金属疲劳破坏机理及断口分析
第五章__材料的疲劳性能(1)分析
疲劳微裂纹形成的三种形式
表面滑移带开裂解释 1)在循环载荷作用下,即使循环应力未超过材料屈服强 度,也会在试样表面形成循环滑移带 2)循环滑移带集中于某些局部区域(高应力或簿弱区) 3)循环滑移带很难去除,即使去除,再次循环加载时, 还会在原处再现 (驻留滑移带)
特征: 1)驻留滑移带一般只在表面形成,深度较浅,随循环次数 的增加,会不断地加宽 2)驻留滑移带在表面加宽过程中,会出现挤出脊和侵入 沟,在这些地方引起应力集中,引发微裂纹
四:疲劳裂纹扩展速率
试验表明:测量疲劳裂纹长度和循环周数的关系如图
疲劳裂纹扩展曲线
Δσ2﹥Δσ1
从图可知: 1)曲线的斜率da/dN(疲劳裂纹扩展速率)在整个过程中 是不断增长的 2)当da/dN无限增大,裂纹将失稳扩展,试样断裂 3)应力增加,裂纹扩展加快,a-N曲线向左上方移动,ac相 应减小 结论:裂纹扩展速率da/dN 和应力水平及裂纹长度有关 根据断裂力学: 可定义应力强度因子幅为
特征 1)疲劳源区比较光滑(受反复挤压,摩擦次数多) 2)表面硬度因加工硬化有所提高 3)可以是一个,也可能有多个疲劳源(和应力状态及 过载程度有关)
疲劳裂纹扩展区
是疲劳裂纹亚临界扩展的区域
特征 1)断口较光滑,分布有贝纹线(或海滩花样),有时还有 裂纹扩展台阶 2)贝纹线是疲劳区的最典型特征,贝纹线是以疲劳源为圆 心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向 3)近疲劳源区贝纹线较密,远离疲劳源区贝纹线较疏
5.2 疲劳破坏机理
一:金属材料疲劳破坏机理
疲劳裂纹的萌生
1)在材料簿弱区或高应力区,通过不均匀滑移, 微裂纹形成及长大而完成 2)定义裂纹长度为0.05—0.10mm时为裂纹疲劳 核,对应的循环周期为裂纹萌生期
疲劳破坏机理
疲劳破坏机理1、定义材料或构件受到多次重复变化的载荷作用后,即使最大的重复交变应力低于材料的屈服极限,经过一段时间的工作后,最后也会导致破坏,材料或结构的这种破坏就叫做疲劳破坏。
材料科学揭示,由于制造过程中存在不可避免的缺陷,材料中的微裂纹总是存在的,特别是在焊缝处。
这些微裂纹在交变应力作用下扩展和聚合,形成宏观裂纹,宏观裂纹的进一步扩展导致最后的破坏。
疲劳破坏的微观过程是个极其复杂的过程,在宏观上一般来说可分为三个阶段:裂纹的萌生、裂纹的稳定扩展及裂纹的失稳扩展问。
2、疲劳裂纹萌生机理金属材料如果含有缺陷,夹杂物,切口或者其它应力集中源,疲劳裂纹就可能起源于这些地方。
通常将疲劳裂纹的萌生过程称为疲劳裂纹成核。
如果金属材料没有上述各种应力集中源,则裂纹成核往往在构件表面。
因为构件表面应力水平一般比较高,且难免有加工痕迹影响;同时表面区域处于平面应力状态,有利于塑性滑移的进行。
构件在循环载荷作用下经过一定次数应力循环之后,先在部分晶粒的局部出现短而细的滑移线,并呈现相继错动的滑移台阶,又由于往复滑移在表面上形成缺口或突起而产生应力集中。
随着循环次数增加,在原滑移线时近又会出现新滑移线逐渐形成较宽的滑移带,进一步增加应力循环次数,滑移带尺寸及数量均明显增加,疲劳裂纹就在这此滑移量大的滑移中产生。
这些滑移带称为驻留滑移带,标志裂纹在表面形成。
在大量滑移带中,由于原滑移所引起在表面有挤出和侵入槽的出现。
从而在表面下留下相应的空洞成为裂纹源。
随着循环次数提高和应力集中的加剧,会使空洞扩连形成新的较大空洞。
3、疲劳裂纹扩展机理疲劳裂纹在表面处成核,是由最大剪应力控制的,这些微裂纹在最大剪应力方向上。
在单轴加载条件下,微裂纹与加载方向大致呈45 度方向。
在循环载荷的继续作用下,这些微裂纹进一步扩展或互相连接。
其中大多数微裂纹很快就停止扩展,只有少数几条微裂纹能达到几十微米的长度。
此后逐渐偏离原来的方向,形成一条主裂纹而趋向于转变到垂直于加载方向的平面(最大拉应力面)内扩展。
金属疲劳试验
KI KIC (KC )
Y a KIC (KC )
裂纹体受力时,只有满足上述条件就会发生脆性断裂。反之,即使存 在裂纹,也不会断裂。此称为破损安全。
条件: - 小尺度塑性变形 - 平面应变
高强度马氏体时效钢不同试样厚度的KC变化
2
a, B,
W
-a
2.5
实验三、金属疲劳试验
一、实验目的:
1.了解金属轴向疲劳测试方法、断裂韧性Kic 测试方法及裂纹扩展速率DA/DN测试方法 。
2.了解疲劳试验机工作原理
1988年4月28日阿罗哈航空波音737-200型客机243号班机在飞行途中发生 爆裂性失压的事故,约头等舱部位的上半部外壳完全破损,机头与机身随时 有分离解体的危险,但10多分钟后奇迹地安全迫降。事件当时,一名机组人 员不幸被吸出机舱外死亡,而其余65名机组人员和乘客则分别受到轻重伤。
并形成循环滑移带。随着加载循环次数的增加,循环滑移带不断地加宽,由 于位错的塞积和交割作用,会在滑移带处形成微裂纹。
循环滑移带生成和一个纯铜试样的裂纹 Sm=0,Sa=77.5MPa N=2×106
在裂纹的萌生期,疲劳是一种发生在材料表面的现象。
2.2 相界面开裂产生裂纹 在大量的疲劳失效分析中发现很
式中 KI 值的大小直接影响应力场的大小,KI 可以表示应力场的强弱程度故称为 应力场强度因子
当θ= 0 r→0 时 由上式可得:
KI
lim r 0
2r y 0
裂纹I型应力场强度系数的一般表达式:
