人教版八年级上册数学与三角形有关的角ppt
合集下载
人教版八年级数学上册13.含有30度角的直角三角形的性质课件
2)三角形中30°角所对的边等于最长边的一半。
3)直角三角形中最小的直角边是斜边的一半。
4)直角三角形的斜边是30°角所对直角边的2倍.
√
1、如图,在Rt△ABC中∠C=900 ,∠B=2 ∠A,
AB=6cm,则BC=__3_cm_____.
B
2、如图, Rt△ABC中, ∠A= 30°,
AB+BC=12cm,则AB= __8c_m____. C D
∴ BC=
1 2
AB,
DE=
1
2AD
A
E
C
1
∴ BC= 2 7.4=3.7(m)
11
∵ AD= 2AB= 2×7.4=3.7(m)
1
1
∴ DE= 2AD= 2 3.7=1.85(m) 答:立柱BC的长是3.7m,DE的长1.85m。
课堂小结
• 本节课你有何收获? • 1、含有30度角的直角三角形的性质:在直
BE=_1_.2_5_c_m__.
B
C
D
知识反馈 布置作业
1、必做题:课本第81页练习题
2、 选做题:
A
如图在△ABC中,AB=AC, E
∠BAC=120°,AC的垂直平分线
EF交AC于点E,交BC于点 C
F
B
F.求证:BF=2CF.
13.3.2等边三角形(2)
——含有30度角的直角三角形的性质
复习巩固
一、等边三角形的性质
1、等边三角形的三条边都相等; 2、等边三角形的三个内角都相等,并且每一个内 角都等于60 °; 3、等边三角形每条边上中线、高线和所对角的平分 线都三线合一. 4、等边三角形是轴对称图形,有三条对称轴,且交 于一点;
人教版八年级数学上册第11.2.2三角形的外角 教学课件(共28张PPT)
外角
归纳:
1、每一个三角形都有_6___个外角; 2、每一个顶点相对应的外角都有_2__个。 3、这6个外角中有_3____对外角相等。
4、一个三角形的每一个外角对应一个
_相___邻__的___内__角__和两个__不___相__邻___的__内__.角
•
9、要学生做的事,教职员躬亲共做; 要学生 学的知 识,教 职员躬 亲共学 ;要学 生守的 规则, 教职员 躬亲共 守。21.8.1021.8.10T uesday, August 10, 2021
底角为_3_0__或__7_5_°_.
5.如图所示,∠A=50°,∠B=40°,∠C=30°,则 ∠BDC=_1__2_0_外围走一圈,在每一个拐弯 的地方都转了一个角度(∠ 1, ∠ 2,∠ 3), 那么回到原来位置时,一共转了几度?
∠1+∠2 +∠3 = ?
∠1= 90º ∠1= 85º ∠1= 95º
2. 如图所示, ∠A=37°, ∠CBE=155°,
求∠1, ∠2, ∠3的度数.
D
C 3
2
A 37°
155°
1B
E
∠1=25°, ∠2=62°, ∠3=118°
3.图中∠1与 ∠A、 ∠B 、∠C度 数有什么关系?
课堂巩固:
1.若一个三角形的一个外角小于与它相邻的内角,则这
•
5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
三角形的外角人教版八年级数学上册课件
重难易错
7. (例 4)如图,在△ABC 中,D 是 BC 上一点,
∠1=∠2+5°,∠3=∠4,∠BAC=85°,求
∠2 的度数.
解:设∠2=x°, 则∠1=∠2+5°=(x+5)°, ∠3=∠4=∠1+∠2=x°+(x+5)°=(2x+5)°. ∵在△ABC中,∠BAC=85°, ∴∠2+∠4=180°-∠BAC, 即x+2x+5=180-85.解得x=30,即∠2=30°.
8. 如图所示,在△ABC 中,D 是 BC 边上一点, ∠1=∠2,∠3=∠4,∠BAC=63°, 求∠DAC
的度数.
