闭合电路欧姆定律(最新)
闭合电路欧姆定律
《闭合电路欧姆定律》
闭合电路中的功率 1.电源的总功率:P总=EI=IU+IU’=IU+I^2 r=P出 +P内
2.电源内耗功率:P内= IU’= P总- P出 3.电源的输出功率:P出= IU=IE-I^2 r= P总- P内
《闭合电路欧姆定律》
《闭合电路欧姆定律》
《闭合电路欧姆定律》
闭合电路欧姆定律内容 :
闭合电路中的电流跟电源电动势成正比, 跟内、外电路电阻之和成反比,这个结论叫 做闭合电路欧姆定律。
《闭合电路欧姆定律》
闭合电路欧姆定律电路图:
《பைடு நூலகம்合电路欧姆定律》
2.表达式
电流表达式:
E I /(r R)
电压表达式:
E Ir IR
《闭合电路欧姆定律》 3.适用范围 :
由于一般电源的内阻r很小,故外电压U随电流I的变 化不太明显,实际得到的图线往往很平,只画在坐标 纸上的上面一小部分,为充分利用坐标纸,往往将横 轴向上移,如下右图所示的实验图线。此时应注意, 图线与横轴的交点,并非短路电流,不可盲目用它求 内阻,但图线与纵轴的交点仍代表电动势E,图线斜 率的绝对值仍等于内阻r
也可以得到路端电压随外电阻增大而增大的结论。
U IR ER /( R r ) E /(1 r / R)
《闭合电路欧姆定律》
路端电压与电流的关系(U一I图象)
如下左图所示为U一I图象,
《闭合电路欧姆定律》
图线为一条直线,与纵轴交点为电 源电动势与横轴交点为短路电流,直 线的斜率的绝对值等于电源内阻。
外电路是纯电阻的电路。 路端电压U 外电路两端的电压,即电源的输出电压
U E Ir
闭合电路的欧姆定律
闭合电路动态分析
在如图所示的电路中,将开关S由 断开变为闭合后,分析流经各个 电阻的电流及它们两端电压的变 化。电源的电动势及内阻不变。
R1
S
R2 R3
E r R4
闭合电路动态分析
A
R
R
在如图所示的电路中,将电阻R0 的滑片向下滑,分析电压表与电
V
R0
流表示数的变化。电源的电动势
及内阻不变。
R
R
外电阻越大,电流越小,外电压越大; 效率越大。
输出功率最大时:
当R
r时,I
E 2r
,U
E 2
,P出
E2 4r
;
50%
常见几种功率的分析
当滑动变阻器的滑片P左右滑动 时,分析电源输出功率,R1的 功率,R2的功率的变化。
R1
R2 P
Er
1、定值电阻功率最大的条件: P=I2R 通过定值电阻的电流最大
当R 时,P出 0;断路
当R
r时,P出
E2 4r
;输出功率最大
三个关系的区别与联系
P出 EI I 2r
所有电路
P出
E r
U
1U 2 r
所有电路
P出
E2 (R r)2
4r
R
纯电阻电路
在纯电阻电路中,三个特殊状态的联系:
当R
0时,I
E r
,U
0,P出
0;
短路
当R 时,I 0,U E,P出 0; 断路
3、规律: 当U 0时,P出 0; 短路
当U E时,P出 0; 断路
当U
E 2
时,P出
E2 4r
;输出功率最大
三、输出功率与电阻关系 P出 — R
闭合电路的欧姆定律
闭合电路的欧姆定律电路欧姆定律讨论电路中的路端电压、电流随外电阻变化的关系。
E=U内+U外E=Ir+IR电源的总功率P总=IE电源的输出功率P输=IU电源内阻上损耗的功率P损=I²r VP总=P输+P损IE=IU+I²r电源的非静电力做功W非=qE=IEt IEt=IUt+I²rt电源的电动势和内阻r是一定的,当负载电阻R增大时,电流I将减小,则电源内阻上的电势降Ir将减小,所以路端电压U增大,所以路端电压U随外电阻的增大而增大。
当R→∞,也就是当电路断开时,I→0则U=E。
当开路(亦称开路)时,路端电压等于电源的电动势当R→0时,→E/r,可以认为U=0,路端电压等于零。
这种情况叫电源短路,发生短路时,电流I叫做短路电流.1.电源的电动势为3.0V,内电阻为0.20Ω,外电路的电阻为4.80Ω,则电路中的电流I=__________________A,内电压__________________V,路端电压_________________V。
2.如图所示,电源电动势为E,内电阻为r,外电路总电阻为R,当S闭合后,电源总功率为___________________,电源的输出功率为___________________,外电路消耗的功率为_____________________,内电路消耗的功___________________,电源的供电效率为______________________。
3.3、许多人造卫星都用太阳能电池供电,太阳能电池由许多片电池板组成,某池板的开路电压是600mV,短路电流是30mA,这块电池板的内电阻是( ).(A)60Ω(B)40Ω(C)20Ω(D)10Ω4、在“测定电源电动势和内阻”的实验中,某同学根据实验数据,作出了正确的U-t图象,如图4所示,其中图线斜率绝对值的物理含义是\A.短路电流B.电源内阻C.电源电动势D.全电路电阻UI 5、电源电动势为ε,内阻为r,向可变电阻R供电.关于路端电压,下列说法中正确的是( ).(A)因为电源电动势不变,所以路端电压也不变(B)(B)因为U=IR,所以当R增大时,路端电压也增大(C)(C)因为U=IR,所以当I增大时,路端电压增大(D)(D)因为U=ε-Ir,所以当I增大时,路端电压下降6.如图所示R1=14Ω,R2=9Ω。
闭合电路欧姆定律
