最新大学微积分(常见问题与解答)
大学数学微积分练习题及答案
大学数学微积分练习题及答案本文为大学数学微积分练习题及答案的整理,旨在帮助读者巩固和提高微积分的知识和技能。
以下是一些常见的微积分练习题及其解答,供读者参考。
1. 求函数f(x) = 3x^2 - 2x + 1的导数。
解答:我们可以使用导数的定义来求解。
根据定义,导数f'(x)为函数在任意一点x处的斜率,可以通过求极限得到。
根据导数的性质,多项式的导数等于各项的导数之和。
因此,我们可以按照导数的定义,先求出各项的导数,然后相加得到f'(x)。
f'(x) = (3x^2)' - (2x)' + (1)'= 6x - 2所以,函数f(x) = 3x^2 - 2x + 1的导数为f'(x) = 6x - 2。
2. 求函数f(x) = e^x的不定积分。
解答:根据指数函数e^x的积分规则,不定积分∫e^xdx等于e^x再乘上一个常数C。
因此,∫e^xdx = e^x + C3. 求函数f(x) = sin(x)的定积分∫(0 to π/2)sinx dx。
解答:我们可以利用定积分的定义来求解。
根据定积分的定义,∫(0 to π/2)sinx dx表示在区间[0, π/2]上sinx的面积。
因为sinx在[0, π/2]上是正值,所以∫(0 to π/2)sinx dx等于sinx在[0, π/2]上的图像所围成的面积。
又因为sinx在[0, π/2]上是递增的,所以面积等于∫(0 to π/2)sinx dx等于单位圆上π/2对应的弧长,即π/2。
所以,∫(0 to π/2)sinx dx = π/2。
4. 求函数f(x) = x^3在[1, 2]上的平均值。
解答:函数f(x) = x^3在[1, 2]上的平均值可以通过计算积分的平均值得到。
根据积分的定义,函数在区间[1, 2]上的平均值等于函数在该区间上的积分除以区间的长度。
平均值= ∫(1 to 2)x^3 dx / (2 - 1)= [1/4*x^4] (1 to 2) / 1= (2^4-1^4) / 4= (16-1) / 4= 15/4所以,函数f(x) = x^3在[1, 2]上的平均值为15/4。
微积分(大学数学基础教程答案)大学数学基础教程(二)多元函数微积分习题解答
习题 1—1 解答1.设xf (x, y ) xy,求yf(x ,y),f1(x,1),yf (xy,xy),f1(x, y)解xf (x ,y ) xy;yf1(x,1)y1xyyx; f (xy,xy)x2y ;2 f1(x, y)yxy2x2.设f (x, y ) ln x ln y ,证明:f (xy,uv ) f (x,u ) f (x,v ) f (y,u ) f (y,v)f (xy,uv ) ln(xy ) ln(uv ) (ln x ln y)(ln u ln v )ln x ln u ln x ln v ln y ln u ln y ln vf (x,u ) f (x,v ) f (y,u ) f (y,v)3.求下列函数的定义域,并画出定义域的图形:(1)f (x, y ) 1x 2 y 2 1;4x y(2)f (x, y ) ;ln(1x y )22 2x y z2 2 2(3)f (x, y ) 1;a b c2 2 2x y z(4)f (x, y, z ) .1x 2 y z2 2解(1)D {(x, y) x 1, y 1y1-1 O 1x-1(2)D (x, y) 0x y 1, y 4x2 2 y21-1 1O x-11(3)D x y z2 2 2(x, y ) 1a b c2 2 2zc-a-b O b yax(4)( , , ) 0, 0, 0, 1D x y z x y z x 2 y z2 2z1O y11x4.求下列各极限:1xy (1)limx0 x y2 2y 11 0= 1 0 1ln(x e y ln(1 e )) 0(2)lim ln 2 x 1 2 12 0x yy02 xy4 (2xy 4)(2 (3)lim limx xy xy0 0 (xy x 2xy4) 4)14y0 y0sin(xy) sin(xy)(4)lim lim x 2 x y2 x 2 xyy0 y05.证明下列极限不存在:x y (1)lim ;x 0 x yy0x y2 2 (2)limx 0 x y (xy )2 2 2y0(1)证明如果动点P(x, y) 沿y 2x 趋向(0,0)x y x 2x则lim lim 3;x 0 x 0x y x 2xy2x0如果动点P(x, y) 沿x 2y 趋向(0,0) ,则lim lim 3 3x y yy0 x y y0 yx 2 y02所以极限不存在。
大学微积分考试题及答案
大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-1, 1)上是:A. 增函数B. 减函数C. 先减后增函数D. 先增后减函数答案:A2. 极限lim (x->0) [sin(x)/x]的值是:A. 0B. 1C. 2D. 无穷大答案:B3. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = cos(x)答案:C4. 曲线y = x^3在点(1, 1)处的切线斜率是:A. 1B. 2C. 3D. 4答案:C5. 定积分∫[0, 1] x dx的值是:A. 0B. 1/2C. 1/3D. 1答案:C6. 微分方程dy/dx = x^2的通解是:A. y = x^3 + CB. y = e^x + CC. y = sin(x) + CD. y = ln(x) + C答案:A7. 函数f(x) = e^x在点x=0处的导数是:A. 0B. 1C. 2D. e答案:B8. 以下哪个级数是收敛的?A. ∑(-1)^n / nB. ∑n^2C. ∑(1/n)D. ∑(1/n^2)答案:D9. 曲线y = ln(x)的拐点是:A. x = 1B. x = eC. x = 0D. 没有拐点答案:D10. 以下哪个选项是正确的泰勒公式展开?A. e^x = ∑x^nB. sin(x) = ∑(-1)^n * x^(2n+1) / (2n+1)!C. ln(1+x) = ∑(-1)^n * x^n / nD. cos(x) = ∑x^(2n) / (2n)!答案:D二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 4x^2的驻点是______。
