高中数学必备知识点大全

合集下载

高中数学知识点大全总结

高中数学知识点大全总结

高中数学知识点大全总结高中数学是一门重要的学科,它是其他学科的基础,也是培养学生逻辑思维能力和解决问题能力的重要手段。

在高中数学中,有许多重要的知识点需要掌握,下面将对高中数学的重要知识点进行总结。

一、初等数论1. 自然数的性质及其运算法则2. 整数的性质及其运算法则3. 有理数的性质及其运算法则4. 整除与最大公因数5. 求解同余方程6. 等比数列的性质及公式二、代数学1. 多项式的运算与恒等式2. 二次函数与一般二次方程3. 四种基本函数及其性质(线性函数、二次函数、指数函数、对数函数)4. 高次方程的求解方法(韦达定理、有理根定理、根的分布情况)三、平面几何1. 直角三角形和斜角三角函数2. 圆的性质及其相关定理(切线定理、弦定理、正弦定理、余弦定理)3. 三角函数的图像与性质4. 平面向量的定义及其运算法则(向量的模、向量的共线性、向量的夹角、向量的垂直)5. 平面几何的证明方法(巴比内斯定理、相似三角形的证明、正弦定理的证明)四、立体几何1. 三角形与四边形的性质2. 球与球面的性质3. 正多面体的性质4. 空间直线的位置关系5. 空间几何中的立体角6. 空间向量的运用(平面与直线的交线与夹角、平面与平面的夹角)五、数列与数列极限1. 等差数列与等比数列的性质及其求和公式2. 数列的极限概念与性质3. 单调数列与有界数列的性质4. 黎曼和与定积分的关系5. 等差数列与等比数列的极限六、函数与导数1. 基本初等函数的性质与图像2. 极限与连续性3. 函数的求导法则(常用函数的导数、和差积商的求导法则)4. 函数的极值与最值5. 曲线的切线与法线6. 定积分与函数的面积七、微分学应用1. 可导函数的微分近似与应用(导数与函数的近似、函数的单调性、最值问题)2. 积分与定积分的性质及其应用(黎曼和与函数的面积、曲线长度和旋转体体积)3. 微分方程的基本概念及一阶微分方程的解法4. 概率统计与数理统计的基本概念与方法(随机事件、条件概率、正态分布)以上是高中数学的一些重要知识点总结,这些知识点是高中数学学习的基础,也是高考数学考试的重点。

高中数学259个知识点

高中数学259个知识点

高中数学259个知识点一、集合与函数概念。

1. 集合。

- 集合的定义:把一些元素组成的总体叫做集合。

- 集合元素的特性:确定性、互异性、无序性。

- 集合的表示方法:列举法、描述法、韦恩图法。

- 集合间的基本关系:子集(如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B)、真子集(如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B)、相等(A = B当且仅当A⊆ B且B⊆ A)。

- 集合的基本运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B = {xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。

- 奇偶性:- 奇函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)= - f(x),且0∈ D时f(0)=0,则函数y = f(x)是奇函数。

- 偶函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),则函数y = f(x)是偶函数。

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)

高中数学知识点全总结(7篇)必背公式篇一1、一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有两个不相等的个实根b2-4ac0抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)某2正方形的周长=边长某4长方形的面积=长某宽正方形的面积=边长某边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+b-c)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 高中复习数学方法篇二1.多动脑思考2.强化自己学习训练要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。

高中数学必考知识点

高中数学必考知识点
高中数学必考知识点
章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

高中数学知识点清单(非常详细)

高中数学知识点清单(非常详细)

高中数学知识点清单(非常详细)高中数学知识点清单(完整版)数学基础知识- 数与代数- 自然数、整数、有理数、实数、复数- 代数式、方程式、不等式- 因数与倍数- 整式的加减乘除- 平方与平方根- 几何与图形- 直线、射线和线段- 角度与三角形- 四边形、多边形- 圆及其性质- 空间几何- 函数与方程- 函数的基本概念- 一次函数与二次函数- 线性方程与二次方程- 不等式与不等式方程- 概率与统计- 随机事件与概率- 统计的基本概念- 统计图与数据分析数学运算与推理- 运算律与性质- 加法、减法、乘法、除法的运算律- 分配律、交换律、结合律等性质- 推理与证明- 数学推理的基本方法- 数学证明的基本结构- 函数的运算- 函数的复合与反函数- 四则运算与函数的性质- 三角函数的运用- 正弦、余弦、正切函数- 三角函数的图像与性质空间几何与向量- 图形的平移、旋转和翻折- 空间几何的投影和相交关系- 空间几何与三视图- 向量的概念与运算- 向量的线性关系与共线条件高级数学- 导数与微分- 导数的定义与基本性质- 函数的导数与导数规则- 微分的概念与应用- 积分与定积分- 积分的基本概念与性质- 定积分的定义与计算- 二次函数与二次方程- 二次函数与二次方程的性质与图像- 二次函数与二次方程的应用- 指数与对数- 指数函数与对数函数的性质- 指数与对数的运算规则- 指数与对数的应用以上是高中数学的知识点清单,包含了数学基础知识、数学运算与推理、空间几何与向量以及高级数学等方面的内容。

