中必须做JiIffir⅛St风系数和冷却液循坏中的散热机力亠4 1.3尽Mffiδ⅛ft进K系敎,总的进址口有效面族和散热器芯休疋面枳之比不小T* 15⅛ CCFKOlI车型实测及验证数Ie).・故热模块茴端需要加导风装負使风能有吹到故热器的正荷秋上,捉高散M器的和用率,冷空气从车头而罩流入,经散热器芯部,空气温反升高,热空气被入机舱,从发动机两側和底部甘出,在布置过程中应特别注说以F二点:H)冷却枳块曲端尽可能不被阻挡,否则会造成空代进代配力增加从而降低JSK^数;D 由于风席丁作后,会造成风朗的前后斥差较人,部分储空气通过周者朮它路轻从后部高乐处冋流到丽端低圧处,所权必须增加密钊装負:C)风扇中心偏离散热器茁部中心不atiiΛ4o轴向护旳过近,否则κ⅛,⅞⅞能不能得封充分发挥,容品左Ift烛养上形成气流“死金",便气流产生人^i⅛i⅛或者iffi流损失亠4 14 —农完整的冷却.系统示心见圈1・系统中的主更不部件布置间隙应符fr Q/CC SY082-2013中飽相关规定。
汽车发动机设计规范
汽车发动机设计规范汽车发动机作为汽车的核心部件,其设计的优劣直接影响着汽车的性能、可靠性、燃油经济性以及环保排放等方面。
为了确保发动机能够满足各种使用要求和技术标准,制定一套科学合理的设计规范至关重要。
一、设计目标与要求在设计汽车发动机之前,首先需要明确设计目标和要求。
这些目标和要求通常包括但不限于以下几个方面:1、动力性能发动机应能够提供足够的功率和扭矩,以满足车辆在不同行驶工况下的动力需求。
例如,对于家用轿车,发动机的最大功率和扭矩应能够保证车辆在城市道路和高速公路上的正常行驶,并具备一定的加速性能。
2、燃油经济性随着能源问题的日益突出,提高发动机的燃油经济性成为设计的重要目标之一。
通过优化燃烧过程、降低摩擦损失等措施,使发动机在提供足够动力的同时,尽可能降低燃油消耗。
3、可靠性和耐久性发动机应具备长时间稳定运行的能力,在正常使用和维护的情况下,能够达到一定的使用寿命。
这就要求在设计中选用高质量的材料,进行合理的结构设计,并充分考虑零部件的疲劳强度和磨损情况。
4、环保排放为了减少汽车尾气对环境的污染,发动机的设计应满足日益严格的环保排放标准。
通过采用先进的燃烧技术、尾气后处理装置等手段,降低有害气体和颗粒物的排放。
5、成本控制在满足性能和质量要求的前提下,尽可能降低发动机的制造成本,以提高产品的市场竞争力。
二、结构设计1、气缸布置汽车发动机的气缸布置方式主要有直列式、V 型、水平对置式等。
直列式结构简单,成本较低,但长度较大;V 型结构可以缩短发动机长度,提高空间利用率,但结构相对复杂;水平对置式发动机重心低,运行平稳,但制造工艺要求较高。
在设计时,应根据车辆的用途、空间布局和成本等因素选择合适的气缸布置方式。
2、气缸数和排量气缸数和排量的选择直接影响发动机的动力性能和燃油经济性。
一般来说,气缸数越多,排量越大,发动机的功率和扭矩越大,但燃油消耗也相应增加。
对于小型家用车,通常采用四缸发动机,排量在15L 至20L 之间;而对于中大型车辆或高性能跑车,可能会采用六缸、八缸甚至更多气缸的发动机。
新版国标《工业循环冷却水处理设计规范》GB50050-2007学习释义
新版国标《工业循环冷却水处理设计规范》GB50050-2007学习释义国标《工业循环冷却水处理设计规范》GB50050-2007说明1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。
我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。
1.2 循环冷却水处理技术的发展我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。
在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。
瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。
80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。
