2014年高考数学分类汇编:平面向量(有答案)

合集下载

2014年全国高考理科数学试题选编7.平面向量试题解析

2014年全国高考理科数学试题选编7.平面向量试题解析

2014年全国高考理科数学试题选编七.平面向量试题1.全国课标Ⅰ.15.已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角 为__________.2.(课标全国Ⅱ,3)设向量a ,b满足|+|=a b||-a b ,则a ·b =( ). A .1 B .2 C .3 D .53.(大纲全国.4)若向量a ,b 满足:|a |=1, (a +b )⊥a ,(2a +b )⊥b ,则|b |=( ). A .2 BC .1 D.24. (天津.8)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上, BE =λBC ,DF =μDC .若1AE AF ⋅=,23CE CF ⋅=-,则λ+μ=( ).A .12B .23C .56D .7125.(安徽.10)在平面直角坐标系xOy 中,已知向量 a ,b ,|a |=|b |=1,a ·b =0,点Q 满 足2()OQ =+a b . 曲线C ={|P OP =a cos θ+b sin θ,0≤θ<2π}, 区域{|0||}P r PQ R r R Ω=<≤≤<,.若C ∩Ω为两段分离的曲线,则( ). A .1<r <R <3 B .1<r <3≤R C .r ≤1<R <3 D .1<r <3<R6.(理福建8)在下列向量组中,可以把向量a =(3,2)表示出来的是( ). A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)7.(浙江8)记,,max{},,x x y x y y x y ≥⎧⎨<⎩,=,,min{},,y x y x y x x y ≥⎧⎨<⎩,=设a ,b 为平面向量, 则( ).A .min{|a +b|,|a -b|}≤min{|a|,|b|}B .min{|a +b|,|a -b|}≥min{|a|,|b|}C .max{|a +b|2,|a -b|2}≤|a|2+|b|2D .max{|a +b|2,|a -b|2}≥|a|2+|b|2 8.(广东5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ). A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1)9.(四川7)平面向量a =(1,2),b =(4,2), c =m a +b (m ∈R ),且c 与a 的夹角等于 c 与b 的夹角,则m =( ). A .-2 B .-1 C .1 D .210.(重庆4)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ). A .92-B .0C .3D .15211.北京.10)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 12.(山东12)在△ABC 中,已知tan AB AC A ⋅=, 13.(陕西13)设π0<<2θ,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=_____. 14.(湖北.11)设向量a =(3,3),b =(1,-1). 若(a +λb )⊥(a -λb ),则实数λ=________. 15.(江西14)已知单位向量e 1与e 2的夹角为α, 且1cos 3a =,向量a =3e 1-2e 2与b =3e 1-e 2 的夹角为β,则cos β=__________.16.(湖南16)在平面直角坐标系中,O 为原点, A (-1,0),B ,C (3,0),动点D满足||1CD =,则||OA OB OD ++的最大 值是__________.17.(理15)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成.记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值.则下列命题正确的是__________(写出所有正确命题的编号). ①S 有5个不同的值②若a ⊥b 则S min 与|a |无关 ③若a ∥b ,则S min 与|b |无关 ④若|b |>4|a |,则S min >0 ⑤若|b |=2|a |,S min =8|a |2,则a 与b 的夹角为π418.(陕西18满分12分)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上. (1)若PA PB PC ++=0,求||OP ;(2)设OP mAB nAC =+(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.七.平面向量试题解析1.全国课标Ⅰ.15.已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角 为__________. 解析:由()12AO AB AC =+可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°,故AB 与AC 的夹角为90°. 2.(课标全国Ⅱ,3)设向量a ,b满足|+|=a b||-a b ,则a ·b =( ). A .1 B .2 C .3 D .5解析:∵|+|=a b (a +b )2=10, 即a 2+b 2+2a ·b =10.①∵||-a b ,∴(a -b )2=6, 即a 2+b 2-2a ·b =6.② 由①②可得a ·b =1.故选A.3.(大纲全国.4)若向量a ,b 满足:|a |=1, (a +b )⊥a ,(2a +b )⊥b ,则|b |=( ). A .2 BC .1 D解析:∵(a +b )⊥a ,|a |=1,∴(a +b )·a =0,∴|a |2+a ·b =0,∴a ·b =-1. 又∵(2a +b )⊥b , ∴(2a +b )·b =0.∴2a ·b +|b |2=0. ∴|b |2=2.∴||b = B.4. (天津.8)已知菱形ABCD 的边长为2, ∠BAD =120°,点E ,F 分别在边BC ,DC 上, BE =λBC ,DF =μDC .若1AE AF ⋅=,23CE CF ⋅=-,则λ+μ=( ).A .12B .23C .56D .712解析:由于菱形边长为2,所以BE =λBC =2λ,DF =μDC =2μ,从而CE =2-2λ,CF =2-2μ.由1AE AF ⋅=,得()()AB BE AD DF +⋅+=AB AD AB DF BE AD BE DF ⋅+⋅+⋅+⋅ =2×2×cos 120°+2·(2μ)+2λ·2+2λ·2μ·cos 120° =-2+4(λ+μ)-2λμ=1,所以4(λ+μ)-2λμ=3.由23CE CF ⋅=-,得 12(22)(22)23λμ⎛⎫-⋅-⋅-=- ⎪⎝⎭,所以23λμλμ-=+,因此有44()2()33λμλμ-+=++,解得56λμ=+,故选C.5.(安徽.10)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满 足2()OQ =+a b .曲线C ={|P OP =a cos θ+b sin θ,0≤θ<2π}, 区域{|0||}P r P Q Rr R Ω=<≤≤<,.若C ∩Ω为两段分离的曲线,则( ). A .1<r <R <3 B .1<r <3≤R C .r ≤1<R <3D .1<r <3<R 解析:由于|a |=|b |=1,a ·b =0,所以|||2()|2OQ =+==a b ,因此点Q 在以原点为圆心,半径等于2的圆上.又|||cos sin |OP θθ==+a b 1=,因此曲线C 是以原点为圆心,半径等于1的圆. 又区域{|0||}P r PQ R r R Ω=<≤≤<,, 所以区域Ω是以点Q 为圆心,半径分别为r 和R 的两个圆之间的圆环,由图形可知,要使曲线C 与该圆环的公共部分是两段分离的曲线, 应有1<r <R <3.6.(理福建8)在下列向量组中,可以把向量a =(3,2)表示出来的是( ). A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)解析:由平面向量基本定理可知,平面内任意一个向量可用平面内两个不共线向量线性表示,A 中e 1=0·e 2,B 中e 1,e 2为两个不共线向量,C 中e 2=2e 1,D 中e 2=-e 1.故选B. 7.(浙江8)记,,max{},,x x y x y y x y ≥⎧⎨<⎩,=,,min{},,y x y x y x x y ≥⎧⎨<⎩,=设a ,b 为平面向量, 则( ).A .min{|a +b|,|a -b|}≤min{|a|,|b|}B .min{|a +b|,|a -b|}≥min{|a|,|b|}C .max{|a +b|2,|a -b|2}≤|a|2+|b|2D .max{|a +b|2,|a -b|2}≥|a|2+|b|2 解析:根据向量运算的几何意义,即三角形法则,可知min{|a +b |,|a -b |}与min{|a |,|b |}的大小关系不确定,故A ,B 选项错误. 当a ,b 中有零向量时,显然max{|a +b |2,|a -b |2}=|a |2+|b |2成立. 由于|a +b |2=|a |2+|b |2+2a ·b=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉,|a -b |2 =|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |cos 〈a ,b 〉, 若a ≠0,b ≠0, 则当0°≤〈a ,b 〉<90°时,显然|a +b |2>|a -b |2,且|a +b |2>|a |2+|b |2; 当〈a ,b 〉=90°时,显然|a +b |2=|a -b |2=|a |2+|b |2; 当90°<〈a ,b 〉≤180°时,显然|a +b |2<|a -b |2,而|a -b |2>|a |2+|b |2.故总有max{|a +b |2,|a -b |2}≥|a |2+|b |2成立. 故选D.8.(广东5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ). A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1)解析:对于A 中的向量a 1=(-1,1,0),1111cos ||||2⋅===-〈,〉a a a a a a ,a 1与a的夹角为120°,不合题意;对于B 中的向量a 2=(1,-1,0),2221cos ||||2⋅===〈,〉a a a a a a ,a 2与a 的夹角为60°,符合题意;对于C 中的向量a 3=(0,-1,1),3331cos ||||2⋅===-〈,〉a a a a a a ,a 3与a 的夹角为120°,不合题意;对于D 中的向量a 4=(-1,0,1),444cos 1||||⋅===-〈,〉a a a a a a ,a 4与a 的夹角为180°,不合题意,故选B. 9.(四川7)平面向量a =(1,2),b =(4,2), c =m a +b (m ∈R ),且c 与a 的夹角等于 c 与b 的夹角,则m =( ). A .-2 B .-1 C .1 D .2 解析:∵a =(1,2),b =(4,2),∴c =m (1,2)+(4,2)=(m +4,2m +2). 又∵c 与a 的夹角等于c 与b 的夹角, ∴cos 〈c ,a 〉=cos 〈c ,b 〉.∴·||||||||⋅=c a c bc a c b .=解得m =2.10.(重庆4)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ). A .92-B .0C .3D .152解析:由已知(2a -3b )⊥c ,可得(2a -3b )·c =0, 即(2k -3,-6)·(2,1)=0,展开化简得4k -12=0, 所以k =3,故选C.11.北京.10)已知向量a ,b 满足|a |=1,b =(2,1), 且λa +b =0(λ∈R ),则|λ|=________.解析:|=λa +b =0,得b =-λa ,故|b |=|-λa |=|λ||a |,所以||||||λ===b a 12.(山东12)在△ABC 中,已知tan AB AC A ⋅=,当π6A =时,△ABC 的面积为__________. 解析:由tan AB AC A ⋅=,可得cos tan AB AC A A=.因为π6A =,所以323AB AC ⋅= 即23AB AC =.所以1sin 2ABC S AB AC A ∆=⋅12112326=⨯⨯=. 13.(陕西13)设π0<<2θ,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=_____. 解析:由a ∥b ,得sin 2θ=cos 2θ,即2sin θcos θ=cos 2θ,因为π0<<2θ, 所以cos θ≠0,整理得2sin θ=cos θ. 所以1tan 2θ=. 14.(湖北.11)设向量a =(3,3),b =(1,-1). 若(a +λb )⊥(a -λb ),则实数λ=________. 解析:由题意得(a +λb )·(a -λb )=0, 即a 2-λ2b 2=0,则a 2=λ2b 2.∴22221892λ====a b . ∴λ=±3.15.(江西14)已知单位向量e 1与e 2的夹角为α, 且1cos 3a =,向量a =3e 1-2e 2与b =3e 1-e 2 的夹角为β,则cos β=__________.解析:由已知得cos ||||β⋅=a b a b22∵e 1与e 2是单位向量,其夹角为α,且1cos 3a =,∴|e 1|2=|e 2|2=1,12121||||cos 3a ⋅==e e e e .∴1992cos β-⨯+16.(湖南为原点, A (-1,0),B ,C (3,0),动点D 满足||1CD =,则||OA OB OD ++的最大值是__________.解析:设动点D (x ,y ),则由||1CD =,得(x -3)2+y 2=1,D 点轨迹为以(3,0)为圆心, 半径为1的圆.又=(1,OA OB OD x y ++-,所以||=(OA OB ODx ++-, 故||OA OB OD ++的最大值为点(3,0)与(1,之间的距离与1的和, 11=17.(理15)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成.记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值.则下列命题正确的是__________(写出所有正确命题的编号). ①S 有5个不同的值②若a ⊥b 则S min 与|a |无关 ③若a ∥b ,则S min 与|b |无关 ④若|b |>4|a |,则S min >0⑤若|b |=2|a |,S min =8|a |2,则a 与b 的夹角为π4答案:②④解析:S 有3种结果: S 1=a 2+a 2+b 2+b 2+b 2, S 2=a 2+ab +ab +b 2+b 2,S 3=ab +ab +ab +ab +b 2,①错误. ∵S 1-S 2=S 2-S 3 =a 2+b 2-2a ·b ≥a 2+b 2-2|a ||b | =(|a |-|b |)2≥0, ∴S 中最小为S 3.若a ⊥b ,则S min =S 3=b 2与|a |无关,②正确. 若a ∥b ,则S min =S 3=4a ·b +b 2与|b |有关,③错误.若|b |>4|a |,则S min =S 3=4|a ||b |cos θ+b 2>-4|a ||b |+b 2>-|b |2+b 2=0,④正确.若|b |=2|a |,则S min =S 3=8|a |2cos θ+4|a |2=8|a |2, ∴2cos θ=1.∴π3θ=,⑤错误 18.(陕西18满分12分)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上. (1)若PA PB PC ++=0,求||OP ;(2)设OP mAB nAC =+(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.分析:在(1)问中,解法一利用坐标运算,可求得P 点坐标,进而结合向量模的运算,求得||OP .解法二结合向量的几何运算,把已知向量用OA ,OB ,OC 和OP 来表示,进而利用OA ,OB ,OC 把OP 表示出来,即可达到求||OP 的目的.在(2)问中,结合题目要求,借助于向量运算,利用y -x 将m -n 表示出来,从而转化为线性规划问题,画出可行域可得出m -n 的最大值. 解:(1)解法一:∵PA PB PC ++=0, 又PA PB PC ++=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ), ∴630,630,x y -=⎧⎨-=⎩解得x =2,y =2.即(2,2)OP =,故||22OP =. 解法二:∵PA PB PC ++=0,则()()()OA OP OB OP OC OP -+-+-=0, ∴1()(2,2)3OP OA OB OC =++=,∴||22OP=.(2)∵OP mAB nAC=+,∴(x,y)=(m+2n,2m+n),∴2,2. x m n y m n=+⎧⎨=+⎩两式相减得m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.。

