诱导公式

合集下载

高一数学诱导公式汇总

高一数学诱导公式汇总

高一数学诱导公式汇总学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。

下面是店铺为大家整理的高一数学诱导公式大全,希望对大家有所帮助!高一数学诱导公式总结诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα诱导公式公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα诱导公式公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全1.正弦函数诱导公式:正弦函数的诱导公式是通过余弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:sin(-A) = -sinAsin(A ± B) = sinA cosB ± cosA sinBsin2A = 2sinAcosAsin3A = 3sinA - 4sin^3A2.余弦函数诱导公式:余弦函数的诱导公式是通过正弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:cos(-A) = cosAcos(A ± B) = cosA cosB - sinA sinBcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Acos3A = 4cos^3A - 3cosA3.正切函数诱导公式:正切函数的诱导公式是通过正弦函数和余弦函数诱导公式得到的。

tanA = sinA / cosA根据正弦函数和余弦函数诱导公式,我们可以得到以下诱导公式:tan(-A) = -tanAta n(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)tan2A = 2tanA / (1 - tan^2A)tan3A = (3tanA - tan^3A) / (1 - 3tan^2A)4.余切函数诱导公式:余切函数的诱导公式是通过正切函数的诱导公式得到的。

cotA = 1 / tanA根据正切函数的诱导公式,我们可以得到以下诱导公式:cot(-A) = -cotAcot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)cot2A = (1 - tan^2A) / 2tanAcot3A = (3cotA - cot^3A) / (cot^2A - 3)5.正割函数诱导公式:正割函数的诱导公式是通过余弦函数的诱导公式得到的。

诱导公式总结大全

诱导公式总结大全

诱导公式1诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

常用的诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀奇变偶不变,符号看象限。

“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

诱导公式总结大全

诱导公式总结大全
上下同除以cosA3(a,得:
tan3am(3tan—tan八3(a))/(1-3ta门八2(a))
sin3 om sin(2(+a msin2acos+cos2asina
m2sinacosA2(+)1—2sin八2(a))sina
m2sina—2si门八3(a+sin—2sin八3(a)
=3sina—4si门八3(a)
tan( a+ B)=(tan+tanB)/(1—tana •tanB)
tan( a— B) =(tan—tanB)/(1+tana •tanB)
二倍角的正弦、余弦和正切公式
sin2a2sinacosa
cos2aCOSA2(a—SinA2(a¥2COSA2(a—1a1—2sinA2(a)
tan2a2tana/(1—tan八2(a))
变”是指正弦变余弦,正切变余切。(反之亦然成立)符号看象限”的含
义是:把角a看做锐角,不考虑a角所在象限,看n•(n/2)是第几象限角, 从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都
是+”第二象限内只有正弦是+”其余全部是第三象限内只有
sin—sin#2cos((r B)/2)•sin((帥/2)
cosa+cosB=2cos((rB)/2)•cos— B)/2) cosa—cosB=—2sin((+B)/2)•sin— B)/2)
三角函数的积化和差公式
sina・cosBsin(+ B +sin(— B)]
cosa・si牛Bsin(+ B —sin(— B)]

高考导数诱导公式

高考导数诱导公式
常用的诱导公式有以下几组:
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z)
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”;上述记忆口诀,一全正,二正弦,三内切,四余弦
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
还有一种按照函数类型分象限定正负:
函数类型 第一象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:
对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。

数学诱导公式

数学诱导公式
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
cos(a-b)=cosa*cosb+sina*sinb ②
∴ ① + ② 得:
cos(a+b)+cos(a-b)=2cosa*cosb
∴ cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,若 ① - ② 得:
sina*sinb=-(cos(a+b)-cos(a-b))/2
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα*tanβ)
二倍角的正弦、余弦和正切公式(升幂缩角公式):
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
(以上k∈Z)
同角三角函数的基本关系式:
倒数关系:
tanα *cotα=1 sinα *cscα=1 cosα *secα=1
商的关系:
sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα

诱导公式总结

诱导公式总结

诱导公式总结引言诱导公式,又称为递推公式,是数学中一种常见的求解问题的方法。

通过不断推导和迭代,诱导公式能够将一个复杂的问题化简为一系列简单的步骤,从而找到问题的解或者规律。

在数学、物理、计算机科学等领域中都具有广泛的应用。

本文将对诱导公式进行总结和归纳,介绍其基本定义、推导过程和应用案例。

基本定义诱导公式是一种基于递归方法的数学公式,通过依次计算前一项的结果,以推导出后一项的表达式。

通常情况下,诱导公式通过定义初始项和递推关系来确定。

假设一个序列的首项为a,递推关系为f(n),那么诱导公式的一般形式可以表示为:a(n)=f(a(n−1))其中,a(n)表示序列的第n项,a(n-1)表示第n项的前一项。