一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。
实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。
90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。
同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。
“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。
冷却系统设计规范
冷却系统设计规范1. 总则本规范旨在为冷却系统的设计提供全面、详细的指导,确保系统安全、高效、节能、环保。
所有设计人员应严格遵守本规范,并根据实际情况进行适当的调整和补充。
2. 术语和定义2.1 冷却系统指通过一定的传热介质,将设备或环境中的热量移走,以达到降温目的的系统。
2.2 传热介质指在冷却系统中流动,承担热量传递的流体。
2.3 冷却塔指通过自然通风或机械通风,将热量传递给空气,实现冷却的设备。
2.4 冷却泵指将传热介质输送至冷却塔或冷却器,并返回系统的动力设备。
3. 设计原则3.1 安全可靠确保冷却系统在正常运行、故障状态及极端气候条件下均能安全运行,防止火灾、爆炸、泄漏等事故的发生。
3.2 高效节能合理选择传热介质、冷却塔、冷却泵等设备,优化系统布局,提高热量传递效率,降低能耗。
3.3 经济合理在满足安全、高效的前提下,考虑投资成本、运行成本和维护成本,实现经济合理。
3.4 环保低碳选用环保型传热介质,减少污染物排放,降低对环境的影响。
4. 设计内容4.1 系统类型选择根据设备热量产生量、冷却需求、场地条件等,选择合适的冷却系统类型,如水冷却系统、空气冷却系统等。
4.2 传热介质选择综合考虑热传递性能、腐蚀性、环保性能、经济性等因素,选择合适的传热介质。
4.3 冷却塔选择根据冷却需求、气候条件、场地条件等,选择合适的冷却塔类型,如自然通风冷却塔、机械通风冷却塔等。
4.4 冷却泵选择根据系统流量、扬程、功率等参数,选择合适的冷却泵。
4.5 系统布局及管道设计合理规划系统布局,减少管路阻力,降低能耗。
4.6 控制系统设计设计完善的自动控制系统,实现冷却系统运行参数的实时监测和调节。
4.7 安全防护措施针对可能出现的安全隐患,设计相应的安全防护措施,如防泄漏、防爆、防火灾等。
5. 施工与验收5.1 施工要求严格按照设计文件和规范要求进行施工,确保冷却系统质量。
5.2 验收标准验收时应全面检查冷却系统的安全、效率、环保等性能,确保达到设计要求。
冷却系统副水箱容积设计规范
冷却系统副水箱容积设计规范编制:审核:批准:2014—05—19发布 2014—05—28实施 北汽福田汽车股份有限公司工程研究总院前言本规范是根据日常项目的实际设计开发过程中的经验总结进行编制的。
本规范适用于乘用车的冷却系统副水箱容积的设计分析。
本规范由北汽福田汽车股份有限公司工程研究总院提出并归口。
本规范起草单位:北汽福田汽车股份有限公司工程研究总院交叉乘用车技术中心。
本规范主要起草人:赵颖。
本规范由北汽福田汽车股份有限公司工程研究总院交叉乘用车技术中心负责解释。
冷却系统副水箱容积设计规范1 范围本规范规定了乘用车冷却系统的副水箱容积问题在设计过程中进行的经验总结。
本规范适用于乘用车冷却系统副水箱容积的设定与结构分析及校核。
2 概述当冷却系统采用低位密封式散热器时,必须增设高位膨胀水箱,即副水箱。
他的主要功能是给冷却系统提供一个膨胀空间,及时去除冷却液中积滞的空气以及发动机高温下产生的水蒸气,以便更有效地利用散热器的散热功能,提高冷却系统的散热效率。
本文主要对副水箱容积的设定提出基本规范总结,使冷却系统副水箱的容积在整车水路匹配上达到合理的布置。
3 副水箱容积设定原则副水箱容积可以划分为储备容积、膨胀容积、残留容积三部分。
简要图示说明如下:A:储备容积B:膨胀容积C:残留容积副水箱容积设定原则如下:储备容积(无暖风装置)占冷却系统总容积的11%储备容积(有暖风装置)占冷却系统总容积的20%膨胀容积占冷却系统总容积的6%必要的残留容积是为了安全起见,防止冷却液在循环中吸入空气而设置的。