5讲 闭合电路欧姆定律一、闭合电路的欧姆定律 (1)内、外电路①内电路:电源两极(不含两极)以内,如电池内的溶液、发电机的线圈等.内电路的电阻叫做内电阻.②外电路:电源两极,包括用电器和导线等.外电路的电阻叫做外电阻. (2) 闭合电路的欧姆定律①内容:闭合电路的电流跟电源的电动势成正比,与内、外电路的电阻之和成反比,即I=E/(R+r )②由E =U +Ir 可知,电源电势能等于内外压降之和;③适用条件:纯电阻电路 (3)路端电压跟负载的关系 ①路端电压:根据U =IR =ER/(R +r )=E/(1+r/R)可知,当R 增大时,U 增大;当R 减小时,U 减小。
表示为U -R 图象如右 ②U 一I 关系图由闭合电路欧姆定律知:U =E -Ir , 路端电压随着电路中电流的增大而减小; U 一I 关系图线如图示当电路断路即I =0时,纵坐标的截距为电动势E ;当外电路电压为U =0时,横坐标的截距I 短=E/r 为短路电流;图线的斜率的绝对值为电源的内电阻. (4).闭合电路的输出功率①功率关系:P 总=EI=U 外I 十U 内I= UI +I 2r ,②电源的输出功率与电路中电流的关系:P 出=EI -I 2r 2224E E r I r r ⎡⎤=--+⎣⎦当2EI r=时,电源的输出功率最大,24m EP r=③电源的输出功率与外电路电阻的关系:()2224E P I R R r rR==-+出当R =r 时也即I=E/2r 时,电源的输出功率最大, 24m EP r=由图象可知,对应于电源的非最大输出功率P 可以有两个不同的外电阻R l 和R 2,不难证明r =R<r 时,若R 增大,则P 出增大;当R>r 时,若R 增大,则P 出减小.应注意:对于内外电路上的固定电阻,其消耗的功率仅取决于电路中的电流大小④电源的供电效率 100%100%100%U P R P E R rη=⨯=⨯=⨯+外出总【例1】如图所示,电压表 V l 、V 2串联接入电路中时,示数分别为8 V 和4 V ,当电压表V 2接入电路中时,如图(2)所示,示数为 10 V ,求电源的电动势为多少?解析:当两电压表接入电路时,电路中的电流强度为I l ,当一个电压表接入电路时,电路中的电流强度为I 2,则由图可知I 1=(E 一12)/r= 4/R v2……①I 2=(E -10)/r =10/R v2……② (l )÷(2)后得(E 一12)/(E -10)=4/10 解得 E = 13.3 V点评:还可以根据串联电路的电压分配与电阻成正比列出关系式.(E 一12)/4=r /R v2和(E -10)/10=r /R v2,等量代换后,即得E =13.3V .【例2】 如图所示,RB = 4Ω,A 、C 、D 是额定电压和额定功率均相同的三个用电器、电源内阻是l Ω.S 闭合后,当变阻器的电阻调为5Ω时,各用电器均正常工作.(1)S 断开后,若仍要各用电器正常工作,变阻器电阻R 应调为多少? (2)S 闭合和断开时, R B 上的电功率之比P B ∶P B /=?变阻器上消耗的功率之比 P ∶ P /=?解析:(1)在图所示的电路中,A 、C 、D 三个用电器是并联的,且正常工作,其额定功率相等,说明三个用电器的电流均相等,设每个用电器的额定电流为I , 若S 闭合,有3I =(E -U )/(R B +R +r )………① 若 S 断开,则有2I =(E -U )/(R B +R x +r )………② 由①、②解得R x = 10Ω(2)在 S 闭合和断开两种情况下,电阻R B 上消耗的电功率之比应为其通过电流的平方比 P B ∶P B /=(3I /2I )2=9/4,变阻器上消耗的功率应等于通过的电流平方与电阻乘积之比 P ∶ P /=(3I /2I )2×(R /R x )=9/8【例3】在图电路中,直流发电机E=250V ,r =3Ω,R 1=R 2=1Ω,电热器组中装有50只完全相同的电热器,每只电热器的额定电压为 200V ,额定功率为1000W ,其它电阻不计,并且不计电热器电阻随温度的变化.问:(1)当接通几只电热器时,实际使用的电热器都能正常工作? (2)当接通几只电热器时,发电机输出功率最大? (3)当接通几只电热器时,电热器组加热物体最快?(4)当接通几只电热器时,电阻R 1、R 2上消耗的功率最大? (5)当接通几只电热器时,实际使用的每只电热器中电流最大?解析:不计用电器电阻随温度的变化,则每只电热器的电阻R 0=10002002=40Ω,每只电热器的额定电流I 0=2001000=5A (1) 要使用电器正常工作,必须使电热器两端的实际电压等于额定电压200V ,因此干路电流1225020010311U I A r R R ε--===++++而每只电热器额定电流为5A ,则电热器的只数n 1=10/5=2只(2)要使电源输出功率最大,必须使外电阻等于内电阻,由此可得电热器总电阻为R=r -(R 1+R 2)=3-(1+1)=1Ω,故有n 2=R 0/R=40/1=40只(3)要使电热器组加热物体最快,就必须使电热器组得到的电功率最大,把R 1、R 2视为等效(电源)内电阻,则其总电阻为R /=R 1+R 2+r=1+l +3=5Ω 所以n 3=R 0/R /=40/5=8只,(4)要使R 1、R 2上消耗功率最大,必须使其电流为最大,由此电路中总电阻必须是小.即当50只电热器全接通时,可满足要求.所以n 4=50只.(5)要使实际使用的每只电热器中电流最大.