概率论参数估计习题课

合集下载

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(参数估计)【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(参数估计)【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解第6章参数估计6.1复习笔记一、矩估计及相合性判断相合性的两个定理:(1)设ꞈθn =ꞈθn (x 1,…,x n )是θ的一个估计量,若ˆlim ()nn E θθ→∞=,ˆlim Var()0n n θ→∞=,则ꞈθn 是θ的相合估计。

(2)若ꞈθn1,…,ꞈθnk 分别是θ1,…,θk 的相合估计,η=g(θ1,…,θk ),是θ1,…,θk 的连续函数,则ꞈη=g(ꞈθn1,…,ꞈθnk )是η的相合估计。

二、最大似然估计(1)求样本似然函数;(2)求对数似然函数;(3)求导;(4)找到ꞈθ=ꞈθ(x 1,…,x n )满足()()ˆmax L L θθθ∈Θ=。

三、最小方差无偏估计1.均方误差(1)MSE(ꞈθ)=E(ꞈθ-θ)2,如果ꞈθ是θ的无偏估计,则MSE(ꞈθ)=Var(ꞈθ)。

(2)一致最小均方误差如果对该估计类中另外任意一个θ的估计~θ,在参数空间Θ上都有MSE (ꞈθ)≤MSE (~θ),称ꞈθ(x 1,…,x n )是该估计类中θ的一致最小均方误差估计。

2.一致最小方差无偏估计UMVUE 判断准则:设X=(x 1,…,x n )是来自某总体的一个样本,ꞈθ=ꞈθ(X)是θ的一个无偏估计,Var (ꞈθ)<∞,则ꞈθ是θ的UMVUE 的充要条件是:对任意一个满足E(φ(X))=0和Var(φ(X))<∞的φ(X)都有Cov θ(ꞈθ,φ)=0,∀θ∈Θ。

3.充分性原则定理:总体概率函数是p(x;θ),x 1,…,x n 是其样本,T=T(x 1,…,x n )是θ的充分统计量,则对θ的任一无偏估计ꞈθ=ꞈθ(x 1,…,x n );令~θ=E(ꞈθ|T),则ꞈθ也是θ的无偏估计,且Var(ꞈθ)≤Var(ꞈθ)。

4.Cramer-Rao 不等式(1)费希尔信息量I(θ)2()=ln (;)I E p x θθθ∂⎡⎤⎢⎥∂⎣⎦(2)定理(Cramer-Rao 不等式)设总体分布P(X;θ)满足费希尔信息里I(θ),x 1,x 2…,x n 是来自该总体的样本,T =T(x 1,x 2…,x n )是g(θ)的任一个无偏估计,g′(θ)∂g(θ)/∂θ存在,且对Θ中一切θ,对1i 11()...(,,)(;)d d nn ni g T x x p x x x θθ∞∞-∞-∞==∏⎰⎰ 的微商可在积分号下进行,即1111111()...(,...,)((;))d d ...(,,)ln(;)(;)d d nn i ni nnn i i ni i g T x x p x x x T x x p x p x x x θθθθθθ∞∞-∞-∞=∞∞-∞-∞==∂'=∂∂⎡⎤=⎢⎥∂⎣⎦∏⎰⎰∏∏⎰⎰ 对离散总体,则将上述积分改为求和符号后,等式仍然成立。

概率论与数理统计教材第六章习题

概率论与数理统计教材第六章习题

X σ0 n
~ N(0,1)
对于置信水平1- ,总体均值的置信区间为 对于置信水平 -α,总体均值 的置信区间为
X
σ0
n
uα < < X +
2
σ0
n

2
(2)设总体 ~ N(,σ 2 ), 未知 ,求的置信区间。 设总体X~ 未知σ, 的置信区间。 设总体 的置信区间
σ 0 ,则样本函数 t = X ~ t(n 1) 用 S 代替 S n
i =1
n1
n1
F
1
α ∑ Yj 2
2 j =1
n2
(
)
2
n2
10
2 2 及 (1)设两个总体 ~ N(1,σ1 ) 及Y~ N(2 ,σ 2 ), 未知 1 2, )设两个总体X~ ~
2 σ1 的置信区间。 求 2 的置信区间。 σ2
选取样本函数 选取样本函数
2 2 S1 σ1 F = 2 2 ~ F(n1 1, n2 1) S2 σ2
∑x
i =1
n
i =1
i
n = 0.
1 p
得 p 的极大似然估计值为 p =
n
∑x
i =1
n
1 = x
i
12
1 θ 2. 设总体 服从拉普拉斯分布:f ( x;θ ) = e ,∞< x < +∞, 设总体X 服从拉普拉斯分布: 2θ 求参数 θ 其中 > 0. 如果取得样本观测值为 x1 , x2 ,L, xn , 求参数θ
第六章 参数估计
(一)基本内容
一、参数估计的概念 1 定义:取样本的一个函数θ ( X 1 , X 2 ,L , X n ), 如果以它的观测 定义:

参数估计习题及答案

参数估计习题及答案

参数估计习题及答案参数估计在统计学中是一个重要的概念,它涉及到根据样本数据来估计总体参数的过程。

下面,我将提供一些参数估计的习题以及相应的答案,以帮助学生更好地理解这一概念。

习题一:假设有一个班级的学生数学成绩,我们从这个班级中随机抽取了10名学生的成绩,得到样本均值 \(\bar{x} = 85\),样本标准差 \(s = 10\)。

请估计总体均值 \(\mu\)。

答案:根据样本均值 \(\bar{x}\) 来估计总体均值 \(\mu\),我们可以使用以下公式:\[ \hat{\mu} = \bar{x} \]因此,\(\hat{\mu} = 85\)。

习题二:在习题一中,如果我们想要估计总体方差 \(\sigma^2\),我们应该如何操作?答案:总体方差 \(\sigma^2\) 通常使用样本方差 \(s^2\) 来估计,样本方差的计算公式为:\[ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]其中 \(n\) 是样本大小,\(x_i\) 是第 \(i\) 个观测值。