答案:x = 0, x = 312. 极限lim (x->∞) (1 + 1/x)^x的值是______。
答案:e13. 定积分∫[1, e] e^x dx可以通过分部积分法计算,其结果是______。
大学微积分最难题
大学微积分最难题大一高数微积分要完整过程和答案'两题100分'6.8题(6)设p=y',则y''=p·dp/dy py·dp/dy=2p^2 dp/p=2dy/y ln|p|=2ln|y|+C0∴p=-C1·y^2∴dy/dx=-C1·y^2∴dy/y^2=-C1·dx∴-1/y=-C1·x-C2通解为,1/y=C1·x+C2(2)对应.关于高等数学微积分的题目~!f(x)可导,必有df(x)=f'(x)dx(df(x)/dx其实就是求f(x)的导数f'(x))所以df(x²+6)=2x·f'(x²+6)dx(根据复合函数微分运算法则,类比于求导)故原式=2xf'(x²+6)希望你能满意.大一数学微积分题目求答案1.B这个后面根号肯定是大于0的2.C F是f的原函数把e^-x放到后面变成d(e^-x)就ok了3.D把下面选项带入题目即可大一微积分高数题目1.设长方体的底面长,宽分为xcm,ycm.高为zcm由题意得xyz=234,即xyz-234=0……(1)不妨设顶与侧面价格为1/cm2,则底部的价格为2/cm2总造价u=2xy xy 2xz 2yz=3xy.高等数学,微积分题目,求答案,有简易过程即可30.@z/@x=3x²+3y²+2,@²z/@x@y=@(3x²+3y²+2)/@y=6y@z/@y=6xy+3y²+cos y@²z/@y²=@(6xy+3y²+cos y)/@y=6x+6y-sin y 31.切平面的法向量为.大学数学关于微积分的题目!微分是变化量的极限.微分学包括极限、导数与微分、积分这几个部分.微分是变化量的极限,导数是增量比的极限,它们都是极限.它们的计算仿佛相同,但是所表示的概念是不同的.一个是全增量,一个是增量比.积分是导数的逆运算,定积分是一种和式的极限.整个微分学都是讲的极限,因为无论你是导数、微分、积分,它们的本质都是极限.数学微积分题目,题目如下题目要求女人出发15min中两人相距距离增加的速率,只要求出两人距离关于时间的函数,然后求微分就可以求得.而两人距离y^2=470^2+(6*5*60+6t+4t)^2即y=根号下(470^2+(1800+10t)^2),然后求微分,再把t=15*60=900代入,得到的值精确到100ft/s.旦胆测感爻啡诧拾超浆思路就是这样,计算你应该可以完成的吧?高数微分方程题目未知函数以及未知函数的导数都是一次方的形式;所有的系数只和自变量有关系.这样的微分方程称为线性微分方程.比如二阶线性微分方程的标准形式:y''+p(x)y'+q(x)y=f(x)“齐次”指的是线性微分方程中的那个f(x)=0,若f(x)≠0,称为非齐次线性微分方程高等数学积分试题∫d[f(x)]=∫d[g(x)]f(x)+C₁=g(x)+C₂f(x)=g(x)+C₂-C₁=g(x)+kf(x)与g(x)相差一个常数项k,常数项k为零时,才有f(x)=g(x),因此A 错.f(x)+C₁=g(x)+C₂等式两边同时求导,得f'(x)=g'(x)B、C、D选项只是形式不同,其实都是f'(x)=g'(x),因此都是正确的.选A。
大学微积分(常见问题与解答)
大学微积分(常见问题与解答)大学微积分(常见问题与解答)微积分是大学数学中的重要学科,为了帮助同学们更好地理解和掌握微积分知识,以下是一些常见问题与解答,希望对大家学习微积分有所帮助。
问题一:什么是微积分?微积分是研究极限、导数、积分和无穷级数等概念和方法的数学学科。
它是现代数学的一支基础学科,广泛应用于物理学、工程学、经济学等领域,是理解和描述变化过程中的基本工具。
问题二:什么是导数和微分?导数是微积分中的重要概念,表示函数某一点的变化率。
对于函数f(x),它在x点的导数可以通过求函数在该点的极限得到,记作f'(x)。
微分是导数的一种具体应用,它可以用来求函数在某一点的近似值和切线方程。
问题三:什么是积分和不定积分?积分将函数与几何图形之间的面积或曲线长度等进行联系的数学运算。
不定积分是积分的一种形式,也叫原函数或不定积分,表示求导运算的逆运算。
不定积分的结果常用C表示。
问题四:如何求解微积分中的极限问题?求解极限问题是微积分中的基本内容,有各种求解方法。
常见的方法包括利用基本极限公式、夹逼准则、洛必达法则等来求解。
在具体应用中,可以根据问题的特点灵活选择不同的方法进行求解。
问题五:如何求导?求导是微积分中的重要运算之一。
求导的基本规则包括常数的导数为0、幂函数求导、指数函数和对数函数的求导、三角函数的求导、复合函数的求导等。
根据这些基本规则,可以逐步推导得到更复杂函数的导数。
问题六:如何进行积分运算?积分运算是微积分中的重要内容,有多种方法可供选择。
基本的积分法则包括幂函数积分、三角函数积分、指数函数和对数函数的积分、分部积分法、换元法等。
灵活运用这些积分法则可以解决不同类型的积分问题。
问题七:微积分与实际应用有何关系?微积分是应用广泛的数学学科,可以解决很多实际问题。