则须使U AB 最大,这样A 、B 间的电阻应最大,所以n 5=1只 【例4】如图所示,直线AOC 为某一电源的总功率P 总随电流i 变化的图线,抛物线OBC 为同一直流电源内部热功率P r 随电流I 变化的图象.若A 、B 对应的横坐标为2A ,那么线段AB 表示的功率及I=2A 时对应的外电阻是( ).A .2W ,0.5Ω;B .4W ,2Ω;C .2W ,l Ω;D .6W ,2Ω; 解析:由图象知,直线OAC 表示电源的P 总-I 的关系,即P 总=E ·I 在C 点,I=3A , P 总=9W ,所以 E=P 总/I=9/3V=3V 抛物线OBC 表示电源的P r -I 的关系,即P r =I 2 r , 在C 点,I =3A ,Pr=9W ,所以r =P r /I 2=9/32=l Ω 根据闭合电路的欧姆定律,当I=2A 时,0.5IrR Iε-==Ω线段AB 表示的功率即电源的输出功率,有PAB=UI=I 2R=22×0.5=2W规律方法1、 两个U -I 图象的比较(1) 路端电压与电流的关系:U =E -Ir ,可用图甲表示,图象表示在E 、r 不变的前提下,U 随I 单调递减,U 是I 的一次函数,由图甲说明A. 图中表示电流为I1时,路端电压为U1,对应内电压为U ′B. 过E 点的平行于横轴的虚线表示电流为零时,路端电压不随I 而改变,且始终等于电源电动势,就是理想电源的情况 C. 图线斜率表示电源内阻的大小图中I m 表示外电阻等于零(即短路)时,回路中的电流,即I m =E/r(2)一段导体两端的电压与通过的电流关系:U =IR ,可用图乙表示。
闭合电路欧姆定律
稳恒电流
闭合电路欧姆定律
闭合电路
外电路
ห้องสมุดไป่ตู้
内电路
物理量:
外电阻R (外电路的总电阻) 内电阻r (电源内部的电阻)
(构成串联电路,内外电流一样)
外电路电压U外(路端电压)
U外=IR
内电路电压U内 U内=Ir
电动势E
不是电动势
不是电动势 接近电动势
二、闭合电路的欧姆定律 E=U外+U内 E=IR+Ir 一切电路 纯电阻电路
(1)U=IR I=E /(R+r)
(2)U=E-Ir
U=ER /(R+r)
2、短路:如图,求I,U
I=E/r U=0
两种特殊电路中的路端电压
1、断路:如图,求I,U
I=0
U=E
E
斜率代表电源的内阻
E/r
2、分析电路的方法
如图:当滑片向右移动时,电压表的示数怎么变?
分析思路:
总电阻如何变?
I E Rr
E I Rr
纯电阻电路
例:电源的电动势为2V,外电路的电阻为9欧,测 得电源两极间的电压为1.8V,求电源的内阻?
例:在图中R1=14Ω ,R2=9Ω ,当开关S扳到位置1时, 测得电流为0.2A,扳到位置2时,测得电流为0.3A,求电 源的电动势和内阻
三、路端电压U(外电路的总电压)
1、求法
总电流如何变?
内电压如何变?(Ir)
U=E-Ir 推出路端电压如何变?
四、电源的功率 (外电路是纯电阻电路时)
1、输出功率: 外电路上的总功率 P=UI
则当R=r时,输出功率最大 Pmax=E2/4r
2、内耗功率: 内阻r 上发热损耗的功率 Pr=I2r 3、总功率: P总=EI=P+Pr 4、效率:
闭合电路的欧姆定律
闭合电路的欧姆定律
闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
公式为
I=E/R+r,I表示电路中电流,E表示电动势,R表示外总电阻,r表示电池内阻。
欧姆定律意义说明
定律说明了闭合电路中的电流取决于两个因素即电源的电动势和闭合回路的总电阻,
这是一对矛盾在电路中的统一。
变式E=U外+U内=IR+r则说明了在闭合电路中电势升和降
是相等的。
①用电压表接在电源两极间测得的电压是路端电压U外,不是内电路两端的电压U内,也不是电源电动势,所以U外<E。
②当电源没有接入电路时,因无电流通过内电路,所以U内=0,此时E=U外,即电源
电动势等于电源没有接入电路时的路端电压。
③式E=I,R+r只适用于外电路为纯电阻的闭合电路。
U外=E-Ir和E=U外+U内适用
于所有的闭合电路。
闭合和部分电路怎么区分
区别
闭合电路欧姆定律阐明了包含电源在内的全电路中,电源电动势、路端电压和电源内
电压的关系
数学表达式:E=U外+U内,适合所有电路。
部分电路欧姆定律只表示部分电路电流、电压、电阻之间的关系。
数学表达式:I=U/R
联系
I=E/R+r,I=U/R适合纯电阻电路;闭合电路欧姆定律包含了部分电路欧姆定律的内容。
感谢您的阅读,祝您生活愉快。
闭合电路的欧姆定律公式
闭合电路欧姆定律公式是什么?
答:闭合电路欧姆定律探究的是电源电动势与干路电流、总电阻之间的关系,电源电动势等于干路电流乘以电源内电阻与外界电阻之和。
表达式:E=I(r+R)=U外+Ir=U外+U 内。
问:物体的内能指的是什么?
答:内能包括势能和动能两部分,是物体所有的分子动能和分子势能的总和。
对理想气体而言,分子间作用力为零,分子势能为零。
对一定物理量的理想气体,其内能微观上只取决于分子动能;宏观上取决于温度。
温度是构成物体的所有分子平均动能的标志,与分子平均动能成正比例关系。
再来说一下非理想气体,物体的内能除了温度外,还取决于所属状态,同样温度的水和冰,水的内能要大的多。
问:右手定则怎么用?
答:把右手伸开,放入磁场中,让磁感线垂直进入手心(磁感线为直线时,相当于手心面向N极),大拇指指向切割的导体棒运动方向,则四指所指方向就是电路中感应电流的方向。
问:弹簧问题中,物体恰不能离开地面(桌面)是什么意思?