推导过程推导诱导公式的过程步骤如下:1.确定初始项:首先需要确定序列的首项,即a(1)。

2.寻找递推关系:通过观察序列的规律,寻找前一项和后一项之间的关系,得到递推关系f(n)。

3.使用递推关系计算后一项:利用递推关系和前一项,计算出后一项的表达式a(n)。

4.重复步骤3直到得到所求项。

应用案例1. 菲波那契数列菲波那契数列是最经典的诱导公式应用案例之一。

其定义如下:F(n)=F(n−1)+F(n−2)其中,F(n)表示菲波那契数列的第n项,F(n-1)表示第n项的前一项,F(n-2)表示第n项前两项的和。

通过这个递推关系,可以计算出菲波那契数列的任意项。

例如,初始项为F(1)=1,F(2)=1,根据递推关系,可以依次计算出F(3)=2,F(4)=3,F(5)=5,依此类推。

菲波那契数列在自然界中有许多应用,例如兔子繁殖、植物分枝等领域。

2. 幂等运算在计算机科学中,幂等运算是另一个重要的诱导公式应用。

幂等运算定义如下:f(n)=f(n−1)∗a其中,f(n)表示幂等运算的第n项,f(n-1)表示第n项前一项,a是一个常数。

幂等运算常见于计算机网络中,用于传输可靠性和数据一致性的保证。

通过重复应用这个递推关系,可以保证数据的正确性和完整性。

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)三角函数的8个诱导公式1. 正弦函数的诱导公式sin(-x) = -sin(x)这个公式表明,正弦函数的值在x轴上是关于原点对称的。

也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。

2. 余弦函数的诱导公式cos(-x) = cos(x)这个公式表明,余弦函数的值在y轴上是关于原点对称的。

也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。

这个公式同样也可以帮助我们计算负角的余弦值。

3. 正切函数的诱导公式tan(-x) = -tan(x)这个公式表明,正切函数的值在原点上是关于y轴对称的。

也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。

这个公式在计算负角的正切值时非常有用。

4. 余切函数的诱导公式cot(-x) = -cot(x)这个公式表明,余切函数的值在原点上是关于x轴对称的。

也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。

这个公式同样也可以帮助我们计算负角的余切值。

5. 正弦函数的平方的诱导公式sin^2(x) + cos^2(x) = 1这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。

6. 正切函数的平方的诱导公式tan^2(x) + 1 = sec^2(x)这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。

这个公式在计算三角形中的未知边长时非常有用。

7. 余切函数的平方的诱导公式cot^2(x) + 1 = csc^2(x)这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。

这个公式同样也可以帮助我们计算三角形中的未知边长。

8. 正弦函数和余弦函数的诱导公式sin(x + π/2) = cos(x)cos(x + π/2) = -sin(x)这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。

诱导公式

诱导公式
任意负角的 三角函数
用公式一或三
任意正角的 三角函数
用公式一
锐角三角函 数
用公式二或四
0—2 π 的角的 三角函数
练习:求下列各式的值: 练习:求下列各式的值:
29π 29π 25π 1. sin + co s ( − ) + ta n ( − ) + tan + tan + tan = 5 5 5 5
π
诱导公式 五: π sin − α = cos α
2 π cos − α = sin α 2
函数名变, 函数名变, 符号看象限
(将α看成锐角) 看成锐角)
诱导公式 六: π sin + α = cos α
2 π cos + α = − sin α 2
诱导公式 一:
sin(α + 2kπ ) = sin α ( k ∈ Z ), cos(α + 2kπ ) = cos α ( k ∈ Z ), tan(α + 2kπ ) = tan α ( k ∈ Z ).
函数名不变, 函数名不变, 符号看象限
(将α看成锐角) 看成锐角)
诱导公式 二: sin(π + α ) = − sin α , cos(π + α ) = − cos α , tan(π + α ) = tan α . 诱导公式 三: sin( −α ) = − sin α , cos( −α ) = cos α , tan( −α ) = − tan α .
公式一:把任意角化为 的角; 公式一:把任意角化为0—2π 的角; 公式二: 的角化为0— π 的角; 的角; 公式二:把 π —2 π 的角化为 公式三:把负角化为正角; 公式三:把负角化为正角; 公式四: 钝角化为锐角。 公式四:把 钝角化为锐角。