4 副水箱的布置在冷却系统的副水箱布置中,需要注意的原则是副水箱的最低液面要高于前端散热器的最高点,同时与副水箱连接的各个管路走向的布置要合理,安装要到位。
简要的布置效果图如下所示:5 开发过程中存在的问题与总结在冷却系统的设计过程中,副水箱容积的设定是基本的设计工作,此零件容积的设定直接影响到整车水路循环的效果,进而会影响到整车的散热及除气效果。
汽车发动机设计规范
汽车发动机设计规范近年来,随着汽车行业的快速发展,汽车发动机逐渐成为众多车主选择汽车的重要因素之一。
汽车发动机的设计规范对于汽车的性能、可靠性和环境友好性具有重要影响。
本文将从发动机的结构设计、燃烧过程、冷却系统以及排放控制等方面,详细阐述汽车发动机设计的规范。
一、发动机结构设计规范1.缸体设计在缸体设计中,应遵循以下规范:- 缸体材料的选择应考虑到承受高温、高压和振动的能力,同时具备良好的热膨胀性能和强度。
- 缸体的几何形状应考虑到减小惯性质量和提高散热能力。
- 缸体应具有足够的刚性和密封性能,以避免汽缸之间的漏气问题。
2.曲轴设计在曲轴设计中,应遵循以下规范:- 曲轴材料的选择应具备高强度、高疲劳寿命和低重量的特点。
- 曲轴的几何形状应尽可能减小轴向和径向力矩,并提高刚度,以实现更高的转速和扭矩输出。
- 曲轴上的各个连接部件应具备良好的连接可靠性和强度。
3.活塞设计在活塞设计中,应遵循以下规范:- 活塞的材料应具备高温强度、低热膨胀和低重量的特点。
- 活塞的几何形状应考虑到降低振动和噪音,并提高密封性能和热传导性能。
- 活塞上的油膜应具备良好的润滑性能和热控制功能。
二、燃烧过程设计规范1.点火系统设计在点火系统设计中,应遵循以下规范:- 点火系统的可靠性和稳定性应得到保证,以确保正常的燃烧过程。
- 点火系统应具备适应不同工况要求的能力,包括低温启动、高速点火和高压点火等。
- 点火系统的设计应考虑到节能环保要求,避免过度富油和过度排放的问题。
2.燃油系统设计在燃油系统设计中,应遵循以下规范:- 燃油系统的设计应考虑燃油的喷射、混合和燃烧等过程,以实现高效能的燃烧。
- 燃油系统应具备稳定的燃油供给能力,以适应不同工况的要求。
- 燃油系统应具备良好的节能环保性能,包括燃油的供应效率和排放控制等。
三、冷却系统设计规范1.冷却剂选择在冷却剂选择中,应遵循以下规范:- 冷却剂应具备良好的热传导性能和抗腐蚀性能。
工业循环冷却水系统设计规范(共35页)
《》条文说明1总则目录1.01为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。
1.02本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。
1.03工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。
1 总则全文本条阐明了编制本规范的目的以及为了达到这一目的而执行的技术经济原则。
在工业生产中,影响水冷设备的换热器效率和使用寿命的因素来自两个方面,一是工艺物料引起的沉积和腐蚀;二是循环冷却水引起的沉积和腐蚀。
后者是本规范所要解决的问题。
因循环冷却水未加处理而造成的危害是很严重的,例如,某化工厂,原来循环水的补充水是未经过处理的深井水,每小时的循环量9560t。
由于井水硬度大、碱度高,每运行50h后,有50%的碳酸盐在设备、管道内沉积下来,严重影响换热器效率。
据统计,空分透平压缩机冷却器,在运转3个月后,结垢厚度达20㎜。
打气减少20%。
该厂不少设备、在运转3个月后,必须停车酸洗一次,不但影响生产,而且浪费人力、物力。
为了防止设备管道内产生结垢,该厂在循环水中直接加入六偏磷酸钠、EDTMP和T—801水质稳定剂之后,机器连续3年运行正常。
虽然每年需要增加药剂费用2万元,但综合评价经济效益还是合算的。
又如某石油化工厂,常减压车间设备腐蚀与结垢现象十分严重,Φ57×3.5面碳钢排管平均使16-20个月后,垢厚达15-40㎜。
后经投加聚磷酸盐+膦酸盐+聚合物的复合药剂进行处理,对腐蚀、结垢和菌藻的控制取得了良好的效果。