答:被弹簧悬挂的物体恰好(刚好)不能离开地面,是介于离开与未离开之间,是非常特殊的一种状态,此时地面与物体没有压力作用,物体上升的速度也为零(不能继续上升)。
同学们可以借助于零与正负数之间的关系来理解。
问:离心力是怎么一回事?
答:在一些资料中见到的离心力,确切来说并不是力,而是一种效果或趋势。
物体在做圆周运动,尤其是高速圆周运动的时候,需要受到比较大的向心力,当物体所受到的外力不足以支撑圆周运动所需要的向心力时,就有离心的趋势,俗称离心力。
物理闭合电路欧姆定律
例2 如图所示电路,已知E=6 V,r=4 2 Ω,R2的变化范围是0~10 Ω.求:
(1)电源的最大输出功率.
Ω,R1=
(2)R1上消耗的最大功率. (3)R2上消耗的最大功率.
【思路点拨】(1)当R1+R2=r时电源的输出功率最 大.(2)R1是固定电阻,注意不要照搬上述方法.(3)R2 是可变电阻,可把R1+r看成内阻,当R2=R1+r时, R2功率最大.
对带电小球运动的全过程,根据动能定理得: q′U′-mg2d-q·U2′=0 联立解得:q′=76q
【答案】(1)3m2qgd (2)76q
【方法与知识感悟】含容电路的分析
电容器是一个储存电荷的元件. 在直流电路中,当电 容器充放电时,电路里有充放电电流,一旦电路达到 稳定状态,电容器在电路中就相当于一个阻值无限大 (只考虑电容器是理想的不漏电的情况)的元件,在电 容器处电路看做断路,简化电路时可去掉它. 简化后 若要求电容器所带电荷量时,可在相应的位置补上.
D.改变外电阻的阻值时,该电池组的最大输出功率为 4W
【思路点拨】正确理解电源的U-I图象和电阻的U-I 图象的物理意义及其交点的物理意义是解题的关键.
【解析】从 I-U 曲线可以求出电池组的电动势 为:E=4 V,电池组的内阻为:r=|ΔΔUI |=|44| Ω=1 Ω, 选项 A 正确;电阻的阻值为:R=ΔΔUI′′=31- -00 Ω= 3 Ω,选项 B 错误;电池组的输出功率为:P=UI=3× 1 W=3 W,选项 C 错误;电池组的最大输出功率为: Pm=E4r2=4×42 1 W=4 W,选项 D 正确.
四、闭合电路中的能量转化关系
1.电源的功率 P=IE,普遍适用; P=RE+2 r=I2(R+r),只适用于外电路
闭合电路的欧姆定律
说明:
I E Rr
1、 E IR Ir E=U内+U外
2、U外 IR是外电路上总的电势降落,习惯上叫路端
电压.
3、U内 Ir 是内电路上的电势降落,习惯上叫内电压.
三、路端电压跟负载的关系
外电路两端的电压叫路端电压.
路端电压: U E Ir
1、如图电路:
A
R增大,电流减小, 路端电压增大
①在纵轴上的截距表示电 E
源的电动势E.
②在横轴上的截距表示电源
的短路电流
O
θ I短 I
I短 E / r
③图象斜率的绝对值表示电源的内阻,内 阻越大,图线倾斜得越厉害.
1、如图,R=0.8Ω当开关S断开时电压表 的读数为1.5V;当开关S闭合时电压表 的读数为1.2V则该电源的电动势和内电 阻分别为多少?
一、闭合电路: 1、用导线把电源、用电器连成一个闭合电路
外电路:电源外部的用电器和导线构 成外电路.
内电路:电源内部是内电路.
外电路
R
s
E
r
内电路
二、闭合电路欧姆定律
1、对纯电阻电路 E IR Ir 即 I E Rr
2、表述:闭合电路中的电流跟电源的电动 势成正比,跟内、外电路的电阻之和成反比
U/V
3
2 1
O
2
4
6 I/A
4.如图所示,直线A为电源的路端电压U与电流I的 关系图线,直线B是电阻R的两端电压U与电流I 的关系图象,用该电源与电阻R组成闭合电路, 电源的输出功率和电源的效率分别为多少?