在这个例子中,\(n = 10\),\(\bar{x} = 85\),\(s = 10\)。

因此,我们可以使用以下公式来估计总体方差:\[ \hat{\sigma}^2 = s^2 = \frac{1}{10-1} \times 10^2 = 100 \]习题三:一个工厂生产的产品长度服从正态分布,样本均值为 \(\bar{x} =50\) 厘米,样本标准差为 \(s = 2\) 厘米。

如果我们知道总体均值\(\mu\) 为 \(50\) 厘米,我们如何估计总体标准差 \(\sigma\)?答案:根据已知的样本均值 \(\bar{x}\) 和样本标准差 \(s\),我们可以使用以下公式来估计总体标准差 \(\sigma\):\[ \hat{\sigma} = s \]因此,\(\hat{\sigma} = 2\) 厘米。

6-1参数估计概率论与数理统计习题和课件(历史上最好的概率论与数理统计)

6-1参数估计概率论与数理统计习题和课件(历史上最好的概率论与数理统计)

构造 k 个统计量:
1 ( X 1 , X 2 ,, X n ) 2 ( X 1 , X 2 ,, X n )

随机变量
k ( X 1 , X 2 ,, X n )
建立k个方程: 当测得样本值(x1, x2,…, x n)时,代入上述方程 组,即可得到 k 个数:
ˆ 1 ( x1 , x2 ,, xn ) ˆ 2 ( x1 , x2 ,, xn ) ˆ k ( x1 , x2 ,, xn )
参数估计的类型
点估计 —— 估计未知参数的值。 区间估计—— 估计未知参数的取值范围, 并使此范围是在给定的可靠信水 平下得出的。
§6.1 点估计方法
点估计的思想方法
设总体X 的分布函数的形式已知, 但含有一个 或多个未知参数:1,2, ,k 设 X1, X2,…, X n为总体的一个样本。
比方说,当 p = pi 时Qi 最大,
0
P ( Y = k ; p i ) P ( Y = k ; p i ) i=1,2,…,m 0
则估计参数p为
ˆ p = pi0
ch7-1 28
如果只知道0<p<1,并且实测记录是 Y=k (0 ≤ k≤ n),又应如何估计p呢? 注意到
P ( Y = k ; p ) = C n p (1 - p )
试用矩法估计该厂这天生产的灯泡的平均寿命及寿 命分布的方差.
解 E( X ) = x =
ˆ D( X ) = =
2

1 10
xi
i =1
10
= 1147( h)
1 10
xi - x = 6821(h ).
2 2 2 i =1
10
( 1) x ~ 例 4 设 总 体 (x ) = 0 是 未 知 参 数 , 求 的 矩 估 计 。

概率论与数理统计第6章参数区间估计2,3节

概率论与数理统计第6章参数区间估计2,3节


n
E(X
k
)

E(X
k)
i1
i1
二、有效性
未知参数 的无偏估计量不是唯一的.
设 ^1 和 ^2 都是参数 的无偏估计量,
θˆ 1
θˆ 2
集中
分散
蓝色是采用估^ 计量 1 , 用 14 个样本值得到的 14 个估计值. 紫色是采用估^ 计量 2 , 用 14 个样本值得到的 14 个估计值.
若limD(ˆ)0, 则ˆ是的一致估 . 计量 n
回顾例子.设总体X的概率密度为
f(x)6x3 (x),0x;
0, 其他
X1, X2,…, Xn 是取自总体X 的简单随机样本, (1) 求的矩估计量 ˆ;
(2) 求ˆ的方差D(ˆ).
解:矩估计 ˆ量 2X. D(ˆ)4D(X)4D(X)2
若滚珠直径服从正态分布X ~ N( , 2), 并且已知 = 0.16(mm),求滚珠直径均值的置信水平为95%
的置信区间.
解:由上面求解的置信水平为1- 的置信区间
Xσn 0 uα/,2 Xσn 0 uα/2
已 n 知 1,0 0 0 .1,6 0 .0,5 x110i110xi 14.92,
若进行n次独立重复抽样,得到n个样本观测值,
每个样本观测 个值 随确 机(定 ˆ1区 ,ˆ2一 )间 .那么
每个区间的 可真 能 , 或 值 包不 含包 的含 真 , 值
根据伯努利大数定理, 在这n个随机区间中,
包含 真值1 的 0(1 0 约 )% 占 ,不包含 10 的 % 0. 约
便得 k的 到 最大似 ˆk(X 1,然 X 2, ,估 X n).计
第二节 判别估计量好坏的标准

概率论第七章参数估计2区间估计

概率论第七章参数估计2区间估计
1 2
2 / 2 ( n 1)

置信区间:
标准差σ的一个置信水平为 1 的置信区间
2 (n 1) S , 2 (n 1) 2
(n 1) S 2 1 (n 1) 2
2
注意:在密度函数不对称时,如 2分布和F 分布,
置信度 1 下,来确定 的置信区间[ , ]
⑴ 已知方差 ,估计均值μ
2
n 1 2 设已知方差 2 0 ,且 X X i 是 的 n i 1 一个无偏点估计,

X ~ N (0 , 1) 0 / n
且 对于给定的置信度 查正态分布表,找出
临界值
使得:
2 1 2 2
一个无偏估计, 因为X与Y 相互独立,所以
X Y ~ N ( 1 2 ,
X Y ( 1 2 )

2 1
n1


2 2
n2
)

2 1
n1 n2 所以 1 2 的置信水平为1-α的置信区间为


2 2
~ N (0,1)
( X Y z / 2
已知
由样本值算得:
查表 t0.025 (6) 2.447
得区间:
对某种型号飞机的飞行速度进行15次试验, 测 例 5: 得最大飞行速度(单位: 米/秒)为 422.2, 417.2, 425.6 420.3, 425.8, 423.1, 418.7, 438.3, 434.0, 412.3, 431.5 413.5, 441.3, 423.0, 428.2, 根据长期经验, 可以认为 最大飞行速度服从正态分布. 求飞机最大飞行速度
第三节 区间估计 譬如,在估计湖中鱼数的问题中,若 我们根据一个实际样本,得到鱼数 N 的极 大似然估计为1000条.