这份清单非常详细,希望对你的高中数学学习有所帮助!。

高中数学知识点大全

高中数学知识点大全

高中数学知识点大全一、代数部分1. 整式与分式1.1 定义与性质1.2 合并同类项1.3 四则运算法则1.4 分式的运算2. 方程与不等式2.1 一元一次方程2.2 一元一次不等式2.3 二次方程2.4 二次不等式2.5 一元高次方程3. 函数3.1 函数的基本概念3.2 常见函数类型3.3 函数的运算3.4 反函数与复合函数3.5 函数的图像与性质4. 数列与数列的表示4.1 等差数列4.2 等比数列4.3 通项公式与求和公式二、几何部分1. 几何基础知识1.1 点、线、面的基本概念 1.2 角的定义与性质1.3 相交线与平行线1.4 同位角与内错角2. 三角形与四边形2.1 三角形的分类与性质 2.2 三角形的面积和周长 2.3 直角三角形2.4 各类四边形的性质3. 圆的属性3.1 圆的基本概念3.2 圆心角与弧长3.3 切线与切圆3.4 圆的面积和周长4. 空间几何与立体图形4.1 空间图形的投影与展开 4.2 空间几何的基本概念4.3 空间几何的性质与计算4.4 立体图形的体积和表面积三、概率与统计1. 概率1.1 随机事件与样本空间1.2 概率的定义与性质1.3 事件的计算与排列组合1.4 条件概率与独立事件2. 统计2.1 统计数据的收集与整理2.2 统计量的计算2.3 随机变量与概率分布2.4 抽样与估计四、解析几何1. 平面与直线的相关知识1.1 平面与直线的方程1.2 平面与直线的位置关系1.3 两平面与两直线的位置关系1.4 空间中的平行与垂直关系2. 空间曲面与方程2.1 二次曲面的性质2.2 空间曲面的方程2.3 曲线的参数方程2.4 曲线在曲面上的投影与切线3. 空间解析几何相关定理3.1 距离公式与中点坐标3.2 空间点的投影与距离3.3 空间线段的位置关系3.4 空间角的计算与性质五、数学思维与方法1. 数学证明1.1 数学归纳法1.2 数学递推法1.3 反证法与逆否命题2. 问题解决与数学建模2.1 解决实际问题的数学模型2.2 优化问题与约束条件2.3 数学建模的基本步骤2.4 实际问题的数学求解方法这篇文章详细介绍了高中数学的各个知识点,包括代数、几何、概率与统计、解析几何以及数学思维与方法等内容。