P出=4W η=66.7%
U/V
3
B
2
P
1
A
闭合电路的欧姆定律
闭合电路的欧姆定律【知识点归纳】(一)、闭合电路的欧姆定律:1、闭合电路的欧姆定律的内容:(1)闭合电路里的电流,跟电源的电动势成正比,跟整个电路的电阻成反比。
公式:I = rR E + ; (2)从闭合电路欧姆定律中,还可导出电路功率的表达式: EI = U I + U'I = I 2R + I 2r 。
(3)、定律的适用条件:外电路为纯电阻电路。
2、闭合电路欧姆定律的应用:路端电压变化的讨论:(1)当R 增大时,I 减小,U'=I r 减小,U 增大;当R ∞时,I = 0 ,U =E (最大);0 时 ,I = rE ,U = 0 ; (2)当R 减小时,U 减小,当R 3、闭合电路欧姆定律的应用(二)应用闭合电路的欧姆定律分析电路中有关电压、电流、电功率的方法;(1)分析电路中的电压、电流、电阻时,一般先由闭合电路欧姆定律确定电路的总电流、路端电压,再结合部分电路的欧姆定律分析各部分电路的参数。
(2)分析电源的电动势、内电阻时,可将(1)中的分析顺序逆进行。
(3)分析电路的功率(或能量)时可用公式EI = U I + U'I = I 2R + I 2r其中EI 为电源的总功率(或消耗功率),U I= I 2R 为电源的输出功率(或外电路的消耗功率);U'I= I 2r 为电源内部损耗功率,要注意区分。
【案例分析】一、 判断灯的亮暗例1、 四个灯泡连接如图所示,当电键S 2断开、S 1接通a 点时,灯泡L 1最亮,L 2和L 4最暗且亮度相同,当电键S 2闭合、S 1接通b 点时,下例亮度分析正确的是( )A. 灯泡L 1最亮,L 4最暗B. 灯泡L 2最亮,L 3最暗C. 灯泡L 3最亮,L 1最暗D.灯泡L 4最亮,L 1最暗二、 电压表和电流表示数的变化例2、 如图所示是一火警报警系统的部分电路示意图,其中R 2为用半导体正热敏材料制成的,电流表为值班室的显示器,a 、b 之间接报警器,当传感器R 2所在处出现火情时,显示器中的电流I 和报警器两端的电压U 的变化情况是( )A 、I 变大,U 变大B 、I 变小,U 变小C 、I 变小,U 变大D 、I 变大,U 变小例3、 如图所示的电路中,当滑动变阻器的滑动触片向 b 端移动时:A.伏特表 V 和安培表A 的读数都减小B.伏特表V 和安培表A 的读数都增大C.伏特表V 的读数增大,安培表A 的读数减小D.伏特表V 的读数减小,安培表A 的读数增大三、判断电路的故障例4、如图所示的电路中,灯泡LA和L B都是正常发光的,忽然灯泡L B比原来变暗了些,而灯泡L A比原来变亮了些,试判断电路中什么地方出现了断路故障(设只有一处出了故障)。
闭合电路的欧姆定律
3、注意:
(1)公式中R为整个外电路的总电阻。 (2)一般情况下,电源给定,ε、r是恒量,故I受到R的制约,当R增 大时,I减小;R减小时,I增大。
4、讨论:路端电压U随外电阻R变化的规律
1)路端电压:外电路两端的电压 2)路端电压与外电阻的关系:
A、当R增大:I变小,Ir变小,U增大,
a.当外电路的电阻R增大时,I要减小U路就增大,反之U路减小(内电 压增大)。 b. 当外电路断开时,可以说R变成了无限大I为零,Ir(内电压)也 变为零U路=ε 。表明外电路断开时的路端电压等于电源的电动势。 c.当外电路短路时,R→0,U路→0,这时电路中的I=ε/r,此时电流强 度达到最大。 3)路端电压U外与电流I的关系用图象表示:
作业布置: 教材练习题 (1)(2)(3)(4)(5)
2.电源电动势为ε,接上外电阻R组成一个闭 合回路,当改变外电路电阻使之加倍时通过 的电流减小为原来的2/3,外电阻与电源内电 阻r之比为 ?
本讲小结
由电源和电阻R组成的回路叫闭合电路(电源包括电动 势和内电阻) 全电路欧姆定律表明闭合电路中的电流强度和电源电 动势和内外电阻之和的关系 路端电压U路=ε-Ir随外路电阻的变化而变化
闭合电路的欧姆定律 一、电动势:
1、电源的电动势:在数值上等于电源没有接入电路时两极间的电压。 2、电动势的符号是E,单位是伏特。 3、物理意义:反映电源本身性质的物理量,组成电源的化学结构 相同的电动势值相同。
二、闭合电路的组成:外电路+内电路 三、闭合电路欧姆定律:
1、表达式:I=E/(R+r)或 E=I(R成正比,跟内、外电路的 电阻成反比。这个结论叫做闭合电路的欧姆定律。
例 图中当滑动变阻器的滑动头P向b端滑动时。 各电表的示数将为何变化呢?(是变大还是变小)
闭合电路的欧姆定律
1、U外 = IR 是外电路上总的电势 降落,习惯上叫路端电压 路端电压. 降落,习惯上叫路端电压. 2、U内 = Ir 是内电路上的电势降 习惯上叫内电压 内电压. 落,习惯上叫内电压. 3、 E = IR + Ir
E=U内+U外
二、路端电压跟负载的关系
外电路两端的电压叫路端电压. 外电路两端的电压叫路端电压. 1、如图电路: 如图电路:
ห้องสมุดไป่ตู้
闭合电路欧姆定律
1、对纯电阻电路
2、表述:闭合电路中的电流跟电源 表述: 的电动势成正比,跟内、 的电动势成正比,跟内、外电路的电 阻之和成反比. 阻之和成反比. E
E E = IR + Ir 即 I = R+r
I=
R+r
闭合电路欧姆定律: 闭合电路欧姆定律:
说明: 说明:
E E = IR + Ir I = R+r
闭合电路的欧姆定律
短路: 很小( 短路:R = 0 ,I = E / r 。 r 很小(蓄电池 0.005 ~ 0.1 ,干电池小于 ),电流太大, 干电池小于1 ),电流太大 电流太大, 烧坏电源,还可能引起火灾。 烧坏电源,还可能引起火灾。 3、U-I 关系图象: 、 关系图象: 由:U= E-Ir 知, U是I 的一次函数。 是 的一次函数。
外电路
R
K
E内=I rt
3、电流流经电源时,在时间t内 电流流经电源时,在时间t 非静电力做多少功 W=Eq=EIt = 4、以上各能量之间有什么关系? 以上各能量之间有什么关系?