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量(平面向量与三角的综合)填空题1.(2014•山东理)若ABC ∆中,已知tan AB AC A =,当6A π=时,ABC ∆的面积为16. 【考点】三角形的面积公式;平面向量数量积的性质及其运算 【分析】由条件利用两个向量的数量积的定义,求得23AB AC =,再根据ABC ∆的面积为1sin 2AB AC A ,计算求得结果. 【解答】解:ABC ∆中,cos tan AB AC AB AC A A ==,∴当6A π=时,有33AB AC=23AB AC =, ABC ∆的面积为11211sin 22326AB AC A =⨯⨯=,故答案为:16. 【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题. 2.(2014•陕西文)设02πθ<<,向量(sin 2,cos )a θθ=,(1,cos )b θ=-,若0a b =,则tan θ=12. 【考点】平面向量数量积的性质及其运算【分析】由条件利用两个向量的数量积公式求得22sin cos cos 0θθθ-=,再利用同角三角函数的基本关系求得tan θ 【解答】解:22sin 2cos 2sin cos cos 0a b θθθθθ=-=-=,02πθ<<,2sin cos 0θθ∴-=,1tan 2θ∴=, 故答案为:12. 【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题. 3.(2014•陕西理)设02πθ<<,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,若//a b ,则tan θ=12. 【考点】平面向量共线(平行)的坐标表示【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出. 【解答】解://a b ,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,2sin 2cos 0θθ∴-=, 22sin cos cos θθθ∴=,02πθ<<,cos 0θ∴≠.2tan 1θ∴=,1tan 2θ∴=. 故答案为:12.4.(2015•江苏)设向量(cos 6k k a π=,sin cos )(066k k k ππ+=,1,2,⋯,12),则110()k k k a a +=∑的值为 【考点】平面向量数量积的性质及其运算;两角和与差的三角函数【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 【解答】解:1(1)(1)(1)cos cos (sin cos )(sin cos )666666k k k k k k k k a a ππππππ++++=+++ (1)(1)(1)(1)(1)coscos sin sin sin cos cos sin cos cos6666666666k k k k k k k k k k ππππππππππ+++++=++++ 21121cossin(cos cos )66266k k ππππ++=+++321121sin cos2626k k ππ++=+, ∴1110357911132313579111323()12(sin sin sin sin sin sin sin sin )(cos cos cos cos cos cos cos cos )66666666266666666kk k aa ππππππππππππππππ+==+++++++⋯+++++++++⋯+∑00=+=故答案为:【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.解答题1.(2014•辽宁文理)在ABC ∆中,内角A 、B 、C 的对边分别为a ,b ,c ,且a c >,已知2BA BC =,1cos 3B =,3b =,求: (Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.【考点】平面向量数量积的性质及其运算;两角和与差的三角函数;余弦定理【分析】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将cos B 的值代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到2213a c +=,联立即可求出ac 的值;(Ⅱ)由cos B 的值,利用同角三角函数间基本关系求出sin B 的值,由c ,b ,sin B ,利用正弦定理求出sin C 的值,进而求出cos C 的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值. 【解答】解:(Ⅰ)2BA BC =,1cos 3B =, cos 2c a B ∴=,即6ac =①, 3b =,∴由余弦定理得:2222cos b a c ac B =+-,即2294a c =+-,2213a c ∴+=②,联立①②得:3a =,2c =;(Ⅱ)在ABC ∆中,sin B ===,由正弦定理sin sin b cB C=得:2sin sin 3c C B b === a b c =>,C ∴为锐角,7cos 9C ∴===,则1723cos()cos cos sin sin 393927B C B C B C -=+=⨯+=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.2.(2014•山东理)已知向量(,cos2)a m x =,(sin 2,)b x n =,函数()f x a b =,且()y f x =的图象过点(12π,和点2(3π,2)-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移(0)ϕϕπ<<个单位后得到函数()y g x =的图象,若()y g x =图象上的最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【考点】平面向量数量积的性质及其运算;正弦函数的单调性;函数sin()y A x ωϕ=+的图象变换【分析】(Ⅰ)由题意可得 函数()sin 2cos2f x m x n x =+,再由()y f x =的图象过点(12π和点2(3π,2)-,解方程组求得m 、n 的值.(Ⅱ)由(Ⅰ)可得()2sin(2)6f x x π=+,根据函数sin()y A x ωϕ=+的图象变换规律求得()2sin(22)6g x x πϕ=++的图象,再由函数()g x 的一个最高点在y 轴上,求得6πϕ=,可得()2c o s 2g x x =.令222k x k πππ-剟,k Z ∈,求得x 的范围,可得()g x 的增区间. 【解答】解:(Ⅰ)由题意可得 函数()sin 2cos 2f x a b m x n x ==+,再由()y f x =的图象过点(12π和点2(3π,2)-,可得12122m n ⎧+=⎪⎪⎨⎪-=-⎪⎩.解得m ,1n =.(Ⅱ)由(Ⅰ)可得1()2cos22cos2)2sin(2)26f x x x x x x π+=+=+. 将()y f x =的图象向左平移(0)ϕϕπ<<个单位后,得到函数()2sin[2()]2sin(22)66g x x x ππϕϕ=++=++的图象,显然函数()g x 最高点的纵坐标为2.()y g x =图象上各最高点到点(0,3)的距离的最小值为1,故函数()g x 的一个最高点在y 轴上, 2262k ππϕπ∴+=+,k Z ∈,结合0ϕπ<<,可得6πϕ=,故()2sin(2)2cos22g x x x π=+=.令222k x k πππ-剟,k Z ∈,求得2k x k πππ-剟,故()y g x =的单调递增区间是[2k ππ-,]k π,k Z ∈.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题. 3.(2015•广东理)在平面直角坐标系xOy 中,已知向量2(m =,,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【考点】平面向量数量积的性质及其运算;数量积表示两个向量的夹角 【分析】(1)若m n ⊥,则0m n =,结合三角函数的关系式即可求tan x 的值; (2)若m 与n 的夹角为3π,利用向量的数量积的坐标公式进行求解即可求x 的值. 【解答】解:(1)若m n ⊥, 则2(2m n=,(sin x,cos )0x x x ==,x x = sin cos x x =,即tan 1x =;(2)2||()12m ==,2||sin 1n x =,2(2m n =,(sin x ,cos )x x x =, ∴若m 与n 的夹角为3π,则1||||cos 32m n m n π==,即1222x x -=, 则1sin()42x π-=,(0,)2x π∈. (44x ππ∴-∈-,)4π. 则46x ππ-=即54612x πππ=+=. 【点评】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础. 4.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【考点】平面向量数量积的性质及其运算;三角函数中的恒等变换应用【分析】(1)根据向量的平行即可得到tan x =,问题得以解决, (2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题。

三年高考(2014-2016)数学(理)试题分项版解析 专题05平面向量解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析 专题05平面向量解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析第五章 平面向量一、选择题1. 【2014,安徽理10】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q满足)OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤ ,区域{0,}P r PQ R r R Ω=<≤≤<.若C Ω 为两段分离的曲线,则( )A .13r R <<<B .13r R <<≤C .13r R ≤<<D .13r R <<< 【答案】A .考点:1.平面向量的应用;2.线性规划.【名师点睛】对于平面向量应用性问题,常常要利用向量的坐标运算,当题中出现明显的垂直和特征长度特征,优先考虑建立平面直角坐标系,用图形表示出要题中给定的条件,再利用几何意义进行求解.尤其要与平面几何结合考虑.2.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b满足2a AB = ,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅=(D )()4C a b +⊥B【答案】D【考点定位】1.平面向量的线性运算;2.平面向量的数量积.【名师点睛】平面向量问题中,向量的线性运算和数量积是高频考点.当出现线性运算问题时,注意两个向量的差OA OB BA -= ,这是一个易错点,两个向量的和2OA OB OD+=(D 点是AB 的中点).另外,要选好基底向量,如本题就要灵活使用向量,AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.3. 【2016高考山东理数】已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4(B )–4(C )94(D )–94【答案】B 【解析】试题分析:由43m n = ,可设3,4(0)m k n k k ==>,又()n tm n ⊥+ ,所以22221()cos ,34(4)41603n tm n n tm n n t m n m n n t k k k tk k ⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+= 所以4t =-,故选B. 考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()n tm n ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.4. 【2016高考新课标2理数】已知向量(1,)(3,2)a m a =- ,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D 【解析】试题分析:向量a b (4,m 2)+=- ,由(a b )b +⊥ 得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D.考点: 平面向量的坐标运算、数量积.【名师点睛】已知非零向量a =(x 1,y 1),b =(x 2,y 2):5.【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( ) (A )232a - (B )234a - (C ) 234a (D ) 232a【答案】D 【解析】因为()B DC D B D B ⋅=⋅=+⋅()22223c o s 2BA B C +⋅=+故选D.【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题.6. 【2015高考陕西,理7】对任意向量,a b,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【考点定位】1、向量的模;2、向量的数量积.【名师点晴】本题主要考查的是向量的模和向量的数量积,属于容易题.解题时一定要抓住重要字眼“不”,否则很容易出现错误.解本题需要掌握的知识点是向量的模和向量的数量积,即cos ,a b a b a b ⋅=,22a a = .7.【2014新课标,理3】设向量a,b 满足|a+b |a-b a ⋅b = ( )A. 1B. 2C. 3D. 5 【答案】A 【解析】因为22||()a b a b +=+=r u r r r 222a b a b++⋅r r r r =10,22||()a b a b -=-=r u r r r 2226a b a b +-⋅=r r r r ,两式相加得:228a b +=r r ,所以1a b ⋅=r r ,故选A.【考点定位】向量的数量积.【名师点睛】本题主要考查了向量数量积运算,本题属于基础题,解决本题的关健在于掌握向量的模与向量数量积之间的关系,还有就是熟练掌握数量积的运算性质与运算律.8. 【2014四川,理7】平面向量(1,2)a = ,(4,2)b =,c ma b =+ (m R ∈),且c 与a的夹角等于c 与b的夹角,则m =( )A .2-B .1-C .1D .2 【答案】 D.【考点定位】向量的夹角及向量的坐标运算.【名师点睛】本题考查两向量的夹角,涉及到向量的模,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.9. 【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB = ,4AD =.若点M ,N 满足3BM MC = ,2DN NC = ,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯= ,选C.【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB = ,4AD = 故可选,AB AD作为基底.10. 【2015高考新课标1,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+(B)1433AD AB AC =-(C )4133AD AB AC =+ (D)4133AD AB AC =-【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A.【考点定位】平面向量的线性运算【名师点睛】本题以三角形为载体考查了平面向量的加法、减法及实数与向量的积的法则与运算性质,是基础题,解答本题的关键是结合图形会利用向量加法将向量AD表示为AC CD + ,再用已知条件和向量减法将CD 用,AB AC表示出来.11. 【2016高考新课标3理数】已知向量1(2BA =uu v ,1)2BC =uu u v,则ABC ∠=( )(A)30︒ (B)45︒ (C)60︒ (D)120︒ 【答案】A 【解析】试题分析:由题意,得112222cos 11||||BA BC ABC BA BC ⋅∠===⨯,所以30ABC ∠=︒,故选A .考点:向量夹角公式.【思维拓展】(1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有|a ·cos a ba bθ=,·0a b a b ⇔⊥ =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.12. 【2014年.浙江卷.理8】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+答案:D考点:向量运算的几何意义.【名师点睛】本题在处理时要结合着向量加减法的几何意义,将 a b a b a b +-,,, 放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有有效的方法.13. 【2016年高考北京理数】设a ,b 是向量,则“||||a b = ”是“||||a b a b +=-”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】D 【解析】试题分析:由22||||()()0a b a b a b a b a b a b +=-⇔+=-⇔⋅=⇔⊥,故是既不充分也不必要条件,故选D.考点:1.充分必要条件;2.平面向量数量积.【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.14. 【2014高考重庆理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥ ,则实数k =( )9.2A -.0B .C 3 D.152【答案】C考点:1、平面向量的坐标运算;2、平面向量的数量积.【名师点睛】本题考查了向量的坐标运算,向量的数量积,向量垂直的条件,属于基础题,利用向量垂直的条件的坐标条件可将两向量垂直的条件转化为所求实数k 的方程,解之即得结果.15. 【2015高考重庆,理6】若非零向量a ,b 满足|a |=3|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为 ( ) A 、4π B 、2π C 、34πD 、π【答案】A【解析】由题意22()(32)320a b a b a a b b -⋅+=-⋅-= ,即223cos 20a a b b θ--= ,所以23(2033θ⨯--=,cos 2θ=,4πθ=,选A . 【考点定位】向量的夹角.【名师点晴】本题考查两向量的夹角,涉及到向量的模,向量的垂直,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.16. 【2014高考广东卷.理.5】已知向量()1,0,1a =- ,则下列向量中与a 成60的是( )A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1- 【答案】B【考点定位】本题考查空间向量数量积与空间向量的坐标运算,属于基础题.【名师点晴】本题主要考查的是空间向量数量积的坐标运算,属于中等题.解题时要抓住关键字眼“成60”,否则很容易出现错误.解本题需要掌握的知识点是空间向量数量积的坐标运算,即若()111,,a x y z =,()222,,b x y z = ,则cos ,a b =.17.【2014天津,理8】已知菱形ABCD 的边长为2,120BAD? ,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m += ( ) (A )12 (B )23 (C )56 (D )712【答案】C . 【解析】试题分析:cos 120,120 2.AB ADAB AD BE BC BAD l ?鬃==Ð-=\,()(),.1,1AE AB AD AF AB AD AE AFAB AD ABADl m l m \=+=+?\+?=,即3222l m l m +-=①,同理可得23l m l m --=-②,①+②得56l m +=,故选C . 考点:1.平面向量共线充要条件;2.向量的数量积运算.【名师点睛】本题考查平面向量的有关知识及及向量运算,运用向量的加法、减法正确表示向量,利用向量的数量积求值,本题属于基础题.解决向量问题有两种方法,第一种是本题的做法,借助向量的几何意义,利用加法、减法、数乘、数量积运算,借助模运算解题,另一种方法是建立适当的平面直角坐标系,利用向量的坐标运算解题.18. 【2016高考天津理数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BCAB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为( ) (A )85- (B )81 (C )41 (D )811【答案】B考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.19. 【2014上海,理16】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为( )(A )1 (B)2 (C)4 (D)8 【答案】A【解析】如图,AB 与上底面垂直,因此i AB BP ⊥(1,2,)i = ,cos 1i i i AB AP AB AP BAP AB AB ⋅=∠=⋅=.【考点】数量积的定义与几何意义. 【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos <a ,b> .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.20. 【2014上海,理17】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 【答案】B【解析】由题意,直线1y kx =+一定不过原点O ,,P Q 是直线1y kx =+上不同的两点,则OP 与OQ 不平行,因此12210a b a b -≠,所以二元一次方程组112211a xb y a x b y +=⎧⎨+=⎩一定有唯一解.【考点】向量的平行与二元一次方程组的解.【名师点睛】可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y 的二元一次方程组:ax by cdx ey f +=⎧⎨+=⎩,当a/d≠b/e 时,该方程组有一组解。