KI Y a
Y——裂纹形状系数
-半无限边缘缺口试样 -有限宽度的中心开裂纹试样 -有限宽度的边缘缺口试样
事故原因是由裂缝氧化导致金属疲劳引起
金属断口机理及分析
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形〔变形量大于解理断裂、小于延性断裂〕是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直〔解理断裂、平面应变条件下的断裂〕韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流把戏:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体构造。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口外表,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料外表、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理〔及准解理〕、沿晶和疲劳断裂4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直〔解理断裂、平面应变条件下的断裂〕切断:断面取向与最大切应力相一致,与最大应力成45º交角〔平面应力条件下的撕裂〕根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形:裂纹张开型、边缘滑开型〔正向滑开型〕、侧向滑开型〔撒开型〕裂纹尺寸与断裂强度的关系Kic:材料的断裂韧性,反映材料抗脆性断裂的物理常量〔不同于应力强度因子,与K准则相似〕:断裂应力〔剩余强度〕 a :裂纹深度〔长度〕Y:形状系数〔与试样几何形状、载荷条件、裂纹位置有关〕脆性材料K准则:KI是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量;KIC是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法〔脆断判别主裂纹〕,分差法〔脆断判别主裂纹〕,变形法〔韧断判别主裂纹〕,氧化法〔环境断裂判别主裂纹〕,贝纹线法〔适用于疲劳断裂判别主裂纹〕。
综述-铝合金疲劳及断口分析报告
文献综述(2011级)设计题目铝合金疲劳及断口分析学生姓名胡伟学号*********专业班级金属材料工程2011级03班指导教师黄俊老师院系名称材料科学与工程学院2015年4月12日铝合金疲劳及断口分析1 绪论1.1 引言7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。
随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。
在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。
现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。
但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。
这种断裂形式,对人身以及财产安全造成了不可挽回的损失。
经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。
本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。
1.2 7系铝合金的发展历史在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。
在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。
在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。
德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。
T。
D683 等合金。
目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。
20世纪50年代,德国科学家公布了具有优良焊接性能的合金AlZnMg1 和AlZnMg2,引起了人们对Al-Zn-Mg系合金的重视。
4.疲劳与疲劳断裂解析
3 疲惫断口形貌及其特征
2
25
5 影响疲惫缘由及措施
4、装配与联接效应 装配与联接效应对构件的疲惫寿命有很大的影响。
正确的拧紧力矩可使其疲惫寿命提高5倍以上。简洁消失的问题是,认 为越大的拧紧力对提高联接的牢靠性越有利,使用实践和疲惫试验说明,这 种看法具有很大的片面性。
5.使用环境 环境因素〔低温、高温及腐蚀介质等〕的变化,使材料的疲惫强度显 著降低,往往引起零件过早的发生断裂失效。例如镍铬钢〔0.28%C,11.5 % Ni,0.73%Cr〕,淬火并回火状态下在海水中的条件下疲惫强度大约只是 在大气中的疲惫极限的20%。
2
14
1、疲惫裂纹源区 疲惫裂纹源区是疲惫裂纹萌生的策源地,是疲惫破坏的起点, 多处于机件的外表,源区的断口形貌多数状况下比较平坦、光 亮,且呈半圆形或半椭圆形。