每年可节约停车检修费用约60万元,延长生产周期增产的利润约70万元。
减少设备更新费用约4.7万元。
现将该厂水质处理前后的冷却设备更新情况列表如下:某厂冷却设备更新情况统计(单位:台)表1从上述情况可以看出,循环冷却水采取适当的处理方法,能够控制由水质引起的沉和腐蚀,保证换热设备的换热效率和使用寿命,保证生产的正生产的正常运行。
机械工艺设计中的冷却系统规范要求解析
机械工艺设计中的冷却系统规范要求解析随着工业技术的不断发展,机械工艺设计中的冷却系统也成为了一个重要的组成部分。
冷却系统的设计规范要求对于机械设备的稳定运行以及产品质量的提升起到了至关重要的作用。
本文将从冷却系统设计的角度,解析机械工艺设计中的冷却系统规范要求。
一、冷却系统的设计原则在机械工艺设计中,冷却系统起到了散热、降温、保护设备和产品的作用。
因此,冷却系统的设计需要遵循以下原则:1. 散热效果:冷却系统应具备良好的散热效果,确保设备在工作过程中能够保持适宜的温度。
这需要在设计过程中考虑到设备的散热需求,选择适当的冷却介质和散热方式。
2. 稳定性:冷却系统设计应具备良好的稳定性,能够稳定地完成冷却任务,确保设备的正常运行。
这需要合理配置冷却系统的各个组成部分,例如冷却塔、换热器、管道等,以提供稳定的冷却效果。
3. 节能性:冷却系统设计应考虑节能因素,减少能源的消耗。
可以采用优化的热交换方式,选择高效的冷却介质,以提高能源利用率,减少系统能耗。
4. 安全性:冷却系统应具备良好的安全性,确保设备运行过程中不会发生意外事故。
例如,需要采用符合国家规范和标准的冷却设备,配置完善的安全保护装置,并定期进行检修和维护。
二、冷却系统设计的关键要素冷却系统设计中有几个关键要素需要特别注意,以确保其满足相应的规范要求。
1. 冷却介质的选择:根据设备的散热要求和工艺需求,选择合适的冷却介质。
常见的冷却介质有水、乙二醇水溶液、油等。
需考虑介质的导热性能、价格、环保性等因素。
2. 冷却系统的布局:布局合理的冷却系统能够提供均匀的冷却效果,并节约空间。
根据设备的热特性和结构特点,合理设计冷却塔、冷却器、泵等装置的位置,并优化管道布局。
3. 冷却系统的控制:良好的冷却系统应具备自动控制的功能,能够根据设备的工作状态和环境温度,自动调节冷却效果。
可以采用传感器、温控阀门等设备,实现自动控制。
4. 冷却系统的维护:冷却系统的维护包括定期清洗、检查冷却介质的浓度、检查管道是否有堵塞等。
发动机冷却和中冷系统设计规范
发动机冷却和 xx 系统设计标准1.适用范围本设计标准适用于重型汽车冷却、中冷系统设计。
本设计标准规定了冷却、中冷系统设计中应遵循的通用原那么,和一般的设计方法。
2.设计原那么设计良好的冷却、中冷系统应该充分考虑以下几方面原那么:2.1 首先应优先考虑冷却、中冷系统的冷却能力问题。
其中所要求的冷却常数、中冷系统冷却效率及发动机进气温度等皆应一一满足。
2.2 冷却、中冷系统的安装方式及在整车中的合理位置也应充分考虑,不应有因为安装点位置及结构引起系统损坏或造成潜在易损坏因素。
系统在整车中的位置将影响其性能,应谨慎考虑。
2.3 冷却、中冷系统的管路应合理并力求简洁清晰。
防止因管路走向不合理而引起的系统内阻的增加和性能的下降。
2.4 冷却、中冷系统应有良好的保护装置,防止系统异常损坏和性能下降。
2.5 冷却、中冷系统的设计应考虑到装车工艺性要求和维修的接近性要求。
3.设计方法3.1 中冷器和散热器的设计、选择及安装:如果有足够的空间,冷却系统可以选用迎风面积大、芯子薄、散热效率高的热交换器。
在有风扇离合器控制风扇运作的情况下,应充分利用空间加大热交换器的尺寸,这样可以降低风扇的功耗和降低风扇工作噪声。
在无中冷器的情况下且无风扇离合器情况下,按经验推荐,发动机功率每 100 千瓦的散热器迎风面积应为0."3 ~0."375m2 之间。
由于排放法规要求,现代重型车上一般具有空空中冷系统。
所以在推荐迎风面积上稍作增加。
散热器散热面积〔冷侧〕的推荐值大概为:0."1 ~0."16 m2/kW( 发动机功率 )。
在中冷系统布置空间足够时,一般推荐采用一字流向的中冷器,反之那么为U 型流向的中冷器。