解:设∠2=∠1=x°,则∠3=∠4=2x°. ∴在△ACD中,∠DAC=180°-4x°. ∵∠BAC=63°, ∴180°-4x°+x°=63°.解得x=39. ∴∠DAC=180°-4x°=24°.
14. 如图,点 D 在 AB 上,点 E 在 AC 上,BE、 CD 相交于点 O. (1)若∠A=50°,∠BOD=70°,∠C=30°, 求∠B 的度数;
解:(1)∵∠A=50°,∠C=30°,∴∠BDO= ∠A+∠C=80°. ∵∠BOD=70°, ∴∠B=180°-∠BDO-∠BOD=30°.
解:∵∠C=30°,AE∥BC, ∴∠EAC=∠C=30°. 又∠E=45°, ∴∠AFD=∠E+∠EAC=45°+30°=75°.
12. 如图,求∠A+∠B+∠C+∠D+∠E 的度数.
解:如图,连接CD, 根据三角形的外角性质得 ∠1=∠B+∠E=∠2+∠3, 在△ACD中有, ∠A+∠2+∠ACE+∠3+∠ADB=180°, ∴∠A+∠B+∠C+∠D+∠E=180°.
人教版数学八年级上册11.2.2 三角形的外角课件(共28张PPT)
外角
小试牛刀
下列各图中,∠1 是△ABC 的外角的是( D )
1 C
A
B
A
C
1 AB B
C 1
A
B
C
B
1
A
C
D
三角形的外角应具备的条件:
①角的顶点是三角形的顶点;②角的一边是三角形的一边;
③另一边是三角形中一边的延长线.
探究 要知道传球传给谁,就要知道外角∠ACD,内角∠B的度数
大小,你能比较外角∠ACD,内角∠B的度数大小吗?
解法二:延长BD交AC于点E.
A
(
在△ABE中,∠1=∠ABE+∠BAE,
51 °
F
E
在△ECD中,∠BDC=∠1+∠ECD.
所以∠BDC=∠BAC+∠ABD+∠ACD 方法总结
=51° +20°+30°=101°.
20 ° D B
30 ° C
解题的关键是正确地构造三角形,利用三角形 解法三:连接延长CD交AB于点F(解题过程同解法二).
课堂小结
定义
角一边必须是三角形的一边,另一边必须 是三角形另一边的延长线
三角形 的外角
性质
三角形的一个外角等于与它不相邻的两个 内角的和
三角形的 外角和
三角形的外角和等于360 °
下节课,再见!
∠2 +∠CBF = 180°,
E
∠3 +∠ACD = 180°,
A
得∠1 +∠2 +∠3 +∠BAE +∠CBF +∠ACD = 540°, 1
由∠1 +∠2 +∠3 = 180°,
人教版八年级数学上册-三角形全等的判定“角边角”、“角角边”课件.ppt
C
A
B
E
D
C
C′
A
B
A′B′作法:源自(1)画 A'B'=AB;
(2)在A'B'的同旁画 ∠DA'B '=∠A,∠EB'A '=∠B,
A'D,B'E相交于点 C'.
想一想: 从中你能发现什么规律?
知识要点
“角边角”判定方法
?文字语言: 有两角和它们夹边对应相等的两个三 角形全等(简写成“角边角”或“ ASA”).A
第十二章 全等三角形
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
学习目标 1.探索三角形全等的“角边角”和“角角边”的条件 2.应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角相等. 学习重点:应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角 相等. 学习难点:理解,掌握三角形全等的条件:“ASA”“AAS”
60°
45°
思考: 这里的条件与 1中的条件有什么相同点与不同点?
你能将它转化为 1中的条件吗?
60°
75°
归纳总结
两角和其中一角的对边对应相等的两个三角形全等 . 简写成“角角边”或“ AAS”.
A
在△ABC和△A′B′C′中,
∠A=∠A′(已知),
∠B=∠B′ (已知),
B
C
A′
AC=A′C ′(已知),
1 2 3
讲授新课
一 三角形全等的判定(“角边角”定理)
问题:如果已知一个三角形的 两角及一边 ,那么有
几种可能的情况呢? A
它们能判定两个
三角形全等吗? A
B
A
B
E
D
C
C′
A
B
A′B′作法:源自(1)画 A'B'=AB;
(2)在A'B'的同旁画 ∠DA'B '=∠A,∠EB'A '=∠B,
A'D,B'E相交于点 C'.