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳

最全高中数学知识点总结归纳一、数与代数1.1 数的基本概念自然数、整数、有理数、无理数、实数和复数的定义及其性质。

掌握实数的分类和复数的基本概念。

1.2 代数表达式理解并运用单项式、多项式、分式和根式的运算规则。

包括因式分解、公式法解方程、分式方程的解法等。

1.3 不等式掌握一元一次不等式、一元二次不等式、绝对值不等式及其解集的表示方法。

理解不等式的性质和解不等式的一般步骤。

1.4 函数函数的定义、性质、运算及常见函数(一次函数、二次函数、指数函数、对数函数、三角函数等)的图像和性质。

了解函数的极限和连续性概念。

1.5 序列与数列等差数列、等比数列的定义、通项公式和求和公式。

掌握无穷等比数列的和的计算方法。

1.6 排列组合与概率排列、组合的基本概念和公式。

概率的定义、性质及计算方法。

理解条件概率和独立事件的概念。

二、几何与测量2.1 平面几何点、线、面的基本性质。

掌握直线、圆、椭圆、双曲线、抛物线等基本图形的性质和方程。

2.2 空间几何空间直线和平面的位置关系。

柱面、锥面、旋转体等常见立体图形的性质和计算。

2.3 解析几何坐标系的建立和应用。

通过坐标和方程研究几何图形的性质,包括距离公式、斜率公式、圆的方程等。

2.4 三角学三角比的概念、三角函数的定义和性质。

掌握正弦定理、余弦定理及其在解三角形中的应用。

2.5 向量向量的基本概念、线性运算、数量积和向量积。

理解向量在几何和代数中的应用。

三、统计与概率3.1 统计基本概念数据的收集、整理和描述。

理解平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。

3.2 概率分布离散型随机变量和连续型随机变量的概念。

熟悉二项分布、正态分布、均匀分布等常见概率分布的特点和公式。

3.3 抽样与估计抽样方法、样本容量的确定。

参数估计的基本概念和方法,包括点估计和区间估计。

3.4 假设检验假设检验的基本思想和步骤。

理解显著性水平、第一类错误和第二类错误的概念。

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点

高考必背最完整的高中数学知识点一、代数1. 一次函数的性质:直线的斜率、截距和方程形式。

2. 二次函数的性质:顶点坐标、对称轴、开口方向和方程形式。

3. 幂函数与指数函数的性质。

4. 对数函数的性质:底数为正数时的定义、性质与常见公式。

5. 三角函数的基本概念:正弦函数、余弦函数和正切函数的周期、定义域、值域和图像。

6. 数列的概念及常见数列的通项公式和求和公式。

二、几何1. 平面几何基本概念:点、直线、平行和垂直关系。

2. 三角形的性质:角的度量、三角形类型和重要定理(如余弦定理和正弦定理)。

3. 圆的性质:圆周角、弧长和面积公式。

4. 球和立体几何的基本概念:体积、表面积和投影等。

三、概率与统计1. 概率的基本概念:事件、样本空间、概率以及概率的性质与计算。

2. 随机变量的概念及其分布函数和密度函数。

3. 统计的基本概念:总体、样本、参数和统计量。

4. 样本调查与统计分析的方法和步骤。

四、解析几何1. 向量的基本概念:向量的表示、向量的运算、向量的模和方向角。

2. 平面的方程:一般式、点法式、两点式和法向量式等。

3. 空间几何基本概念:点、直线、平面的关系与位置。

4. 空间直角坐标系:空间直角坐标系的建立与距离公式。

五、数学思维1. 基本解题方法和思维:分类讨论、递推法、数学归纳法等。

2. 数学证明的基本方法:直接证明、间接证明、反证法等。

3. 数学建模的基本流程和方法。

4. 数学问题的模型转化与解决策略。

以上是高考必背的最完整的高中数学知识点。

希望同学们在备考过程中认真复这些知识,做好各种题型的练,提高自己的数学水平,取得好成绩!加油!。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1.函数与方程(1)函数的概念、性质及表示方法(2)一次函数、二次函数、幂函数、指数函数、对数函数的性质和图像(3)函数的运算(4)一次方程、二次方程、一元高次方程的解法(5)多项式方程、分式方程的解法(6)不等式的解法2.数列与数学归纳法(1)数列的概念及表示方法(2)等差数列和等比数列的性质和求和公式(3)递推数列与通项公式(4)数学归纳法的原理和应用3.几何与三角函数(1)平面几何的基本概念和性质(2)三角函数的基本概念和性质(3)三角恒等式与解三角方程(4)解三角形(5)平面向量的概念和运算(6)解向量的应用问题4.数与图的关系(1)直角坐标系与平面图形的性质(2)平面图形的对称性质与判定方法(3)空间图形的投影与视图(4)立体图形的表面积与体积5.概率与统计(1)概率的基本概念(2)古典概型与几何概型(3)事件的概率与计数原理(4)随机变量的概念和分布(5)统计的基本概念和方法(6)参数估计与假设检验1.一次函数的一般式方程:y=ax+b2.一次函数的斜率公式:a=(y2-y1)/(x2-x1)3.二次函数的一般式方程:y=ax^2+bx+c4.二次函数的顶点坐标公式:x= -b/(2a),y= -(b^2-4ac)/(4a)5.二次函数的判别式公式:△=b^2-4ac6.指数函数的定义域:(-∞,+∞)7.指数函数的性质:a^m * a^n= a^(m+n),a^(-n)=1/(a^n),(a^m)^n= a^(mn)8.对数函数的性质:log⁡(xy)=log⁡(x)+log⁡(y),log⁡(x/y)=log⁡(x)-log⁡(y),log⁡(a^n)=nlog⁡(a)9.等差数列的通项公式:an=a1+(n-1)d10.等差数列的求和公式:Sn=n/2(a1+an)11.等比数列的通项公式:an=a1*r^(n-1)12.等比数列的求和公式:Sn=a1(1-r^n)/(1-r)13.三角函数的互余关系:sin⁡(π/2-θ)=cos⁡(θ),tan⁡(π/2-θ)=cot⁡(θ),sec⁡(π/2-θ)=csc⁡(θ)14.三角函数的和差化积公式:sin⁡(α±β)=sin⁡(α)cos⁡(β)±cos⁡(α)sin⁡(β),cos⁡(α±β)=cos⁡(α)cos⁡(β)∓sin⁡(α)sin⁡(β)15.立体图形的表面积和体积的公式:长方体的表面积=2(ab+bc+ac),长方体的体积=abc,球体的表面积=4πr^2,球体的体积=(4/3)πr^3。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)1. 数的性质在高中数学中,我们首先要了解数的性质。