诱导公式

诱导公式

三角函数的诱导公式1. 诱导公式一sin(360)sin ,cos(360)cos ,tan(360)tan ,k k k k Zαααααα︒︒︒⋅+=⋅+=⋅+=∈对于任何一个)0,360⎡⎣内的角β,下列有且只有一种成立(其中α为锐角):研究180,180,360αααα-+-与的同名三角函数的关系2. 诱导公式二sin(180)α+= sin α-;cos(180)α+=- cos α.sin(180)sin tan(180)tan cos(180)cos αααααα+-+===-+-.3. 诱导公式三sin()sin αα-=-; cos()cos αα-=. tan()tan αα-=-.4. 诱导公式四sin(180)sin αα-= ; cos(180)cos αα-=- . tan(180)tan αα-=-5. 诱导公式五sin(360)sin αα-=- ; cos(360)cos αα-= . tan(360)tan αα-=-6. 公式六:ααπcos )2sin(=- ααπsin )2cos(=-ααπcos )2sin(=+ ααπsin )2cos(-=+例1.求下列三角函数值219sin120cos135tancos()34ππ-sin960 ; 43cos()6π-.例2.(1)化简23cot cos()sin (3)tan cos ()απαπααπα⋅+⋅+⋅--(2)sin120cos330sin(690)cos(660)tan675cot 765⋅+--++)))),0,90180,90,180180,180,270360,270,360αβαββαβαβ⎧⎡∈⎣⎪⎪⎡-∈⎣⎪=⎨⎡+∈⎪⎣⎪⎡-∈⎪⎣⎩当当当当例3.已知:tan 3α=,求2cos()3sin()4cos()sin(2)παπααπα--+-+-的值。

例4.已知3sin 5α=-, α是第四象限角,求tan [cos(3)sin(5)]απαπα--+1. (2009全国I 文,1)sin 585°的值为 ( )A.C.D. 2. (2009北京文)若4sin ,tan 05θθ=->,则cos θ= . 3. (07湖北文)tan 690︒=.A 3-.B 3.C .D 4.(07全国Ⅱ文)cos330︒=.A 12 .B 12- .C 2 .D 2- 5. (07全国Ⅰ)α是第四象限角,5tan 12α=-,则sin α= .A 15 .B 15- .C 513 .D 513-三角函数图象及性质1、正弦函数图象的几何作法(1)在 x 轴上任取一点 O 1 ,以 O l 为圆心作单位圆; (2)从这个圆与 x 轴交点 A 起把圆分成 12 等份;(3)过圆上各点作x 轴的垂线,可得对应于0、6π、3π、 、2π的正弦线;(4)相应的再把 x 轴上从原点 O 开始,把这0~2π这段分成 12 等份; (5)把角的正弦线平移,使正弦线的起点与 x 轴上对应的点重合; (6)用光滑曲线把这些正弦线的终点连结起来。

12个诱导公式

12个诱导公式

12个诱导公式
诱导公式是三角函数中一个重要的部分,用于将任意角的三角函数转化为已知的锐角三角函数。

以下是12个常用的诱导公式:
1. 公式一:sin(π + α) = -sinα
2. 公式二:cos(π + α) = -cosα
3. 公式三:tan(π + α) = tanα
4. 公式四:sin(π/2 + α) = cosα
5. 公式五:cos(π/2 + α) = -sinα
6. 公式六:tan(π/2 + α) = -cotα
7. 公式七:sin(π - α) = sinα
8. 公式八:cos(π - α) = -cosα
9. 公式九:tan(π - α) = -tanα
10. 公式十:sin(3π/2 - α) = -cosα
11. 公式十一:cos(3π/2 - α) = sinα
12. 公式十二:tan(3π/2 - α) = -cotα
这些公式可以通过三角函数的周期性和对称性进行推导,是解决三角函数问题的重要工具。