比如,通过微积分可以求出曲线的切线、求解最优化问题、计算物体的质心和转动惯量、推导物质的变化规律等。
微积分为其他学科的发展提供了强大的数学工具。
2023大学_微积分学(吴迪光张彬著)课后答案
2023微积分学(吴迪光张彬著)课后答案微积分学历史背景早期思想早在公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。
古希腊数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。
中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。
在3世纪,中国数学家刘徽创立的割圆术用圆内接正九十六边形的面积近似代替圆面积,求出圆周率的近似值3.141024,并指出:“割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣”。
刘徽对面积的深刻认识和他的割圆术方法,正是极限思想的具体体现。
数列极限是函数极限的基础,一个数列an如果当n无限增大时,an与某一实数无限接近,就称之为收敛数列,a为数列的极限,记作liman=a例如an=1/n,数列的极限为0。
微分学微分学的基本概念是导数。
导数是从速度问题和切线问题抽象出来的数学概念。
牛顿从苹果下落时越落越快的现象受到启发,希望用数学工具来刻画这一事实。
若用s=s(t)表示物体的运动规律,即物体运动中所走路程s与时间t的关系,那么物体在t=t0时的瞬时速度为v(t0),并记v(t0)=s(t0),并称之为路程s关于时间t的导数或变化率,也可记v(t0)=()|t=t0。
而物体运动的加速度a(t)=v(t)=s(t)=()。
导数作为一个数学工具无论在理论上还是实际应用中,都起着基础而重要的作用。
例如在求极大、极小值问题中的应用。
积分学积分学的基本概念是一元函数的不定积分和定积分。
主要内容包括积分的性质、计算,以及在理论和实际中的应用。
不定积分概念是为解决求导和微分的逆运算而提出来的。
如果对每一xI ,有f(x)=F(x),则称F(x)为f(x)的一个原函数,f(x)的全体原函数叫做不定积分,记为,因此,如果F(x)是 f(x)的一个原函数,则=F(x)+C,其中C为任意常数。
大一微积分试题及答案详解
大一微积分试题及答案详解一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-∞, +∞)上是:A. 增函数B. 减函数C. 先减后增D. 先增后减答案:A解析:函数f(x) = x^2的导数为f'(x) = 2x,当x > 0时,f'(x) > 0,说明函数在x > 0的区间内是增函数;当x < 0时,f'(x) < 0,说明函数在x < 0的区间内是减函数。
由于整个定义域内没有区间使得函数单调递减,所以函数在整个定义域上是增函数。
2. 下列函数中,满足f(-x) = -f(x)的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = |x|D. f(x) = sin(x)答案:A解析:选项A中的函数f(x) = x^3是奇函数,因为对于所有x,都有f(-x) = (-x)^3 = -x^3 = -f(x)。
选项B是偶函数,选项C和D不满足奇函数的性质。
3-10. (类似上述格式,继续编写选择题及答案详解)二、填空题(每题4分,共20分)1. 极限lim (x→0) [sin(x)/x] 的值是 _______。
答案:1解析:根据极限的性质,我们知道sin(x)/x在x趋近于0时的极限是1,这是著名的极限lim (x→0) [sin(x)/x] = 1。
2. 函数f(x) = 2x^3 - 6x^2 + 9x + 1在x = 2处的导数是 _______。
答案:23解析:首先求出函数f(x)的导数f'(x) = 6x^2 - 12x + 9,然后将x = 2代入得到f'(2) = 6(2)^2 - 12(2) + 9 = 24 - 24 + 9 = 9。
3-5. (类似上述格式,继续编写填空题及答案详解)三、解答题(共50分)1. (15分)求曲线y = x^3 - 3x + 2在点(1, 0)处的切线方程。
微积分中的常见问题与解决方法总结
微积分中的常见问题与解决方法总结微积分作为数学的重要分支,常常被应用于各个学科和领域。
然而,由于其抽象性和复杂性,学习微积分可能会遇到一些困难和问题。
本文将总结微积分学习中常见的问题,并提供相应的解决方法,帮助读者更好地掌握微积分知识。
一、导数的计算问题导数是微积分的核心概念之一,但计算导数时常常出现错误。
以下是一些常见的导数计算问题以及相应的解决方法:1.1 未正确应用导数法则:导数具有一系列的运算法则,如常数法则、幂法则、求和法则和乘积法则等。
在计算导数时,需要正确应用这些法则。
如果有疑惑,可以查阅相关的导数法则表格或教材,以确保计算的准确性。
1.2 忽略极小量和高阶无穷小:在计算导数时,有时会出现极小量或高阶无穷小,而忽略它们会导致计算结果的不准确。
要避免这个问题,建议在计算过程中保留所有的无穷小量,并在最后一步统一进行化简。
1.3 误用链式法则:链式法则是计算复合函数导数的重要方法。
然而,在应用链式法则时,常常会出现求导的方向错误、求导对象选取错误等问题。
要避免这些错误,应仔细分析函数的复合结构,并正确应用链式法则进行求导。
二、积分的计算问题积分是微积分中另一个重要的概念,用于求函数与坐标轴之间的面积、弧长、体积等问题。
以下是一些常见的积分计算问题以及相应的解决方法:2.1 忽略常数项:在进行不定积分时,常常会忽略常数项的写法。
然而,这样做可能导致最后的结果不准确。
为了避免这个问题,应该始终在不定积分结果后面添加表示常数的符号。