数的性质分为四个方面:整数性质、有理数性质、实数性质和复数性质。

1.1 整数性质整数是数的一种,包括正整数、负整数和零。

整数有以下性质:•整数加法和乘法封闭性:两个整数相加或相乘的结果仍然是整数。

•整数加法和乘法结合律:a+(b+c)=(a+b)+c 和a(b c)=(a b)c。

•整数加法和乘法交换律:a+b=b+a 和 a b=b a。

•整数加法有单位元素0:a+0=0+a=a。

•整数乘法有单位元素1:a1=1a=a。

•整数加法有逆元素:对于任意的整数a,存在一个整数b,使得a+b=b+a=0。

•整数乘法有逆元素:对于任意的整数a(a≠0),存在一个整数b,使得a b=b a=1。

•整数加法和乘法分配律:a(b+c)=a b+a*c。

1.2 有理数性质有理数是可以表示为两个整数的比值的数,包括整数和分数。

有理数有以下性质:•有理数加法和乘法封闭性:两个有理数相加或相乘的结果仍然是有理数。

•有理数加法和乘法结合律、交换律、分配律等性质与整数性质相同。

1.3 实数性质实数是包括有理数和无理数的数,具有以下性质:•实数可以通过实数的加法、减法、乘法和除法运算得到。

•实数加法和乘法封闭性、结合律、交换律、分配律等性质与有理数性质相同。

1.4 复数性质复数是形如a+bi的数,其中a和b是实数,i是虚数单位,有以下性质:•复数加法和乘法是封闭的,满足结合律、交换律和分配律。

•复数乘法有单位元素1,满足任一复数a与1相乘仍得a。

•复数乘法的交换律成立,即a b=b a。

•复数乘法有逆元素,对于任一非零复数a,存在一个复数b,使得a b=b a=1。

2. 代数运算代数运算是指利用代数式进行加法、减法、乘法和除法等运算的过程。

2.1 代数式的加法和减法代数式的加法和减法遵循相同的规则,即同类项相加或相减。

同类项指的是具有相同字母和相同指数的项。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。

2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。

3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。

4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。

5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。

6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。

7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。

8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。

9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。

10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。

11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。

12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。

13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。

14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。

15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。

16. 解析几何:利用坐标表示几何图形的性质和关系。

17. 空间几何:研究三维空间中图形的性质和关系。

18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。

19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。

20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。

高中数学知识点总结最全版pdf

高中数学知识点总结最全版pdf

高中数学知识点总结最全版pdf一、代数1. 集合与函数概念- 集合的基本概念、表示方法及其运算- 函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)2. 代数式的运算- 整式的加减乘除、因式分解- 分式的运算法则- 二次根式的化简与运算3. 一元一次与一元二次方程- 解一元一次方程的一般步骤- 一元二次方程的解法(开平方法、配方法、公式法、因式分解法)4. 不等式- 不等式的基本性质- 解一元一次不等式和一元二次不等式- 线性规划问题的解法5. 函数的极限与连续性- 极限的概念及其计算- 函数的连续性与间断点6. 序列与数列- 等差数列与等比数列的性质和求和公式- 数列的极限7. 排列组合与概率- 排列组合的基本概念及计算公式- 概率的基本原理和计算方法- 条件概率与独立事件二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质与计算- 圆的性质与圆的方程2. 空间几何- 空间直线与平面的方程- 空间几何体(如棱柱、棱锥、圆柱、圆锥、球)的性质与计算3. 解析几何- 曲线的方程与性质- 坐标系变换与曲线的对称性- 圆锥曲线(圆、椭圆、双曲线、抛物线)的标准方程三、三角学1. 三角函数- 三角函数的定义与基本关系- 三角函数的图像与性质- 三角恒等变换2. 三角方程- 三角方程的解法- 应用三角方法解决实际问题四、微积分1. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 微分的概念与应用2. 函数的极值与最值问题- 极值存在的条件- 最值问题的求解方法3. 积分学- 不定积分的概念与基本积分表- 定积分的概念与计算- 积分的应用(如计算面积、体积等)4. 微分方程- 常微分方程的基本概念- 一阶微分方程与二阶微分方程的解法五、概率论与数理统计1. 随机事件与概率- 随机事件的概率定义与性质- 概率分布(如二项分布、正态分布等)2. 统计量与抽样分布- 常见的统计量(如均值、方差、标准差等) - 抽样分布的概念3. 参数估计- 点估计与区间估计- 估计量的评价标准4. 假设检验- 假设检验的基本步骤- 显著性水平与P值以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握高中数学课程至关重要。