因为U 型的中冷器的内阻大于一字流的中冷器。
另外中冷器气室应尽量防止遮蔽散热器芯子太多面积。
中冷器和散热器的芯子可参考以往系统配置,因为主片模具价格较贵,如无必要,尽量采用同样的管型和散热带波高。
发动机进气系统设计规范
发动机进气系统设计规范1 目的与适用范围本规范规定了发动机进气系统的设计本标准适用于所有新开发的带发动机的车型。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB 13094-2017 《客车结构安全要求》GB 7258-2017 《机动车运行安全技术条件》JB/T 1094 《营运客车安全技术条件》3 定义本文件所指进气系统,其定义为搭载传统汽、柴油或者天然气发动机的发动机进气系统,包括混合动力车型的发动机进气系统。
发动机进气系统由空滤器、中冷器、进气管路等部件组成。
3.1 中冷器中冷器通常见于安装了涡轮增压的车上。
因为中冷器其实是涡轮增压的配套零件,其作用在于降低增压后的高温空气温度、以降低发动机的热负荷,提高进气量,进而增加发动机的功率。
对于增压发动机来说,中冷器是增压系统的重要组成部件。
无论是机械增压发动机还是涡轮增压发动机,都需要在增压器与进气歧管之间安装中冷器。
3.2 空气滤清器空气滤清器主要应用在气动机械、内燃机械等领域,作用是为这些机械设备提供清洁的空气,以防这些机械设备在工作中吸入带有杂质颗粒的空气而增加磨蚀和损坏的机率。
空气滤清器的主要组成部分是滤芯和机壳,其中滤芯是主要的过滤部分,承担着气体的过滤工作,而机壳是为滤芯提供必要保护的外部结构。
空气滤清器的工作要求是能承担高效率的空气滤清工作,不为空气流动增加过多阻力,并能长时间连续工作。
4 要求4.1 一般要求其功能是吸入发动机燃烧做功时需要的空气,保证发动机能或许充足的进气量和适宜的进气温度状态下工作,以获得较高的动力性、经济性及可靠性。
4.2 空滤器的选型发动机所匹配的空滤器应满足发动机配套参数表中的配套要求(如下表)。
4.3 空滤器的布置空滤器的安装尺寸及壳体形状取决于整车布置要求。
a.进口处的空气温度不应超过环境温度15℃,进气温度过高会降低发动机充气效率,进口方向迎风是必要的,迎风进气口会提高进气对于前置车一般原始进风口位于车头,对于后置车一般从侧围引风。
GBT 50050—95工业循环冷却水处理设计规范..
工业循环冷却水处理设计规范GB50050—95主编部门:中华人民共和国化学工业部批准部门:中华人民共和国建设部施行日期:1995年10月1日关于发布国家标准《工业循环冷却水处理设计规范》的通知建标[1995]132号根据国家计委计综[1992]490号文的要求,由化工部会同有关部门共同修订的《工业循环冷却水处理设计规范》已经有关部门会审,现批准《工业循环冷却水处理设计规范》GB50050—95为强制性国家标准,自一九九五年十月一日起施行,原《工业循环冷却水处理设计规范》GBJ50—83同时废止。
本标准由化工部负责管理,具体解释等工作由中国寰球化学工程公司负责,出版发行由建设部标准定额研究所负责组织。
中华人民共和国建设部一九九五年三月十六日1总则1.0.1 为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。
1.0.2 本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。
1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。
1.0.4 工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。
1.0.5 工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。
2术语、符号2.1 术语2.1.1 循环冷却水系统Recinrculating cooling water system以水作为冷却介质,由换热设备、冷却设备、水泵、管道及其它有关设备组成,并循环使用的一种给水系统。
2.1.2 敞开式系统Open system指循环冷却水与大气直接接触冷却的循环冷却水系统。