想一想: 从中你能发现什么规律?
知识要点
“角边角”判定方法
?文字语言: 有两角和它们夹边对应相等的两个三 角形全等(简写成“角边角”或“ ASA”).A
第十二章 全等三角形
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
学习目标 1.探索三角形全等的“角边角”和“角角边”的条件 2.应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角相等. 学习重点:应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角 相等. 学习难点:理解,掌握三角形全等的条件:“ASA”“AAS”
60°
45°
思考: 这里的条件与 1中的条件有什么相同点与不同点?
你能将它转化为 1中的条件吗?
60°
75°
归纳总结
两角和其中一角的对边对应相等的两个三角形全等 . 简写成“角角边”或“ AAS”.
A
在△ABC和△A′B′C′中,
∠A=∠A′(已知),
∠B=∠B′ (已知),
B
C
A′
AC=A′C ′(已知),
1 2 3
讲授新课
一 三角形全等的判定(“角边角”定理)
问题:如果已知一个三角形的 两角及一边 ,那么有
几种可能的情况呢? A
它们能判定两个
三角形全等吗? A
B
人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件
形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为
;
• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60
•
90O
;
• 3.小明绕五边形各边走一圈,他共转了 度
。
(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )
11《三角形的内角》PPT课件人教版数学八年级上册
A
证明:∵AD是BC边上的高,
∴∠DMC+∠DCM=90°.
∵∠DMC=∠AME,∠DCM=∠MAE,
E ∴∠AME+∠MAE=90°. ∴∠AEC =90°.
∴△ACE是直角三角形.
B
M ┌ DC
2.如图,在△ABC中,AD⊥BC,∠1=∠B. 求证:
△ABC是直角三角形.
A
证明:∵AD⊥BC,
1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点
D作DE//BC交AC于点E,若∠A=54°,∠B=48°,则
∠CDE的大小是( C )
A.44°
B.40°
C.39°
D.38° A
解析:∵∠A=54°,∠B=48°, ∴∠ACB=180°-54°-48°=78°.
∵CD平分∠ACB,
D
E
∴∠DCB=39°.
答:从B岛看A,C两岛的视角 ∠ABC是60度,从C岛看A,B 两岛的视角∠ACB是90度.
北
北
D
CE
B A
例3 如图,从A处观测C处的仰角∠CAD=30°,从B处 观测C处的仰角∠CBD=45°,从C处观测A,B两处的视 角∠ACB是多少度?
解:∵∠CAD=30°,∠ADC=90°,
C
∴∠ACD=60°.
直∴∠角AC三B角=∠形AC的D-性∠B质C与D=判15定°. 求则证∠B:AC△+A∠BBC+是∠直C=角18三0°.角形.
与△ABC的边BC有什么关系?由这个图, 两解岛:的 ∠A视CD角与∠∠ABC大B是小9相0度等..
∴∠C∠=C9D0B°=,90即°,△A∠BBC+是∠直BC角D=三90角°. 形.
人教版八年级数学上册《三角形的外角》三角形PPT精品课件
解:∵∠A=180°-∠B-∠ACB =180°-67°-74°=39°, ∴∠BDF=∠A+∠AED =39°+48°=87°
综合演练
10.如图,求A ∠A+ ∠B+ ∠C+ ∠D+ ∠E的度数. 解:∵∠1是△FBE的外角,
B G 2 1 F
C
E ∴∠1=∠B+ ∠E, 同理∠2=∠A+∠D.
A
B
C
D
∠ACD是△ABC的一个外角
合作探究---三角形的外角的概念
思考1 、如图,延长AC到E,∠BCE是不是△ABC的一个外角?∠DCE是不是
△ABC的一个外角?
A
∠BCE是△ABC的一个外角,
∠DCE不是△ABC的一个外角.