概率论与数理统计参数估计

概率论与数理统计参数估计

第六章 参数估计在实际问题中, 当所研究的总体分布类型已知, 但分布中含有一个或多个未知参数时, 如何根据样本来估计未知参数,这就是参数估计问题.参数估计问题分为点估计问题与区间估计问题两类. 所谓点估计就是用某一个函数值作为总体未知参数的估计值;区间估计就是对于未知参数给出一个范围,并且在一定的可靠度下使这个范围包含未知参数.例如, 灯泡的寿命X 是一个总体, 根据实际经验知道, X 服从),(2σμN , 但对每一批灯泡而言, 参数2,σμ是未知的,要写出具体的分布函数, 就必须确定出参数. 此类问题就属于参数估计问题.参数估计问题的一般提法:设有一个统计总体, 总体的分布函数为),(θx F , 其中θ为未知参数(θ可以是向量). 现从该总体中随机地抽样, 得一样本n X X X ,,,21 ,再依据该样本对参数θ作出估计, 或估计参数θ的某已知函数).(θg第一节 点估计问题概述内容分布图示★ 引言★ 点估计的概念 ★ 例1★ 评价估计量的标准★ 无偏性 ★ 例2 ★ 例3★ 有效性★ 例4 ★ 例5 ★ 例6★ 相合性 ★ 例7 ★ 例8★ 内容小结 ★ 课堂练习 ★ 习题6-1 ★ 返回内容要点:一、点估计的概念设n X X X ,,,21 是取自总体X 的一个样本, n x x x ,,,21 是相应的一个样本值. θ是总体分布中的未知参数, 为估计未知参数θ, 需构造一个适当的统计量),,,,(ˆ21nX X X θ然后用其观察值),,,(ˆ21nx x x θ 来估计θ的值.称),,,(ˆ21n X X X θ为θ的估计量. 称),,,(ˆ21nx x x θ为θ的估计值. 在不致混淆的情况下, 估计量与估计值统称为点估计,简称为估计, 并简记为θˆ.注: 估计量),,,(ˆ21nX X X θ是一个随机变量, 是样本的函数,即是一个统计量, 对不同的样本值, θ的估计值θˆ一般是不同的.二、评价估计量的标准从例1可见,参数点估计的概念相当宽松, 对同一参数,可用不同的方法来估计, 因而得到不同的估计量, 故有必要建立一些评价估计量好坏的标准.估计量的评价一般有三条标准:1. 无偏性;2. 有效性;3. 相合性(一致性).在本节的后面将逐一介绍之.在具体介绍估计量的评价标准之前, 需指出: 评价一个估计量的好坏, 不能仅仅依据一次试验的结果, 而必须由多次试验结果来衡量. 因为估计量是样本的函数, 是随机变量. 故由不同的观测结果, 就会求得不同的参数估计值. 因此一个好的估计, 应在多次重复试验中体现出其优良性.1.无偏性估计量是随机变量, 对于不同的样本值会得到不同的估计值. 一个自然的要求是希望估计值在未知参数真值的附近, 不要偏高也不要偏低. 由此引入无偏性标准.定义1 设),,(ˆ1nX X θ是未知参数θ的估计量, 若 ,)ˆ(θθ=E 则称θˆ为θ的无偏估计量.注: 无偏性是对估计量的一个常见而重要的要求, 其实际意义是指估计量没有系统偏差,只有随机偏差. 在科学技术中, 称θθ-)ˆ(E 为用θˆ估计θ而产生的系统误差.例如, 用样本均值作为总体均值的估计时, 虽无法说明一次估计所产生的偏差, 但这种偏差随机地在0的周围波动,对同一统计问题大量重要使用不会产生系统偏差. 对一般总体而言,我们有定理1 设n X X ,,1 为取自总体X 的样本,总体X 的均值为μ, 方差为2σ.则(1) 样本均值X 是μ的无偏估计量;(2) 样本方差2S 是2σ的无偏估计量;(3) 样本二阶中心矩∑=-ni i X X n 12)(1是2σ的有偏估计量.2.有效性一个参数θ常有多个无偏估计量,在这些估计量中,自然应选用对θ的偏离程度较小的为好,即一个较好的估计量的方差应该较小.由此引入评选估计量的另一标准—有效性.定义2 设),,(ˆˆ111n X X θθ=和),,(ˆˆ122nX X θθ=都是参数θ的无偏估计量, 若 )ˆ()ˆ(21θθD D <, 则称1ˆθ较2ˆθ有效.注: 在数理统计中常用到最小方差无偏估计, 其定义如下:设n X X ,,1 是取自总体X 的一个样本, ),,(ˆ1nX X θ是未知参数θ的一个估计量, 若θˆ满足:(1) ,)ˆ(θθ=E 即θˆ为θ的无偏估计; (2) ),ˆ()ˆ(*≤θθE *θˆ是θ的任一无偏估计. 则称θˆ为θ的最小方差无偏估计(也称最佳无偏估计).3.相合性(一致性)我们不仅希望一个估计量是无偏的, 并且具有较小的方差, 还希望当样本容量无限增大时, 估计量能在某种意义下任意接近未知参数的真值, 由此引入相合性(一致性)的评价标准.定义 3 设),,(ˆˆ1nX X θθ=为未知参数θ的估计量, 若θˆ依概率收敛于θ, 即对任意0>ε, 有,1}|ˆ{|lim =<-∞→εθθP n 或,0}|ˆ{|lim =≥-∞→εθθP n 则称θˆ为θ的(弱)相合估计量.例题选讲:点估计的概念例1 (讲义例1)设X 表示某种型号的电子元件的寿命(以小时计),它服从指数分布:⎪⎩⎪⎨⎧≤>=-.0,00,1),(~/x x e x f X x θθθθ为未知参数, 0>θ. 现得样本值为168, 130, 169, 143, 174, 198, 108, 212, 252,试估计未知参数θ.评价估计量的标准例2(讲义例2)设总体),0(~2σN X ,n x x x ,,,21 是来自这一总体的样本. (1) 证明∑==n i i x n 1221ˆσ是2σ的无偏估计; (2) 求).ˆ(2σD 例3(讲义例3)设n X X X ,,,21 是总体),(2σμN 的一个简单随机样本. 求k 使∑∑==-=ni nj j i X X k 11||ˆσ为σ的无偏估计.例4(讲义例4)设n X X X ,,,21 为来自总体X 的样本, ,),,2,1(n i X i =均为总体均值μ=)(X E 的无偏估计量, 问哪一个估计量有效?例5(讲义例5)设总体X 在区间],0[θ上服从均匀分布, n X X X ,,,21 是取自总体X 的简单随机样本, ,11∑==n i i X n X ).,,m ax(1)(n n X X X = 求常数,,b a 使)(21ˆ,ˆn bX X a ==θθ均为θ的无偏估计, 并比较其有效性.例6(讲义例6)设分别自总体),(21σμN 和),(22σμN 中抽取容量为21,n n 的两独立样本.其样本方差分别为2221,S S . 试证, 对于任意常数2221),1(,bS aS Z b a b a +==+都是2σ的无偏估计, 并确定常数b a ,使)(Z D 达到最小.例7(讲义例7)设n X X ,,1 是取自总体X 的样本, 且)(k X D 存在, .,,2,1n k = 则∑=n i ki X n 11为)(k X E 的相合估计量, .,,2,1n k = 例8(讲义例8)设总体),(~2σμN X ,n X X ,,1 为其样本. 试证样本方差2S 是2σ的相合估计量.课堂练习1. 设总体X 的k 阶矩)1)((≥=k X E k k μ存在, 又设n X X X ,,,21 是X 的一个样本. 试证明不论总体服从什么分布, k 阶样本矩∑==n i ki k X n A 11是k 阶总体矩k μ的无偏估计量.2.证明本节例5中21ˆ,ˆθθ均为θ的相合性估计.第二节 点估计的常用方法内容分布图示★ 矩估计法 ★ 求矩估计的方法★ 例1 ★ 例2 ★ 例3 ★ 例4★ 最大似然估计法★ 求最大似然估计的一般方法★ 例5 ★ 例6 ★ 例7 ★ 例8★ 关于有k 个未知参数的最大似然估计 ★ 内容小结 ★ 课堂练习★ 习题6-2 ★ 返回内容要点:一、矩估计法矩估计法的基本思想是用样本矩估计总体矩. 因为由在数定理知, 当总体的k 阶矩存在时,样本的k 阶矩依概率收敛于总体的k 阶矩.例如, 可用样本均值X 作为总体均值)(X E 的估计量, 一般地, 记总体k 阶矩 );(k k X E =μ样本k 阶矩 ∑==n i ki k X n A 11;总体k 阶中心矩 ;)]([k k X E X E V -= 样本k 阶中心矩 .)(11∑=-=ni k i k X X n B用相应的样本矩去估计总体矩的方法就称为矩估计法. 用矩估计法确定的估计量称为矩估计量. 相应的估计值称为据估计值. 矩估计量与矩估计值统称为矩估计. 求矩估计的方法:设总体X 的分布函数),,;(1k x F θθ 中含有k 个未知参数k θθ,,1 , 则(1) 求总体X 的前k 阶矩k μμ,,1 ,一般都是这k 个未知参数的函数, 记为k i g k i i ,,2,1),,,(1 ==θθμ (*)(2) 从(*)中解得 k j h k j j ,,2,1),,,(1 ==μμθ(3) 再用),,2,1(k i i =μ的估计量i A 分别代替上式中的i μ,即可得),,2,1(k i j =θ的矩估计量:.,,2,1),,,(ˆ1k j A A h kj j ==θ注:求,,,1k V V 类似于上述步骤,最后用k B B ,,1⋅⋅⋅代替k V V ,,1 ,求出矩估计jθˆ ),,2,1(k I ⋅⋅⋅=。