由于裂纹在源区内的扩展速率缓慢,裂纹外表受反复挤压、摩 擦次数多,所以其断口较其他两个区更为平坦,比较光亮。在 整个断口上与其他两个区相比,疲惫裂纹源区所占的面积最小 。
相垂直。
大多数的工程金属构件的疲惫失效都是以此种形式进 展的。特殊是体心立方金属及其合金以这种形式破坏的所占 比例更大;上述力学条件在试件的内部裂纹处简洁得到满足 ,但当外表加工比较粗糙或具有较深的缺口、刀痕、蚀坑、 微裂纹等应力集中现象时,正断疲惫裂纹也易在外表产生。
高强度、低塑性的材料、大截面零件、小应力振幅、 低的加载频率及腐蚀、低温条件2均有利于正断疲惫裂纹的萌 6
断口分析——精选推荐
断⼝分析故障件的断⼝分析在形形⾊⾊的故障分析过程中,⼈们常会瞧到⼀些损坏零件的断⼝,但就是⼈们缺乏“读懂”它的经验,不能从它的断⼝处判断其损坏的真正原因⽽贻误了战机。
这⾥结合整改过程中的⼀些实例作些介绍,希望能对您有所帮助!对于汽车常⽤碳素钢与合⾦钢⽽⾔,其常见断⼝有:1.韧性(塑性)断⼝:发⽣明显塑性变形的断裂统称为塑性断裂。
断⼝形貌为韧性(塑性)断⼝,断⼝呈暗灰⾊没有⾦属光泽瞧不到颗粒状形貌,断⼝上有相当⼤的延伸边缘。
2.疲劳弯曲断⼝:2-1 在抗拉极限范围内的疲劳弯曲断⼝:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下⾯将详述)。
2-2 超过抗拉极限范围内的弯曲断⼝:不具有典型的疲劳断⼝特征,属于不正常的弯曲断裂。
其断⼝特征:沿弯曲⽅向上下呈灰褐⾊⽆⾦属光泽的断层;⽽内层呈银灰⾊⽩亮条状新断⼝(见图1)。
图13.典型的⾦属疲劳断⼝典型的疲劳断⼝定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。
断⼝具有典型的“贝壳状”或称“海滩状”。
3-1 疲劳裂纹源区:就是疲劳裂纹萌⽣的策源地,它处于机件的表⾯,形状呈平坦、⽩亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦⽽形成的。
它所占有的⾯积较其她两个区要⼩很多。
疲劳裂纹⼤多就是因受交变载荷的机件表⾯有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应⼒集中⽽引起的。
疲劳裂纹点在同⼀个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断⼝。
3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。
它就是判断疲劳断裂的最重要的特征区。
它以疲劳源区为中⼼,与裂纹扩展⽅向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。
疲劳弧线就是因机器运转时的负载变化、反复启动与停⽌⽽留下的塑性变形痕迹线。
⾦属材料的塑性好、⼯作温度⾼及有腐蚀介质存在时则弧线清晰。
3-3 瞬时断裂区:由于疲劳裂纹不断扩展使机件的有效断⾯减⼩,因此应⼒不断增加直⾄截⾯应⼒达到材料许⽤应⼒时,瞬时断裂便发⽣了。
《金属断口分析》课件
应变率对金属断应变率对塑性断裂性能的影响
脆性断裂的应变率效应
研究应变率对脆性断裂特性的影响
断口分析技术
金属材料断口制备
详细介绍金属材料断口制备的方法和步骤
断口分析设备
介绍断口分析的常用设备和工具
断口观察方式
列举不同的断口观察方式和技术
总结与展望
金属断口分析的应用前景
《金属断口分析》PPT课 件
本课件将深入介绍金属断口分析的相关知识,通过详细讲解金属断裂分类以 及断口分析技术,帮助您更好地理解金属材料的断裂机理和应用前景。
金属断裂分类
脆性断裂
晶粒断裂、孪晶断裂、空洞聚合引起断裂、硬夹杂物载荷集中引起断裂
塑性断裂
颈缩断裂、细粒断裂、断微观结构分析
疲劳断裂
疲劳断裂的特点、疲劳断裂的分类、疲劳断口类型分析
探讨金属断口分析在工业领域的应用前景
金属断口分析的发展趋势
展望金属断口分析技术的未来发展方向
金属零件的疲劳断裂失效
(4) 装配与联接效应
装配与联接效应对构件的疲劳寿命有很大的影响。正确的拧紧力矩可使其疲劳寿命提高5倍以上。容 易出现的问题是,认为越大的拧紧力对提高联接的可靠性越有利,使用实践和疲劳试验表明,这种看 法具有很大的片面性。
(5) 使用环境
环境因素(低温、高温及腐蚀介质等)的变化,使材料的疲劳强度显著降低,往往引起零件过早的发 生断裂失效。例如镍铬钢(0.28%C,11.5% Ni,0.73%Cr),淬火并回火状态下在海水中的条件下疲 劳强度大约只是在大气中的疲劳极限的20%。
(5) 接触疲劳
02 疲劳断裂原因分析
(1) 零件的结构形状
零件的结构形状不合理,主要表现在该零件中的最薄弱的部位存在转角、孔、槽、螺纹等形状的突变 而造成过大的应力集中,疲劳微裂纹最易在此处萌生。 (2) 表面状态
不同的切削加工方式(车、铣、刨、磨、抛光)会形成不同的表面粗糙度,即形成不同大小尺寸和尖 锐程度的小缺口。这种小缺口与零件几何形状突变所造成的应力集中效果是相同的。由于表面状态不 良导致疲劳裂纹的形成是金属零件发生疲劳断裂的另一重要原因。
(3) 材料及其组织状态