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量(平面向量与三角的综合)填空题1.(2014•山东理)若ABC ∆中,已知tan AB AC A =,当6A π=时,ABC ∆的面积为16. 【考点】三角形的面积公式;平面向量数量积的性质及其运算 【分析】由条件利用两个向量的数量积的定义,求得23AB AC =,再根据ABC ∆的面积为1sin 2AB AC A ,计算求得结果. 【解答】解:ABC ∆中,cos tan AB AC AB AC A A ==,∴当6A π=时,有33AB AC=23AB AC =, ABC ∆的面积为11211sin 22326AB AC A =⨯⨯=,故答案为:16. 【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题. 2.(2014•陕西文)设02πθ<<,向量(sin 2,cos )a θθ=,(1,cos )b θ=-,若0a b =,则tan θ=12. 【考点】平面向量数量积的性质及其运算【分析】由条件利用两个向量的数量积公式求得22sin cos cos 0θθθ-=,再利用同角三角函数的基本关系求得tan θ 【解答】解:22sin 2cos 2sin cos cos 0a b θθθθθ=-=-=,02πθ<<,2sin cos 0θθ∴-=,1tan 2θ∴=, 故答案为:12. 【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题. 3.(2014•陕西理)设02πθ<<,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,若//a b ,则tan θ=12. 【考点】平面向量共线(平行)的坐标表示【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出. 【解答】解://a b ,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,2sin 2cos 0θθ∴-=, 22sin cos cos θθθ∴=,02πθ<<,cos 0θ∴≠.2tan 1θ∴=,1tan 2θ∴=. 故答案为:12.4.(2015•江苏)设向量(cos 6k k a π=,sin cos )(066k k k ππ+=,1,2,⋯,12),则110()k k k a a +=∑的值为 【考点】平面向量数量积的性质及其运算;两角和与差的三角函数【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 【解答】解:1(1)(1)(1)cos cos (sin cos )(sin cos )666666k k k k k k k k a a ππππππ++++=+++ (1)(1)(1)(1)(1)coscos sin sin sin cos cos sin cos cos6666666666k k k k k k k k k k ππππππππππ+++++=++++ 21121cossin(cos cos )66266k k ππππ++=+++321121sin cos2626k k ππ++=+, ∴1110357911132313579111323()12(sin sin sin sin sin sin sin sin )(cos cos cos cos cos cos cos cos )66666666266666666kk k aa ππππππππππππππππ+==+++++++⋯+++++++++⋯+∑00=+=故答案为:【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.解答题1.(2014•辽宁文理)在ABC ∆中,内角A 、B 、C 的对边分别为a ,b ,c ,且a c >,已知2BA BC =,1cos 3B =,3b =,求: (Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.【考点】平面向量数量积的性质及其运算;两角和与差的三角函数;余弦定理【分析】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将cos B 的值代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到2213a c +=,联立即可求出ac 的值;(Ⅱ)由cos B 的值,利用同角三角函数间基本关系求出sin B 的值,由c ,b ,sin B ,利用正弦定理求出sin C 的值,进而求出cos C 的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值. 【解答】解:(Ⅰ)2BA BC =,1cos 3B =, cos 2c a B ∴=,即6ac =①, 3b =,∴由余弦定理得:2222cos b a c ac B =+-,即2294a c =+-,2213a c ∴+=②,联立①②得:3a =,2c =;(Ⅱ)在ABC ∆中,sin B ===,由正弦定理sin sin b cB C=得:2sin sin 3c C B b === a b c =>,C ∴为锐角,7cos 9C ∴===,则1723cos()cos cos sin sin 393927B C B C B C -=+=⨯+=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.2.(2014•山东理)已知向量(,cos2)a m x =,(sin 2,)b x n =,函数()f x a b =,且()y f x =的图象过点(12π,和点2(3π,2)-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移(0)ϕϕπ<<个单位后得到函数()y g x =的图象,若()y g x =图象上的最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【考点】平面向量数量积的性质及其运算;正弦函数的单调性;函数sin()y A x ωϕ=+的图象变换【分析】(Ⅰ)由题意可得 函数()sin 2cos2f x m x n x =+,再由()y f x =的图象过点(12π和点2(3π,2)-,解方程组求得m 、n 的值.(Ⅱ)由(Ⅰ)可得()2sin(2)6f x x π=+,根据函数sin()y A x ωϕ=+的图象变换规律求得()2sin(22)6g x x πϕ=++的图象,再由函数()g x 的一个最高点在y 轴上,求得6πϕ=,可得()2c o s 2g x x =.令222k x k πππ-剟,k Z ∈,求得x 的范围,可得()g x 的增区间. 【解答】解:(Ⅰ)由题意可得 函数()sin 2cos 2f x a b m x n x ==+,再由()y f x =的图象过点(12π和点2(3π,2)-,可得12122m n ⎧+=⎪⎪⎨⎪-=-⎪⎩.解得m ,1n =.(Ⅱ)由(Ⅰ)可得1()2cos22cos2)2sin(2)26f x x x x x x π+=+=+. 将()y f x =的图象向左平移(0)ϕϕπ<<个单位后,得到函数()2sin[2()]2sin(22)66g x x x ππϕϕ=++=++的图象,显然函数()g x 最高点的纵坐标为2.()y g x =图象上各最高点到点(0,3)的距离的最小值为1,故函数()g x 的一个最高点在y 轴上, 2262k ππϕπ∴+=+,k Z ∈,结合0ϕπ<<,可得6πϕ=,故()2sin(2)2cos22g x x x π=+=.令222k x k πππ-剟,k Z ∈,求得2k x k πππ-剟,故()y g x =的单调递增区间是[2k ππ-,]k π,k Z ∈.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题. 3.(2015•广东理)在平面直角坐标系xOy 中,已知向量2(m =,,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【考点】平面向量数量积的性质及其运算;数量积表示两个向量的夹角 【分析】(1)若m n ⊥,则0m n =,结合三角函数的关系式即可求tan x 的值; (2)若m 与n 的夹角为3π,利用向量的数量积的坐标公式进行求解即可求x 的值. 【解答】解:(1)若m n ⊥, 则2(2m n=,(sin x,cos )0x x x ==,x x = sin cos x x =,即tan 1x =;(2)2||()12m ==,2||sin 1n x =,2(2m n =,(sin x ,cos )x x x =, ∴若m 与n 的夹角为3π,则1||||cos 32m n m n π==,即1222x x -=, 则1sin()42x π-=,(0,)2x π∈. (44x ππ∴-∈-,)4π. 则46x ππ-=即54612x πππ=+=. 【点评】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础. 4.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【考点】平面向量数量积的性质及其运算;三角函数中的恒等变换应用【分析】(1)根据向量的平行即可得到tan x =,问题得以解决, (2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题。

2014年高考数学真题分类汇编理科-平面向量(理科)

2014年高考数学真题分类汇编理科-平面向量(理科)

一、 选择题1.(2014 安徽理 10)在平面直角坐标系xOy 中,已知向量,a b ,1==a b ,=0⋅a b ,点Q 满足()2OQ =+a b .曲线{}cos sin 02πC P OP θθθ==+<,…a b ,区域{}0P r PQ R r R Ω=<<<≤,.若C Ω为两段分离的曲线,则( ).A. 13r R <<<B. 13r R <<…C. 13r R <<…D. 13r R <<<2.(2014 大纲理 4) 若向量,a b 满足:1=a ,()+⊥a b a ,()2+⊥a b b ,则=b ( ).A .2BC .1D 3.(2014 福建理 8)在下列向量组中,可以把向量()3,2=a 表示出来的是( ).A.()()120,0,1,2==e eB.()()121,2,5,2=-=-e eC.()()123,5,6,10==e eD.()()122,3,2,3=-=-e e4.(2014 广东理 5)已知向量()1,0,1,=-a 则下列向量中与a 成60︒夹角的是( ).A .()1,1,0- B. ()1,1,0- C. ()0,1,1- D. ()1,0,1-5.(2014 辽宁理 5)设,,a b c 是非零向量,已知命题p :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//a b ,//b c ,则//a c ,则下列命题中真命题是( ).A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.(2014 四川理 7)平面向量()1,2=a ,()4,2=b ,m =+c a b ()m ∈R ,且c 与a 的夹角等于c 与b 的夹角,则m =( ).A .2-B .1-C .1D .27.(2014 天津理 8)已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上, BE BC λ=,DF DC μ=.若1AE AF ?,23CE CF ?-,则λμ+=( ). A.12 B.23 C.56 D.7128.(2014 新课标2理3)设向量,a b 满足+=a b -=a b ,则⋅=a b ( ).A.1B.2C.3D.59.(2014 浙江理 8)记{},max ,,x x y x y y x y ⎧=⎨<⎩…,{},min ,,y x y x y x x y ⎧=⎨<⎩…,设,a b 为平面向量,则( ).A.{}{}min ,min ,a b a b a b +-…B. {}{}min ,min ,a b a b a b +-… C.{}2222max ,a b a b a b +-+… D.{}2222max ,a b a b a b +-+… 10.(2014 重庆理 4)已知向量()()(),3,1,4,2,1k ===a b c ,且()23-⊥a b c ,则实数k =( ). A. 92-B. 0C. 3D. 152二、填空题 1.(2014 北京理 10)已知向量a ,b 满足1=a ,()2,1=b ,且()λλ+=∈0R a b ,则λ=________.2.(2014 湖北理 11)设向量()3,3=a ,()1,1=-b ,若()()λλ+⊥-a b a b ,则实数λ=________.3.(2014 湖南理 16)在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足1CD =,则OA OB OD ++的最大值是________.4.(2014 江苏理 12)如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则A B A D ⋅的值是 .5.(2014 江西理 14)已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232=-a e e 与123=-b e e 的夹角为β,则cos β= .6.(2014 山东理 12)在ABC △中,已知tan AB AC A ⋅=uu u r uuu r ,当π6A =时,ABC △的面积为 .7.(2014 陕西理 13) 设π02θ<<,向量()()sin 2,cos ,cos ,1θθθ==a b ,若//a b,A则=θtan _______.8.(2014 新课标1理15)已知,,A B C 是圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为 .三、解答题1.(2014 辽宁理 17)(本小题满分12分)在ABC △中,内角,,A B C 的对边,,a b c ,且a c >.已知2BA BC ⋅=,1cos 3B =,3b =.求:(1)a 和c 的值;(2)()cos B C -的值.2.(2014 山东理 16)(本小题满分12分)已知向量()(),cos2,sin 2,m x x n ==a b ,函数()f x =⋅a b ,且()y f x =的图像过点π12⎛ ⎝和点2π,23⎛⎫- ⎪⎝⎭. (1)求,m n 的值;(2)将()y f x =的图像向左平移()0πϕϕ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.3.(2014 陕西理 18)(本小题满分12分)在直角坐标系xOy 中,已知点()()()1,12,3,3,2A B C ,点(),P x y 在ABC △三边围成的区域(含边界)上.(1)若PA PB PC ++=0,求OP ;(2)设(),OP mAB nAC m n =+∈R ,用,x y 表示m n -,并求m n -的最大值.。

2014年高考数学平面向量真题汇总

2014年高考数学平面向量真题汇总
若点 P 分有向线段 P 1P 2 所成的比为 ,则点 P 分有向线段 P 2P 1 所成的比为






1
3.线段的定比分点公式:设 P 1 ( x1 , y1 ) 、 P 2 ( x2 , y2 ) , P ( x, y ) 分有向线段 P 1P 2 所成的







2 x 2 y 2 , a | a |2 x 2 y 2 。
⑥两点间的距离:若 A x1 , y1 , B x2 , y2 ,则 | AB | 七.向量的运算律: 1.交换律: a b b a ,
x2 x1 y2 y1


x x x1 x2 x 1 2 x 2 1 比为 , 则 , 特别地, 当 =1 时, 就得到线段 P 1 P 2 的中点公式 。 y y 1 y2 y y1 y2 2 1
在使用定比分点的坐标公式时,应明确 ( x, y ) , ( x1 , y1 ) 、 ( x2 , y2 ) 的意义,即分别为分点, 起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据 这些点确定对应的定比 。 x x h 十一.平移公式:如果点 P ( x, y ) 按向量 a h, k 平移至 P ( x, y) ,则 ; 曲 y y k 线 f ( x, y ) 0 按向量 a h, k 平移得曲线 f ( x h, y k ) 0 .注意: (1)函数按向量平移 与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊! 十二.向量中一些常用的结论: (1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