内电路
E
r
根据能量守恒定律, 根据能量守恒定律,非静电力做的 功应该等于内外电路中电能转化为其 他形式的能的总和。 他形式的能的总和。 W=E外+E内 即:EIt=I2Rt+I2rt
第九章 第2讲 闭合电路的欧姆定律-2025高三总复习 物理(新高考)
第2讲闭合电路的欧姆定律[课标要求]1.了解电动势的物理意义,理解并掌握闭合电路的欧姆定律。
2.会用闭合电路欧姆定律分析电路的动态变化。
3.会计算涉及电源的电路功率。
4.掌握路端电压和电流的关系及电源的U-I图像。
考点一闭合电路的欧姆定律1.电动势(1)非静电力所做的功与所移动的电荷量的比叫作电动势。
(2)物理意义:电动势表示电源把其他形式的能转化成电势能本领的大小,在数值上等于电源没有接入电路时两极间的电压。
2.闭合电路的欧姆定律(1)内容:闭合电路的电流跟电源的电动势成正比,跟内、外电阻之和成反比。
(只适用于纯电阻电路)。
(2)公式:I=ER+r(3)其他表达形式E=U外+U内或E=U外+Ir(适用于任意电路)。
学生用书第182页自主训练1电动势的理解(多选)关于电动势,下列说法正确的是()A.电源电动势等于电源正、负极之间的电势差B.用电压表直接测量电源两极得到的电压数值,实际上总略小于电源电动势的准确值C.电源电动势总等于内、外电路上的电压之和,所以它的数值与外电路的组成有关D.电源电动势越大,说明电源把其他形式的能转化为电能的本领越大答案:BD解析:电源正、负极之间的电势差为电源的路端电压,只有当电源处于断路状态时,电源的电动势才等于路端电压,故A错误;用电压表直接测量电源两极间电压时,电压表与电源构成一个闭合回路,电路中有电流,电源有内电压,则路端电压略小于电动势,即电压表的测量值略小于电动势,故B正确;电动势反映电源的特性,与外电路的组成无关,故C错误;电动势反映了电源将其他形式的能转化为电能的本领,电动势越大则转化本领越大,故D正确。
自主训练2闭合电路欧姆定律的简单应用如图所示的电路中,电阻R =2Ω。
断开S 后,电压表的读数为3V ;闭合S 后,电压表的读数为2V ,则电源的内阻r 为()A .1ΩB .2ΩC .3ΩD .4Ω答案:A解析:当断开S 后,电压表的读数等于电源的电动势,即E =3V ;当闭合S 后,有U =IR ,又由闭合电路欧姆定律可知I =ER +r,联立解得r =1Ω,A 正确,B 、C 、D 错误。
闭合电路欧姆定律(共10张PPT)
2.外电路:电源之外的电路。
W=E +E 1.闭合电路:用导线把电源、用电器等连接成的一个闭合电路。
负载变化时,电路中的电流也就会变外化,路端内电压也随着变化。
负载变小,路端电压变小;
Rt+ rt EIt=I I ⑵上当式电 表路明两:端断短路路时时的:路端电压等于2 电源电动2势。
I表示干路电流;R为外电
势高于负极电势。因此,在外电路中,沿电流方
向电势逐步降低。
R S
内电路
一、闭合电路欧姆定律
1.推导闭合电路欧姆定律
闭合电路中,之所以有源源不断的电流,是因为电源中的非静
U滑外片=左IR电移,时为力,外电电做流压表功,示也数的称变路缘小端,电故电压压;。表示而数变非大。静电力做功将把其他形式的能转化为电能,
E二=、I2路R2端+I电2r压与2负.载的外关②电系 路:电源之外的电路。
3.内电路:电源内部的电路。
2.通过实验分析路端电压与负载的关系
⑵当电路两端短3路.时:内电路:电源内部的电路。
⑵当电路两端短路时:
Er
U外=IR,为外电压,也称路端电压;
由闭合电路欧姆定律得知
2.外电路:电源之外的电路。
⑴当外电路断在开时外: 电路中,电流从正极向负极流动,而正极电
闭合电路欧姆定律
第7节 闭合电路欧姆定律
课前准备
先来学习几个概念。如右图所示的电路中:
外电路
2.闭合电路的欧姆定律
一、闭合电路欧1姆.定律闭合电路:用导线把电源、用
求电源的电动势E和内电阻r。
2.闭电合电器路的等欧姆连定律接成的一个闭合电路。
2.外电路:电源之外的电路。
上式表明:断路时的路端电压等于电源电动势。
闭合电路的欧姆定律
转 解析
规律方法
U-I图象的一般分析思路
(1)明确纵、横坐标的物理意义.
(2)明确图象的截距、斜率及交点的意义.
(3)找出图线上对应状态的参量或关系式.
(4)结合相关概念或规律进行分析、计算.
【变式训练3】(多选)如图的U-I图象中,直线Ⅰ为某电源的路端电 压与电流的关系,直线Ⅱ为某一电阻R的U-I曲线,用该电源直接与 电阻R连接成闭合电路,由图象可知( ) A.R的阻值为1.5 Ω B.电源电动势为3 V,内阻为0.5 Ω C.电源的输出功率为3.0 W D.电源内部消耗功率为1.5 W
(2)当滑动变阻器的阻值为多大时, 滑动变阻器消耗的功率最大?最大 功率是多少?
(3)当滑动变阻器的阻值为多大时, 电源的输出功率最大?最大功率是 多少?
审题导析 1.在什么条件下,定值电 阻(R1)消耗的功率最大? 2.在什么条件下,可变电 阻(R2)消耗的功率最大? 3.在什么条件下,电源的 输出功率最大?
(1)结论法:利用电源的输出功率P出随外电路电阻R变化的 曲线分析. (2)等效法:找出等效电源,如分析变阻器R2消耗的功率何 时最大时,把R1看成等效电源内阻的一部分.