最新高中数学知识点总结(最全版)

最新高中数学知识点总结(最全版)

高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。

高中数学最常用知识点总结

高中数学最常用知识点总结

高中数学最常用知识点总结一、函数1. 函数的定义和性质2. 初等函数和常用函数3. 一次函数4. 二次函数5. 三角函数6. 反比例函数7. 指数函数8. 对数函数9. 幂函数10. 复合函数二、数列与数学归纳法1. 等差数列2. 等比数列3. 通项公式4. 等差数列的性质5. 数学归纳法的运用三、集合1. 集合的概念和表示方法2. 集合的运算3. 集合的性质4. 集合的应用四、数学证明1. 数学证明的基本方法2. 数学证明的常见形式3. 数学证明的逻辑思维五、方程与不等式1. 一元一次方程2. 一元二次方程3. 一元高次方程4. 绝对值方程5. 一元一次不等式6. 一元二次不等式7. 一元高次不等式8. 二元一次方程9. 二元一次不等式10. 二元二次方程11. 二元二次不等式六、平面向量1. 平面向量的概念2. 平面向量的基本运算3. 平面向量的数量积和应用4. 平面向量的向量积和应用七、三角函数1. 三角函数的概念和性质2. 三角函数的基本关系3. 三角函数的图像和性质4. 三角函数的运算5. 三角函数的应用八、几何与解析几何1. 几何图形的基本性质2. 几何图形的相似性3. 几何图形的对称性4. 直线和圆的方程5. 曲线的方程6. 空间几何图形的体积和表面积7. 空间几何图形的位置关系九、数学建模和应用题1. 数学建模的基本方法2. 数学建模的案例分析3. 数学建模的数学工具4. 数学建模的应用领域总结:高中数学最常用的知识点包括函数、数列与数学归纳法、集合、数学证明、方程与不等式、平面向量、三角函数、几何与解析几何、数学建模和应用题等。