【山东8年高考】2007-2014年高考数学真题分类汇编(名师整理):平面向量

【山东8年高考】2007-2014年高考数学真题分类汇编(名师整理):平面向量

平面向量(一)选择题1、(07山东11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=答案:C2、(07山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1BC .2D .4答案:C3.(2009山东卷理)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++= 【解析】:因为2BC BA BP +=,所以点P 为线段AC 的中点,所以应该选B 。

【命题立意】:本题考查了向量的加法运算和平行四边形法则, 4、(2010山东数) (12)定义平面向量之间的一种运算“”如下,对任意的a=(m,n),b p,q)=(,令a b=mq-np ,下面说法错误的是( )A.若a 与b 共线,则a b=0B.ab=b aC.对任意的R λ∈,有a)b=(λλ(ab) D. 2222(ab)+(ab)=|a||b|【解析】若a 与b 共线,则有a b=mq-np=0,故A 正确;因为ba pn-qm =,而a b=mq-np ,所以有ab b a ≠,故选项B 错误,故选B 。

【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。

5、(2011山东理数12)12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A ,B 则下面说法正确的是A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上答案:D6、(2011山东文数12)12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上答案:D7 (2012山东卷文(16))如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____. 答案:(2sin 2,1cos2)--8、(2013山东理)15.已知向量AB 与AC 的夹角为120°,且3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥,则实数λ的值为__________. 答案:15.7129(2013山东数学文)(15)、在平面直角坐标系xOy 中,已知(1,)OA t =-,(2,2)OB =,若90oABO ∠=,则实数t 的值为______ 答案:510(2014山东数学文)(7)、已知向量()1,3a =,()3,b m =.若向量,a b 的夹角为π6,则实数m =( )(A)(B(C )0 (D )答案:(B )(二)解答题1.(07山东)20(本小题满分12分)如图,甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的 北偏西105︒的方向1B 处,此时两船相距20海里.当甲船航 行20分钟到达2A 处时,乙船航行到甲船的北偏西120︒方 向的2B 处,此时两船相距海里,问乙船每小时航行多少海里? 解:如图,连结12AB ,22A B =122060A A =⨯=, 122A A B ∆是等边三角形,1121056045B A B ∠=︒-︒=︒,在121A B B ∆中,由余弦定理得2221211121112222cos 45202202002B B A B A B A B A B =+-⋅︒=+-⨯⨯=,12B B =因此乙船的速度的大小为6020=答:乙船每小时航行海里.2.(07山东文)17.(本小题满分12分)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ; (2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C += 解得1cos 8C =±.tan 0C >,C ∴是锐角. 1cos 8C ∴=.(2)52CB CA =, 5cos 2ab C ∴=, 20ab ∴=.又9a b +=22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=. 6c ∴=.。

专题10 平面向量丨十年高考数学真题分项汇编(解析版)(共40页)

专题10  平面向量丨十年高考数学真题分项汇编(解析版)(共40页)

十年(2014-2023)年高考真题分项汇编—平面向量目录题型一:平面向量的概念及线性运算.......................................................1题型二:平面向量的基本定理....................................................................3题型三:平面向量的坐标运算....................................................................9题型四:平面向量中的平行与垂直.........................................................13题型五:平面向量的数量积与夹角问题.................................................14题型六:平面向量的模长问题..................................................................32题型七:平面向量的综合应用 (37)题型一:平面向量的概念及线性运算一、选择题1.(2021年高考浙江卷·第3题)已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B解析:若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b = ,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件,故选B .2.(2020年新高考全国卷Ⅱ数学(海南)·第3题)在ABC 中,D 是AB 边上的中点,则CB=()A .2CD CA +B .2CD CA-C .2CD CA-D .2CD CA+【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA-=+=+=+-= 3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB=()A .32m n -B .23m n-+C .32m n+D .23m n+【答案】B解析:因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=- ,所以CB =3232CD CA n m -=- 23m n =-+ .故选:B .4.(2019·上海·第13题)已知直线方程02=+-c y x 的一个方向向量d 可以是()A.)1,2(-B .)1,2(C .)2,1(-D .)2,1(【答案】D【解析】依题意:)1,2(-为直线的一个法向量,∴方向向量为)2,1(,选D .【点评】本题主要考查直线的方向量.5.·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为12(10.6182≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是()A .165cmB .175cmC .185cmD .190cm【答案】答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .二、填空题1.(2020北京高考·第13题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD =_________;PB PD =_________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =-,因此,PD ==,()021(1)1PB PD ⋅=⨯-+⨯-=-.故答案为:;1-.2.(2014高考数学北京理科·第10题)已知向量a 、b 满足|a |=1,b =(2,1),且0a b λ+=(R λ∈),则||λ=.【答案】5解析:∵0a b λ+= ,∴a b λ=-,b aλ∴==3.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+ 与2a b +平行,则实数λ=_________.【答案】12解析:因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则12,k k λ=⎧⎨=⎩,所以12λ=.题型二:平面向量的基本定理一、选择题1.(2018年高考数学课标卷Ⅰ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A .3144AB AC-B .1344AB AC-C .3144AB AC+D .1344AB AC+【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A .2.(2014高考数学福建理科·第8题)在下列向量组中,可以把向量)2,3(=a表示出来的是()A .)2,1(),0,0(21==e eB .)2,5(),2,1(21-=-=e e C .)10,6(),5,3(21==e e D .)3,2(),3,2(21-=-=e e 【答案】B解析:根据12a e e λμ=+ ,选项A :()()()3,20,01,2λμ=+,则3μ=,22μ=,无解,故选项A 不能;选项B :()()()3,21,25,2λμ=-+-,则35λμ=-+,222λμ=-,解得,2λ=,1μ=,故选项B 能.选项C :()()()3,23,56,10λμ=+,则336λμ=+,2510λμ=+,无解,故选项C 不能.选项D :()()()3,22,32,3λμ=-+-,则322λμ=-,233λμ=-+,无解,故选项D 不能.故选:B .3.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则()A .1433AD AB AC =-+B .1433AD AB AC=- C .4133AD AB AC =+ D .4133AD AB AC=-【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A .4.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若AP AB AD λμ=+,则λμ+的最大值为()A .3B .CD .2【答案】A【解析】法一:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如下图则()0,0A ,()1,0B ,()0,2D ,()1,2C ,连结BD ,过点C 作CE BD ⊥于点E在Rt BDC ∆中,有BD ==1122ACD S BC CD BD CE =⨯⨯=⨯⨯△即112512225CE CE ⨯⨯=⇒=所以圆C 的方程为()()224125x y -+-=可设1cos ,2sin 55P θθ⎛⎫++ ⎪ ⎪⎝⎭由AP AB AD λμ=+ 可得()1cos ,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以1cos 51sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩,所以2cos sin 55λμθθ+=++()2sin θϕ=++其中sin 5ϕ=,cos 5ϕ=所以λμ+的最大值为3,故选A .法二:通过点C 作CE BD ⊥于E 点,由1AB =,2AD =,可求得BD ==又由1122ACD S CD CB BD CE =⨯⨯=⨯⨯△,可求得255CE =由等和线定理可知,当点P 的切线(即FH )与DB 平行时,λμ+取得最大值又点A 到BD 的距离与点C 到直线BD 的距离相等,均为255而此时点A 到直线FH 的距离为25252565225555r +=+⨯=所以6553255AFAB ==,所以λμ+的最大值为3,故选A .另一种表达:如图,由“等和线”相关知识知,当P 点在如图所示位置时,λμ+最大,且此时若AG x AB y AD =+,则有x y λμ+=+,由三角形全等可得2AD DF FG ===,知3,0x y ==,所以选A.法三:如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y根据等面积公式可得圆的半径是,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-= ,若满足AP AB ADλμ=+ 即21x y μλ=⎧⎨-=-⎩,,12x y μλ==-,所以12x y λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A .法四:由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系则C 点坐标为(2,1).∵||1CD =,||2BC =.∴22125BD =+=.BD 切C 于点E .∴CE⊥BD.∴CE是Rt BCD△中斜边BD上的高.12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 255.∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=.设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y = ,(0,1)AB = ,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0151cos 25x μθ==+,02155y λθ==+.两式相加得:2225151552552()())552sin()3λμθθθϕθϕ+=+++=+++=++≤(其中5sin 5ϕ=,25cos 5ϕ=)当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题1.(2023年天津卷·第14题)在ABC 中,60A ∠= ,1BC =,点D 为AB 的中点,点E 为CD 的中点,若设,AB a AC b == ,则AE 可用,a b表示为_________;若13BF BC = ,则AE AF ⋅ 的最大值为_________.【答案】①.1142a b + ②.1324解析:空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED ADAE EC AC⎧+=⎪⎨+=⎪⎩,两式相加,可得到2AE AD AC =+,即122AE a b =+ ,则1142AE a b =+ ;空2:因为13BF BC = ,则20FB FC += ,可得AF FC ACAF FB AB ⎧+=⎪⎨+=⎪⎩ ,得到()22AF FC AF FB AC AB +++=+,即32AF a b =+,即2133AF a b =+ .于是()2211211252423312a b a F b a AE A a b b ⎛⎫⎛⎫+⋅+=+⋅+ ⎪ ⎪⎝⋅=⎭⎝⎭.记,AB x AC y ==,则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF ⎛⎫+⋅+=++=++ ⎪⋅⎝⎭= ,在ABC 中,根据余弦定理:222222cos 601BC x y xy x y xy =+-=+-= ,于是1519222122122AE xy x xy AF y ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭=⎝⎭⋅ ,由221+-=x y xy 和基本不等式,2212x y xy xy xy xy +-=≥-=,故1xy ≤,当且仅当1x y ==取得等号,则1x y ==时,AE AF ⋅有最大值1324.故答案为:1142a b + ;1324.2.(2015高考数学北京理科·第13题)在ABC △中,点M ,N 满足2AM MC = ,BN NC =.若MN x AB y AC =+,则x =;y =.【答案】11,26-解析:特殊化,不妨设,4,3AC AB AB AC ⊥==,利用坐标法,以A 为原点,AB 为x 轴,AC 为y轴,建立直角坐标系,3(0,0),(0,2),(0,3),(4,0),(2,2A M CB N ,1(2,),(4,0),2MN AB =-=(0,3)AC = ,则1(2,)(4,0)(0,3)2x y -=+,11142,3,,226x y x y ==-∴==-.3.(2017年高考数学江苏文理科·第12题)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为2,OA与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°.若OC mOA nOB =+ (,)m n ∈R ,则m n +=______.【答案】3解析:由tan 7α=可得72sin 10α=,2cos 10α=,根据向量的分解,易得cos 45cos 2sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩,即2222102720210n m n +=⎪⎪⎪-=⎪⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=.题型三:平面向量的坐标运算一、选择题1.(2023年北京卷·第3题)已知向量a b,满足(2,3),(2,1)a b a b +=-=-,则22||||a b -=()αA CBO(第12题)A .2-B .1-C .0D .1【答案】B解析:向量,a b 满足(2,3),(2,1)a b a b +=-=-,所以22||||()()2(2)311a b a b a b -=+⋅-=⨯-+⨯=-.故选:B2.(2023年新课标全国Ⅰ卷·第3题)已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+ ,则()A .1λμ+=B .1λμ+=-C .1λμ=D .1λμ=-【答案】D解析:因为()()1,1,1,1a b ==- ,所以()1,1a b λλλ+=+- ,()1,1a b μμμ+=+-,由()()a b a b λμ+⊥+ 可得,()()0a b a b λμ+⋅+=,即()()()()11110λμλμ+++--=,整理得:1λμ=-.故选:D .3.(2014高考数学重庆理科·第4题)已知向量)1,2(),4,1(),3,(===c b k a ,且(23)a b c -⊥,则实数k =()A .92-B .0C .3D .152【答案】C解析:(23)a b c -⊥ (23)0a b c ⇒-= 230a c b c ⇒-= 2(23)360 3.k k ⇒+-⨯=⇒=C .13r R ≤<<D .13r R<<<【答案】A解析:因为||||1a b == ,且0a b ⋅= ,设(1,0)a = ,(0,1)b =,则由)OQ a b =+得Q 曲线C:设(,)P x y ,则(1,0)cos (0,1)sin (cos ,sin )OP θθθθ=+=,02θπ≤<,则cos ,(02)sin x y θθπθ=⎧≤<⎨=⎩,表示以(0,0)为圆心,1为半径的圆;区域Ω:设(,)P x y ,则由||r PQ R ≤≤,则有:2222(2)(2)r x y R ≤-+-≤,表示以(2,2)为圆心,分别以r 和R 为半径的同心圆的圆环形区域(如图),若使得C Ω 是两段分离的曲线,则由图像可知:13r R <<<,故选A .5.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,)22BA = ,31(,)22BC = ,则ABC ∠=()A .30︒B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC ⨯+⋅∠===⨯⋅ ,所以30ABC ∠=︒,故选A.6.(2016高考数学课标Ⅱ卷理科·第3题)已知向量(1,)(3,2)a m b =- ,=,且()a b b ⊥+,则m =()A .8-B .6-C .6D .8【答案】D【解析】由()a b b ⊥ +可得:()0a b b +=,所以20a b b += ,又(1,)(3,2)a mb =- ,=所以2232+(3(2))0m -+-=,所以8m =,故选D .二、填空题1.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b == ,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.2.(2020江苏高考·第13题)在ABC ∆中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得9AP =,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185【解析】,,A D P 三点共线,∴可设()0PA PD λλ=> ,32PA mPB m PC ⎛⎫∴=+- ⎪⎝⎭,32PD mPB m PC λ⎛⎫∴=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫- ⎪⎝⎭=+ ,若0m ≠且32m ≠,则,,B D C 三点共线,321m m λλ⎛⎫- ⎪⎝⎭∴+=,即32λ=,9AP = ,3AD ∴=,4AB = ,3AC =,90BAC ∠=︒,5BC ∴=,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.∴根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,()cos cos 0θπθ+-= ,()()2570665x x x --∴+=-,解得185x =,CD ∴的长度为185.当0m =时,32PA PC =,,C D 重合,此时CD 的长度为0,当32m =时,32PA PB = ,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185.3.设向量a 与b 的夹角为θ,(33)a = ,,2(11)b a -=-,,则cos θ=.【答案】31010解:设向量a 与b 的夹角为,θ且(3,3),2(1,1),a b a =-=- ∴(1,2)b =,则cos θ=||||a b a b ⋅==⋅31010。