在解题时,可以根据需要选择合适的诱导公式进行转化。

例如,可以将角度转换为锐角,或将正弦、余弦、正切函数进行互化。

除了这12个诱导公式外,还有一些其他常用的三角函数公式,如两角和与差公式、倍角公式等。

这些公式可以进一步扩展和深化三角函数的知识体系,为解决复杂的三角函数问题提供更多工具。

高中诱导公式

高中诱导公式

高中诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

常用的诱导公式有以下六组

常用的诱导公式有以下六组

常用的诱导公式有以下六组公式一α为任意角,终边相同的角的同一三角函数的值相等。

设α为任意锐角,弧度制下的角的表示:sin (2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan (2kπ+α)=tanα(k∈Z)cot(α+2kπ)=cotα (k∈Z)sec(2kπ+α)=secα (k∈Z)csc(2kπ+α)=cscα (k∈Z)公式二π+α的三角函数值与α的三角函数值之间的关系。

设α为任意角,弧度制下的角的表示:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 角度制下的角的表示:sin(180°+α)=-sinα cos(180°+α)=-cosαtan(180°+α)=tanα cot(180°+α)=cotαsec(180°+α)=-secα csc(180°+α)=-cscα公式三任意角α与﹣α的三角函数值之间的关系sin(-α)=﹣sin cos(-α)=cosαtan(-α)=-tanαcot(-α)==-cotαsec(-α)=secα csc (-α)=-cscα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系。

弧度制下的角的表示:sin(π-α)=sinα cos(π-α)=-cosαtan(π-α)=-tanα cot(π-α)=-cotαsec(π-α)=-secα csc(π-α)=cscα角度制下的角的表示:sin(180°-α)=sinα cos(180°-α)=-cosαtan(180°-α)=-tanα cot(180°-α)=-cotαsec(180°-α)=-secα csc(180°-α)=cscα公式五利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系。

诱导公式大全

诱导公式大全

诱导公式大全诱导公式是数学中的一个重要概念,它可以帮助我们简化复杂的表达式,解决各种数学问题。

在本文中,我们将为大家详细介绍各种常见的诱导公式,希望能够帮助大家更好地理解和运用这些公式。

一、三角函数的诱导公式。

1. sin(A ± B) = sinAcosB ± cosAsinB。

2. cos(A ± B) = cosAcosB ∓ sinAsinB。

3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)。

这些诱导公式可以帮助我们简化三角函数的加减运算,特别是在解决三角函数的复合运算问题时,能够起到很大的作用。

二、指数函数的诱导公式。

1. e^x ± e^(-x) = 2coshx。

2. e^x ∓ e^(-x) = 2sinhx。

3. (e^x + e^(-x)) / 2 = coshx。

4. (e^x e^(-x)) / 2 = sinhx。

这些诱导公式是指数函数的一些常见运算公式,通过这些公式,我们可以将指数函数的运算转化为双曲函数的运算,从而简化计算过程。

三、对数函数的诱导公式。

1. ln(xy) = ln x + ln y。

2. ln(x/y) = ln x ln y。

3. ln(x^n) = nlnx。

对数函数的诱导公式主要是针对对数的乘除运算和指数的换底运算,这些公式在解决对数函数的复合运算问题时非常有用。

四、微积分中的诱导公式。

1. (x^n)' = nx^(n-1)。

2. (e^x)' = e^x。

3. (lnx)' = 1/x。

4. (sinx)' = cosx。

5. (cosx)' = -sinx。

6. (tanx)' = sec^2x。

这些微积分中的诱导公式是我们在求导过程中经常会用到的公式,通过这些公式,我们可以快速求得各种函数的导数,解决各种微积分问题。

高考数学诱导公式全集

高考数学诱导公式全集

常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。

数学-诱导公式

数学-诱导公式

常用的诱导公式有以下六组:公式一终边相同的角的同一三角函数的值相等。

设α为任意锐角,弧度制下的角的表示:角度制下的角的表示:sin (α+k·360°)=sinα(k∈Z).cos(α+k·360°)=cosα(k∈Z).tan (α+k·360°)=tanα(k∈Z).cot(α+k·360°)=cotα (k∈Z).sec(α+k·360°)=secα (k∈Z).csc(α+k·360°)=cscα (k∈Z).公式二π+α的三角函数值与α的三角函数值之间的关系。