材料选用不当或在生产过程中,由于管理不善而错用材料造成的疲劳断裂也时有发生,金属材料的组 织状态不良是造成疲劳断裂的常见原因。一般的说,回火马氏体较其它混合组织,如珠光体加马氏体 及贝氏体加马氏体具有更高的疲劳抗力;铁素体加珠光体组织钢材的疲劳抗力随珠光体组织相对含量 的增加而增加;任何增加材料抗拉强度的热处理通常均能提高材料的疲劳抗力。组织的不均匀性,如 非金属夹杂物、疏松、偏析、混晶等缺陷均使疲劳抗力降低而成为疲劳断裂的重要原因。
当外部的激振力的频率接近系统的固有频率时,系统将出现激烈的共振现象。共振疲劳断裂是机械设 备振动疲劳断裂的主要形式,除此之外,尚有颤振疲劳及喘振疲劳。
疲劳断裂的断口特征
疲劳断裂的断口特征疲劳断裂是指材料在反复加载下发生的断裂现象,通常发生在金属材料中。
与静态加载下的断裂不同,疲劳断裂的断口特征具有一些独特的特点。
本文将详细介绍疲劳断裂的断口特征。
1.断口形态:疲劳断裂的断口通常呈现出平面状的特点。
与静态断裂相比,疲劳断裂的断口形态更为平整,几乎没有韧突。
这是因为在疲劳断裂发生时,材料受到反复加载,导致断裂表面的塑性变形局部消失,使断口面显得平滑。
2.断口特征:疲劳断裂的断口通常呈现出沿着材料加载方向的特征。
即在金属材料的拉伸方向上会出现沿着材料加载方向延展的沟槽状断裂面。
这是因为在疲劳断裂过程中,裂纹的扩展方向通常与应力主轴方向(加载方向)垂直。
断口上也常见到横向的细小裂纹。
3.层状纹理:疲劳断裂的断口表面常常呈现出层状纹理。
这是由于疲劳断裂过程中,材料内部的裂纹扩展速度会与外部加载频率一致,导致断口形成沿裂纹扩展方向的“疲劳纹”或称为“疲劳条纹”。
这些纹理一般与材料的晶粒方向垂直,并且逐渐扩展进入材料内部。
4.波纹状断口:疲劳断裂的断口表面通常呈现出波纹状的特征。
这是由于裂纹在扩展过程中会遇到不同的晶粒,在晶粒界面处会发生细小的局部塑性形变,导致断口表面呈现出波浪状。
5. 轭型断口:在一些情况下,疲劳断裂的断口会呈现出轭型(chevron)的特征。
轭型断口是指裂纹扩展迅速并呈现出V字形的形状,类似于牛轭。
这种断口形态通常出现在晶粒细小且均匀的材料中,例如高强度钢。
6.焊缝位置:在焊接结构中,疲劳断裂通常在焊缝附近发生。
这是由于焊接过程中引入了应力集中、晶界腐蚀等因素,导致焊缝附近的材料更容易发生疲劳断裂。
总之,疲劳断裂的断口特征包括平面状的断口形态、沿加载方向的断口特征、层状纹理、波纹状断口、轭型断口等。
这些断口特征能够帮助工程师分析疲劳断裂的原因,并采取相应的措施预防疲劳断裂的发生。
金属的疲劳
3、瞬时断裂区:
⑴特征:同静载断口。脆材为结晶状,韧
材为纤维状、暗灰色、边沿有剪切唇。
⑵形成原因:随裂纹扩展,当a=ac 时,
KⅠ= KⅠC,裂纹将失稳扩展,形成瞬断区。图
⑶影响:
◆一般在疲劳源对侧。
◆旋转弯曲时,瞬断区的位置沿逆旋转方向偏 转一定角度。
15
◆应力大,瞬断区便大。
◆材质韧性差,为结晶状断口;韧性好则在中 间平面应变区为放射状或人字纹,边沿为剪切唇。 ◆扭转循环载荷:均看不见贝纹线。如图所示 正断:与轴线呈45°角,锯齿状或星形状。
9
⑶对缺陷(缺口、裂纹及组织缺陷)十
分敏感。
◆由于疲劳破坏是从局部开始的,所以它对缺 陷具有高度的选择性。 ◆缺口和裂纹因应力集中增大对材料的损伤作 用,组织缺陷(夹杂、疏松、白点、脱碳等)降 低材料的局部强度,三者都加快了疲劳破坏的开 始和发展。
10
三、疲劳宏观断口特征
疲劳断裂和其它断裂一样,其断口上保留了整
又称维勒曲线。
17
分两类:如图所示 ◆曲线上有明显的水平部分。试样可以经受无限 次应力循环也不发生疲劳断裂的最大应力称为疲劳 极限。记为σ-1。 这类材料如果应力循环107 周次不断裂,则可
认定承受无限次应力循环也不会断裂,所以常将
Kt -理论应力集中系数,为缺口净截面上的 最大应力σmax 与平均应力σ之比,可从有关手册 中查到,Kt>1; Kf -疲劳缺口系数,为光滑试样和缺口试样 疲劳极限之比,即
拉压、扭转疲劳极限的具体数据时,必须做相关
试验。
一般情况下:σ-1>τ-1 >σ-1p, 分析原因 ?
22
(四)疲劳极限与静强度之间的关系
试验表明,金属材料的抗拉强度越大,其疲劳
浅论金属材料发生疲劳断裂的原因及危害
浅论金属材料发生疲劳断裂的原因及危害零件在这种交变动载荷作用下,经过长时间的工作而发生断裂的现象成为疲劳,因此疲劳是零件在循环或交变应力作用下,经过一段时间发生失效的现象。
法国的J.-V.彭赛列于1839年首先论述了疲劳问题并提出“疲劳”这一术语。
但疲劳研究的奠基人则是德国的A.沃勒。
他在19世纪50~60年代首先得到表征疲劳性能的S-N曲线,并提出疲劳极限的概念。
疲劳研究虽有百余年历史,文献极多,但理论不够完善。
近年来,断裂力学的进展,丰富了传统疲劳理论的内容,促进了疲劳理论的发展。
当前的发展趋势是把微观理论和宏观理论结合起来从本质上探究疲劳破坏的机理。
为什么金属疲劳时会产生破坏作用呢?这是因为金属内部结构并不均匀,从而造成应力传递的不平衡,有的地方会成为应力集中区。
与此同时,金属内部的缺陷处还存在许多微小的裂纹。
在力的持续作用下,裂纹会越来越大,材料中能够传递应力部分越来越少,直至剩余部分不能继续传递负载时,金属构件就会全部毁坏。
金属疲劳破坏可分为三个阶段:①微观裂纹扩展阶段。
在循环加载下,由于物体内部微观组织结构的不均匀性,某些薄弱部位首先形成微观裂纹,此后,裂纹即沿着与主应力约成45°角的最大剪应力方向扩展。
在此阶段,裂纹长度大致在0.05毫米以内。