2.2 忘记应用换元法:换元法是一种常用的积分计算方法,有时可以使积分变得更简单。
在进行积分计算时,应该仔细观察被积函数的形式,并尝试进行合适的变量代换。
2.3 未正确应用分部积分法:分部积分法是求定积分的重要手段,它可以将一个积分转化为另一个积分。
在应用分部积分法时,一定要正确选择u和v,并保持不变式的完整性。
三、极限计算问题极限是微积分中另一个基本概念,用于研究函数在某一点的趋势。
微积分(二)课后题答案,复旦大学出版社_第十章[1]
1 y 2 ec1 ( x2 1) ,记 c ec1 有 y 2 c( x 2 1) 1.
(4) 分离变量得,
1 dy sin x c dx ,两边积分得, tan y 2 2 cos x cos y c.
x 1 y 3
作变换
x u 1 ,原方程化为 y v 3
dv v u du u v
这是一个齐次方程,按齐次方程的解法: 令
v 1 du , 方程可化为 d 2 u 1 u
5
两边积分可得,整理可得, 2arctan ln u 2 (1 2 ) c 将
x y dx dy 0, y x 0 1 ; 1 y 1 x
y(1)0;
(6) yy′xey0, (7) y′e2xy,
y x 0 0 .
dy dx 1 y 1 x (1 y 0) ,两边积分得
解: (1) 原方程分离变量得
2
ln 1 y ln 1 x c1
y 2x
y
(7) 分 离 变 量 得 e dy e dx , 两 边 积 分 得 e
1 2x e c , 由 y 2
x 0
0 得
3
c
1 1 2x y ,所以,原方程满足初始条件的特解为 e (e 1) . 2 2
2. 物体冷却速度与该物质和周围介质的温差成正比,具有温度为 T0 的物体放在保持常温 为的室内,求温度 T 与时间 t 的关系. 解: 设 t 时刻物体的温度为 T,由题意有
(5) 原方程可化为: y(1 y)dy x(1 x)dx ,两边积分得 由 y
y 2 y3 x 2 x3 c 2 3 2 3
微积分简答题答案
微积分简答题答案您的位置:考核练习>> 简答练习 [当前练习:第一阶段基础测验]1、在中国古代,极限概念已经产生,我国春秋战国时期的《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭”,就是的朴素思想。
问题反馈【教师释疑】、在中国古代,极限概念已经产生,我国春秋战国时期的《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭”,就是极限的朴素思想。
2、公元3世纪,中国数学家刘徽的,就用圆内接正多边形周长去逼近圆周长这一极限思想来近似地计算圆周率率的问题反馈【教师释疑】所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。
这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。
中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。
但用这个数值进行计算的结果,往往误差很大。
正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。
东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。
这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。
刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。
在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。
这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。
大学微积分1试题及答案
大学微积分1试题及答案一、选择题(每题5分,共20分)1. 函数 \( f(x) = x^2 \) 的导数是:A. \( 2x \)B. \( x^2 \)C. \( \frac{1}{x} \)D. \( 2 \)答案:A2. 曲线 \( y = x^3 \) 在点 \( x = 1 \) 处的切线斜率是:A. 1B. 3C. 0D. 2答案:B3. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. 0B. 1C. \( \frac{1}{3} \)D. 2答案:C4. 函数 \( f(x) = e^x \) 的不定积分是:A. \( e^x \)B. \( e^x + C \)C. \( \ln(x) \)D. \( x^e \)答案:B二、填空题(每题5分,共20分)1. 函数 \( f(x) = \sin(x) \) 的导数是 ________。
答案:\( \cos(x) \)2. 曲线 \( y = \ln(x) \) 在点 \( x = e \) 处的切线斜率是________。
答案:13. 定积分 \( \int_{0}^{1} e^x dx \) 的值是 ________。
答案:\( e - 1 \)4. 函数 \( f(x) = \ln(x) \) 的不定积分是 ________。
答案:\( x\ln(x) - x + C \)三、解答题(每题10分,共60分)1. 求函数 \( f(x) = x^3 - 6x^2 + 9x + 1 \) 在 \( x = 2 \) 处的导数。
答案:首先求导数 \( f'(x) = 3x^2 - 12x + 9 \),然后将 \( x = 2 \) 代入得到 \( f'(2) = 3 \cdot 2^2 - 12 \cdot 2 + 9 = 12 - 24 + 9 = -3 \)。