设α为任意角,弧度制下的角的表示:sin(π+α)=-sinα.cos(π+α)=-cosα.tan(π+α)=tanα.cot(π+α)=cotα.sec(π+α)=-secα.csc(π+α)=-cscα.角度制下的角的表示:sin(180°+α)=-sinα.cos(180°+α)=-cosα.tan(180°+α)=tanα.cot(180°+α)=cotα.sec(180°+α)=-secα.csc(180°+α)=-cscα.公式三任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα.cos(-α)=cosα.tan(-α)=-tanα.cot(-α)=-cotα.sec(-α)=secα.csc (-α)=-cscα.公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(π-α)=sinα.cos(π-α)=-cosα.tan(π-α)=-tanα.cot(π-α)=-cotα.sec(π-α)=-secα.角度制下的角的表示:sin(180°-α)=sinα.cos(180°-α)=-cosα.tan(180°-α)=-tanα.cot(180°-α)=-cotα.sec(180°-α)=-secα.csc(180°-α)=cscα.公式五利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(2π-α)=-sinα.cos(2π-α)=cosα.tan(2π-α)=-tanα.cot(2π-α)=-cotα.sec(2π-α)=secα.csc(2π-α)=-cscα.角度制下的角的表示:sin(360°-α)=-sinα.cos(360°-α)=cosα.tan(360°-α)=-tanα.cot(360°-α)=-cotα.sec(360°-α)=secα.csc(360°-α)=-cscα.公式六π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)⒈π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2+α)=cosα.cos(π/2+α)=—sinα.tan(π/2+α)=-c otα.cot(π/2+α)=-tanα.sec(π/2+α)=-cscα.csc(π/2+α)=secα.角度制下的角的表示:sin(90°+α)=cosα.cos(90°+α)=-sinα.tan(90°+α)=-cotα.cot(90°+α)=-tanα.sec(90°+α)=-cscα.csc(90°+α)=secα.⒉π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2-α)=cosα.tan(π/2-α)=cotα.cot(π/2-α)=tanα.sec(π/2-α)=cscα.csc(π/2-α)=secα.角度制下的角的表示:sin (90°-α)=cosα.cos (90°-α)=sinα.tan (90°-α)=cotα.cot (90°-α)=tanα.sec (90°-α)=cscα.csc (90°-α)=secα.⒊3π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα.tan(3π/2+α)=-cotα.cot(3π/2+α)=-tanα.sec(3π/2+α)=cscα.csc(3π/2+α)=-secα.角度制下的角的表示:sin(270°+α)=-cosα.cos(270°+α)=sinα.tan(270°+α)=-cotα.cot(270°+α)=-tanα.sec(270°+α)=cscα.csc(270°+α)=-secα.⒋3π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα.tan(3π/2-α)=cotα.cot(3π/2-α)=tanα.sec(3π/2-α)=-cscα.csc(3π/2-α)=-secα.角度制下的角的表示:sin(270°-α)=-cosα.cos(270°-α)=-sinα.tan(270°-α)=cotα.cot(270°-α)=tanα.sec(270°-α)=-cscα.csc(270°-α)=-secα.记忆规律公式一到公式五函数名未改变,公式六函数名发生改变。