如图,电源的电动势为E 、内阻为r,定值电阻R的阻值也为r,滑 动变阻器的最大阻值是2r。当滑动变阻 器的滑片P由a端向b端滑动过程中,下列 说法中正确的是( ) A.电压表的示数变大 B.电流表的示数变小 C.滑动变阻器消耗的功率变小 D.定值电阻R消耗的功率先变大后变小
3.输出功率和外电阻的关系 (1)任意电路:P 出=UI=EI-I2r=P 总-P 内。 (2)纯电阻电路:P 出=I2R=(RE+2Rr)2=(R-R Er)2 2+4r. ①当 R=r 时,电源输出功率最大,Pm=E2/4r. ②当 R>r 时,随 R 增大,输出功率越来越小. ③当 R<r 时,随 R 增大,输出功率越来越大. ④P 出<Pm 时,每个输出功率对应两个不同的外 电阻 R1 和 R2,且满足 R1R2=r2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标(一)知识目标1、知道电动势的定义.2、理解的公式,理解各物理量及公式的物理意义,并能熟练地用来解决有关的电路问题.3、知道电源的电动势等于电源没有接入电路时两极间的电压,电源的电动势等于内、外电路上电势降落之和.4、理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题.5、理解闭合电路的功率表达式.6、理解闭合电路中能量转化的情况.(二)能力目标1、培养学生分析解决问题能力,会用分析外电压随外电阻变化的规律2、理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题.3、通过用公式、图像分析外电压随外电阻改变规律,培养学生用多种方式分析问题能力.(三)情感目标1、通过外电阻改变引起电流、电压的变化,树立学生普遍联系观点2、通过分析外电压变化原因,了解内因与外因关系3、通过对闭合电路的分析计算,培养学生能量守恒思想4、知道用能量的观点说明电动势的意义教学建议1、电源电动势的概念在高中是个难点,是掌握的关键和基础,在处理电动势的概念时,可以根据教材,采用不同的讲法.从理论上分析电源中非静电力做功从电源的负极将正电荷运送到正极,克服电场力做功,非静电力搬运电荷在两极之间产生电势差的大小,反映了电源做功的本领,由此引出电动势的概念;也可以按本书采取讨论闭合电路中电势升降的方法,给出电动势等于内、外电路上电势降落之和的结论.教学中不要求论证这个结论.教材中给出一个比喻(儿童滑梯),帮助学生接受这个结论.需要强调的是电源的电动势反映的电源做功的能力,它与外电路无关,是由电源本生的特性决定的.电动势是标量,没有方向,这要给学生说明,如果学生程度较好,可以向学生说明,做为电源,由正负极之分,在电源内部,电流从负极流向正极,为了说明问题方便,也给电动势一个方向,人们规定电源电动势的方向为内电路的电流方向,即从负极指向正极.2、路端电压与电流(或外电阻)的关系,是一个难点.希望作好演示实验,使学生有明确的感性认识,然后用公式加以解释.路端电压与电流的关系图线,可以直观地表示出路端电压与电流的关系,务必使学生熟悉这个图线.学生应该知道,断路时的路端电压等于电源的电动势.因此,用电压表测出断路时的路端电压就可以得到电源的电动势.在考虑电压表的内阻时,希望通过第五节的“思考与讨论”,让学生自己解决这个问题.3、最后讲述闭合电路中的功率,得出公式,.要从能量转化的观点说明,公式左方的表示单位时间内电源提供的电能.理解了这一点,就容易理解上式的意义:电源提供的电能,一部分消耗在内阻上,其余部分输出到外电路中.教学设计方案闭合电路的欧姆定律一、教学目标1、在物理知识方面的要求:(1)巩固产生恒定电流的条件;(2)知道电动势是表征电源特性的物理量,它在数值上等于电源没有接入电路时两极间的电压.(3)明确在闭合回路中电动势等于电路上内、外电压之和.(4)掌握闭合电路的欧姆定律,理解各物理量及公式的物理意义(5)掌握路端电压、输出功率、电源效率随外电阻变化的规律.2、在物理方法上的要求:(1)通过电动势等于电路上内、外电压之和的教学,使学生学会运用实验探索物理规律的方法.(2)从能量和能量转化的角度理解电动势的物理意义.(3)通过对路端电压、输出功率、电源效率随外电阻变化的规律的讨论培养学生的推理能力.(4)通过用公式、图像分析外电压随外电阻改变规律,培养学生用多种方式分析二、重点、难点分析1、重点:(1)电动势是表示电源特性的物理量(2)的内容;(3)应用定律讨论路端电压、输出功率、电源效率随外电阻变化的规律.2、难点:(1)闭合回路中电源电动势等于电路上内、外电压之和.(2)短路、断路特征(3)应用讨论电路中的路端电压、电流强度随外电阻变化的关系三、教学过程设计引入新课:教师:同学们都知道,电荷的定向移动形成电流.那么,导体中形成电流的条件是什么呢?(学生答:导体两端有电势差.)演示:将小灯泡接在充满电的电容器两端,会看到什么现象?(小灯泡闪亮一下就熄灭.)为什么会出现这种现象呢?分析:当电容器充完电后,其上下两极板分别带上正负电荷,如图1所示,两板间形成电势差.当用导线把小灯泡和电容器两极板连通后,电子就在电场力的作用下通过导线产生定向移动而形成电流,但这是一瞬间的电流.因为两极板上正负电荷逐渐中和而减少,两极板间电势差也逐渐减少为零,所以电流减小为零,因此只有电场力的作用是不能形成持续电流的.教师:为了形成持续的电源,必须有一种本质上完全不同于静电性的力,能够不断地分离正负电荷来补充两极板上减少的电荷.这才能使两极板保持恒定的电势差,从而在导线中维持恒定的电流,能够提供这种非静电力的装置叫电源.电源在维持恒定电流时,电源中的非静电力将不断做功,从而把已经流到低电势处的正电荷不断地送回到高电势处.