平面向量2014-2016文科数学高考试题

平面向量2014-2016文科数学高考试题

三年高考(2014-2016 )数学(文)试题分项版解析第五章平面向量一、选择题r r r r1. 【2014 高考北京文第 3 题】已知向量a 2,4 ,b 1,1 ,则2a b ()A. 5,7B. 5,9C. 3,7D. 3,9r r r r r r r r2. 【2015 高考北京,文6】设a ,b是非零向量,“ a b a b ”是“ a//b ”的()A.充分而不必要条件 B .必要而不充分条件C .充分必要条件D.既不充分也不必要条件r r r r3.【2014 高考广东卷.文.3】已知向量a1,2 ,b 3,1 ,则b a ( )A.2,1B. 2,1C. 2,0D. 4,3uuur4. 【2015 高考广东,文9】在平面直角坐标系x y 中,已知四边形CD是平行四边形,1, 2 ,uuur uuur uuurD 2,1 ,则D C ()A.2 B.3 C.4 D.5r r r rπ5. 【2014 山东.文7】已知向量a 1, 3 ,b 3,m .若向量a,b 的夹角为,则实数m=()6( A )2 3 (B)3 (C)0 (D)36. 【2015高考陕西,文8】对任意向量a,b ,下列关系式中不恒成立的是()[来源学#科# 网Z#X#X#K]rr rr r r r r r r 2rr2r r r r r 2 r 2 A.|a?b||a||b|B.|a b| ||a| |b||C.(a b)2|a b|2D.(a b)(a b) a b7. 【2014全国2,文4】设向量a,b 满足|a b | 10 ,| a b| 6 ,则ab()A. 1B. 2C. 3D. 5uuur uuur8. 【2015高考新课标1,文2】已知点A(0,1), B(3,2),向量AC( 4, 3),则向量BC ()(D( A ) ( 7, 4)(B)(7, 4)(C)( 1,4))(1,4)9. 【2014 全国 1,文 6】设 D,E,F 分别为 ABC 的三边 BC ,CA, AB 的中点,则 EB FC11A. ADB. ADC. BCD. BC2210. 【2014 年.浙江卷 .文 9】设 为两个非零向量 a 、 b 的夹角,已知对任意实数 t ,|b ta|的最小值为1 ()A.若 确定,则 | a |唯一确定B.若 确定,则 |b |唯一 确定r r r r r r r r r11. 【2015 高考重庆,文 7】已知非零向量 a,b 满足 |b|=4|a|,且a (2a+b)则a 与b 的夹角为()25 (A) (B) (C) (D)3 2 3 6 r rr ruruur uur uur uur uur uur uur12. 【2014 ,安徽文 10】设a,b 为非零向量, b 2 a ,两组向量 x 1,x 2,x 3,x 4和 y 1,y 2,y 3,y 4均由 2个角为2 A .B .C .D .033613. 【2014 上海,文17 】如图,四个边长为 1的正方形排成一个大正方形, AB 是在正方形的一条边,uuur uuurP i (i 1,2,L ,7) 是小正方形的其余各个顶点,则AB AP i (i 1,2,L ,7) 的不同值的个数为()(A ) 7(B )5(C )3(D )1C.若|a |确定,则唯一确定 D.若| b |确定,则唯一确定r r ur uura 和 2 个b 排列而成,若 x 1 y 1 uur uur uur uur uur uur x 2 y 2 x 3 y 3 x 4 y 4 所有可能取值中的最小值为2rarr 则 a 与b 的夹 [来源:]14. 【2014 福建,文10】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任uuuruuur uuur uuur意一点,则OA OB OC OD 等于()uuuur uuuur uuuur uuuurA.OMB.2OMC.3OMD.4OM15.【2015高考福建,文r r r r7】设a (1,2) ,b (1,1),c arr kb .若b r c,则实数k 的值等于()3553 A.B.C. D .233216.【2014湖南文10 】在平面直角坐标系中,O为原点,A 1,0 ,B0, 3 ,C3,0 ,动点D 满足uuur CD1,uuur uuur uuur则OA OB OD 的取值范围是()A.4,6 B. 19-1,19+1C. 2 3,2 7D. 7-1,7+117.【2015四川文2】设向量a=(2,4)与向量b=(x,6)共线,则实数x=()(A)2(B)3(C)4(D)6uuur uuur18. (20 14 课标全国Ⅰ,文6)设D,E,F分别为△ABC 的三边BC,CA,AB的中点,则EB FC ().uuu1 uuur uuru1 uuruA.AD B.AD C.BC D.1 BC2219. 【2015新课标 2 文4】已知a1, 1 ,b1,2,则(2a b) a ( )A . 1B . 0C . 1D . 2[ 来源 :Z*xx*]PA PB =uuur uuurBC 3BE , DCDF .若 AE AF 1,,则 的值为 _______________ 8. 【2015 高考天津,文 13 】在等腰梯形ABCD 中,已知AB PDC , AB 2,BC 1, ABC 60o , 点 Euuur 2uuur uuur 1uuur uuur uuur 和点 F 分别在线段 BC 和CD 上,且BE BC,DF DC, 则AE AF 的值为3620. 【2014 辽宁文 5】设 a,b,c 是非零向量,已知命题P : 若 a b 0 , b c 0 ,则 a c 0;命题 q :若a//b,b//c ,则 a / /c ,则下列命题中真命题是(A . p qB . p qC . ( p) ( q)D . p (q)二、填空题 1. 【2015 高考山东,文13 】 过点 P (1,3)作圆x 22y 21 的两条切线,切点分别为A,B ,则2. 【 2014 高考陕西版文第 13 题】设 02,向量(sin2 ,cos ),b (1, cos ) , 若 a b 0,则 tan3. 【2014 四川,文 14 】平面向量 a (1,2) , b (4, 2) ,ma b ( m R ),且 c 与 a 的夹角等于 c与 b 的夹角,则 m4.2015 高考浙江,文 13】已知 e 1 ,e 2是平面单位向量, 且e 1 r1e2 2.若 面向量 b 满足 b e 1 e 2 1 ,5. 2014 高考重庆文第 12 题】已知向量 a 与b 的夹角为 60 ,且a ( 2, 6),|b| 10,则a6. 【2015 高考安徽,文 15 】 ABC 是边长为 2 的等边三角形,已知向量a 、b 满足 AB 2a ,AC 2a b ,则下列结论中正确的是. (写出所有正确结论得序号)① a 为单位向量;② b 为单位向量;③ a b ;④ b//BC ;⑤ (4a b) BC 7. 【2014 天津,文 13 】已知菱形 ABCD 的边长为 2 , BAD 120 ,点E ,F 分别在边 BC 、DC 上,9. 【2014 年普通高等学校招生全国统一考试湖北卷12 】若向量OA (1, 3) ,|OA| |OB|,OA?OB 0,则|AB| [来源: :Z+xx+]uuur uuur uuur uuur uuur10. 【2015 高考湖北,文11 】.已知向量OA AB,|OA| 3,则OA OB _______________ .11. 【2014 上海,文14 】已知曲线C:x 4 y2,直线l:x=6.若对于点A(m,0),存在C上的点uuur uuur rP和l上的点Q使得AP AQ 0,则m 的取值范围为.三、解答题1. 【2014 高考陕西版文第18 题】在直角坐标系xOy中,已知点A(1,1),B(2,3), C(3,2) ,点P(x,y)在uuur uuur uuurABC 三边围成的区域(含边界)上,且OP mAB nAC(m,n R) .1) 若m n2 uuur3,求|OP| ;2)用x,y表示m n ,并求m n 的最大值.[来源:]参考答案一、选择题1. 【解析】因为2a (4,8) ,所以2a b (4,8) ( 1,1)=(5,7),故选 A.考点:本小题主要考查平面向量的基本运算,属容易题2. 【答案】A【考点定位】充分必要条件、向量共线 .【名师点晴】本题主要考查的是充分必要条件和向量共线,属于容易题.解题时一定要注意 p q 时, p 是 q 的充分条件, q 是 p 的必要条件,否则很容易出现错误.充分、必要条件的判断即判断命题的真假, 在解题中可以根据原命题与其逆否命题进行等价转化.【考点定位】本题考查平面向量的坐标运算 ,属于容易题 .【名师点晴】本题主要考查的是平面向量减法的坐标运算,属于容易题.解题时要注意对应坐标分别相减, 否则很容易出现错误.解本题需要掌握的知识点是平面向量减法的坐标运算,即若a rx 1,y 1 ,4. 【答案】 D【考点定位】 1、平面向量的加法运算; 2 、平面向量数量积的坐标运算.【名师点晴】本题主要考查的是平面向量的加法运算和数量积的坐标运算,属于较难题.解题时要注意运 行平行四边形法则的特点,否则很容易出现错误.解本题需要掌握的知识点是平面向量加法的坐标运算和所以cos 6 2332 3m m 2 ,解得m 3,故选 B . 考点:平面向量的数量积、模与夹角 .【名师点睛】本题考查平面向量的数量积、平面向量的坐标运算 .利用夹角公式,建立 m 的方程即得 . 本题属于基础题,注意牢记夹角公式并细心计算 .3. 【答案】 B【解析】由题意得1,2 2, 1 ,故选 B . 数量积的坐标运算,即若 a r5. 【答案】 By 1x 1y 2x 2y 1x 2x 12y 1x 2x 1rbra解析】因为 cos6. 【答案】Br r r r r r r r r r【解析】因为|a?b| ||a||b|cos a,b | | a ||b |,所以A选项正确;当a 与b方向相反时,B选项不成立,r r r r r 2 r 2 所以B选项错误;向量平方等于向量模的平方,所以C选项正确;(a b)(a b) a b ,所以D选项正确,故答案选B.【考点定位】 1. 向量的模; 2.数量积.【名师点睛】 1. 本题考查向量模的运算,采用向量数量积公式.2.向量的平方就是模的平方进行化解求解.本题属于基础题,注意运算的准确性.7. 【答案】Ar2 r r r2 r 2 r r r2 r r r r【解析】由已知得,a 2a b b 10,a 2a b b 6 ,两式相减得,4a b 4,故a b 1.【考点定位】向量的数量积.【名师点睛】本题主要考查了向量数量积运算,本题属于基础题,解决本题的关健在于掌握向量的模与向量数量积之间的关系,还有就是熟练掌握数量积的运算性质与运算律.8. 【答案】Auuur uuur uuur uuur uuur uuur【解析】∵ AB OB OA = ( 3,1 ),∴ BC AC AB =(-7,-4) ,故选 A.【考点定位】向量运算【名师点睛】对向量的坐标运算问题,先将未知向量用已知向量表示出来,再代入已知向量的坐标,即可求出未知向量的坐标,是基础题.9. 【答案】 A考点:向量的运算 【名师点睛】熟练掌握平面向量的共线(平行) 、垂直、平面向量的加法等基本概念和基本性质是解决本题的关键之所在,同时本题考查了考生的综合分析问题的能力以及数形结合的能力 .10. 【答案】 B考点:平面向量的夹角、模,二次函数的最值,难度中等 .【名师点睛】本题主要考查了平面向量数量积的运算及二次函数的最值的有关性质问题,属于中档题目;11. 【答案】 C考点定位】向量的数量积运算及向量的夹角 【名师点睛】本题考查向量的数量积运算与向量夹角之间的关系,采用两向量垂直时其数量积为零来进行 转化 .本题属于基础题,注意运算的准确性 .12. 【答案】 B .解析】由已知可得 a?(2a b)20 2aa?b 0,设 a 与b 的夹角为 ,则有2aa b cos 0 cos2a21,又因为 [0, ] ,所以23,故选 C.23【名师点睛】本题先要了解相关的排列知识, 2个a 和 3 个b 排列所得的 S 结果有几种, 需要进行讨论, 要注意重复的情况删除 .比较两数的大小常用作差法,根据平面向量的平行、垂直的坐标运算性质,表示出需 要研究的量的关系 .考点】向量的数量积及其几何意义. 名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解14. 【答案】 D考点:平面向量的线性运算,相反向量名师点睛】本题主要考查向量的加法法则与减法法则及几何意义考点: 1.向量的数量积运算; 2 .分类讨论思想的应用.13. 【答案】 Cuuur uuur 【解析】 由数量积的定义知 AB AP iuuu r AB uuur APcos P i AB ,记为 m ,从图中可看出, 对P 2,P 5 ,m 0, 对 P 1, P 3, P 6 , m 2,对 P 4,P 7, m 4 ,故不同值的个数为 3 ,选 C.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则 a ·b =x 1x 2+y 1y 2.a ·b =|a ||b |cos< a , b>.解决此类问题时经常出现的错误有:忽视向量的起点与终点,导致加法与减法混淆,对此,要注意三角形法则与平行四边形法则适用的条件 .15. 【答案】 Ar r r r r【解析】由已知得 c (1,2) k (1,1) (k 1,k 2),因为 b c ,则b c 0,因此 k 1 k 2 0,解 3 得k 2 ,故选 A .【考点定位】平面向量数量积.rr【名师点睛】本题考查平面向量的线性运算和数量积运算以及平面向量基本定理,由已知 a,b 的坐标计 算c r 的坐标,再利用已知条件列方程求参数的值;本题还可以先利用向量运算,即 b r r c 0 ,r r r 2a b kb 0 ,再引入坐标运算,属于中档题.16 【答案】 D名师点睛】本题主要考查了圆的参数方程,解决问题的关键是根据所给条件 然后得到其参数方程 ,根据向量的和的坐标运算得到其和的模满足的三角函数式,运用三角函数知识不难 得到其最大值 .主要运用了转化的思想方法17. 【答案】 B【解析】由向量平行的性质,有 2∶4= x ∶6,解得 x = 3,选 B【考点定位】本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力uuurCD 得到对应点 C 的轨迹,名师点睛】平面向量的共线、垂直以及夹角问题,我们通常有两条解决通道:一是几何法,可以结合正余弦定理来处理.二是代数法,特别是非零向量的平行与垂直,一般都直接根据坐标之间的关系,两个非零向量平行时,对应坐标成比例(坐标中有0 时单独讨论);两个向量垂直时,对应坐标乘积之和等于0,即通常所采用的“数量积”等于0. 属于简单题18. 答案:A解析:由于D,E,F分别是BC,CA,AB 的中点,所以uuur uuur 1uuur uuur 1uuur uuur EB FC BA BC CA CB22 1uuur uuur1uuur uuur1uuur uuurBA CA AB AC2AD AD ,故选A 222名师点睛:本题考查平面向量的加法、减法法则,线段中点的性质,考查转化能力,容易题19. 【答案】C【解析】22试题分析:由题意可得a2 1 1 2 , a b 1 2 3, 所以2a b a 2a2a b 4 3 1.故选 C.考点定位】本题主要考查向量数量积的坐标运算名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若222x1,y1 ,b x2,y2 ,则a x1 y1 , a b x1y1 x2y220. 【答案】A考点定位】 1 、平面向量的数量积运算;2、向量共线.名师点睛】本题考查平面向量的数量积、共线向量及复合命题的真假本题将平面向量、简易逻辑联结词结合在一起综合考查考生的基本数学素养,体现了高考命题“小题综合化”的原则度不大,关键是要熟练掌握平面向量的基础知识,熟记“真值表” .二、填空题.本题属于基础题,难2名师点睛】本题考查了直线与圆的位置关系、平面向量的数量积及数形 结合图形特征,灵活地运用“几何方法”得到计算平面向量数量积的“要件”本题属于小综合题,以突出考查圆、直线与圆的位置关系为主,考查平面向量的数量积的定义、计算方法, 同时也考查了数形结合思想,本题的“几何味”较浓 .1 2. 【答案】2【解析】试题分析:因为 ab 0 ,所以 sin2 1 cos 20 ,即 sin22cos ,所以 2sin coscos 2 ;因为 0,所以 cos 0 ,故 2sin cos,所以 tansin1 ,故答案12cos22.考点:共线定理;三角恒等变换 .【名师点晴】本题主要考查的是平行向量的坐标运算、向量共线定理,三角恒等变换,属于容易题.解题 时一定要注意角的范围,否则很容易失分.解决此题的关键是三角变换,而三角变换中主要是“变角、变1. 【答案】 32【解析】 如图,连接 PO ,在直角三角形 PAO 中, OA 1,PA 3, 所以,tan APO 3 ,3|PA|32|PB|cos APB 3 3 1 322结合思想,解答本题 的关键,是函数名和变运算形式” ,其中的核心是“变角” ,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.3. 【答案】 2.考点定位】向量的夹角及向量的坐标运算名师点睛】本题考查两向量的夹角,涉及到向量的模,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力【考点定位】 1. 平面向量数量积运算; 2.向量的模.ur uur【名师点睛】本题主要考查平面向量的数量积运算以及向量的模的计算.根据条件,设定e1,e2 的坐标形式,r利用向量的数量积的坐标表示得到b 的坐标,进而确定其模.本题属于容易题,主要考查学生基本的运算能力.5. 【答案】10【解析】试题分析:r a2, 6 , a22622 10r r r ab r cos60 o 2 10 10 1 10,所以答案应填:104. 【答案】23 3ur 解析】由题可知,不妨e1uur 1 3 r r r (1,0) ,e2 (12, 23),设b(x,y),则b e r1x 1 ,b e r213xy221,2考点: 1、平面向量的坐标运算; 2 、向量的模; 3、向量的数量积 .【名师点睛】本题考查了平面向量的坐标运算,向量的模,向量的数量积,本题属于基础题,注意 计算的 准确性 .6. 【答案】①④⑤考点定位】本题主要考查平面向量的基本概念和基本性质的应用 【名师点睛】熟练掌握平面向量的单位向量、共线(平行) 、垂直、平面向量的加法等基本概念和基本性质是解决本题的关键之所在,同时本题考查了考生的综合分析问题的能力以及数形结合的能力 .考点:向量坐标表示7. 【2014 天津,文 13 】已知菱形 ABCD 的边长为 2,BAD 120 ,点 E ,F 分别在边 BC 、 DC上, BC 3BE , DC uuur uuur DF .若 AE AF 1, ,则 的值为答案】 2 解析】建立如图所示直角坐标系,则 A( 1,0), B(0, 3),C(1,0),D(0, 3),E(13, 233),F(1, 3 3) ,由uuur uuur AE AF 1得:(34, 233) (1 1, 33) 1, 2.试题分析:考点定位】平面向量的数量积名师点睛】高考对平面向量数量积的考查主要是向量的模 ,夹角的运算及平行与垂直的判断与应用 ,在利用 数量积的定义进行计算时 ,要善于将相关向量分解为图形中模与夹角已知的向量进行运算 意向量的方向 ,搞清两向量的夹角9. 【答案】 2 5考点:平面向量的数量积,向量的模的求法,容易题 .【名师点睛】本题考查平面向量的坐标运算和两点距离公式,扎根基础知识,强调教材的重要性,充分体 现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力 .其解题的关键是正确的计算平面向量的数量积和向量的模名师点睛】本题考查平面向量的有关知识及及向量运算,利用向量坐标运算解题,本题属于基础题 .利用坐标运算要建立适当的之间坐标系,准确写出相关点的坐标、向量的坐标,利用向量相等关系,列方程组, 解出未知数的值 .向量问题考查有两种,一是借助向量的加法、减法、数乘、数量积运算,多考查向量的夹 角、向量的模、数量积,另一种是考查向量的坐标运算8. 【2015 高考天津 ,文 13 】在等腰梯形 ABCD 中,已知 AB PDC , AB 2,BC 1, ABC60 , 点 Euuur 和点 F 分别在线段 BC 和 CD 上,且 BE 2uuuruuurBC,DF 3 1uuur uuur uuurDC, 则 AE AF 的值为6答案】2918,运算时一定要注10. 【答案】9.uuur uuur uur uuur uur uuur uur uur u u r uur 2 解析】因为向量OA AB,所以OA AB 0 ,即OA (OB OA) 0 ,所以OA OB OA 0,即uur u u r uur 2OA OB OA 9 ,故应填9.考点定位】本题考查向量的数量积的基本运算,属基础题.名师点睛】将向量的加法运算法则(平行四边形法则和三角形法则)和向量的数量积的定义运算联系在一起,体现数学学科知识间的内在联系,渗透方程思想在解题中的应用,能较好的考查学生基础知识的识记能力和灵活运用能力.11. 【答案】[2,3]uuur uuur r【解析】由AP AQ 0知A是PQ的中点,设P(x,y),则Q(2m x, y),由题意 2 x 0,2m x 6 ,解得 2 m 3.【考点】向量的坐标运算.【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos< a,b> .(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b =x1x2+y1y2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解三、解答题1. 【答案】(1)2 2;(2)m n y x , 1.试题解析:(1)Q A(1,1),B(2,3), C(3,2)uuurAB(1,2) ,uuur AC (2,1)uuu r uuur uuurQ OP mAB nAC又muuur 2uuur 2uuurOP AB AC (2,2)33uuuruuur uuur uuur2) Q OP mAB nAC(x,y) (m 2n,2m n)x m 2n即y 2m n两式相减得:m n y x令y x t ,由图可知,当直线y x t 过点B(2,3) 时,t 取得最大值1,故m n的最大值为 1.–5 –4 –3 –2 –1O1 2 3 4 5考点:平面向量的线性运算;线性规划.【名师点晴】本题主要考查的是平面向量的线性运算;线性规划.简单的应用,属于中档题;向量问题与线性规划问题的结合不是太常见,特别是在大题中,解题是要充分理解题意,将向量问题转化为线性规划问题是解题的关键y。