B
CD
E
思考2、如图,∠ACD与∠BCE有什么关系?在三角形的每个顶点处有多
综合演练
1.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等 ( A )
A.26°
B.63°
F
C.37° D.60°
A
EB
C
D
综合演练
2.如果一个三角形的两个外角的和等于270°,则这个三角形一
定是( B )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.任意三角形
3.如图,AB∥CD,∠ABE=66°,∠D= 54°,则∠E的度数为__1_2___度.
在△CFG中, ∠C+∠1+∠2=180º,
∴∠A+ ∠ B+∠C+ ∠ D+∠E
D
= 180º.
F
∠EFD是△BEF和△DCF的外角.
B
综合演练
10.如图,求A ∠A+ ∠B+ ∠C+ ∠D+ ∠E的度数. 解:∵∠1是△FBE的外角,
B G 2 1 F
C
E ∴∠1=∠B+ ∠E, 同理∠2=∠A+∠D.
A
B
C
D
∠ACD是△ABC的一个外角
合作探究---三角形的外角的概念
思考1 、如图,延长AC到E,∠BCE是不是△ABC的一个外角?∠DCE是不是
△ABC的一个外角?
A
∠BCE是△ABC的一个外角,
∠DCE不是△ABC的一个外角.
B
CD
E
思考2、如图,∠ACD与∠BCE有什么关系?在三角形的每个顶点处有多
综合演练
1.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等 ( A )
A.26°
B.63°
F
C.37° D.60°
A
EB
C
D
综合演练
2.如果一个三角形的两个外角的和等于270°,则这个三角形一
定是( B )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.任意三角形
3.如图,AB∥CD,∠ABE=66°,∠D= 54°,则∠E的度数为__1_2___度.
在△CFG中, ∠C+∠1+∠2=180º,
∴∠A+ ∠ B+∠C+ ∠ D+∠E
D
= 180º.
F
∠EFD是△BEF和△DCF的外角.
B
人教版八年级数学上册《三角形的内角》三角形PPT精品课件
。
在Rt△ABC中, “ 直 角 三 角 形 的 两 个 锐 角 互 余 ” 其 几 何 语 言 可 表 示 为∵:∠ A = 9 0 °
∴∠B+∠C=90°
若在三角形中,有两个锐角互余,则该三角形是否就是直角三角形呢?
新知讲解
已知:在△ABC中,∠A与∠B互余。 求证:该三角形为直角三角形
证明:∵∠A与∠B互余 ∴∠A+∠B=90° 由三角形内角和定理,可得 ∠A+∠B+∠C=180° ∴90°+∠C=180° ∴∠C=90° ∴△ABC为直角三角形
1、(2022·河南周口·八年级期末)若一个三角形的三个内角度数之比1:3:4,则这个三角
形是( B ) A.锐角三角形
B.直角三角形
C.钝角三角形
D.等腰三角形
【解析】∵三角形三个内角度数的比为1:3:4, ∴三个内角分别是 ∴该三角形是直角三角形 故选答案选B
课堂练习
2、(2022·湖南邵阳·八年级期中)在Rt△ABC中,∠C=90°,∠A=42°,则∠B=( A )
∠B=∠2(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°(等量代换)
∴∠A+∠B+∠ACB=180°(等量代换)
∴∠A+∠B+∠C=180°(等量代换)
新知讲解
方法三、证明:过点D作DE∥AC,DF∥AB
A E
F
B
D
C
∴∠C=∠EDB,∠B=∠FDC(两直线平行,同位角相等)
∴∠A+∠AED=180°,∠AED+∠EDF=180°(两直线平行,同旁内角互补) ∴∠A=∠EDF ∴∠EDB+∠EDF+∠FDC=180° ∴∠A+∠B+∠C=180°
人教版八年级数学上册 第11章 第2节 与三角形有关的角 课件(共50张PPT)
三角形的外角和是360°
理论研讨 ∠1+∠2 +∠3 = ?