若继续加载,微观裂纹就会发展成为宏观裂纹。
②宏观裂纹扩展阶段。
裂纹基本上沿着与主应力垂直的方向扩展。
借助电子显微镜可在断口表面上观察到此阶段中每一应力循环所遗留的疲劳条带。
③瞬时断裂阶段。
当裂纹扩大到使物体残存截面不足以抵抗外载荷时,物体就会在某一次加载下突然断裂。
在疲劳宏观断口上往往有两个区域:光滑区域和颗粒状区域。
疲劳裂纹的起始点称作疲劳源。
实际构件上的疲劳源总是出现在应力集中区,裂纹从疲劳源向四周扩展。
由于反复变形,裂纹的两个表面时而分离,时而挤压,这样就形成了光滑区域,即疲劳裂纹第二阶段扩展区域。
第三阶段的瞬时断裂区域表面呈现较粗糙的颗粒状。
起重机金属疲劳断口的形貌特征分析
1 疲劳断 口的宏观特征
( ) 劳 源 区是 疲 劳 裂 纹 的 萌 生 地 , 1疲 该 区 一 般 在 构 件 的 表 面 。 件 表 面 的 组 织 缺 构 陷 , 恰 当 的 形状 如 拐 角 、 口或 直径 的剧 不 缺 烈 变 化 , 艺 缺 陷 如 切 削 刀痕 等 均 有 可 能 工 引 起 局部 的 应 力 集 中 而 诱 发 疲 劳 裂纹 的萌 生 。 这 些 情 况 下 , 在 材 料 的 次 表 面存 在 在 若 严重的冶金缺陷如夹渣 、 松 、 析时 , 疏 偏 按 裂 纹 形 成 及 扩 展 的 强 度 原 则 , 劳 裂 纹 也 疲 可 能 在 构 件 的次 表 面 产 生 。 劳 裂 纹 萌 生 疲 后 , 件 并 不 会 立 即断 裂 , 后还 会发 生 裂 构 此 纹 的缓 慢 扩 展 过 程 , 这 个 过 程 中构 件 还 在 会 经 受 很 多 次 数 的 应 力 循 环 , 生 的 断 裂 产 面还 会 经 受 反 复 的 压合 、 开 及摩 擦 , 以 张 所
有 关 , 过 载 频 率 较 高 , 贝纹 线 间 距 较 意 的是 虽然 疲 劳 纹 是 疲 劳 断 口最 典 型 的 微 若 则 密, 反之 则 较 疏 。 纹 线 的粗 细 也 与材 料 的 观 特 征 , 并 不是 在 每 种 疲 劳 断 口上 均 可 贝 但 性 质 有 关 , 材 料 的 塑 性 较 好 , 贝纹 线 较 观 察 到 明 显 的 疲 劳 纹 。 般 来 说 , 性 较 若 则 一 塑 粗 而 明 显 ; 之 , 材 料 塑 性 很 差 , 纹 线 好 , 滑移 系较 多的 面心 立 方 金 属A1 C 反 若 贝 如 , u及 则 较 细 , 至 不 具 有 明显 的 贝 纹 线 。 劳 裂 其 合金 中 , 疲 劳 纹 往 往 比较 明显 ; 甚 疲 其 而滑 移 纹 扩 展 区 也 称 为 疲 劳 裂 纹 的 亚 临 界 扩 展 系较 少 或 组 织 状 态 比 较 复 杂 的 钢铁 材 料 其 区 。3 瞬 断 区是 裂 纹 最 后 失 稳 扩 展 所 形 成 度 劳 纹 往 往 比 较 短 、 , 至 看 不 出 疲 劳 () 小 甚 的 断 口区域 。 疲 劳 裂 纹 缓 慢 扩 散 阶 段 , 在 随 纹 。 塑 性 较 差 的 金 属材 料 中 , 在 其疲 劳断 口 着 应 力 循环 次 数 的 增 加 , 纹 尺 寸 不 断 扩 上 常产 生 脆 性 疲 劳纹 , 称 为 解 理 疲 劳纹 。 裂 也 大 , 裂纹 长 度 达 到 临 界 尺 寸 时 , 当 由于 裂 纹 与 韧 性 疲 劳 纹 相 比 , 性 疲 劳 纹 的 特 征 在 脆 顶端 的 应 力 场 强度 因子 Kl 到 材料 的断 裂 于 把 解 理 台 阶 和 疲 劳 纹 两 种特 征 结 合在 一 达 裂 而 韧 性 凡 , 裂 纹 顶 端 由于 应 力 集 中达 到 材 起 。 纹 扩 展 的 特 点 不是 由干 塑 性 变 形 , 或 料 的 断 裂 强 度 时 , 裂 纹 会 发 生 快 速 扩 展 主 要 是 由 于 解 理 开 裂 , 以 断 口上 有 细 小 则 所 导 致 构 件 最 后 瞬 时 断 裂 。 断 区 断 口的 宏 的 晶面 , 瞬 它是 裂 纹 顶 端 发 生 解 理 断 裂 时 形 观 特 征 同静 载 断 裂 的 断 口一 样 , 于 脆性 成 的解 理 平 面 。 理 平 面 的 形 成 方 向 与 裂 对 解 材 料 , 断 口为 结 晶 状 断 口 , 为 延 性 材 纹 扩 展 方 向 一 致 而 与 疲 劳 纹 垂 直 。 些 解 其 若 这
14-02第二章疲劳破坏特征及断口分析
2.1 宏观断口特征 2.2 疲劳破坏机理 2.3 微观断口特征 2.4 由疲劳断口进行初步失效分析
1
能源与动力学院 <<结构疲劳与断裂>> -- 2014
2.1.1 疲劳破坏宏观断口特征
材料疲劳断裂虽然类似脆性断裂,但疲劳断口 明显区别于其他类型断口:
疲劳断口
塑性断口
15
能源与动力学院 <<结构疲劳与断裂>> -- 2014
2.2.1 金属的塑性变形
金属的塑性 变形方式: 滑移和孪生
滑移:滑移是指晶体的一部分沿一定的晶面(滑移面)和 晶向(滑移方向)相对于另一部分发生滑动位移的现象。 滑移带:塑性变形的可见标记(金相显微镜)。
铜拉伸试样表面滑移带 500x
16
能源与动力学院 <<结构疲劳与断裂>> -- 2014
疲劳条带是疲劳断口的宏观基本特征,是判断 结构断裂失效是否为疲劳断裂的重要依据。
但并不是所有疲劳断口上都会有疲劳条带出现。 实验室进行的标准试样的等幅疲劳试验很少有 疲劳条带出现。