2014年全国高考理科数学试题分类汇编(纯word解析版) 五、平面向量(逐题详解)

2014年全国高考理科数学试题分类汇编(纯word解析版)              五、平面向量(逐题详解)

2014年全国高考理科数学试题分类汇编(纯word 解析版) 五、平面向量(逐题详解)第I 部分1.【2014年重庆卷(理04)】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A - .0B .C 3 D.152【答案】C【解析】由已知(23)0230a b c a c b c -⋅=⇒⋅-⋅=,即 2(23)3(2141)03k k +-⨯+⨯=⇒=,选择C2.【2014年福建卷(理08)】在下列向量组中,可以把向量=(3,2)表示出来的是( )A .=(0,0),=(1,2)B .=(﹣1,2),=(5,﹣2)C .=(3,5),=(6,10)D .=(2,﹣3),=(﹣2,3)【答案】B 【解析】 根据,选项A :(3,2)=λ(0,0)+μ(1,2),则 3=μ,2=2μ,无解,故选项A 不能; 选项B :(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2, μ=1,故选项B 能. 选项C :(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C 不能. 选项D :(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选 项D 不能.故选:B3.【2014年全国新课标Ⅱ(理03)】设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( ) A. 1 B. 2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.【2014年辽宁卷(理05)】设,,a b c 是非零向量,学科 网已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝【答案】A【解析】若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p 为假命题,若∥,∥,则∥平行,故命题q 为真命题,则p ∨q ,为真命题,p ∧q ,(¬p )∧(¬q ),p ∨(¬q )都为假命题,故选:A5.【2014年全国大纲卷(04)】若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2B .2C .1D .22【答案】B【解析】由题意可得,(+)•=+=1+=0,∴=﹣1; (2+)•=2+=﹣2+=0,∴b 2=2,则||=,故选:B6.【2014年广东卷(理05)】已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)【答案】B【解析】∵(1,0,1)=-a ,设所求向量为(,y,z)x =b ,由题意得:||||cos60⋅=a b a b , ∴(1,1,0)=-b .故选B.7.【2014年上海卷(理16)】 如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i = 是上底面上其余的八个点,则(1, 2, , 8)i AB AP i ⋅=的不同值的个数为 ( ) (A) 1.(B) 2.(C) 4.(D) 8.【答案】A【解析】:根据向量数量积的几何意义,i AB AP ⋅等于AB 乘以i AP 在AB 方向上的投影,而i AP 在AB 方向上的投影是定值,AB 也是定值,∴i AB AP ⋅为定值1,∴选A8.【2014年浙江卷(理08)】记max{x ,()}()x x y y y x y ≥⎧=⎨<⎩,min{x ,()}()y x y y x x y ≥⎧=⎨<⎩,设a 、b 为平面向量,则A.min{||a b +,||}min{||a b a -≤,||}bB.min{||a b +,||}min{||a b a -≥,||}bC.2min{||a b +,222||}||||a b a b -≥+ D.2min{||a b +,222||}||||a b a b -≤+【答案】D【解析】对于选项A ,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B ,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=,显然,不等式不成立;对于选项C ,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等 式右边=||2+||2=2,显然不成立.由排除法可知,D 选项正确.故选:D9.【2014年四川卷(理07)】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D【解析1】(4,22)c m m =++因为cos ,||||c a c a c a ⋅=⋅,cos ,||||c b c b c b ⋅=⋅,所以||||||||c a c bc a c b ⋅⋅=⋅⋅, 又||2||b a =所以2c a c b ⋅=⋅即2[(4)2(22)]4(4)2(22)m m m m +++=+++2m ⇒=【解析2】由几何意义知c 为以ma ,b 为邻边的菱形的对角线向量,又||2||b a =故2m =10.【2014年天津卷(理08)】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E 、F 分别在边BC 、DC 上,BE BC λ=,DF DC μ=.若1AE AF ⋅=,23CE CF ⋅=-,则λμ+=A.12 B.23 C.56 D.712【答案】C【解析】 建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由=μ得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ·AF =(λ+1,3(λ-1))·(μ+1,3(1-μ))=1,①=(λ-1, 3(λ-1))·(μ-1, 3(1-μ))=-23.②①-②得λ+μ=56.第II 部分11.【2014年陕西卷(理13)】设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a//,则=θtan _______. 【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即,b a b a12.【2014年湖南卷(理16)】在平面直角坐标系中,O 为原点,)0,1(-A ,)3,0(B ,)0,3(C . 动点D 满足1||=CD ,则||OD OB OA ++的最大值是_________.【答案】71+【解析】动点D 的轨迹为以C 为圆心的单位圆,则设为()[)()3cos ,sin 0,2θθθπ+∈,则()()223cos 1sin 3OA OB OD θθ++=+-++)sin(728ϕθ++=,所以OA OB OD ++的最大值为17728+=+,故填71+.或由题求得点D 的轨迹方程为1)3(22=+-y x ,数形结合求出OA OB OD ++的 最大值即为点)3,1(-到轨迹上的点最远距离( 到圆心的距离加半径) .13.【2014年全国新课标Ⅰ(理15)】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【答案】:090 【解析】:∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径, ∴090BAC ∠=,∴AB 与AC 的夹角为090。