使它的电势能增加.板书:1、电源:电源是一种能够不断地把其他形式的能量转变为电能的装置.它并不创造能量,也不创造电荷.例如:干电池是把化学能转化为电能,发电机是把机械能、核能等转化为电能的装置.教师:电源能够不断地把其他形式的能量转变为电能,并且能够提供恒定的电压,那么不同的电源,两极间的电压相同吗?展示各种干电池(1号、2号、5号、7号),请几个同学观察电池上面写的规格,发现尽管电池的型号不同,但是都标有“1.5V”字样.我们把示教电压表直接接在干电池的两端进行测量,发现结果确实是1.5V.讲台上还摆放有手摇发电机、蓄电池、纽扣电池,它们两端的电压是否也是1.5V呢?(学生回答:不是)那么如何知道它们两端的电压呢?(学生:用电压表直接测量)·结论:电源两极间的电压完全由电源本身的性质(如材料、工作方式等)决定,同种电池用电压表测量其两极间的电压是相同的,不同种类的电池用电压表测量其两极间的电压是不同的.为了表示电源本身的这种特性,物理学中引入了电动势的概念.板书:2、电源电动势教师:从上面的演示和分析可知,电源的电动势在数值上等于电源未接入电路时两极间的电压.板书:电源的电动势在数值上等于电源没有接入电路时其两极间的电压.例如,各种型号的干电池的电动势都是1.5V.那么把一节1号电池接入电路中,它两极间的电压是否还是1.5V呢?用示教板演示,电路如图所示,结论:开关闭合前,电压表示数是1.5V,开关闭合后,电压表示数变为1.4V.实验表明,电路中有了电流后,电源两极间的电压减少了.教师:上面的实验中,开关闭合后,电源两极间的电压降为1.4V,那么减少的电压哪去了呢?用投影仪展示实验电路,介绍闭合电路可分为内、外电路两部分,电源内部的叫内电路,电源外部的叫外电路.接在电源外电路两端的电压表测得的电压叫外电压.在电源内部电极附近的探针A、B上连接的电压表测得的电压叫内电压.我们现在就通过实验来研究闭合电路中电动势和内、外电压之间的关系.板书:3、内电压和外电压教师:向学生介绍实验装置及电路连接方法,重点说明内电压的测量.实验中接通电键,移动滑动变阻器的滑动头使其阻值减小,由两个电压表读出若干组内、外电压和的值.再断开电键,由电压表测出电动势.分析实验结果可以发现什么规律呢?学生:在误差许可的范围内,内、外电压之和等于电源电动势.板书:在闭合电路中,电源的电动势等于内、外电压之和,即.下面我们来分析在整个电路中电压、电流、电阻之间的关系.教师:我们来做一个实验,电路图如图所示观察电键S先后接通1和2时小灯泡的亮度.结论:把开关拨到2后,发现小灯泡的亮度比刚才接3V的电源时还稍暗些.怎么解释这个实验现象呢?这就要用到我们将要学习的内容——闭合电路的欧姆定律.板书:闭合电路的欧姆定律教师:在图1所示电路图中,设电流为,根据欧姆定律,,,那么,电流强度,这就是闭合电路的欧姆定律.板书:4、闭合电路的欧姆定律的内容:闭合电路中的电流强度和电源电动势成正比,和电路的内外电阻之和成反比.表达式为.同学们从这个表达式可以看出,在电源恒定时,电路中的电流强度随电路的外电阻变化而变化;当外电路中的电阻是定值电阻时,电路中的电流强度和电源有关.教师:同学们能否用闭合电路的欧姆定律来解释上一个实验现象呢?学生:9V的电源如果内电阻很大,由闭合电路的欧姆定律可知,用它做电源,电路中的电流I可能较小;而电动势3V的电源内阻如果很小,电路中的电流可能比大,用这两个电源分别给相同的小灯泡供电,灯泡的亮度取决于,那么就出现了刚才的实验现象了.教师:很好.一般电源的电动势和内电阻在短时间内可以认为是不变的.那么外电阻的变化,就会引起电路中电流的变化,继而引起路端电压、输出功率、电源效率等的变化.几个重要推论(1)路端电压随外电阻变化的规律板书:5几个重要推论(l)路端电压随外电阻变化的规律演示实验,图3所示电路,4节1号电池和1个10Ω的定值电阻串联组成电源(因为通常电源内阻很小,的变化也很小,现象不明显)移动滑动变阻器的滑动片,观察电流表和电压表的示数是如何随变化?教师:从实验出发,随着电阻的增大,电流逐渐减小,路端电压逐渐增大.大家能用闭合电路的欧姆定律来解释这个实验现象吗?学生:因为变大,闭合电路的总电阻增大,根据闭合电路的欧姆定律,,电路中的总电流减小,又因为,则路端电压增大.教师:正确.我们得出结论,路端电压随外电阻增大而增大,随外电阻减小而减小.一般认为电动势和内电阻在短时间内是不变的,初中我们认为电路两端电压是不变的,应该是有条件的,当→无穷大时,→0,外电路可视为断路,→0,根据,则,即当外电路断开时,用电压表直接测量电源两极电压,数值等于电源的电动势;当减小为0时,电路可视为短路,为短路电流,路端电压.板书5:路端电压随外电阻增大而增大,随外电阻减小而减小.断路时,→∞,→0,;短路时,,.电路的路端电压与电流的关系可以用图像表示如下(2)电源的输出功率随外电阻变化的规律.教师:在纯电阻电路中,当用一个固定的电源(设、r是定值)向变化的外电阻供电时,输出的功率,又因为,所以,当时,电源有最大的输出功率.我们可以画出输出功率随外电阻变化的图线,如图所示.板书6:在纯电阻电路中,当用一个固定的电源(即、是定值)向变化的外电阻供电时,输出的功率有最大值.教师:当输出功率最大时,电源的效率是否也最大呢?板书7:电源的效率随外电阻变化的规律教师:在电路中电源的总功率为,输出的功率为,内电路损耗的功率为,则电源的效率为,当变大,也变大.而当时,即输出功率最大时,电源的效率=50%.板书8:电源的效率随外电阻的增大而增大.四、讲解例题五、总结探究活动1、调查各种不同电源的性能特点。
(包括电动势、内阻、能量转化情况、工作原理、可否充电)2、考察目前对废旧电池的回收情况。