一般认为其形成与循环载荷的变化、裂纹扩展 忽快忽慢、裂纹扩展不均匀有关。
9
能源与动力学院 <<结构疲劳与断裂>> -- 2014
疲劳裂 纹成核
扩展至临 界尺寸
断裂 发生
疲劳裂纹的起始或萌生过程,称为裂纹成核,成 核处——裂纹源。
裂纹起源(裂纹源)仍然是由于滑移引起的,表 面或应力集中处的局部某些晶粒中。
19
能源与动力学院 <<结构疲劳与断裂>> -- 2014
循环加载时的滑移:
材料表面
金属疲劳试验指导书
金属疲劳、应力腐蚀试验及宏观断口分析在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。
分散的微观裂纹经过集结沟通将形成宏观裂纹。
已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。
金属因交变应力引起的上述失效现象,称为金属的疲劳。
静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。
疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。
裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。
载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。
至于粗糙的断裂区,则是最后突然断裂形成的。
统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。
因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。
图1-1 疲劳宏观断口一﹑实验目的1.了解测定材料疲劳极限的方法。
2.掌握金属材料拉拉疲劳测试的方法。
3.观察疲劳失效现象和断口特征。
4.掌握慢应变速率拉伸试验的方法。
二、实验设备1.PLD-50KN-250NM拉扭疲劳试验机。
2.游标卡尺。
3.试验材料S135钻杆钢。
4.PLT-10慢应变速率拉伸试验。
三﹑实验原理及方法在交变应力的应力循环中,最小应力和最大应力的比值为应力比:(1-1)称为循环特征或应力比。
在既定的r下,若试样的最大应力为,经历N1次循环后,发生疲劳失效,则N1称为最大应力r为时的疲劳寿命(简称寿命)。
实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。
表示最大应力与寿命N的关系曲线称为应力-寿命曲线或S-N曲线。
碳钢的S-N曲线如图1-2所示。
由图可见,当应力降到某一极限值时,S-N曲线趋近于水平线。
即应力不超过时,寿命N可无限增大。
金属疲劳破坏机理及断口分析PPT课件
图9 晶界处形成的疲劳裂纹核心(铁—钴—钒合金) (a)晶界处应力集中;(b)晶界处产生裂纹
图10 孪晶处形成的 疲劳裂纹核心
10
图11 非金属夹杂物处产生的疲劳裂纹
(a)夹杂物处的不均匀滑移;(b)夹杂物处形成的疲劳裂纹核 心
图12 疲劳第一 阶段形成的细滑 移线
图13 滑移线的 发展
图14 平行二面 上两列异号位错 相消形成空洞
图4、静拉伸和交变载荷下的滑移带
(a)静拉伸(σ> σ0.2)
(b)交变应力( σ= σ-1,N=105次)
6
从图4可以看出,静拉伸试样表面上到处布满细密 的滑移带。交变载荷下,经过应力循环之后,只有 部分晶粒的局部地方出现细滑移带,表现为滑移的 不均匀性。这种滑移的不均匀性通常集中在金属表 面、金属的晶界及金属夹杂物等处,并在该处形成 疲劳裂纹核心。
图16(d)表示反号应力作用时, 滑移沿相反方向进行,原裂纹表面 和新产生的裂纹表面被压近,在裂 纹顶端处被弯折成一个耳状切口。
图16(e)表示当反号应力最大时, 裂纹表面被压合,裂纹尖端又由钝 变锐,形成一个尖角,裂纹前沿向 前扩展一个裂纹。下一次应力循环 又重复以上过程。
14
因此,疲劳裂纹的扩展是在裂纹尖端塑性钝 化(钝锐交替变化)过程中不断向前推进的。 在电子显微镜下看到疲劳断口的辉纹就是每 次交变应力下裂纹扩展留下的痕迹。
8
驻留滑移带、挤出脊、挤入沟等,都是金属 在交变载荷作用下表面不均匀滑移造成的疲 劳裂纹核心策源地。这些裂纹核心在交变应 力作用下逐渐扩展,相互连接,最后发展成 为宏观疲劳裂纹,图8所示。
图8、疲劳裂纹经过滑移集中区
9
产生疲劳裂纹核心的地方还有晶界,孪晶界 以及非金属夹杂物等处,如图9、10、11所 示。
轴疲劳断裂的断口特征
轴疲劳断裂的断口特征1. 轴疲劳断裂概述在我们的日常生活中,轴承和机械零件可谓是默默无闻却又不可或缺的角色。
想象一下,你的汽车、摩托车甚至是洗衣机,里面都有很多这样的轴。
当这些轴在长期的运转中遭遇疲劳,咱们就会面临一个不太妙的事情——轴疲劳断裂。
哎呀,听起来有点儿吓人,但其实这个现象很常见,像吃火锅时冒出的泡泡一样,随时可能出现。
轴疲劳断裂通常是因为长期的重复载荷,像一个老妈子总是催着你做事,结果让你透不过气来,最终撑不住了。
2. 轴疲劳断裂的过程2.1 疲劳的起因说到疲劳,首先得聊聊它的“前因后果”。
其实,轴在使用中总是承受着不同的力量,有时候是大力气,有时候是小细节。
时间一久,这种反复的压力就像是无形的手,慢慢在轴上造成微小的裂纹。