诱导公式大全

诱导公式大全

诱导公式大全在数学学科中,诱导公式是一种非常重要的工具,它能够帮助我们简化复杂的数学问题,使得计算更加高效和便捷。

本文将为大家介绍一些常见的诱导公式,希望能够对大家的学习和工作有所帮助。

一、三角函数的诱导公式。

1. 余弦函数的诱导公式。

余弦函数的诱导公式是,$\sin'(x) = \cos(x)$。

这个公式可以帮助我们在求解余弦函数的导数时更加方便快捷。

2. 正弦函数的诱导公式。

正弦函数的诱导公式是,$\cos'(x) = -\sin(x)$。

利用这个公式,我们可以更加轻松地求解正弦函数的导数。

3. 切线函数的诱导公式。

切线函数的诱导公式是,$\tan'(x) = \sec^2(x)$。

这个公式在求解切线函数的导数时非常有用。

二、指数函数的诱导公式。

1. 指数函数的诱导公式。

指数函数的诱导公式是,$(a^x)' = a^x \ln(a)$。

通过这个公式,我们可以更加简单地求解指数函数的导数。

2. 对数函数的诱导公式。

对数函数的诱导公式是,$(\log_a(x))' = \frac{1}{x \ln(a)}$。

这个公式可以帮助我们求解对数函数的导数,提高计算效率。

三、常见函数的诱导公式。

1. 幂函数的诱导公式。

幂函数的诱导公式是,$(x^n)' = nx^{n-1}$。

这个公式可以帮助我们求解幂函数的导数,简化计算过程。

2. 三角函数复合函数的诱导公式。

三角函数复合函数的诱导公式是,$(f(g(x)))' = f'(g(x)) \cdot g'(x)$。

通过这个公式,我们可以更加方便地求解三角函数复合函数的导数。

四、其他常用诱导公式。

1. 反常函数的诱导公式。

反常函数的诱导公式是,$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$。

这个公式在求解反常函数的导数时非常有用。

2. 参数方程的诱导公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、对于还无法解决的,可否借助前面学习的知识求解?
3、这些角与锐角 之间有何关联?
7 6
推广: ① 与
66
30
② 与
第1页共4页
5 6
③ 与
自主探究:
(1)以小组为单位,在图中作出 (图 1), (图 2), (图 3)的终边
并写出 P2 的坐标,思考 P1 与 P2 坐标的关系 .
A.1 B.2 C.0 D.2sin2α
(B 组) 1.若 sin (π+α)=-12,则 cos α=________.
七、课后作业: 书第 24 页 13、14 两题。
八、板书设计 课题:1.3 三角函数的诱导公式
一、公式推导:一
,二 ,三 ,四余弦
2.终边相同的角同一三角函数值相等(诱导公式一).
sin( k 2 )
cos( k 2 )
tan( k 2 )
(k z)
二、问题情景:
你能填好下面的表吗?
390 0
7
6
6
oA x
300
5
6
sin
cos
tan
三、 学生活动:
小组讨论:
1、找出我们可以解决的和目前无法解决的.
三角函数的诱导公式(第一课时)
教学目标: 1、知识目标:理解四组诱导公式及其探究思路,学会利用四组诱导公式求解任意角的三角函数值, 会进行简单的化简与证明。 2、能力目标:培养学生数学探究与交流的能力,培养学生直觉猜想与抽象概括的能力。 3、情感目标与价值观:通过不断设置悬念、疑问,来引起学生的困惑与惊讶,激发学生的好奇心和 求知欲,通过小组的合作与交流,来增强学生学习数学的自信心。
五、回顾与反思: 1、本节课学习了哪几组公式? 2、如何记忆这几组公式? 3、任意给出一个角,如何去求解它的三角函数值?步骤是什么?
六、当堂检测
(A 组)
第3页共4页
1.计算 sin-π3的值为(
).
A.-12
1 B.2
3 C. 2
D.-
3 2
2.计算 sin2(π-α)-cos (π+α)cos (-α)+1 的值是( ).
四、 数学应用: 例 1、利用公式求下列三角函数值
(1) cos225
(3)sin(16 ) 3
(2)sin 11 3
(4) cos(2040)
教师指导:做题之前,仔细想想,遇到不同的角,该选择什么样的公式?使用顺序又是如何?
总结:一般我们在求解任意角的三角函数值的时候,一般遵循的规则为:“负变正,大化小,诱导公式到 锐角。”
巩固练习一、求值
(1) cos11 (2) 4
tan(1560 )
例 2 化简
cos180 sin 360 sin 180 cos 180
教师指导:含字母问题,如何处理?注意和例 1 的联系。
2 cos( ) 3sin( ) 巩固练习二、已知 tan 3 ,试化简求值 4 cos( ) sin(2 )
tan()
第三组: 诱导公式四
sin( )
(3)完成前面表格
cos( )
tan( )
观察这三组诱导公式,然后讨论并回答下列问题: 1、 公式两边函数名具有什么特点? 2、 每个公式中符号特点是什么?如何确定符号的?
第2页共4页
3、 如何记忆这几组公式?
小结:函数的名称不变,符号判断是把 “看作”锐角时的符号。口诀:“函数名不变,符号看象限。”
教学重点:理解四组诱导公式 利用四组诱导公式求任意角的三角函数值和简单的化简与证明。
教学难点:四组诱导公式的推导过程 理解确定符号的方法
教学方法:启发式结合讨论式教学方法,结合多媒体课件演示 教学工具:多媒体电脑,投影仪
教学过程:
一、复习回顾
y
1.三角函数的定义:
P(x,y)
正弦 sinα= 余弦 cosα= 正切 tanα=
(2)完成下列填空,同组内检查.
回答问题:两条终边什么位置关系?
y
P1 (x, y)
A
o
x
图①
两点坐标什么数量关系?
y
o
三角函数值什么关系?
AP1 (x, y)
x
图②
y
P1 (x, y)
A
o
x
图③ 第一组: 诱导公式二:
sin( )
第二组: 诱导公式三:
sin()
cos( )
cos()
tan( )
相关文档
最新文档