2. 计算定积分 \( \int_{1}^{2} (2x + 1) dx \)。
微积分练习100题及其解答
《微积分》练习100题及其解答1.求极限:.⎪⎭⎫ ⎝⎛--→x e x x 111lim 0解:∵,)0(~1→-x xe x ∴.()2121lim 1lim 11lim 111lim 02000-=-=+-=-+-=⎪⎭⎫ ⎝⎛--→→→→x e x e x e x e x x e x x x x x x x x x 2.求极限:.xx e e x x x sin lim sin 0--→解:∵,∴.)0(~1→-x xe x1sin 1lim sin lim sin sin 0sin 0=--⋅=---→→xx e e x x e e xx x x x x x 或者:记,则当时,在之间满足Lagrange 定理的条件,存x e x f =)(0≠x )(x f x x sin ,在(介于与之间),使得,从而ξξx x sin )(sin sin ξf x x e e xx '=--,所以,.1)0()(lim sin lim 0sin 0='='=--→→f f x x e e x x x x ξ1sin lim sin 0=--→xx e e x x x 3.求极限:.()x xx x e1lim+→解:;()11200lim lim 1xxe e xx xx x x x e xe e e →→⎡⎤⎛⎫⎢⎥+=⋅+= ⎪⎢⎥⎝⎭⎣⎦或者.()()12000ln 1limlim 2lim x x xx x x x x e x e e x e xe x →→→++==⇒+=+4.求极限:.01lim 1xx x +→⎛⎫+ ⎪⎝⎭解:,而,所以,.01lim ln 101lim 1x xx x x e x +→+⎛⎫+ ⎪⎝⎭→⎛⎫+= ⎪⎝⎭0ln(1)1lim ln 1lim0t x t x t x +→+∞→⎛⎫++== ⎪⎝⎭01lim 11xx x +→⎛⎫+= ⎪⎝⎭5.求极限:.())0,0,0(3ln ln lim0>>>-++→c b a xc b a x x x x解:.()00ln ln 3ln ln ln ln limlim 3x x x x x x x x x x x a b c a a b b c c abc xa b c →→++-++==++6.求极限:.()00x αα→>解:.()()112110001101lim lim 10111x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++7.求极限:.lim(0)x αα→>解:.()()22211000112202limlim022211x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++8.求极限:.(0)x αα→>解:.012x α→=-9.设函数在内,讨论的单调性.)(x f ()∞+∞-,0)0(,0)(≤>''f x f xx f y )(=解:,,⎥⎦⎤⎢⎣⎡-'=-'='⎪⎭⎫ ⎝⎛='x x f x f x x x f x f x x x f y )()(1)()()(20)0()()(--≤x f x f x x f 当时,,而,则,即,从而此时0>x )0()(f xx f '≤0)(>''x f )0()(f x f '≥'0>'y 递增;同理,当时,递增.x x f y )(=0<x xx f y )(=所以,在内单调增加.xx f y )(=()∞+∞-,10.设函数,求:(1)的极大值;(2)()220()2(0)xf x a ta dta =-+->⎰)(x f M 求极小时的值.M a 解:(1),而,所以xx f a x x f 2)(0)(=''±=⇒='0>a ;a a a f M 232)(3-=-=(2)时,,此时,0>a 102223223=⇒=-='⎪⎭⎫ ⎝⎛-='a a a a M a04>=''a M的极小值为.M 34)1(-=M 11.求极限:.22011lim sin x x x →⎛⎫-⎪⎝⎭解:()()2222224000sin sin 11sin lim lim lim sin sin x x x x x x x x x x x x xx →→→-+-⎛⎫-== ⎪⎝⎭.320000sin sin 1cos sin 1limlim 2lim 2lim 363x x x x x x x x x x x x x x →→→→-+-====12.求极限:.⎪⎭⎫ ⎝⎛-→x x x 220sin 11lim 解:2222222200011sin sin 22lim lim lim sin sin 2sin sin 2x x x x x x x x x x xx x x x →→→--⎛⎫-== ⎪+⎝⎭;222000cos 212sin 2limlimsin 2sin 2cos 22sin 26cos 22sin 22sin 212lim 2sin 234cos 2sin 22x x x x xx x x x x x x x x xx x x x x x x →→→--==+++--==-+-13.求极限:.⎪⎭⎫⎝⎛--→x x x ln 111lim 1解:;211ln 11lim ln 11lim ln 111lim ln )1(1ln lim ln 111lim 11111-=---=--+=--+=-+-=⎪⎭⎫ ⎝⎛--→→→→→x x x x x x xx xx x x x x x x x x x x 14.求极限:.1lim arcsin xx e x +→解:∵,∴.arcsin ~(0)x x x →11100lim arcsin lim lim t t xx x t x x ee x xe t ++=→+∞→→=====+∞15.