概率论与数理统计(茆诗松)第二版课后第六章习题参考解答-1

概率论与数理统计(茆诗松)第二版课后第六章习题参考解答-1

n
∑ 4. 设总体 X ~ N (µ , σ 2),X1, …, Xn 是来自该总体的一个样本.试确定常数 c 使 c ( X i+1 − X i )2 为σ 2 的无 i=1
偏估计. 解:因 E[(Xi + 1 − Xi )2 ] = Var (Xi + 1 − Xi ) + [E(Xi + 1 − Xi )]2 = Var (Xi + 1) + Var (Xi ) + [E(Xi + 1) − E(Xi )]2 = 2σ 2,
( X i+1

Xi
)2
是σ
2
的无偏估计.
5. 设 X1, X2, …, Xn 是来自下列总体中抽取的简单样本,
p(x; θ ) = ⎪⎨⎧1,
θ − 1 ≤ x≤θ + 1;
2
2
⎪⎩0, 其他.
证明样本均值
X

1 2
( X (1)
+
X (n) )
都是θ
的无偏估计,问何者更有效?
证:因总体 X ~ U ⎜⎛θ − 1 , θ + 1 ⎟⎞ ,有 Y = X − θ + 1 ~ U (0, 1) ,
1 6
X1
+
1 6
X
2
+
2 3
X3.
证:因
E ( µˆ1 )
=
1 2
E(X1)
+
1 3
E(X
2)
+
1 6
E(X3)
=
1 2
µ
+
1 3
µ
+1 6来自µ=µ