没错,就是那种“滴水穿石”的感觉,虽然看似微不足道,但却能在关键时刻给你个“大惊喜”。
有时候,一根轴就像是一个不愿意承认自己老了的演员,拼命在舞台上演出,结果却在关键时刻“哐当”一声倒下,彻底结束了它的表演生涯。
2.2 断裂的过程当裂纹逐渐扩大,最后就会演变成轴的疲劳断裂。
想象一下,一个人撑着撑着,突然一声“咔嚓”,就像在你最期待的时刻被踢了一脚,整个人懵了。
此时,断口的特征就显得特别重要了。
通常,咱们可以看到一些明显的变化,比如断口的表面粗糙不平,还有一些金属的“肌肉线条”,这可是疲劳断裂的独特标志哦!如果你细心观察,还能发现断口上有像锯齿一样的结构,这叫做“疲劳区”,简直就像在跟你说:“嘿,我经历过很多事情!”3. 断口特征分析3.1 典型特征提到断口特征,我们就得来点儿细致的分析。
疲劳断裂的表面一般会有一条明显的“疲劳带”,这就像是一个战士的勋章,经历过无数的战斗后留下的痕迹。
不同于瞬间断裂留下的光滑表面,疲劳断裂的特点可是要你认真观察的。
那种粗糙和层层叠叠的纹路,让人不禁感慨“岁月不饶人”,每一道纹路都是一次经历,每一处细节都在讲述着它的故事。
3.2 形态与光泽再说说断口的光泽度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图24 韧窝形貌 (a)撕裂韧窝(碳素钢760×);(b)铜 (复型2600×)
(2)韧窝形成过程
对韧窝内部进行仔细观察,在钢中多数情况 下能够看到非金属夹杂物存在,因此,便想 到韧窝形成与第二相粒子存在有关。
韧窝形成模型:如图25所示。 图(a)当塑性变形时,在夹杂物周围 塞积着位错环。
图16 疲劳塑性辉纹形成过 程示意图
图16(a)表示交变应力为零时, 裂纹闭合。
图16(b)表示裂纹受拉时裂纹张 开,裂纹尖端尖角处由于应力集中 而沿45°方向产生滑移。
图16(c)表示当拉应力达到最大 时,滑移区扩大,使裂纹尖端变成 了近似半圆形。裂纹尖端由锐变钝, 应力集中减小,最后滑移停止,裂 纹停止扩展。----“塑性钝化”。
在交变应力作用下,当两条细滑移线上螺位错滑移时,便使滑移面上堆积的位错 相消,则在这些面上的位错源S1、S2、S3等将继续产生位错,滑移线便发展增 长,许多滑移线发展,就表现为滑移带的变宽和加深,以致形成“驻留滑移带”。
三、疲劳裂纹的扩展
疲劳裂纹是咋样扩展的呢?裂纹扩展有什么特征呢? 在没有应力集中的情况下,疲劳裂纹扩展可以分为
图12 疲劳第一阶 段形成的细滑移 线
图13 滑移线的发 图14 平行二面上
展
两列异号位错相
消形成空洞
用位错理论解释疲劳裂纹的形成:
第一阶段,在交变载荷作用下,金属表面上发现有均匀分布的细滑移线,如图 12所示。
第二阶段主要表现为滑移带交宽,以致形成“驻留滑移带”。如图13位错模型 来解释。
的方向在很窄的范围内产生切变, 不过塑性变形只在裂纹尖端局部 地区进行。 图21 脆性辉纹形成过程示意图 图d表示在最大拉应力下发生塑 性钝化,这种钝化使裂纹扩展停 止。 图e表示在最大压应力下裂纹闭 合。下一次应力循环,解理断裂 将在和解理面方位最适宜的裂纹 分叉处产生。
图22 2014铝合金疲劳脆性辉纹
图29 影响韧窝形貌的各种因素
韧窝的形状主要取决于应力状态,或决定于 拉应力与断面的相对取向,如图30所示。
图(a)正应力垂直于微孔的平面, 使微孔在垂直于正应力的平面上 各方向长大的倾向相同,就形成 等轴韧窝。
图(b)在切应力作用下的断裂, 韧窝的形态是拉长的抛物线形状, 在对应的断面上抛物线方向相反。
图(b)随着变形增大,位错会受到两 方面力的作用。最终两个力达到平衡, 使位错停止放出位错。
图(c)当外力足够大,或者是由于某 些粒子周围存在应力集中时,有可能将 位错推向基体与第二相粒子的界面, AB面分开形成空洞。
图(d e)导致微孔扩大。图(f)位错 图25 裂纹在夹杂物边界上形成与长大的 沿不同方向滑移到粒子边界。
从图4可以看出,静拉伸试样表面上到处布满细密 的滑移带。交变载荷下,经过应力循环之后,只有 部分晶粒的局部地方出现细滑移带,表现为滑移的 不均匀性。这种滑移的不均匀性通常集中在金属表 面、金属的晶界及金属夹杂物等处,并在该处形成 疲劳裂纹核心。
图5低碳钢经过不同循环次数后形成的滑移带。
图5、低碳钢在交变应力下(σ= σ-1)滑移带的发展 (a)N=104次;(b)N=2×106次
图37 通过二次解理和 撕裂形成台阶
(a)沿二次解理面而 形成台阶;(b)通过 撕裂而形成台阶
图38 河流花样形成示意图
(3)影响河流花样的因素
发生解理断裂前,首先都要产生一定量的塑性变形,由于晶 界、亚晶界、夹杂物及第二相粒子的存在,阻碍了位错运动, 从而形成位错塞积,并可能诱发解理裂纹,故河流花样也经 常在这些地方发源。图39的河流花样均从图中心发出。这表 明河流汇集处为裂纹源位置,箭头为裂纹扩展方向。
两个阶段,如图15所示。
图15 疲劳裂纹 扩展的阶段
疲劳裂纹扩展的第Ⅰ阶段,通常是从金属
表面上的驻留滑移带、挤入沟或非金属夹杂物 等处开始,沿最大切应力(和主应力方向近似 成45°)的晶面向内扩展,由于各晶粒的位向 不同以及晶界的阻碍作用,随着裂纹向内扩展, 裂纹的方向逐渐转向和主应力垂直。这一阶段 的扩展速率很慢,每一应力循环大约只有10À 数量级,扩展的深度约有几个晶粒。在有应力 集中的情况下,则不出现第Ⅰ阶段,而直接进 入第Ⅱ阶段。