求极限:.⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim解:.22221arctan 21lim arctan lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞⎛⎫-- ⎪⎛⎫⎝⎭+-==== ⎪+⎝⎭-16.求极限:.2120lim x x x e→解:.22112lim lim t tx x x t e x et=→→+∞====+∞17.求极限:.lim sin ln x x x +→解:.00001ln tan sin lim sin ln lim lim lim 0csc csc cot x x x x x x x x x x x x x x++++→→→→===-=-18.求极限:.1lim x -→解:11lim x x -→→=112sec 24x x ππ--→→===19.求极限:.xx xx x sin tan lim 20-→解:.22232200000tan tan sec 11cos sin21lim lim lim lim lim sin 3363x x x x x x x x x x x x x x x x x x →→→→→----=====20.求极限:.()ln 1ln limcot x x xarc x→+∞+-解:()222222111ln 111lim lim lim 1lim 1.111cot 1111x x x x x x x x x x arc x x xx x x →+∞→+∞→+∞→+∞⎛⎫+-- ⎪+⎝⎭==+==-+⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭21.求极限:.()2lim sec tan x x x π→-解:.()2221sin cos lim sec tan limlim 0cos sin x x x x xx x x x πππ→→→--===-22.求积分:.cos sin 1sin 2x xdx x --⎰解:()2cos sin cos sin 11sin 2cos sin cos sin x x x x dx dx dx x x x x x --==---⎰⎰⎰.1ln csc cot 2244sin 4dx x x C x πππ⎛⎫⎛⎫=-=---+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭⎰23.求积分:.cos sin 1sin 2x xdx x -+⎰解:.()()()22cos sin 11cos sin cos sin sin cos sin cos x xdx d x x C x xx x x x -=+=-++++⎰⎰24.求积分:.cos sin 1cos 2x xdx x -+⎰解:()2cos sin cos sin 1sec tan sec 1cos22cos 2x x x x dx dx xdx xdxx x --==-+⎰⎰⎰⎰.()1sec ln sec tan 2x x x C =--++25.求积分:.dx xxx ⎰--2cos 1sin cos 解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x --==--⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =-+-+26.求积分:.cos sin 1cos 2x xdx x +-⎰解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x ++==+-⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =---+27.求积分:.1sin 1cos2xdx x--⎰解:()221sin 1sin 1csc csc 1cos 22sin 2x x dx dx xdx xdx x x --==--⎰⎰⎰⎰.()1cot ln csc cot 2x x x C =-+-+28.求积分:.1sin 1cos2xdx x -+⎰解:()221sin 1sin 1sec sec tan 1cos 22cos 2x x dx dx xdx x xdx x x --==-+⎰⎰⎰⎰.()1tan sec 2x x C =-+29.求积分:.1cos 1cos2xdx x-+⎰解:()221cos 1cos 1sec sec 1cos22cos 2x x dx dx xdx xdx x x --==-+⎰⎰⎰⎰.()1tan ln sec tan 2x x x C =-++30.求积分:.1cos 1cos2xdx x--⎰解:.()()221sin 1sin 1csc csc 1cos22sin 211cot ln tan cot ln csc cot 222x x dx dx xdx xdxx x x x C or x x x C--==--⎛⎫=-++-+-+ ⎪⎝⎭⎰⎰⎰⎰31.求积分:.1arctan21xedx x +⎰解:.1arctan11arctan arctan 21arctan 1xx x e dx e d e C x x=-=-++⎰⎰32.求积分:.2x dx解:222211222xe t x x e dx =⎛⎫==== ⎪⎝⎭.(2211ln ln 222x x e c e C ⎛ '=++=++ ⎝33.求积分:.211x dx e +⎰解:⎰+dx e x 211⎰⎰----++-=+=)1(112112222xx x x e d e dx e e C e x ++-=-)1ln(212或者:⎰⎰+=+=xxx x x x de e e dx e e e 222222)1(121)1(.