概率论与数理统计第四版课后习题答案

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。

解:μ,σ2的矩估计是6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。

2.[二]设X 1,X 1,…,X n 为准总体的一个样本。

求下列各总体的密度函数或分布律中的未知参数的矩估计量。

(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。

(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ 其中θ>0,θ为未知参数。

(5)()p p m x p p x X P xm x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。

解:(1)Xθcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX X θ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp 令mp =X, 解得mX p=ˆ3.[三]求上题中各未知参数的极大似然估计值和估计量。

解:(1)似然函数1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni iθn nni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。

概率论与数理统计(第三版)课后答案习题7

概率论与数理统计(第三版)课后答案习题7

第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。

2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。

注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案

概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。

3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。

⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。

概率论习题试题集6

概率论习题试题集6

第六章 参数估计一、填空题1. 若一个样本的观测值为0,0,1,1,0,1,则总体均值的矩估计值为___________,总体方差的矩估计值为___________。

2. 设1,0,0,1,1是来自两点分布总体),1(p B 的样本观察值,则参数p q -=1的矩估计值为___________。

3. 若由总体),(θx F (θ为未知参数)的样本观察值所求得95.0)9.355.35(=<<X P ,则称___________是θ的置信度为___________的置信区间。

4. 设由来自正态总体)9.0,(~2μN X 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间为___________。

5. 设一批产品的某一指标),(~2σμN X ,从中随机地抽取容量为25的样本,测得样本方差2210=S ,则总体X 的方差2σ的置信区度为%95的置信区间为___________.二、选择题1. 设总体),(~2σμN X ,其中2σ已知,则总体均值μ的置信区间长度l 与置信度α-1的关系是( ) (A )当α-1缩小时,l 缩短; (B )当α-1缩小时,l 增大; (C )当α-1缩小时,l 不变;(D )以上说法都错。

2. 设总体),(~2σμN X ,2σ已知,若样本容量n 和α-1均不变,则对于不同的样本观测值,总体均值的置信区间的长度( )。

(A )变长;(B )变短;(C )不变;(D )不能确定。

3. 设n X X X ,,21是来自总体的一个样本,2,σμ==DX EX ,则方差2σ的无偏估计值是( )(A )当μ已知时,统计量∑=-n i i X n 12)(1μ;(B )当μ已知时,统计量∑=--n i i X n 12)(11μ; (C )当μ未知时,统计量∑=-n i i X X n 12)(1;(D )当μ已知时,统计量∑=--n i i X X n 12)(11。

浙江大学《概率论与数理统计》配套题库【课后习题】(参数估计)

浙江大学《概率论与数理统计》配套题库【课后习题】(参数估计)

第7章参数估计1.随机地取8只活塞环,测得它们的直径为(以mm计)试求总体均值及方差的矩估计值,并求样本方差.解:由已知得总体均值及总体方差的矩估计值分别为样本方差.2.设为总体的一个样本,为一相应的样本值,求下列各总体的概率密度或分布律中的未知参数的矩估计量和矩估计值:(1),其中c>0为已知,为未知参数;(2),其中为未知参数;(3)其中为未知参数.解:(1)由已知得令,即,则的矩估计量为,矩估计值为.(2)由已知得令,即,则的矩估计量和矩估计值分别为(3)因,令,即,则的矩估计量和矩估计值分别为3.求上题中各未知参数的最大似然估计值和估计量.解:(1)由题意知,似然函数为对似然函数两边同时取对数得令得的最大似然估计值为的最大似然估计量为(2)由题意知,似然函数为对似然函数两边同时取对数得令得的最大似然估计值为得的最大似然估计量为(3)由已知得似然函数为对似然函数两边同时取对数得令得p的最大似然估计值为,其中p的最大似然估计量为4.(1)设总体X具有分布律其中为未知参数,已知取得了样本值;试求的矩估计值和最大似然估计值.(2)设是来自参数为的泊松分布总体的一个样本,试求的最大似然估计量及矩估计量.(3)设随机变量X服从以r,p为参数的负二项分布,其分布律为其中r已知,p未知;设有样本值,试求p的最大似然估计值.解:(1)①由已知得令,即,解得,故得的矩估计值为.今,故的矩估计值为.②由给定的样本值,得似然函数为对似然函数两边同时取对数得令,得的最大似然估计值为.(2)①设是相应于样本的样本值,则似然函数为对似然函数两边取对数得令,得的最大似然估计值为,最大似然估计量为.②因,故的矩估计量也是(3)由题意知似然函数为对似然函数两边同时取对数得,C为常数令,得p的最大似然估计值为.5.设某种电子器件的寿命(以h计)T服从双参数的指数分布,其概率密度为其中c为未知参数,自一批这种器件中随机地取n件进行寿命试验.设它们的失效时间依次为.(1)求与C的最大似然估计值.(2)求与C的矩估计量.解:(1)由题意知似然函数为由题设,故相当于,因而上式相当于。

茆诗松《概率论与数理统计教程》(第2版)(课后习题 参数估计)【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)(课后习题 参数估计)【圣才出品】

第6章 参数估计一、点估计的概念与无偏性1.设x 1,x 2,x 3是取自某总体的容量为3的样本,试证下列统计量都是该总体均值μ的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)1123111=236x x x μ∧++(2)2123111=333x x x μ∧++(3)3123112=663x x x μ∧++解:先求三个统计量的数学期望,1123111111()=()()()236222E E x E x E x μμμμμ∧++=++=2123111111()=()()()333333E E x E x E x μμμμμ∧++=++=3123112112()=()()()663663E E x E x E x μμμμμ∧++=++=这说明它们都是总体均值μ的无偏估计,下面求它们的方差,不妨设总体的方差为σ2,则222211231111117()=()()()4936493618Var Var x Var x Var x μσσσσ∧++=++=222221231111111()=()()()9999993Var Var x Var x Var x μσσσσ∧++=++=222231231141141()=()()()36369363692Var Var x Var x Var x μσσσσ∧++=++=不难看出,从而的有效性最差.123()<()<()Var Var Var μμμ∧∧∧3μ∧由此可推测。