四、最后断裂区形貌分析
1、韧性断裂的微观机制 (1)断口的微观形貌 韧性断裂有两种类型:纯剪切型断裂和微孔聚集型断裂 微孔聚集型断裂的断口特征在高倍电子显微镜下观察,可见
大量微坑覆盖断面,这些微坑称为韧窝。形貌如图24所示。 韧窝有抛物型的剪切韧窝、撕裂韧窝和等轴韧窝三种。抛物
图31 三种应力状态下形成显 微空洞及断口韧窝形态示意图
图(c)由拉应力引起的撕裂,也 可以造成拉长的抛物线韧窝,其 抛物线的方向都指向裂纹的起源 处。
2、脆性解理断裂的微观机制
脆性断裂以前没有明显宏观塑性变形,是一 种极危险的断裂。如高强度钢存在原始裂纹 产生的低应力脆断,结构钢在低温下的冷脆 断,交变应力的疲劳断裂等。
脆性辉纹的主要特点:与塑性辉纹相比,它的扩展 不是塑性变形而是解理断裂。因此,断口上有细小 的晶面,它是裂纹尖端发生解理断裂时形成的解理 平面,这些解理平面常常有解理断口的特点,即有 河流花样。但同时裂纹尖端又有塑性钝化,因之这 又形成了辉纹的特征。故在脆性辉纹中常常看到有 弧线的辉纹,还有和裂纹扩展方向一致的河流花样, 河流花样的放射线和辉纹相交,相互近似垂直,如 图23所示。
在零件或试样的局部区域造成应力集中,这些区域 便是疲劳裂纹核心产生的策源地。
疲劳裂纹产生后,在交变应力作用下继续扩展长大。 常常留下一条条的同心弧线,叫做前沿线(疲劳 线),这些弧线形成了象“贝壳”一样的花样,也 称为贝纹区。断口表面因反复挤压、摩擦,有时光 亮得象细瓷断口一样。
(2)最后断裂区 疲劳裂纹不断扩展,使得零件或试样有效断面逐渐
(1)断口的微观形貌
解理断裂是在拉伸应力作用下引起的一种脆 性穿晶断裂,通常总是沿着ቤተ መጻሕፍቲ ባይዱ定的结晶面分 离,这种晶面称为解理面。
解理面----一般都是低指数面,表面能低,理 论断裂强度最低。
用透射、扫描电子显微镜观察每一个小平面,发现 小平面并不是一个单一的解理面,而是由一组平行 的解理面所组成。两个平行解理面之间相差一定高 度,交接处形成台阶。从垂直断面方向观察可见, 台阶汇合形成一种类似河流的花样,称为“河流花 样”。河流花样本身就是台阶存在的标志。
图8、疲劳裂纹经过滑移集中区
产生疲劳裂纹核心的地方还有晶界,孪晶界 以及非金属夹杂物等处,如图9、10、11所 示。
图9 晶界处形成的疲劳裂纹核心(铁—钴—钒合金) (a)晶界处应力集中;(b)晶界处产生裂纹
图10 孪晶处形成的 疲劳裂纹核心
图11 非金属夹杂物处产生的疲劳裂纹 (a)夹杂物处的不均匀滑移;(b)夹杂物处形成的疲劳裂纹核心
图32 河流花样 (a)扫描 ×1500;(b)复型透射
河流花样的走向可以判断裂纹源的位置和裂纹扩展 的方向,河流上游(即支流发源处)是裂纹发源处,
而河流的下游是裂纹扩展的方向。
解理断裂的另一断口学特征是存在“舌状花样”, 因为其形状确实象躺在解理面上的“舌头”而得名,
其断口形貌如图33、34所示。 片图
在一定条件下,可以根据疲劳辉纹之间的宽 度近似地估计疲劳裂纹的扩展速率。
图17 疲劳裂纹和疲劳断口上的辉纹
许多工业金属材料,由于内部存在晶界及非 金属夹杂物等障碍,疲劳裂纹尖端塑性变形 的对称性常常被破坏,所以就出现裂纹两侧 不对称的现象,如图18所示。
一般铝合金疲劳断口上的疲劳辉纹较明显, 而钢的则不明显甚至看不到疲劳辉纹。
图3、各类疲劳断口形态的示意图
二、金属疲劳破坏机理
疲劳裂纹的产生 金属所受交变应力的最大值低于材料的屈服强度,
为什么会产生疲劳断裂呢?为了搞清楚金属疲劳断 裂的本质,通常是在消除外界应力集中的情况下, 研究金属疲劳的微观变化,从而提高疲劳抗力的途 径。
图4、静拉伸和交变载荷下的滑移带 (a)静拉伸(σ> σ0.2) (b)交变应力( σ= σ-1,N=105次)
图27 断口的相配观察 2000×扫描
图28 Q345桥梁钢最后断裂区形貌
(3)影响韧窝形貌的因素 韧窝的形成位置、形状、大小、深浅是很不
同的,它们受很多因素影响,大致归纳三个 方面:①成核粒子的大小及分布;②基体材 料的塑性能力,尤其是形变强化能力;③外 界因素,包括应力大小、应力状态‘温度和 形变速度,如图29所示。
图18 疲劳裂纹不对称扩展
箭图 头 表 示 裂 纹铝 扩合 展金 方疲 向劳
辉 纹 ,
19 7178
前部
中部
后部
图20 Q345桥梁钢在最大应力340Mp下,扩展区相貌
(2)脆性辉纹(解理辉纹) 图a表示裂纹不受力时的形状 图b表示在拉应力下疲劳尖端产
生解理断裂,裂纹向前扩展。 图c表示在切应力作用下沿点线
图26 15钢裂纹在夹杂物界面形成、扩展至断裂的全过程 2000×透射
受力方向
综上所述:韧窝的形成是由于塑性变形使夹 杂物界面上首先形成裂纹,并不断扩大,最 后夹杂物之间的基体金属产生“内缩颈”, 当缩颈达到一定程度被撕裂或剪切断裂,使 空洞连接,从而形成了所看到的韧窝断口形 貌。如图27所示。
图16(d)表示反号应力作用时, 滑移沿相反方向进行,原裂纹表面 和新产生的裂纹表面被压近,在裂 纹顶端处被弯折成一个耳状切口。
图16(e)表示当反号应力最大时, 裂纹表面被压合,裂纹尖端又由钝 变锐,形成一个尖角,裂纹前沿向 前扩展一个裂纹。下一次应力循环 又重复以上过程。
因此,疲劳裂纹的扩展是在裂纹尖端塑性钝 化(钝锐交替变化)过程中不断向前推进的。 在电子显微镜下看到疲劳断口的辉纹就是每 次交变应力下裂纹扩展留下的痕迹。