[]C e x de e de e xx x x x ++-=⎥⎦⎤⎢⎣⎡+-=⎰⎰)1ln(221111212222234.求积分:.()21xxe dx x +⎰解:()()()2211(1)11111xxx xxxe xe xe dx d x xe d d xe x x x x x ⎛⎫=+=-=-+ ⎪+++⎝⎭++⎰⎰⎰⎰.11x x xxe e e dx C x x=-+=+++⎰35.求积分:.211dx x x -+⎰解:2221141133111422dx dx dxx x x x ==-+⎛⎫⎤⎫+-+- ⎪⎪⎥⎝⎭⎭⎦⎰⎰⎰.211122112d x x C x ⎤⎤⎫⎫=--+⎪⎪⎥⎥⎭⎭⎦⎦⎤⎫+-⎪⎥⎭⎦⎰36.求积分:.2141dx x x -+⎰解:()2221111413231dx dx dxx x x ==-+---⎰⎰⎰.21ln ln 3661d C C ⎫==+=⎪⎭⎫-⎪⎭⎰37.求积分:.dx解:22111ln 1111u u du du C u u u u -⎛⎫⎛⎫=-=+ ⎪ ⎪--++⎝⎭⎝⎭⎰⎰.))ln 2ln12ln1Cor x C or x C ⎛⎫=+-+-+ ⎝38.求积分:.解:设,则,,x e u +=1)1ln(2-=u x du u udx 122-=222112111u du du u u u ⎛⎫==+- ⎪--+⎝⎭⎰⎰12ln ln 1u u C C u ⎛⎫-⎛⎫=++=+ ⎪+⎝⎭.)2ln1orx C -+39.求积分:.21443dx x x +-⎰解:.21121ln 443823x dx C x x x -=++-+⎰40.求积分:.23222x dx x x --+⎰解:222323*********(1)x x dx dx x x x x x ⎡⎤--=+⎢⎥-+-+++⎣⎦⎰⎰.()23ln 22arctan(1)2x x x C =-++++41.求积分:.2dx x⎰解:设,则,,t x sin 2=t x cos 242=-tdt dx cos 2=.()222cot csc 1cot arcsin 2x dx tdt t dt t t C C x x ==-=--+=--+⎰⎰⎰42.求积分:.2dx x ⎰解:设,则,,θtan 2=x 2sec θ=θθd dx 2sec 2=.()Cxx x x C x x x x x x C d d d dx x x ++-++=++++--+-=++---=⎪⎭⎫⎝⎛-+=-==+⎰⎰⎰⎰22222222222244ln 44ln 2141sin 1sin ln 21csc sin sin 11sin 1sin sin )sin 1(1sin cos 14θθθθθθθθθθθθ43.求积分:.⎰++dx x x 1)2(1解:消去根号,记,t =122122+=+=-=t x tdtdx t x.()222arctan 21tdtt C C t t ==+=++⎰44.求积分:.⎰-+dx x x x21解:记,3122222+=+=+=⇒-=t x tdtdx t x x t ()()⎰⎰⎰⎰++=⎪⎭⎫ ⎝⎛++=++=-+dt t t dt t t t dt t t dx x x x 21222112232212222.C x x C tt +-+-=++=22arctan 2222arctan2245.求积分:.⎰++dx x x x21解:记,1122222-=+=-=⇒+=t x tdtdx t x x t ()()⎰⎰⎰⎰-+=⎪⎭⎫ ⎝⎛-+=--=++dt t t dt t t t dt t t dx x x x 21222112212212222.C x x x C t t t +++-+++=++-+=2222ln 222222ln 22246.求积分:.2dx x -⎰解:记,2213222t t t x dx tdt x +-=⇒==-=,.2222312212623332t dx dt dt t dt x t t t t C C⎛⎫==+=+ ⎪----⎝⎭=+=+⎰⎰⎰⎰47.求积分:.解:记,232212122+=+=-=⇒+=t x tdtdx t x x t .Cxx C t t dt t t dt t dt t t dx x x ++-+=+-=+-=⎪⎭⎫ ⎝⎛+-=+=++⎰⎰⎰⎰321arctan 322123arctan3223162331232221222248.求积分:.⎰++dx x 3111解:记,dt t dx t x x t 23323,211=-=⇒+=.22233313331ln 1212142233(1)ln 142t dx dt t dt t t t C t t x C ⎛⎫==-+=-+++ ⎪++⎝⎭=+-+++⎰⎰49.求积分:.()⎰-dx x xx 2321arcsin 解:设:,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1lnln 1ln 12x xu u u udx d u du ud uu u x u u udu u u u u C C x x C ===-=-=-++==-++-+⎰⎰⎰⎰⎰50.求积分:.()()2213xdx xx ++⎰解:.()()()222222211111ln 4134313xx dx d x C x x x x x ⎛⎫+⎛⎫=-=+ ⎪ ⎪+++++⎝⎭⎝⎭⎰⎰51.