熟练掌握这些知识点,对于高中数学的学习和应试考试都有很大帮助。

希望同学们能够认真学习,勤于练习,提高数学能力,取得好成绩。

高中数学知识点全总结

高中数学知识点全总结

高中数学知识点全总结1. 集合与简易逻辑- 集合的概念:集合是具有某种特定性质的事物的全体,用大写字母表示。

- 集合的表示法:列举法和描述法。

- 集合之间的关系:子集、真子集、相等。

- 集合的运算:并集、交集、差集、补集。

- 简易逻辑:命题、逻辑连接词、真值表、逻辑等价式。

2. 函数- 函数的概念:函数是定义域到值域的映射。

- 函数的表示法:解析式、图象、列表。

- 函数的性质:单调性、奇偶性、周期性。

- 基本初等函数:幂函数、指数函数、对数函数、三角函数。

- 函数的图像变换:平移、伸缩、对称。

3. 数列- 数列的概念:数列是一列按照一定规则排列的数。

- 数列的表示法:通项公式、递推公式。

- 等差数列:通项公式、求和公式。

- 等比数列:通项公式、求和公式。

- 数列的极限:极限的概念、性质、运算法则。

4. 三角函数- 三角函数的概念:正弦、余弦、正切。

- 三角函数的图像:周期性、奇偶性、单调性。

- 三角恒等变换:和差化积、积化和差、倍角公式、半角公式。

- 解三角形:正弦定理、余弦定理、三角形的解法。

5. 向量- 向量的概念:具有大小和方向的量。

- 向量的表示法:坐标表示、单位向量。

- 向量的运算:加法、减法、数乘、点积、叉积。

- 向量的应用:向量在几何中的应用、向量在物理中的应用。

6. 立体几何- 空间几何体:多面体、旋转体。

- 空间直线与平面:位置关系、方程、夹角。

- 空间向量:空间向量的坐标表示、运算。

- 空间几何体的体积:多面体、旋转体的体积计算。

7. 解析几何- 直线:直线的方程、位置关系、交点、平行与垂直。

- 圆:圆的方程、圆与直线的位置关系。

- 圆锥曲线:椭圆、双曲线、抛物线的定义、方程、性质。

- 参数方程与极坐标:参数方程的表示、极坐标的表示、转换。

8. 概率与统计- 随机事件:事件的分类、概率的计算。

- 离散型随机变量:概率分布、期望、方差。

- 连续型随机变量:概率密度函数、期望、方差。

高中数学必背知识点

高中数学必背知识点

高中数学必背知识点一、集合与常用逻辑用语1.集合的概念-集合是由一些确定的对象组成的整体。

-元素与集合的关系:属于(∈)或不属于(∈)。

2.集合的表示方法-列举法:将集合中的元素一一列举出来。

-描述法:用确定的条件表示某些对象是否属于这个集合。

3.集合间的关系-子集:若集合A 中的所有元素都属于集合B,则A 是B 的子集,记作A∈B。

-真子集:若A∈B 且A≠B,则A 是B 的真子集,记作A∈B。

-相等:若A∈B 且B∈A,则A = B。

4.集合的运算-交集:A∩B 表示既属于集合A 又属于集合B 的元素组成的集合。

-并集:A∈B 表示属于集合A 或属于集合B 的元素组成的集合。

-补集:∈UA 表示在全集U 中,不属于集合A 的元素组成的集合。

5.常用逻辑用语-命题:可以判断真假的陈述句。

-四种命题:原命题、逆命题、否命题、逆否命题,它们之间的真假关系为:原命题与逆否命题同真同假,逆命题与否命题同真同假。

-充分条件与必要条件:若p∈q,则p 是q 的充分条件,q 是p 的必要条件;若p∈q,则p 是q 的充要条件。

二、函数1.函数的概念-函数是两个非空数集之间的一种对应关系。

-函数的三要素:定义域、值域、对应关系。

2.函数的性质-单调性:若对于定义域内的任意两个自变量x∈,x∈,当x∈<x∈ 时,都有f(x∈)<f(x∈),则函数f(x)在该区间上单调递增;若都有f(x∈)>f(x∈),则函数f(x)在该区间上单调递减。

-奇偶性:若对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则函数f(x)为偶函数;若都有f(-x)= -f(x),则函数f(x)为奇函数。