当用样本的凸组合估计总体均值时,样本均值是最有效的。

1ni ii a x =∑x 2.x 1,x 2,…,x n 是来自Exp(λ)的样本,已知为1/λ的无偏估计,试说明1/是x x 否为λ的无偏估计.解:因为x 1,x 2,…,x n 服从Exp(λ),所以y =~Ga (n ,λ),相应的密度函数1ni i x =∑为1()exp()y 0()n n p y n y y n λλλ-=->Γ,,,于是20(1/)e y ()n n y E y yn λλ∞--=Γ⎰d所以,.即不是λ的无偏估计,但它是λ的渐近无偏估计,经修偏,是λ的无偏估计.3.设是参数θ的无偏估计,且有,试证不是θ2的无偏估计.证:由方差的定义可知,由于是参数θ的无偏估计,即.因而所以不是θ2的无偏估计.4.设总体,是来自该总体的一个样本.试确定常数c 使为σ2的无偏估计.解:由于总体,这给出,于是若要使为σ2的无偏估计,即,这给出5.设总体为,为样本,证明样本均值和样本中程都是θ的无偏估计,并比较它们的有效性.解:由总体,得,,因而,这首先说明样本均值是θ的无偏估计,且为求样本中程的均值与方差,注意到,令则由于,故,从而这就证明了样本中程是θ的无偏估计.又注意到(参见第五章5.3节习题33)所以从而于是在n>2时,,这说明作为0的无偏估计,在n>2时,样本中程比样本均值有效.6.设x 1,x2,x3服从均匀分布,试证及都是θ的无偏估计量,哪个更有效?证:由可知x(1),x(3)的密度函数分别为从而故,由知两者均为θ的无偏估计.又可算得,从而故,即更有效.事实上,这里x(3)是充分统计量,这个结果与充分性原则是一致的.7.设从均值为μ,方差为的总体中,分别抽取容量为n1和n2的两独立样本,和分别是这两个样本的均值.试证,对于任意常数a,b(a+b=1),都是μ的无偏估计,并确定常数a,b使Var(Y)达到最小.证:由于和是容量分别为n1和n2的两独立样本的均值,故,,,因而这证明了是μ的无偏估计.又由a+b=1知,,从而由求导知,当时,Var(Y)达到最小,此时这个结果表明,来自同一总体的两个容量为n1和n2的样本的合样本(样本量为n1+n2)的均值是线性无偏估计类中方差最小的.8.设总体X的均值为μ,方差为σ2,是来自该总体的一个样本,为μ的任一凸线性无偏估计量.证明:与T的相关系数为.证:由于为μ的线性无偏估计量,故,其中,于是而,故有,从而9.设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,k).用这些仪器独立地对某一物理量θ各观察一次,分别得到设仪器都没有系统误差.问应取何值,方能使成为θ的无偏估计,且方差达到最小?解:若要使为θ的无偏估计,即则必须有,此时,。

概率论与数理统计(理工类-第四版)吴赣昌主编课后习题答案第六章【范本模板】

概率论与数理统计(理工类-第四版)吴赣昌主编课后习题答案第六章【范本模板】

第六章参数估计6.1 点估计问题概述习题1总体X在区间[0,θ]上均匀分布,X1,X2,⋯,Xn是它的样本,则下列估计量θ是θ的一致估计是().(A)θ=Xn;(B)θ=2Xn;(C)θ=X¯=1n∑i=1nXi;(D)θ=Max{X1,X2,⋯,Xn}。

解答:应选(D).由一致估计的定义,对任意ɛ>0,P(∣Max{X1,X2,⋯,Xn}—θ∣〈ɛ)=P(-ɛ+θ〈Max{X1,X2,⋯,Xn}<ɛ+θ)=F(ɛ+θ)—F(-ɛ+θ).因为FX(x)={0,x〈0xθ,0≤x≤θ1,x〉θ,及F(x)=FMax{X1,X2,⋯,Xn}(x)=FX1(x)FX2(x)⋯FXn(x),所以F(ɛ+θ)=1,F(-ɛ+θ)=P(Max{X1,X2,⋯,Xn}〈—ɛ+θ)=(1—xθ)n,故P(∣Max{X1,X2,⋯,Xn}-θ∣〈ɛ)=1-(1-xθ)n→1(n→+∞).习题2设σ是总体X的标准差,X1,X2,⋯,Xn是它的样本,则样本标准差S是总体标准差σ的()。

(A)矩估计量;(B)最大似然估计量;(C)无偏估计量; (D)相合估计量。

解答:应选(D).因为,总体标准差σ的矩估计量和最大似然估计量都是未修正的样本标准差;样本方差是总体方差的无偏估计,但是样本标准差不是总体标准差的无偏估计.可见,样本标准差S是总体标准差σ的相合估计量.习题3设总体X的数学期望为μ,X1,X2,⋯,Xn是来自X的样本,a1,a2,⋯,an是任意常数,验证(∑i=1naiXi)/∑i=1nai(∑i=1nai≠0)是μ的无偏估计量。

解答:E(X)=μ,E(∑i=1naiXi∑i=1nai)=1∑i=1nai⋅∑i=1naiE(Xi) (E(Xi)=E(X)=μ)=μ∑i=1nai∑i=1n=μ,综上所证,可知∑i=1naiXi∑i=1nai是μ的无偏估计量。