2.1.3 密闭式系统Closed system指循环冷却水不与大气直接接触冷却的循环冷却水系统。
2.1.4 药剂Chemicals循环冷却水处理过程中所使用的各种化学物质。
冷却系统试验规范
Q/YC 广西玉柴机器股份有限公司企业标准 Q/YC 0000-2001冷却系统工程规范(试行)2001-00-00发布 2001-00-00实施广西玉柴机器股份有限公司发布Q/YC 0000–2001冷却系统工程规范1 范围本规范规定了在发动机台架上测定发动机冷却系统(包括冷却风扇、散热器、冷却水泵、调温器及机油冷却器)性能的试验方法。
本规范适用于新设计或经重大改进的冷却系统性能试验。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T 18297 汽车发动机性能试验方法3 术语和定义3.1 散热器进风温度Ta--在发动机试验时,距散热器前端面中心1m处的空气温度。
3.2 液气温差Twa—在发动机达到热平衡时,发动机出水温度与进风温度的差值。
3.3 沸腾风温Tab--在发动机达到热平衡时,冷却液的沸点与液气温差的差值。
3.4 冷却系统液侧阻力Pw--发动机水套阻力和散热器及其发动机连接管内的阻力之和;3.5发动机水套阻力Pwe—在缸体进水口与缸盖出水管处的压力差值。
3.6散热器及其发动机连接软管内的阻力Pwr—在缸盖出水管处与水泵进水口处的压力差值。
4 试验目的验证冷却系统是否满足发动机性能(包括排放)的匹配要求。
5 试验项目--性能匹配试验验证冷却系统的性能是否满足设计时对水套散热量和沸腾风温等要求。
6 试验条件6.1 特殊试验要求6.1.1 试验前确认发动机性能参数符合其发动机的技术要求;6.1.2 被试冷却系统各部件的性能和尺寸应符合图样要求;6.1.3 使用强制顶开的方法,将调温器固定在全开的位置;6.1.4 试验用空气滤清器的性能应符合图样规定;6.1.6 按汽车冷却系统装置要求,将冷却系统部件安装在发电机试验台上。
6.2 一般试验条件按GB/T 18297 中第6章的规定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:冷却系统设计规范编制:万涛校对:审核:批准:厦门金龙联合汽车工业有限公司技术中心年月日一、概述要使发动机正常工作,必须使其得到适度的冷却,冷却不足或冷却过度均会带来严重的影响。
冷却不足,发动机过热,会破坏各运动机件原来正常的配合间隙,导致摩擦阻力增加,磨损加剧,特别是活塞环和气缸壁之间的运动,严重时会发生烧蚀、卡滞,使发动机停转或者发生“拉缸”现象,刮伤活塞或气缸,更严重时还会发生连杆打烂气缸体现象。
也会使润滑油变稀,运动机件间的油膜破坏,造成干摩擦或半干摩擦,加速磨损。
同时会降低发动机充气量,使发动机功率下降。
发动机过度冷却时,由于冷却水带走太多热量,使发动机功率下降、动力性能变差。
发动机过冷,气缸磨损加剧。
同时,由于过冷,混合气形成的液体,容易进入曲轴箱使润滑油变稀,影响润滑作用。
由此可见,使发动机工作温度保持在最适宜范围内的冷却系,是何其重要。
一般地,发动机最适宜的工作温度是其气缸盖处冷却水温度保持在80℃~90℃,此时发动机的动力性、经济性最好。
二、冷却系统设计的总体要求a)具有足够的冷却能力,保证在所有工况下发动机出水温度低于所要求的许用值(一般为55°);b) 冷却系统的设计应保证散热器上水室的温度不超过99 ℃。
c) 采用105 kPa压力盖,在不连续工况运行下,最高水温允许到110 ℃,但一年中水温达到和超过99 ℃的时间不应超过50 h。
d) 冷却液的膨胀容积应等于整个系统冷却液容量的6 %。
e) 冷却系统必须用不低于19 L/min的速度加注冷却液,直至达到应有的冷却液平面,以保证所有工作条件下气缸体水套内冷却液能保持正常的压力。
三、冷却系统的构成液体冷却系主要由以下部件组成:散热器、风扇、风扇护风罩、皮带轮、风扇离合器、水泵、节温器、副水箱、发动机进水管、发动机出水管、散热器除气管、发动机除气管等。