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)

2014-2019年高考数学真题分类汇编 专题5:向量(平面向量与三角的综合)填空题1.(2014•山东理)若ABC ∆中,已知tan AB AC A =,当6A π=时,ABC ∆的面积为 16 . 2.(2014•陕西文)设02πθ<<,向量(sin 2,cos )a θθ=,(1,cos )b θ=-,若0a b =,则tan θ= 12 . 3.(2014•陕西理)设02πθ<<,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,若//a b ,则tan θ= 12 .4.(2015•江苏)设向量(cos 6k k a π=,sin cos )(066k k k ππ+=,1,2,⋯,12),则110()k k k a a +=∑的值为解答题1.(2014•辽宁文理)在ABC ∆中,内角A 、B 、C 的对边分别为a ,b ,c ,且a c >,已知2BA BC =,1cos 3B =,3b =,求: (Ⅰ)a 和c 的值;(Ⅱ)cos()B C -的值.2.(2014•山东理)已知向量(,cos2)a m x =,(sin 2,)b x n =,函数()f x a b =,且()y f x =的图象过点(12π,和点2(3π,2)-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移(0)ϕϕπ<<个单位后得到函数()y g x =的图象,若()y g x =图象上的最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.3.(2015•广东理)在平面直角坐标系xOy 中,已知向量2(m =,,(sin ,cos )n x x =,(0,)2x π∈. (1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值.4.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π.(1)若//a b ,求x 的值;(2)记()f x a b ,求()f x 的最大值和最小值以及对应的x 的值.。

2014年普通高等学校招生全国统一考试分类汇编8—平面向量(文科)

2014年普通高等学校招生全国统一考试分类汇编8—平面向量(文科)

2014年普通高等学校招生全国统一考试分类汇编(8)平面向量【2014安徽】0.设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( )A .23π B .3π C .6π D .0 10.B ,解析:11223344x y x y x y x y ⋅+⋅+⋅+⋅有以下三种可能:①222222||2||10||a a b b a b a ⋅+⋅=+=②244||2||cos 8||cos a b a a a θθ⋅=⋅=③223||6||cos a a a b a a θ⋅+⋅=+易知③最小,则有222||6||cos 4||a a a θ+=,所以1cos 2θ=,3πθ=。

3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 解3.A [解析] 2a -b =2(2,4)-(-1,1)=(5,7).10.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于 ( )..2.3.4AOM B OM C OM D OM10.D [解析] 如图所示,因为M 为平行四边形ABCD 对角线的交点,所以M 是AC 与BD 的中点,即MA →=-MC →,MB →=-MD →.在△OAC 中,OA →+OC →=(OM →+MA →)+(OM →+MC →)=2OM →.在△OBD 中,OB →+OD →=(OM →+MB →)+(OM →+MD →)=2OM →,所以OA →+OC →+OB →+OD →=4OM →,故选D.3.已知向量,则( )A .B .C .D .解析:本题考查向量的基本运算,属于基础题.)1,2()21,13(-=--=-.故选C.6.已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .2[解析]6.B 因为a ,b 为单位向量,且其夹角为60°,所以(2a -b )·b =2a ·b -b 2=2|a ||b |cos 60°-|b |2=0.4.设向量,a b 满足||10a b +=,|6a b -=,则a b ⋅= ( )A .1B .2C .3D .54.A . 解析:||10,6|4=41=+=-=∴+⋅+⋅+∴⋅∴⋅=-=2222a b a b a 2a b b a 2a b b a b a b 故选A . 考点:考查平面向量的数量积,中等题.12.若向量(1,3)OA =-,||||OA OB =,0OA OB ⋅=, 则||AB =________.解析:12. 2222220AB OB OA OA OA OB OB OA =-=++===10.在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足 1CD =,则OA OB OD ++的取值范围是( )A.[]46,B.⎤⎦C.⎡⎣D.⎤⎦[解析]10.D 由|CD →|=1,得动点D 在以点C 为圆心,半径为1的圆上,故可设D (3+cos α,sin α),)1,3(),2,1(==b a =-a b )3,4()0,2()1,2(-)1,2(-所以OA →+OB →+OD →=(2+cos α,3+sin α),所以|OA →+OB →+OD →|2=(2+cos α)2+(3+sin α)2=8+4cos α+23sin α=8+27sin(α+φ),所以|OA →+OB →+OD →|2∈[8-27,8+27],即|OA →+OB →+OD →|∈[7-1,7+1].12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则AB AD ⋅的值是 ▲ .解析:12.【答案】22解法一:(基底法)考虑将条件中涉及的,AP BP 向量用基底,AB AD 表示,而后实施计算.14AP AD DP AD AB =+=+,34BP BC CP AD AB =+=-. 则2213132()()44216AP BP AD AB AD AB AD AD AB AB ⋅==+⋅-=-⋅-. 因为8,5AB AD ==,则3122564162AB AD =-⨯-⋅,故22AB AD ⋅=. (江苏苏州 何睦) 解法二:(坐标法)不妨以A 点为坐标原点,AB 所在直线作为x 轴建立平面直角坐标系,可设(0,0),(8,0),(.),(2,),(8,)A B D a t P a t C a t ++,则(2,)AP a t =+,(6,)BP a t =-.由2AP BP ⋅=,得22414a t a +-=,由5AD =,得2225a t +=,则411a =, 所求822AB AD a ⋅==. (江苏苏州 何睦) 【考点】平面向量的加法、减法及数乘运算 (B),平面向量的数量积 (C).【答案】22【解析】以,为基底,因为2,3=⋅=,41+=+=,43-=+= 则)43()41(2AB AD AB AD BP AP -⋅+==⋅2216321AB AB AD AD -⋅-= 因为5,8==AD AB 则⋅-⋅-=2164163252,故22=⋅ 【点评】本题主要考查向量,向量的基底表示,向量的运算,本题关键在于选取哪两个向量为基底,根据题目中已知的两条边长,选为基底最为合适。

高考数学专题05平面向量-高考数学试题分项版解析(解析版).docx

高考数学专题05平面向量-高考数学试题分项版解析(解析版).docx

高中数学学习材料马鸣风萧萧*整理制作专题5 平面向量1. 【2014高考安徽卷文第10题】设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( ) A.23π B.3π C.6π D.02. 【2014高考北京卷文第3题】已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9【答案】A【解析】因为2(4,8)a =r ,所以2(4,8)(1,1)a b -=--r r =(5,7),故选A.【考点】本小题主要考查平面向量的基本运算,属容易题.3. 【2014高考大纲卷文第6题】已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2【答案】B【解析】 试题分析:22(2)22cos ,a b b a b b a b a b b -⋅=⋅-=⨯⨯<>-=2×1×1×c os 60︒-1=0,故选B.【考点】向量的数量积运算.4. 【2014高考福建卷文第10题】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于 ( ) ..2.3.4A OM B OM C OM D OM5. 【2014高考广东卷文第3题】已知向量()1,2a =,()3,1b =,则b a -=( )A.()2,1-B.()2,1-C.()2,0D.()4,37. 【2014高考湖南卷文第10题】在平面直角坐标系中,O 为原点,()1,0A -,()03B ,,()30C ,,动点D 满足1CD =,则OA OB OD ++的取值范围是( )A.[]46,B.19-119+1⎡⎤⎣⎦,C.2327⎡⎤⎣⎦,D.7-17+1⎡⎤⎣⎦, 【答案】D【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程8.【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .9.【2014高考江西卷文第12题】已知单位向量=-==||,23,31cos ,,2121a e e a e e 则若向量且的夹角为αα_______. 【答案】3【解析】 试题分析:因为22221211221||(32)9124912cos 413129,3a e e e e e e α=-=-⋅+=-⨯+=-⨯=所以|| 3.a = 考点:向量数量积10. 【2014高考辽宁卷文第5题】设,,a b c 是非零向量,已知命题P :若0a b ⋅=,0b c ⋅=,则0a c ⋅=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝12. 【2014高考全国2卷文第4题】设向量b a ,满足10||=+b a ,6||=-b a ,则=⋅b a ( )A. 1B. 2C. 3D. 513.【2014高考山东卷文第7题】已知向量()1,3a =,()3,b m =.若向量,a b 的夹角为π6,则实数m =( )(A )23 (B )3 (C )0 (D )3-【答案】B【解析】因为cos ,,||||a b a b a b ⋅<>=⋅所以2233cos ,623m m π+=+解得3m =,故选B . 考点:平面向量的数量积、模与夹角. 14.【2014高考四川卷文第14题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m = .15. 【2014高考天津卷卷文第13题】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1,AE AF ⋅=,则λ的值为________.16.【2014高考浙江卷文第9题】设θ为两个非零向量a 、b 的夹角,已知对任意实数t ,||t a b +的最小值为1( )A.若θ确定,则 ||a 唯一确定B.若θ确定,则 ||b 唯一确定C.若||a 确定,则 θ唯一确定D.若||b 确定,则 θ唯一确定17.【2014高考重庆卷文第12题】已知向量=⋅=--=b a b a b a 则,且的夹角为与,10||),6,2(60_________.18.【2014高考上海卷文第14题】已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .【答案】[2,3]【解析】由0AP AQ +=知A 是PQ 的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.【考点】向量的坐标运算.19.【2014高考上海卷文第17题】如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )120.【2014高考陕西文第18题】在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈.(1)若23m n ==,求||OP ; (2)用,x y 表示m n -,并求m n -的最大值.。

高考数学专题05平面向量-高考数学(理)试题分项版解析(原卷版)

高考数学专题05平面向量-高考数学(理)试题分项版解析(原卷版)

高中数学学习材料金戈铁骑整理制作1. 【2014高考福建卷第8题】在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e2. 【2014高考广东卷理第5题】已知向量()1,0,1a =-,则下列向量中与a 成60的是( )A.()1,1,0-B.()1,1,0-C.()0,1,1-D.()1,0,1-3. 【2014高考湖南卷第16题】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD =1,则OA OB OD ++的最大值是_________.4. 【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .5. 【2014陕西高考理第13题】设20πθ<<,向量()()1cos cos 2sin ,,,θθθb a =,若b a //,则=θtan _______.6. 【2014高考安徽卷理第10题】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )A.13r R <<<B.13r R <<≤C.13r R ≤<<D.13r R <<<7. 【2014高考北京版理第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则||λ= .8. 【2014高考湖北卷理第11题】设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ= .10. 【2014江西高考理第15题】已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β= . 11. 【2014辽宁高考理第5题】设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝12. 【2014全国1高考理第15题】已知C B A ,,为圆O 上的三点,若()AC AB AO +=21,则AB 与AC 的夹角为_______.13. 【2014全国2高考理第3题】设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( )A. 1B. 2C. 3D. 514. 【2014高考安徽卷理第15题】已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①S 有5个不同的值. ②若,b a ⊥则min S 与a 无关. ③若,b a ∥则min S 与b 无关.④若a b 4>,则0min >S .⑤若2min ||2||,8||b a S a ==,则a 与b 的夹角为4π 15. 【2014四川高考理第7题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .2-B .1-C .1D .216. 【2014浙江高考理第8题】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+ 17. 【2014重庆高考理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A - .0B .C 3 D.15218. 【2014天津高考理第8题】已知菱形ABCD 的边长为2,120BAD ?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF ?,23CE CF ?-,则l m += ( ) (A )12 (B )23 (C )56 (D )71219. 【2014大纲高考理第4题】若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( ) A .2 B .2 C .1 D .2220. 【2014高考陕西第18题】在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若0=++PC PB PA ,求OP ;(2)设),(R n m AC n AB m OP ∈+=,用y x ,表示n m -,并求n m -的最大值.21.【2014高考上海理科第16题】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为( )(A )1 (B)2 (C)4 (D)822.【2014高考上海理科第14题】已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考数学分类汇编平面向量一、选择题1 .(2013年高考(重庆文))设x R ∈ ,向量(,1),(1,2),a xb ==- 且a b ⊥ ,则||a b +=( )A B C .D .102 .(2013年高考(重庆理))设,x y ∈R,向量()()()4,2,,1,1,-===y x ,且//,⊥,_______= ( )A B C .D .103 .(2013年高考(浙江文))设a,b 是两个非零向量. ( )A .若|a+b|=|a|-|b|,则a ⊥bB .若a ⊥b,则|a+b|=|a|-|b|C .若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD .若存在实数λ,使得b=λa,则|a+b|=|a|-|b| 4 .(2013年高考(浙江理))设a,b 是两个非零向量.( )A .若|a+b|=|a|-|b|,则a⊥bB .若a⊥b,则|a+b|=|a|-|b|C .若|a+b|=|a|-|b|,则存在实数λ,使得a=λbD .若存在实数λ,使得a=λb,则|a+b|=|a|-|b|5 .(2013年高考(天津文))在ABC ∆中,90A ∠=︒,1AB =,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈ .若2BQ CP ⋅=-,则λ=( )A .13B .23C .43D .26 .(2013年高考(天津理))已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=A P A Bλ ,=(1)AQ AC λ- ,R λ∈,若3=2BQ CP ⋅- ,则=λ ( )A .12B .12± C .12± D .32-± 7 .(2013年高考(辽宁文))已知向量 a = (1,—1),b = (2,x).若 a ·b = 1,则x =( )A .—1B .—12C .12D .18 .(2013年高考(辽宁理))已知两个非零向量a,b 满足|a+b|=|a -b|,则下面结论正确的是( )A .a∥bB .a⊥bC .{0,1,3}D .a+b=a -b9 .(2013年高考(广东文))(向量、创新)对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且 a b 和 b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则= a b ( )A .12 B .1C .32D .52 10 .(2013年高考(广东文))(向量)若向量()1,2AB = ,()3,4BC =,则AC =( )A .()4,6B .()4,6--C .()2,2--D .()2,211 .(2013年高考(福建文))已知向量(1,2),(2,1)a xb =-=,则a b ⊥ 的充要条件是 ( )A .12x =-B .1x =-C .5x =D .0x =13 .(2013年高考(大纲文))ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b =,则AD =( )A .1133a b -B .2233a b -C .3355a b -D .4455a b-13 .(2013年高考(湖南理))在△ABC 中,AB=2,AC=3,AB BC= 1则___BC =. ( )A B C .D 14 .(2013年高考(广东理))对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且 a b 和 b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则= a b( )A .12 B .1C .32D .52 15 .(2013年高考(广东理))(向量)若向量()2,3BA = ,()4,7CA =,则BC =( )A .()2,4--B .()2,4C .()6,10D .()6,10--16 .(2013年高考(大纲理))ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD = ( )A .1133a b -B .2233a b -C .3355a b -D .4455a b -17.(2013年高考(安徽理))在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A.(- B.(-C.(2)-- D.(-二、填空题10.(2013年高考(浙江文))在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.11.(2013年高考(上海文))在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上 的点,||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ . 13.(2013年高考(课标文))已知向量a ,b 夹角为045,且|a |=1,|2-a b|=,则|b |=_______.13.(2013年高考(江西文))设单位向量(,),(2,1)m x y b ==- 。