从哪些途径探究这个结果
A 1
3 B
C 2
三角形的外角和360° 方法1 方法2
A 1
B 2
解: ∠1+ ∠BAC=180°
∠2+ ∠ABC=180°
3 ∠3+ ∠ACB=180°
C
三个式子相加得到
∠1+ ∠2+ ∠3+ ∠BAC+ ∠ABC+∠ACB=540°
证法一 三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边,
CE为另一边作∠1=∠A,
于是CE∥BA (内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等). A
∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
B
E
12
CD
证法二 三角形的内角和等于1800.
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A ,
A
BD是AC边上的高,求∠DBC的度数。
解:设∠A=x0,则∠ABC=∠C=2x0
∴x+2x+2x=180(三角形内角和定理)
解得x=36 ∴∠C=2×360=720
D 在△BDC中,∵∠BDC=900
?
(三角形高的定义)
B
C
∴∠DBC=1800-900-720(三角形内角和定理)
A B
E
解:过C作CE平行于AB
2
1 ∴ ∠1= ∠B
C D (两直线平行,同位角相等)
∠2= ∠A
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B
理论研讨 ∠1+∠2 +∠3 = ?
从哪些途径探究这个结果
A 1
3 B
C 2
三角形的外角和360° 方法1 方法2
A 1
B 2
解: ∠1+ ∠BAC=180°
∠2+ ∠ABC=180°
3 ∠3+ ∠ACB=180°
C
三个式子相加得到
∠1+ ∠2+ ∠3+ ∠BAC+ ∠ABC+∠ACB=540°
证法一 三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边,
CE为另一边作∠1=∠A,
于是CE∥BA (内错角相等,两直线平行).
∴∠B=∠2
(两直线平行,同位角相等). A
∵∠1+∠2+∠ACB=180°
∴∠A+∠B+∠ACB=180°
B
E
12
CD
证法二 三角形的内角和等于1800.
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A ,
A
BD是AC边上的高,求∠DBC的度数。
解:设∠A=x0,则∠ABC=∠C=2x0
∴x+2x+2x=180(三角形内角和定理)
解得x=36 ∴∠C=2×360=720
D 在△BDC中,∵∠BDC=900
?
(三角形高的定义)
B
C
∴∠DBC=1800-900-720(三角形内角和定理)
A B
E
解:过C作CE平行于AB
2
1 ∴ ∠1= ∠B
C D (两直线平行,同位角相等)
∠2= ∠A
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B
人教版八年级上册数学第十一章11.2.2三角形的外角课件 (共24张PPT)
第十一章
11.2 与三角形有关的角
11.2.2 三角形的外角
1.掌握三角形外角的定义和三角形
外角定理; 2.运用三角形外角定理解决问题。
三角形的外角:三角形的一边与另一边的反 向延长线组成的角,叫做三角形的外角。 A
B
C
D
三角形的一个顶点位置有两个外角,这两个 外角是对顶角。
C
5 3 6 1 2 9 4
= ∠EFG+∠EGF+∠E =180°.
B
F
E
C
D
问题探究
已知:如图,∠BAE、∠CBF、∠ACD是△ABC
的三个外角.求证:∠BAE+∠CBF+∠ACD=360°. 证明:∵∠BAE=∠2+∠3, E A
1
∠CBF=∠1+∠3,
∠ACD=∠2+∠1, ∴∠BAE+∠CBF+∠ACD =2(∠1+∠2+∠3) , F B
E
A
> ∠ACB. > ∠BAC;∠FBC____ (3)∠FBC____
讨论归纳
三角形外角的性质:
三角形的一个外角大于与它不相
邻的任何一个内角。
1.已知,∠BAC=55°,∠B=60 °.
试求∠ACB、 ∠ACD、 ∠CAE. A
55°
E
解:在△ABC中,
∠BAC+∠B+∠ACB=180 °, ∴∠ACB=180 °-∠B-∠BAC ∵∠BAC=55°,∠B=60 °. ∴∠ACB=65°.