四、主要部件的设计选型1、散热器散热器的散热量(Q)和散热器散热系数(K)、散热器散热面积(A)及气液温差(⊿T)有关: Q=K·A·⊿T其中:Q---散热器的散热量(kcal/h)K---散热器散热系数(kcal/m2•h•ºC)A---散热器散热面积(m2)⊿T---气液温差:散热器进水温度和散热器进风温度之差(ºC)散热器的散热系数是代表散热效率的重要指标,主要影响因素如下:①冷却管内冷却液的流速---据试验结果,冷却液流速由0.2m/s提高到0.8m/s,散热效率有较大提高,但超过0.8m/s后,效果不大;②通过散热器芯部的空气流量---空气的导热系数很小,因此散热器的散热能力主要取决于空气的流动,通过散热器芯部的风量起了决定性作用;③散热器的材料和管带的厚度---国内散热器的材料目前基本上已标准化;④制造质量---主要是冷却管和散热带之间的贴合性和焊接质量;1.1 散热器是冷却系统中的重要部件,其主要作用是对发动机进行强制冷却,以保证发动机能始终处于最适宜的温度状态下工作,以获得最高的动力性、经济性和可靠性。
1.2 发动机最适宜的冷却液温度为85 ℃~95 ℃,测量位置在散热器的上水室。
1.3 散热器和风扇组合匹配效率是当散热器芯子未被气流扫过的面积最小时为最高,因此,最好采用接近正方形的散热器芯子。
1.4 散热器的总散热面积、芯子的迎风面积、结构形状和结构尺寸要通过发动机冷却系统所需最大散热量来计算确定,并应通过试验评价来最终确定。
但一般可按散热器芯子的迎风面积来估算:0.31~0.38m2/100kW,载货车和前置客车通风良好时,可取下限值;后置客车通风欠佳时可取上限值;城市公交车长期低速运转可偏下限值;自卸车、牵引车、山区长途客运车等经常大负荷运行的车辆可偏上限值。
1.5 散热器进风口的实际面积不得小于散热器芯子迎风面积的80 %,以防止散热能力下降。
后置客车散热器的进风通道要与发动机舱密封隔离,散热器周围要安装密封橡胶,以防止发动机舱的热风回流到进风通道,影响散热性能;进风通道的面积应不小于散热器芯子的迎风面积。
1.6 在灰尘多的脏环境下使用时,应选用直排或斜排冷却管,且管子间隔要大,以避免散热器芯子堵塞,影响散热效果。
1.7 散热器安装时,紧固必须牢靠,与车架的连接必须采用减振垫,采用减振垫的目的是为了隔离和吸收来自车架的部份振动和冲击,使散热器在车辆运行中,不致发生振裂、扭曲等非正常损坏,延长散热器寿命。
1.8 因为散热器与车架之间安装有隔振橡胶,因而形成了绝缘状态,通过冷却液介质,在散热器与车架之间产生了电位差,在冷却液中产生了微弱电流,使冷却系统的零部件发生电腐蚀。
因此,一定要采取散热器负极接地等措施,消除电位差,防止电腐蚀。
2 冷却风扇风扇选型主要考虑风扇的风量、噪声和功率消耗。
风扇风量(G)与风扇直径(D)、风扇转速(n)之间存在如下比例关系:G=K1••••••••n•D3------其中K1为比例系数而风扇噪声的声压级(SPL)和风扇直径(D)、风扇转速(n)之间存在如下比例关系:SPL= K2••••••••n3•D2------其中K2为比例系数根据上述比例关系可得:SPL= K3••••••••Q••••••••n2/D------其中K3为比例系数2.1 冷却风扇首先要满足冷却系统对风量和压头的需要;同时要消耗功率小、风扇效率高,且有较宽的高效率区;风扇噪声小,重量轻,成本低等。
目前普遍采用的有金属风扇和塑料风扇两种,风扇叶片应具有足够的强度,以防车辆涉水时,折断风叶;在寒冷地区使用,推荐选用带硅油离合器的风扇。
2.2 确定风扇直径与转速时,要注意风扇叶尖的圆周速度不大于91 m/s,后置客车不大于100 m/s,否则对风扇噪声和强度都不利。
风扇直径尽可能与散热器芯子迎风尺寸基本相同,以便风扇扫过的面积尽可能大地覆盖散热器芯子的迎风面积,使气流全面地通过散热器。
2.3 为考虑冷却系整体阻力,通过散热器芯部的压差不应大于所选风扇特性曲线中最大工作压力的70%;风扇的风压、风速等设计应按发动机在标定工况下和在最大扭矩工况下冷却水所需最大散热量来计算确定,并经整车冷却系统的试验评价来最终确定。
2.4 为充分利用车辆行驶时的迎风速度,车用发动机风扇都采用吸风式;风扇前端面至散热器芯子的距离应大于50 mm,有利于气流均匀通过散热器芯部整个面积,尤其是散热器的四角;冷却风扇后端面至发动机前端面的距离应大于100 mm,至其它零部件的距离应大于20 mm,以最大限度地降低风扇噪声及叶片振动,并改善发动机的气流状况,满足发动机的冷却需要。