若m b ⊥ ,则|2|x y +=_______________。

14.(2013年高考(湖南文))如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且AP AC= _____.15.(2013年高考(湖北文))已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a - 与向量a夹角的余弦值为____________.16.(2013年高考(北京文))已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________.17.(2013年高考(安徽文))设向量(1,2),(1,1),(2,)a mb mc m ==+= ,若()a c + ⊥b ,则a =_____.18、.(2013年高考(新课标理))已知向量,a b 夹角为45︒,且1,2a a b =-= ;则_____b =19、.(2013年高考(浙江理))在∆ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=______________. 20、.(2013年高考(上海理))在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,||||CD CN BC BM ,则AN AM ⋅的取值范围是_________ .21、.(2013年高考(江苏))如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF 则AE BF的值是___.22.(2013年高考(北京理))已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________; DE DC ⋅的最大值为________.23.(2013年高考(安徽理))若平面向量,a b满足:23a b -≤ ;则a b 的最小值是_____参考答案一、选择题 1. 【答案】B【解析】0202a b a b x x ⊥⇒⋅=⇒-=⇒=,|||(2,1)(1,2)|a b +=+-=【考点定位】本题主要考查向量的数量积运算及向量垂直的充要条件,本题属于基础题,只要计算正确即可得到全分. 2 【答案】B【解析】由02402a c a c x x ⊥⇒⋅=⇒-=⇒= ,由//422b c y y ⇒-=⇒=-,故||a b +==【考点定位】本题主要考查两个向量垂直和平行的坐标表示,模长公式.解决问题的关键在于根据a c ⊥ 、//b c,得到,x y 的值,只要记住两个向量垂直,平行和向量的模的坐标形式的充要条件,就不会出错,注意数字的运算. 3. 【答案】C【命题意图】本题考查的是平面向量,主要考查向量加法运算,向量的共线含义,向量的垂直关系.【解析】利用排除法可得选项C 是正确的,∵|a+b|=|a|-|b|,则a,b 共线,即存在实 数λ,使得a=λ b.如选项A:|a+b|=|a|-|b|时,a,b 可为异向的共线向量;选项B:若a ⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b 可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立. 4、 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a+b|=|a|-|b|,则a,b 共线,即存在实 数λ,使得a=λ b.如选项A:|a+b|=|a|-|b|时,a,b 可为异向的共线向量;选项B:若a⊥b,由正方形得|a+b|=|a|-|b|不成立;选项D:若存在实数λ,使得a=λb,a,b 可为同向的共线向量,此时显然|a+b|=|a|-|b|不成立.5. 【解析】如图,设==, ,则0,21=∙==,又)1(λ-+-=+=,λ+-=+=,由2-=∙得2)1(41()(])1([-=--=--=+-∙-+-λλλλλ,即32,23==λλ,选B. 6、 【答案】A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用. 【解析】∵=BQ AQ AB - =(1)AC AB λ-- ,=CP AP AC -=AB AC λ- ,又∵3=2BQ CP ⋅-,且C||=||=2AB AC ,<,>=60AB AC,0=||||cos60=2AB AC AB AC ⋅⋅,∴3[(1)]()=2AC AB AB AC λλ---- ,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅- ,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ.7. 【答案】D【解析】21,1a b x x ⋅=-=∴= ,故选D 【点评】本题主要考查向量的数量积,属于容易题.8、 【答案】B【解析一】由|a+b|=|a -b|,平方可得a ⋅b=0, 所以a ⊥b,故选B【解析二】根据向量加法、减法的几何意义可知|a+b|与|a -b|分别为以向量a,b 为邻边的平行四边形的两条对角线的长,因为|a+b|=|a -b|,所以该平行四边形为矩形,所以a ⊥b,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题.解析一是利用向量的运算来解,解析二是利用了向量运算的几何意义来解.9. 解析:C.⋅==⋅ a a b a b b b b 1cos 2k θ=,= b b a a 2cos 2k θ=,两式相乘,可得212cos 4k kθ=.因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以1k 、2k 都是正整数,于是2121cos 124k k θ<=<,即1224k k <<,所以123k k =.而0≥>a b ,所以13k =,21k =,于是32=a b . 10. 解析:A.()4,6AC AB BC =+=.11. 【解析】有向量垂直的充要条件得2(x-1)+2=0 所以x=0 .D 正确【答案】D【考点定位】考察数量积的运算和性质,要明确性质. 13. 答案D【命题意图】本试题主要考查了向量的加减法几何意义的运用,结合运用特殊直角三角形求解点D 的位置的运用.【解析】由0a b ⋅= 可得90ACB ∠=︒,故AB =用等面积法求得5CD =,所以5AD =,故4444()5555AD AB CB CA a b ==-=- ,故选答案D13、 【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.AC1cos 2B BC ∴=-.又由余弦定理知222cos 2AB BC AC B AB BC+-=⋅,解得BC =.【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC的夹角为B ∠的外角. 14、 【解析】C;因为||cos cos 1||b a b b a a a a θθ⋅==≤<⋅ ,且a b 和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,所以12b a = ,||12cos ||b a θ= ,所以2||cos 2cos 2||a ab b θθ==<,且22cos 1a b θ=> ,所以12a b << ,故有32a b = ,选C.【另解】C;1||cos 2||k a a b b θ== ,2||cos 2||k b b a a θ==,两式相乘得212cos 4k k θ=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,12,k k 均为正整数,cos 1θ<=<,所以1224k k <<,所以123k k =,而0a b ≥> ,所以123,1k k ==,于是32a b = ,选C.15、 解析:A.()2,4BC BA CA =-=--.16、 答案D【命题意图】本试题主要考查了向量的加减法几何意义的运用,结合运用特殊直角三角形求解点D 的位置的运用.【解析】由0a b ⋅= 可得90ACB ∠=︒,故AB =用等面积法求得CD =,所以AD =,故4444()5555AD AB CB CA a b ==-=- ,故选答案D 17、 【解析】选A【方法一】设34(10cos ,10sin )cos ,sin 55OP θθθθ=⇒==则33(10cos(),10sin())(44OQ ππθθ=++=- 【方法二】将向量(6,8)OP = 按逆时针旋转32π后得(8,6)OM =-则)(OQ OP OM =+=-二、填空题10. 【答案】-16【命题意图】本题主要考查了平面向量在三角形中的综合应用. 【解析】由余弦定理22222c o s53ABAM B M A M B =+-⋅∠=+, 222222cos 35253cos AC AM CM AM CM AMC AMC =+-⋅∠=+-⨯⨯∠,0180AMB AMC ∠+∠=,两式子相加为222222222(35)68AC AB AM CM +=+=⨯+=,2222221068100cos 222AB AC BC AB AC BAC AB AC AB AC AB AC +-+--∠===⨯⨯⨯⨯⨯⨯,68100cos 162AB AC AB AC BAC AB AC AB AC-⋅=∠=⋅=-⨯⨯.11. [解析] 如图建系,则A(0,0),B(2,0),D(0,1),C(2,1).t CD CN BC BM =||||∈[0,1],则t BM =||,t CN 2||=, 所以M(2,t),N(2-2t,1),故⋅=4-4t+t=4-3t=f(t),因为t ∈[0,1],所以f (t)递减, 所以(⋅)max = f (0)=4,(⋅)min = f (1)=1.13. 【命题意图】.本题主要考查平面向量的数量积及其运算法则,是简单题.【解析】∵|2-a b平方得224410-=a a b+b ,即260--=|b |b |,解得|b|=舍)13.【解析】由已知可得20x y -=,又因为m 为单位向量所以221x y +=,联立解得5x y ⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=⎪⎪⎨⎪=-⎪⎩代入所求即可.【考点定位】本题考查向量垂直的充要条件.14. 【答案】18【解析】设AC BD O = ,则2()AC AB BO =+ ,AP AC = 2()AP AB BO +=22AP AB AP BO + 222()2AP AB AP AP PB AP ==+= 18=.【点评】本题考查平面向量加法的几何运算、平面向量的数量积运算,考查数形结合思想、等价转化思想等数学思想方法.15. (Ⅰ)⎝⎭;(Ⅱ) 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得10x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为⎝⎭. (Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,0cos 35θ--===-- b a a b a a.【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了. 来年需注意平面向量基本定理,基本概念以及创新性问题的考查.16. 【答案】1;1【解析】根据平面向量的点乘公式||||cos DE CB DE DA DE DA θ⋅=⋅=⋅,可知||cos ||DE DA θ= ,因此2||1D E C B D⋅== ;||||cos ||cos DE DC DE DC DE αα⋅=⋅=⋅ ,而||cos DE α 就是向量DE 在DC边上的射影,要想让DE DC ⋅ 最大,即让射影最大,此时E 点与B 点重合,射影为||DC,所以长度为1【考点定位】 本题是平面向量问题,考查学生对于平面向量点乘知识的理解,其中包含动点问题,考查学生最值的求法.17.【解析】a =1(3,3),()3(1)302a c m a cb m m m a +=+=++=⇔=-⇒=18、【解析】b =222(2)1044cos 4510a b a b b b b ︒-=⇔-=⇔+-=⇔= 19、 【答案】16-【解析】此题最适合的方法是特例法.假设∆ABC 是以AB=AC 的等腰三角形,如图,cos∠BAC=3434100823417+-=-⨯.AB AC ⋅=cos 16AB AC BAC ⋅∠=-20、 [解析] 如图建系,则A(0,0),B(2,0),D(21,23),C(25,23).t CD CN BC BM =||||∈[0,1],则t BM =||,t CN 2||=, 所以M(2+2t,23t ),N(25-2t,23),故⋅=(2+2t)(25-2t)+23t ⋅23=)(6)1(5222t f t t t =++-=+--,因为t ∈[0,1],所以f (t)递减,( AN AM ⋅)max = f (0)=5,(AN AM ⋅)min = f (1)=2. [评注] 当然从抢分的战略上,可冒用两个特殊点:M 在B(N 在C)和M 在C(N 在D),而本案恰是在这两点处取得最值,蒙对了,又省了时间!出题大虾太给蒙派一族面子了!21、.【考点】向量的计算,矩形的性质,三角形外角性质,和的余弦公式,锐角三角函数定义.【解析】由A B A ,得cos AB AF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵AB =DF =∴1DF =.∴1CF .记AE BF和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+.又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AE BF AE BF AE BF θαβαβαβ+-)=cos cos sin sin =121AE BF AE BF BE BC AB CF αβαβ--=⨯.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.22、 【答案】1;1【解析】根据平面向量的点乘公式||||cos DE CB DE DA DE DA θ⋅=⋅=⋅,可知||cos ||DE DA θ= ,因此2||1D E C B D⋅== ;||||cos ||cos DE DC DE DC DE αα⋅=⋅=⋅ ,而||cos DE α 就是向量DE 在DC边上的射影,要想让DE DC ⋅ 最大,即让射影最大,此时E 点与B 点重合,射影为||DC,所以长度为1【考点定位】 本题是平面向量问题,考查学生对于平面向量点乘知识的理解,其中包含动点问题,考查学生最值的求法.23、 【解析】a b 的最小值是98- 22222349494449448a b a b a ba b a b a b a b a b a b -≤⇔+≤++≥≥-⇒+≥-⇔≥-。

相关文档
最新文档