习题4设θ是参数θ的无偏估计,且有D(θ)〉0, 试证θ2=(θ)2不是θ2的无偏估计.解答:因为D(θ)=E(θ2)-[E(θ)]2,所以E(θ2)=D(θ)+[E(θ)]2=θ2+D(θ)〉θ2,故(θ)2不是θ2的无偏估计。

概率论与数理统计第七章参数估计习题答案

概率论与数理统计第七章参数估计习题答案
概率论与数理统计第七章参数估计习题答案
3028701.设总体X 服从二项分布B(n,p),n已知,X1,X 2,L,X n为来自X的样本 求参数p的矩法估计. 解:E( X ) = np, E( X ) = A1 = X ,\ np = X . \ p的矩估计量 pˆ = X n
大学数学云课堂
3028702.设总体X的密度函数(f x,q)= ìïíq22 (q - x), 0 < x < q ,
n
-q
-q xi
i=1
i =1
i =1
0 < x < 1, 其他.
n
g = ln L = n lnq -q å xi
i =1
由 dg
å å dq
=
d ln L dq
=n q
-
n i =1
xi
= 0知qˆ
=
n
n
xi
所以q的极大似然估计量为qˆ = 1 . i=1
X
大学数学云课堂
3028703.设总体X
(2)求s 2的置信概率为0.95的置信区间.
解:x = 76.6, s = 18.14,a = 1- 0.95 = 0.05, n = 20,
ta
/2
(n
-1)
=
t0.025
(19)
=
2.093,
c2 a /2
(n
-1)
=
c2 0.025
(19)
=
32.852,
c2 0.975
(19)
=
8.907
i =1
n
ln L = n lnq + (q -1) ln Õ xi
i =1

概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

概率论与数理统计(茆诗松)第二版课后第六章习题参考答案
第六章 参数估计
习题 6.1
1. 设 X1, X2, X3 是取自某总体容量为 3 的样本,试证下列统计量都是该总体均值µ 的无偏估计,在方差存 在时指出哪一个估计的有效性最差?
(1) µˆ1
=
1 2
X1
+
1 3
X
2
+
1 6
X3 ;
(2) µˆ2
=
1 3
X1
+
1 3
X
2
+
1 3
X
3

(3) µˆ3
=
n1 + n2
n1 + n2
n1 + n2
8. 设总体 X 的均值为µ ,方差为σ 2,X1, …, Xn 是来自该总体的一个样本,T (X1, …, Xn)为µ 的任一线性
无偏估计量.证明: X 与 T 的相关系数为 Var( X ) Var(T ) .
n
∑ 证:因 T (X1, …, Xn)为µ 的任一线性无偏估计量,设 T ( X1, L, X n ) = ai X i , i=1
2. 设 X1, X2, …, Xn 是来自 Exp(λ)的样本,已知 X 为 1/λ的无偏估计,试说明1/ X 是否为λ的无偏估计. 解:因 X1, X2, …, Xn 相互独立且都服从指数分布 Exp(λ),即都服从伽玛分布 Ga(1, λ),
n
∑ 由伽玛分布的可加性知 Y = X i 服从伽玛分布 Ga(n, λ),密度函数为 i=1
=
(n
2 + 1)(n
+
2)

E(Y(2n) )
=
1 y 2 ⋅ nyn−1dy = n ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无偏性
若 X1, X2,, Xn 为总体 X 的一个样本,
是包含在总体X 的分布中的待估参数, (是 的取值范围)
若估计量ˆ ( X1 , X 2 ,, X n )的数学期望 E(ˆ)存在, 且对于任意 有 E(ˆ) , 则称 ˆ 是 的无偏估计量.
有效性
比较参数 的两个无偏估计量 ˆ1 和 ˆ2 , 如果 在样本容量 n 相同的情况下, ˆ1 的观察值在真值 的附近较 ˆ2 更密集, 则认为ˆ1 较 ˆ2 有效.
,
Sw
Sw2 .
2.
两个总体方差比
2 1
2 2
的置信区间
仅讨论总体均值 1, 2 为未知的情况.
2 1
2 2
的一个置信水平为
1
的置信区间
S12 S22
F / 2 (n1
1 1, n2
, 1)
S12 S22
1 F1 / 2(n1 1, n2
1).
正态总体均值与方差的单侧置信区间
设正态总体 X 的均值是, 方差是 2 (均为未知) ,
单个正态总体
1. 均值 的置信区间
(1) 2为已知,
的一个置信水平为1 的置信区间 X
n
z
/
2
.
(2) 2为未知,
的置信水平为1 的置信区间 X
S n
t
/
2
(
n
1).
2.方差 2 的置信区间
未知, 方差 2 的置信水平为 1 的置信区间
(n
2 /
1)S 2 2(n 1)
(3) 若能从 a Z( X1, X2 ,, Xn; ) b 得到等价 的不等式 , 其中 ( X1, X2,, Xn ), ( X1, X2,, Xn ) 都是统计量, 那么 ( , ) 就是 的一个置信水平为1 的置信区间.
三、典型例题
例1 设 X1, X2,, Xn 是来自参数为 p 的 (0 1) 分布的一个样本, 求参数 p 的最大似然估计量 pˆ , 并验证它是达到方差界的无偏估计量.
由于方差是随机变量取值与其数学期望的 偏离程度, 所以无偏估计以方差小者为好.
设ˆ1 ˆ1( X1, X 2 ,, X n )与ˆ2 ˆ2 ( X1, X 2 ,, X n ) 都是 的无偏估计量, 若有 D(ˆ1 ) D(ˆ2 ), 则称ˆ1较 ˆ2有效.
相合性
若ˆ ˆ ( X1, X2 ,, Xn )为参数 的估计量, 若对于任意 , 当 n 时, ˆ( X1, X2 ,, Xn ) 依概率收敛于 , 则称 ˆ 为 的相合估计量.
ˆ( X1, X2,, Xn ) 参数 的最大似然估计量.
最大似然估计的性质
设 的函数 u u( ), 具有单值反函 数 (u), u U , 又设ˆ 是 X 的概率密度函数 f ( x; ) ( f 形式已知) 中的参数 的最大似然估 计, 则 uˆ u(ˆ) 是 u( )的最大似然估计.
的一个置信水平为1 的单侧置信区间
X
S n
t
(n
1),
,
的置信水平为1 的置信下限
X
S n t (n 1).
2 的一个置信水平为1 的单侧置信区间
0,
(n 1)S
12 (n
2
1)
,
2 的置信水平为 1 的单侧置信上限
2
(n 1)S 2
12 (n 1)
.
( 0 1)分布的置信区间
,
(n
12
/2
1)S 2 (n 1)
.
标准差 的一个置信水平为1 的置信区间
n 1S ,
2 / 2(n 1)
n 1S
2 1
/
2
(n
1)
.
两个正态总体
1.两个总体均值差1 2 的置信区间
(1)
2 1