数. 解:根据三角形外角的性质可得: ∠ 1=∠A+ ∠B , ∠2=∠C+ ∠D , ∠3= ∠E+ ∠F, 1 C 3 F B A
11.2 与三角形有关的角
11.2.2 三角形的外角
1.掌握三角形外角的定义和三角形
外角定理; 2.运用三角形外角定理解决问题。
三角形的外角:三角形的一边与另一边的反 向延长线组成的角,叫做三角形的外角。 A
B
C
D
三角形的一个顶点位置有两个外角,这两个 外角是对顶角。
C
5 3 6 1 2 9 4
= ∠EFG+∠EGF+∠E =180°.
B
F
E
C
D
问题探究
已知:如图,∠BAE、∠CBF、∠ACD是△ABC
的三个外角.求证:∠BAE+∠CBF+∠ACD=360°. 证明:∵∠BAE=∠2+∠3, E A
1
∠CBF=∠1+∠3,
∠ACD=∠2+∠1, ∴∠BAE+∠CBF+∠ACD =2(∠1+∠2+∠3) , F B
E
A
> ∠ACB. > ∠BAC;∠FBC____ (3)∠FBC____
讨论归纳
三角形外角的性质:
三角形的一个外角大于与它不相
邻的任何一个内角。
1.已知,∠BAC=55°,∠B=60 °.
试求∠ACB、 ∠ACD、 ∠CAE. A
55°
E
解:在△ABC中,
∠BAC+∠B+∠ACB=180 °, ∴∠ACB=180 °-∠B-∠BAC ∵∠BAC=55°,∠B=60 °. ∴∠ACB=65°.
数. 解:根据三角形外角的性质可得: ∠ 1=∠A+ ∠B , ∠2=∠C+ ∠D , ∠3= ∠E+ ∠F, 1 C 3 F B A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延长BC到D, 过C作CE∥BA,
∴ ∠A=∠1
∠B=∠2
(两直线平行,内错角相等)
(两直线平行,同位角相等) E 1 2
∵∠1+∠2+∠ACB=180° A
∴∠A+∠B+∠ACB=180°
B
C
D
证法三
三角形的内角和等于1800.
过A作EF∥BC, ∴∠B=∠2 ∠C=∠1 (两直线平行,内错角相等)
60°
例题讲解1
A
在直角三角形ABC中,∠C=90°,由 三角形内角和定力,得, ∠A +∠B+ ∠C=180° 即 ∠A +∠B+ 90°=180°, 所以 ∠A +∠B= 90°.
B
C 也就是说, 直角三角形的两个锐角互余.
由三角形内角和定理可得: 有两个角互余的三角形是直角三角形。
直角三角形可以用符号“Rt△”表示,直 角三角形ABC也可以写成Rt△ABC.
如图,C岛在A岛的北偏东50°方向,B 岛在A岛的北偏东80°方向,C岛在B岛 的北偏西40°方向。求下面各题.
例题讲解3
北 D C E 北
80° 50°∠DAB=______ (1)∠DAC=_____ ∠EBC=_______ 30 ° 40° ∠CAB = ______
B
(2)从C岛看A 、B两岛的视角∠C是多少? A
北 D
50°
C
1
E
2 40°
B F
你能想出一个更 简捷的方法来求 ∠C的度数吗?
A
解: 过点C画CF∥AD
∵ CF∥AD, 又AD ∥BE ∴ CF∥ BE ∴∠2=∠CBE =40 °
∴ ∠1=∠DAC=50 °,
∴ ∠ACB=∠1﹢∠2 =50 °﹢ 40 ° =90 ° 例题讲解3
1.如图,从A处观测C处时仰角 ∠CAD=30°,从B处观测C处时 仰角∠CBD=45°.从C处观测A、 A B两处时视角∠ACB是多少? 解:在△ACD中
解:∵ AD∥BE ∴ ∠DAB﹢∠ABE=180° ∴ ∠ABE = 180°-∠DAB = 180° - 80° =100° ∴ ∠ABC=∠ABE﹣∠CBE =100°﹣40°=60° 在△ABC中,∠C = 180° - ∠CAB - ∠ABC = 180°-30 °-60 °=90°
例:如图,C岛在A岛的北偏东50°方向,北 D B岛在A岛的北偏东80°方向,C岛在B M 岛的北偏西40°方向。
11.2.1 三角形的内角
三角形的内角 三角形两边的夹角叫做三角形的内角
内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它们 三兄弟非常团结。可是有一天,老二突然不高兴, 发起脾气来,它指着老大说:“你凭什么度数最 大,我也要和你一样大!”“不行啊!”老大说: “这是不可能的,否则,我们这个家就再也围不 起来了……”“为什么?”老二很纳闷。同学们, 你们知道其中的道理吗?