-周期性:若存在一个非零常数T,使得对于函数f(x)定义域内的任意x,都有f(x+T)=f(x),则函数f(x)是周期函数,T 为它的一个周期。

3.常见函数-一次函数:y = kx + b(k≠0)。

-二次函数:y = ax² + bx + c(a≠0),其图象是一条抛物线,对称轴为x = -b/2a,顶点坐标为(-b/2a,(4ac - b²)/4a)。

高中数学必考知识点大全

高中数学必考知识点大全

高中数学必考知识点大全高中数学是学习数学的重要阶段,也是考试的重要内容。

掌握高中数学的必考知识点,对于学生能否在考试中取得好成绩至关重要。

下面将为大家详细介绍高中数学的必考知识点,希望对大家的学习有所帮助。

一、函数与方程1. 函数的概念与性质:函数的定义、自变量、函数值、定义域、值域、奇偶性、单调性等。

2. 一次函数与二次函数:一次函数的定义、图像、性质,二次函数的定义、图像、性质、顶点坐标、对称轴等。

3. 幂函数与指数函数:幂函数、指数函数的定义、图像、性质等。

4. 对数函数与指数方程:对数函数的定义、性质、指数方程的解法等。

5. 三角函数与三角方程:正弦函数、余弦函数、正切函数等三角函数的定义、性质,三角方程的解法等。

二、数列与数列求和1. 等差数列与等比数列:等差数列的通项公式、前n项和公式等,等比数列的通项公式、前n项和公式等。

2. 数列的递推公式:递推公式的推导与应用。

3. 数列极限:数列极限的概念、性质,极限存在与计算等。

4. 数列求和:等差数列、等比数列的前n项和公式等。

三、三角函数的应用1. 三角函数的周期性与图像:正弦函数、余弦函数的周期、图像、性质等。

2. 三角函数的和差化积公式:正弦函数、余弦函数的和差化积公式的推导与应用。

3. 三角函数的倍角、半角公式:正弦函数、余弦函数的倍角、半角公式的推导与应用。

4. 三角函数的积化和差公式:正弦函数、余弦函数的积化和差公式的推导与应用。

四、数与式1. 数与式的化简与运算:三角函数的平方、倒数关系等。

2. 分式与分式方程:分式的性质与运算,分式方程的解法等。

3. 指数运算与对数运算:指数运算的性质、指数方程与指数不等式的解法,对数运算的性质、对数方程与对数不等式的解法等。

五、平面几何与空间几何1. 平面几何的基本概念:点、线、面、角的定义、性质等。

2. 平面几何的证明与计算:证明题的基本方法与技巧,计算题的基本公式与应用等。

3. 空间几何的基本概念:立体的表面积与体积的计算公式等。

高中数学知识点总结(重点)超详细

高中数学知识点总结(重点)超详细

高中数学知识点总结(重点)超详细一、函数1.函数的概念和性质* 函数的定义:函数就是一种对应关系,它把一个自变量的集合映射到一个因变量的集合。

* 定义域、值域和函数值:函数的定义域是自变量可能取值的集合,值域是函数值可能取值的集合,函数值就是对应于自变量的因变量的值。

* 单调性:单调递增或递减;严格单调递增或递减。

* 奇偶性:函数关于y轴对称为偶函数,关于原点对称为奇函数。

* 周期性:有最小正周期T,则有f(x+T)=f(x)。

2.初等函数* 常数函数、线性函数、二次函数、幂函数、指数函数、对数函数和三角函数等。

* 互为反函数:两个函数互为反函数,当且仅当它们的复合是恒等函数,即 f(g(x))=x,g(f(x))=x 时。

3.函数的图像* 导数:函数在一点处的导数定义为函数在该点处的变化率,几何意义为函数图像在该处的切线斜率。

* 函数的单调区间:导数恒正则单调递增,导数恒负则单调递减,导数为0则可能有极值。

* 函数的极值与最值:极值包括极大值和极小值,最值包括最大值和最小值,求解时需要用导数或者区间端点代入函数取值比较大小。

二、三角函数1.基本概念公式* 弧度制和角度制:弧度制是通过单位圆上弧长所确定的角度计量单位,角度制是最常用的角度计量单位。

* 弧度制与角度制的互换:180°对应π弧度。

* 三角函数的概念:正弦函数、余弦函数、正切函数、余切函数。

* 三角函数的基本关系式:$\sin ^{2}x+\cos^{2}x=1$,$\tanx=\frac{\sin x}{\cos x}$* 三角函数的周期性:正弦函数和余弦函数的最小正周期为$2\pi$,正切函数和余切函数的最小正周期为$\pi$。

2.三角函数的图像和性质* 三角函数的图像:正弦函数和余弦函数的图像都是以x轴为轴的周期函数,正切函数和余切函数的图像分别有一个渐近线和一个极值点。

* 同角三角函数的基本关系式:$\cos (\frac{\pi}{2} -x)=\sin x$,$\tan x=\frac{\sin x}{\cos x}$* 三角函数的单调性:正弦函数和余弦函数在一个周期内分别单调递增和递减,正切函数和余切函数在每一个周期内单调变化。

高中数学基本知识点汇总【推荐】

高中数学基本知识点汇总【推荐】

高中数学基本知识点汇总【推荐】一、函数与导数1. 函数的概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称为f:A→B的一个函数。

(2)函数的定义域、值域、对应法则。

(3)函数的表示法:解析法、表格法、图象法。

2. 函数的性质(1)单调性:增函数、减函数。

(2)奇偶性:奇函数、偶函数、非奇非偶函数。

(3)周期性。

(4)有界性。

3. 基本初等函数(1)常数函数:f(x) = C(C为常数)(2)幂函数:f(x) = x^n(n为实数)(3)指数函数:f(x) = a^x(a > 0且a ≠ 1)(4)对数函数:f(x) = log_a(x)(a > 0且a ≠ 1)(5)三角函数:正弦函数、余弦函数、正切函数等。

4. 导数与微分(1)导数的定义:设函数y = f(x)在点x0处有定义,若极限lim(Δx→0)[f(x0 + Δx) f(x0)]/Δx存在,则称函数y = f(x)在点x0处可导,该极限称为函数y = f(x)在点x0处的导数,记为f'(x0)。

(2)导数的运算法则:四则运算法则、复合函数求导法则、反函数求导法则等。

(3)高阶导数。

(4)微分:设函数y = f(x)在某区间内有定义,若对于该区间内的任意一点x,都有一个非零实数Δy,使得Δy = f'(x)Δx + o(Δx),则称函数y = f(x)在该点可微,Δy称为函数y = f(x)在点x处的微分。

二、三角函数与平面向量1. 三角函数(1)正弦函数、余弦函数、正切函数的定义。

(2)三角函数的图像与性质。

(3)三角恒等变形:和差公式、倍角公式、半角公式、积化和差与和差化积、正弦定理、余弦定理等。

2. 平面向量(1)向量的概念:有大小和方向的量。

(2)向量的表示:几何表示、坐标表示。

(3)向量的运算:加法、减法、数乘、向量积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必备知识点大全
一、集合及常用逻辑用语
)()(B )u u u
B C A C A A
==)
{|B x x ={|u A x x =∈自然数集
理数
实数集
二、复数
大多数复数问题,主要是把复数化成标准的z a
=+三、算法、推理及证明
四、平面向量
平行
方向相同或者相反的两个非零向量叫做平行向量,也叫共线向量。

cos
b
,【注意:投影是数量】,e不共线,
上的单位正交向量,(,)
λμ就是向量
坐标表示
(,x
·=0
a b a b
⊥⇔x y
法则a b
+的平行四边形法则、
a b
-的三角形法则。