2
2
均为已知,
1 2的一个置信水平为1 的置信区间
X
Y
z / 2
2 1
n1
22
第六章 参数估计 习题课
一、重点与难点 二、主要内容 三、典型例题
一、重点与难点
1.重点
最大似然估计. 一个正态总体参数的区间估计.
2.难点
显著性水平 与置信区间.
二、主要内容
矩估计量

估 计
然量
最大似然估 计量
函 数
的 评 选
最大似然估计的性质
无偏性 有效性 相合性
正态总 体均值 方差的 置信区 间与上 下限
似然函数
1. 设总体 X 属离散型
n
L( ) L( x1, x2 ,, xn; ) p( xi ; ),
i 1
L( )称为样本似然函数.
2. 设总体 X属连续型
n
L( ) L( x1, x2,, xn; ) f ( xi; ),
i 1
L( )称为样本的似然函数.
正态总体均值方差的置信区间与上下限
满足
P{ } 1 ,
则称随机区间( , ) 是 的置信水平为1 的单 侧置信区间, 称为 的置信水平为1 的单侧置
信下限.
又如果统计量 ( X1, X2 ,, Xn ), 对于任 意 满足
P{ } 1 ,
则称随机区间( , ) 是 的置信水平为1 的单 侧置信区间, 称为 的置信水平为1 的单侧置
设有一容量 n 50 的大样本,它来自(0 1)分 布的总体 X , X 的分布律为 f ( x; p) px (1 p)1x ,
x 0, 1, 其中 p为未知参数, 则 p的置信水平为1
的置信区间是
b
b2 4ac , 2a
b
b2 2a
4ac
,
其中a n z2 / 2 , b (2nX z2 / 2 ), c nX 2 .
n2
.
(2) 12和 22均为未知,
1 2的一个置信水平为1 的近似置信区间
X
Y
z / 2
S12 n1
S22 n2
.
(3)
2 1
2 2
2,
但 2 为未知
1 2的一个置信水平为1 的置信区间
X Y t / 2(n1 n2 2)Sw
1 n1Biblioteka 1 n2.其中
Sw2
( n1
1)S12 (n2 1)S22 n1 n2 2
又因为 f ( x; p) px (1 p)1x , x 0, 1,
lnf ( x; p) x ln p (1 x)ln(1 p),
lnf ( x; p) x 1 x ,
p
p 1 p
E
lnf ( x; p
p)2
x x0,1 p
1 1
x2 p
px (1
p)1 x
1 (1 p)2
问此仪器工作是否稳定( 0.05) ?

n 16, 0.05,
2 0.025
(15)
27.5,
02.975(15) 6.26, 2 的1 置信区间为
(n
2 /
1)S 2(n
2
1)
,
(n
2 1
/2
1)S 2 (n 1)
(0.00136,
0.00599),
由于方差 2 不超过 0.01, 故此仪器工作稳定.
估计量, 这个估计量称为矩估计量.
最大似然估计量
得到样本值 x1, x2,, xn 时, 选取使似然函数 L( )
取得最大值的ˆ 作为未知参数 的估计值,

L(
x1
,
x2
,,
xn

)
max
L(
x1
,
x2
,,
xn
;
).
(其中 是 可能的取值范围)
这样得到的ˆ 与样本值 x1, x2,, xn有关,记为 ˆ( x1, x2,, xn ), 参数 的最大似然估计值,
求置信区间的 步骤
置信区间和上下限
矩估计量
用样本矩来估计总体矩,用样本矩的连续 函数来估计总体矩的连续函数,这种估计法称 为矩估计法.
矩估计法的具体做法: 令 l Al , l 1, 2,,k , 这是一个包含 k 个未知参数1, 2,,k 的方程组, 解出其中1,2,,k . 用方程组的解ˆ1,ˆ2 ,,ˆk 分别作为1,2 ,,k 的
备用例题
n
Xi
i 1
1 n2
n
D( Xi
i 1
)
1 n2
n
p(1
p)
1 n
p(1
p),
故 pˆ X 是总体分布参数 p的达到方差界的无 偏估计量.
例2 设某异常区磁场强度服从正态分布 N (, 2 ),
现对该区进行磁测, 按仪器规定其方差不得超过 0.01, 今抽测 16 个点, 算得 x 12.7, s2 0.0025,

d ln L( p) 0, dp

(1
n
p) xi i 1
p
n
n
i 1
xi
,
故参数
p 的最大似然估计值为

1 n
n
i 1
xi
,
参数 p的最大似然估计量为

1 n
n
i 1
X
i
X,
E( pˆ )
E( X )
E
1 n
n
i 1
X
i
1 n
n
i 1
E
(
X
i
)
p,
所以 pˆ 是 p的无偏估计量.
则称随机区间( , ) 是 的置信水平为1 的置信 区间, 和 分别称为置信水平为1 的双侧置信 区间的置信下限和置信上限, 1 为置信水平.
相关文档
最新文档