三角形的内角和等于1800.
延长BC到D, 在△ABC的外部,以CA为一边, CE为另一边作∠1=∠A, 于是CE∥BA ∴∠B=∠2 (内错角相等,两直线平行).
(两直线平行,同位角相等).
∵∠1+∠2+∠ACB=180°
A
1
E
2
∴∠A+∠B+∠ACB=180° B
C
D
证法二
三角形的内角和等于1800.
C
B
D
∠CAD =30 ° ∠D =90 °
∴ ∠ACD =180 ° -30 ° -90 °=0 °
在△BCD中 ∠CBD = 45 ° ∠D =90 °
∴ ∠BCD = 180 °- 90°-45 °=45 °
∴ ∠ACB = ∠ACD - ∠BCD = 6 0 °- 45 °
巩固练习
E
2
A
1
(两直线平行,内错角相等)
∵∠2+∠1+∠BAC=180° ∴∠B+∠C+∠BAC=180°
F
B
C
证法四
三角形的内角和等于1800.
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E A ∴∠B+∠C+∠BAC=180°
B
C
在这里,为了证明的需要,在原来 的图形上添画的线叫做辅助线。在平面 几何里,辅助线通常画成虚线。
思路总结
为了证明三个角的和为1800,转化 为一个平角或同旁内角互补,这种 转化思想是数学中的常用方法.
巩固练习 (口答)下列各组角是同一个三角形的内角吗?为什么?
(1)3°, 150°, 27°
(是 )
(2)60°, 40°, 90°( 不是)
(3)30°, 60°, 50° ( 不是)
应用新知 (1)在△ABC中,∠A=35°,∠ B=43 ° 则∠ C= . 102 ° (2)在△ABC中, ∠A :∠B:∠C=2:3:4 则∠A = ∠ B= ∠ C= .
40 ° 60 ° 80 ° (3)一个三角形中最多有 1 个直角?为什么? (4)一个三角形中最多有 个钝角?为什么? 1 (5)一个三角形中至少有 个锐角?为什么? (6)任意一个三角形中,最大的一个角的度数至少 2 为 .
例题讲解2 已知△ABC中,∠ABC=∠C=2∠A , BD是AC边上的高,求∠DBC的度数。 A 解:设∠A=x0,则∠ABC=∠C=2x0
(三角形内角和定理) ∴x+2x+2x=180 解得x=36 ∴∠C=2×360=720 D ?
B
在△BDC中,∵∠BDC=900 (三角形高的定义)
C ∴∠DBC=1800-900-720(三角形内角和定理) ∴∠DBC=180
思考与探索
如下图所示是我们常用的三角板,它们的三个角之和为多少度?
30+60+90=180
45+45+90=180
想一想:任意三角形的三个内角之和也为180度吗?
三角形的三个内角和是多少?
你有什么办法可以验证呢?
180° 实践操作
把三个角拼在一起试试看?
从刚才拼角的过程你能 想出证明的办法吗?
证法一
E C
1
北
N 2 40 °
解:过点C画MN⊥AD分别交 AD、BE于点M、N
50°
B
在△AMC中 ∠AMC=90°, ∠MAC=50° ∴∠1=180 °-90°-50° =40°
A
∵ AD∥BE ∴ ∠AMC+ ∠BNC =180 °
∴ ∠BNC =90° 同理得∠2 =50° ∴ ∠ACB =180 ° -∠1 -∠2 =180 °-40°-50° =90°例题讲解3