2.5 如果风扇装在水泵皮带轮上,一般不允许加装风扇垫块,如果总布置设计必须加风扇垫块时,如果风扇装在曲轴前端,风扇与连接法兰之间必须装有橡胶减振器,用于吸收曲轴的扭振,防止叶片扭振断裂,同时避免影响曲轴系平衡;后置客车风扇一般由曲轴皮带轮通过惰轮驱动,风扇驱动皮带和风扇皮带必须分别设置皮带张力调整机构。
曲轴皮带轮和惰轮,惰轮和风扇皮带轮的轮槽必须分别在一个平面上,皮带和皮带轮的交差角应控制在0.5°以内,必须先调整好后之后再安装皮带,否则会损坏皮带、皮带轮或轴承,甚至会发生皮带翻转或脱落。
2.6 安装风扇时,不可使用弹簧垫圈,因为弹簧垫圈能使风扇托架产生预紧力,影响强度。
3 风扇护风罩3.1 风扇护风罩是为了提高风扇的冷却效率,使通过散热器芯部的气流均匀分布,并减少发动机舱内热空气回流而设计的,因此,设计风扇护风罩时应注意技术的合理性。
3.2 对于前置发动机,风扇护风罩的设计分整体式和分开式两种;对于后置式发动机,一般都采用整体式。
分开式护风罩两部分之间有相对运动,必须用帆布圈柔性密封连接。
3.3 护风罩与风扇叶尖的径向间隙应尽可能小,以保证风扇冷却效率。
当采用分开式护风罩时,风扇与护风罩无相对运行,其径向间隙应不超过风扇直径的1.5 %,或者5 mm ~10 mm;当采用整体式护风罩时,风扇与护风罩有相对运动,其径向间隙也不应超过风扇直径的2.5 %,或者15 mm ~20 mm。
3.4 应注意护风罩结构设计的合理性,不应有阻挡风扇气流的死角。
3.5 风扇伸入护风罩的轴向位置,与进气效率有很大关系,对于吸风式风扇,风扇叶片的投影宽度应伸入护风罩内2/3为宜。
3.6 在安装护风罩时必须注意,护风罩与散热器之间不得有缝隙,应采用橡胶或泡沫塑料垫加以密封,以保证冷却效率不降低。
3.7 驾驶员应经常检查风扇与护风罩之间的径向间隙,以确保发动机风扇与散热器发生相对位移时,风扇与护风罩之间不产生碰触。
4 压力盖4.1 为满足冷却系最高工作温度为99 ℃的要求,冷却系必须采用压力盖,以保证密封式冷却系的冷却液能保持一定的压力,从而提高冷却液的沸腾温度,可使发动机在高温条件下不产生沸腾,保证发动机工作安全;可使冷却液温度与环境大气温度之间液——气温差变大,从而提高散热器的散热能力;可以减轻或消除冷却液循环中的气泡和气阻现象,保证冷却液实际循环流量的稳定,让足够的冷却液把热量从发动机内带走;可以减缓或消除发动机水套内高温壁面上的膜态换热,改善热传导质量,使受热表面得到良好的冷却。
4.2 在无膨胀水箱的冷却系中,压力盖装在散热器上水室的加注口上;在有膨胀水箱的冷却系中,压力盖装在膨胀水箱的加注口上。
压力盖开启压力一般有50kPa、70kPa、90kPa、105kPa四种,应根据使用地区海拔高度选定,以补偿由于海拔高度上升引起的大气太力下降。
推荐压力盖的开启压力为50 kPa ~90 kPa,在高原地区使用时为105 kPa。
5 膨胀水箱5.1 当冷却系采用低位密封式散热器时,必须增设高位膨胀水箱,它的主要功能是给冷却液提供一个膨胀空间,及时去除冷却液中积滞的空气以及发动机高温下产生的水蒸汽,以便更有效地利用散热器的散热功能,提高冷却效率。
5.2 膨胀水箱的总容积应包含占冷却系统总容积6%的膨胀容积、占冷却系统总容积10%的储备容积以及必备的残留容积。
储备容积是为了确保冷却系由于微量不能觉察的泄漏和冷却液蒸发后仍能保持水套内正常的水压,而能及时补充冷却液,延长补液周期;必备的残留容积是为了安全起见,防止冷却液在循环中吸入空气而设置的,要求冷却液的最低液面至膨胀水箱的底面距离不小于35 mm,所以,必备的残留容积应不小于35 mm×膨胀水箱底平面面积。
计算冷却系总容积时,应注意将带有的水空中冷器和取暖器的容积计算在内。
5.3 膨胀水箱应设置最高液面和最低液面标志,最高液面的上方应有不小于规定的膨胀容积,该容积内不可以加注冷却液;最低液面与最高液面之间的容积应不小于规定的储备容积;膨胀水箱还应设置最低液面的液位传感器,以便提醒驾驶员及时添加冷却液。