.a
λ为向量,(,)
a x y
λλλ
=
a a
λ
=。

λλλ
·cos,
a b a b
=<>
11
·
a b=
2
·=?··
a a a a
b a b
≤。

2
a x y
=+
1212
x x y y
+
在ABC
△中,若点D是边BC
平面内三点A B
、、
,b c ABC
是△三边),且
到顶点的距离及重心到对边中点的距离之比为2:1
平面内一点,
OA OB OC ==⇔(3)若H 为△ABC 所在平面内的一·AB AC BC BA CA CB ⎛⎫⎛⎪ ⎪ ⎪---
⎪⎪ ⎪
⎝⎭⎭⎝⎭···0a LA b IB c IC ++=⇔是△ABC 的内心。

,OH OA OB OC OG =++=····()S S S p m n m n p =++
)角平分线定理:三角形一个角的平分线分其对边
五、函数、基本初等函数I的图像及性质
2⎪⎭
的图象及y f
=
22⎪⎪⎭⎭
两倍,是函数的一个周期)
函数1
0,0,,
a b m n R
〉〉∈.
5.对数的概念
如果()
0,1
b
a N a a
=〉≠,那么数b叫作以a作为底N的对数,
记作log
d
b N
=,其中a叫作对数的底数,N叫作真数。

6.对数的性质及运算法则
(1)对数的运算法则
如果0
a〉且1
a≠,0,0
M N
〉〉,那么
①()
log log log
a a a
MN M N
=+;②log log log
a a a
M
M N
N
=-;
③()
log log
a
a a
M n M n R
=∈;④log log
n
a a
n
M M
m
=
(2)对数的性质
①log a N
a N
=;②log N
a
a N
=
(3)对数的重要公式
①换底公式:log
log
log
a
a
a
N
N
B
=
②1
log
log
a
a
b
a
=,推广log,log,log log
a b c a
b c d d
=
指数函

2
y a
=
01
a〈〈
()
,
-∞+∞单调递减,01,001
x y x y
〈〈〉〈〈
时时
函数图象过定
点(0.1)
1
a〉
()
,
-∞+∞单调递增,01,01
x y x y
〈〈〈〉〉
时0时
六、函数及方程、函数模型及其应用




概念
方程()0
f x=的实数根。

方程()0
f x=的实数根⇔函数()0
y x=的图象及x轴有交点⇔函数()
y f x
=有零点。

存在定

对于在区间[],a b上连续不断,若()()0
f a f b〈,则()
y f x
=在(),a b 内存在零点。




方法
对于在区间[],a b上连续不断且()()0
f a f b〈的函数()
y f x
=。

通过不断把函数()
f x的零点所在的区间一分为二,使区间两个端点
逐步逼近零点。

进而得到零点近似值的方法叫做二分法。

步骤第一步确定区间[],a b,验证()()0
f a f b〈,确定精确度∈。

)判断是否达到精确度
a(或b)
七、导数及其应用
x
处的切线率。

切线方程是
,求过某点的切线方程,需先设出切点
()()x g ⎢⎣
八、三角函数的图象及性质
π ⎝公示:I =交点于
九、三角恒等变换及解三角形

1tan tan
所要求的角及所给的角是同一个角,直接利用直角三角形解
决(注意角的象限),几何法算答案,代数法写过程。

222b c ab ===abc
(R 外接圆半径);S 把要求解的量归入到可解的三角形中。

在实际问题中,往往涉及到多个三角形,只要根据已知逐次把求解目标归入到一
十、等差数列、等比数列
十一、数列求和及其数列的简单应用
)()12122n n n n n -=-
-为等比数列的公示)则
)sin k
+
kn b
注:表中,n k均为正整数。

十二、不等式、线性规划
十三、空间几何体(其中r为半径、h为高、l为母线等
)S h )
2
十四、空间点、直线平面位置关系(大写字母表点、小写字母表直线、希腊字母
表平面):
//
a b
公共点。

判断定理
,//
a a b
⊂⇒
线线平行

⎭面面平行
,aλβ=面面平行⇒线线平行
n p
=⎫

⎭面面垂直
//
a b ⇒


面面垂直⇒线面垂直
特殊情况
十五、空间向量及立体几何(理科)
两平面的法向量分别为n和
MN MN a,.
sin
cos MN n
MN MN n=,
,.
十六、计数原理及二项式定理(理科)
十七、直线及圆的方程
【注:标准d根据上下文理解为圆心到直线的距离及两圆的圆心距】十八、圆锥曲线的定义、方程及性质
注:1.表中两种形式的双曲线方程对应的渐进线方程分别为x a
y ±=,
x b
a
y ±
= 2.表中四种形式的抛物线方程对应的准线方程分别是
2
,2,2,2p
y p y p x p x =-==-
=。

十九、圆锥曲线的热点问题
二十、概率。

相关文档
最新文档