假设某种商品的需求量,商品的总成本是,每1200080Q P =-2500050C Q =+单位商品需要纳税2元,试求使销售利润最大时商品单价(单位:元)和最大利润额.P 解:收入,28012000)8012000(P P P P PQ R -=-==总成本,P Q C 40006250005025000-=+=总利润,649000161608022-+-=--=P P Q C R L 边际利润,16160160+-='-'='P C R L 令,得,此时,有最大利润(元).0='L 101=P 0160<-=''L 167080=Max L 52.一商家销售某种商品的价格(万元/吨),为销售量,商品的成本函数x P 2.07-=x 是(万元).(1)若每销售1吨商品,政府征税t (万元),求商家获取最大利润时13-=x C 的销售量;(2)t 为何值时,政府税收最大?解:(1)收入,总成本,22.07)2.07(x x x x Px R -=-==13-=x C 税收,总利润,tx T =1)4(2.02+-+-=--=x t x T C R L 边际利润;令,得,此时,有最t x L -+-='44.00='L t x 5.210-=04.0<-=''L 大利润;(2),,令,得,所以当时政府税25.210t t tx T -==t T 510-='0='T 2=t 2=t 收最大.53.求积分:.()322arcsin 1x xdx x -⎰解:设,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1ln 1ln 1.2x xu u u udx d u du ud u u ux u u udu u u u u C Cx x C ===-=-=-++==++-+⎰⎰⎰⎰⎰54.已知的一个原函数为,求积分:.()f x ()1sin ln x x +()xf x dx '⎰解:∵,()1sin ()1sin ln cos ln xf x x x x x x'+=+=+⎡⎤⎣⎦∴()()()()xf x dx xdf x xf x f x dx'==-⎰⎰⎰.()1sin cos ln 1sin ln x x x x x x C =++-++55.设是三阶可导函数,,而.求.()f t ()0f t ''≠()()()x f t y tf t f t '=⎧⎨'=-⎩33d y dx解:由已知,,,,从而;()dx f t dt ''=()dy tf t dt ''=dy dy dt t dx dx dt ==1d dy dt dx ⎛⎫= ⎪⎝⎭,.()221d y d dy dx dt dx dt dx f t ⎛⎫== ⎪''⎝⎭()()()323321()d f t d y d d y f t dx dx dx d f t f t ⎡⎤⎢'''''⎛⎫⎣⎦===- ⎪'⎡⎤''⎡⎤⎝⎭⎣⎦⎣⎦56.设,求.()22tan()sec x yx x y tdt x y ---=≠⎰22d ydx解:对等式两边求导.得,()()()()222sec 1sec 1x y y x y y ''---=--整理,得,2sin ()y x y '=-()()()222sin cos 1d yx y x y y dx '∴=---.()()()21sin 2()cos sin 22y x y x y x y '=--=--57.已知,其中二阶可微,求.()y f x y =+()f u 22d ydx 解:,.()()1y f x y y '''=++()'1()f x y y f x y '+∴='-+对两边再求导,()()1y f x y y '''=++,()()()21y f x y y y f x y ''''''''=++++.()()()211y f x y y f x y '''++''∴='-+3"()[1'()]f x y f x y +=-+58.已知,求.0sin ()xtf x dt t p =-ò0()f t dt p ò解:由已知,,或sin ()xf x xp ¢=-sin ()()x f x xf x p ¢¢=-01cos sin ()()t t tt xdx f x dx xf x dxp ¢¢-==-òòò,()(0)()()()()()t tt f t f xf x f x dx f t tf t f x dx p p p =--+=-+òò取,有,t p =021cos ()()()f f f x dx pp p p p p =-=-+ò.()2f t dt p\=ò59.求积分:.121211x x x e x +æö÷ç+-÷ç÷çèøò解:1111122222111112222221111x x x x x x x x x x I x e dx e dx x e dx e dx xd e x x +++++æöæöæö÷ç÷÷çç÷=+-=+-=+ç÷÷çç÷÷÷ççç÷çèøèøèøòòòòò.21521232x x xee +==60.求极限:.2240sin lim x x xx®-解:224300sin sin sin lim lim x x x x x x x x x x x ®®-+-=×302sin cos 222lim x x xx x®-=.3022sin cos 2lim 8t t t t t ®-=2011cos lim 2t t t ®-=2202sin 12lim 2t t t ®=20sin 12lim 42t t t ®æö÷ç÷ç÷çç=çç÷ç÷÷çèø14=而,22223200000sin sin sin 1cos 1sin 1lim lim lim 2lim 2lim sin 3323x x x x x x x x x x x x x x x x x x x ®®®®®-+--=×==´=请问以上方法错在哪里?61.计算.x ò解:记,代入,得()221ln 1x u e u x u ==+=+原式()()222ln 1121u u uduu u ++=+ò()()22222ln 12ln 121u u du u u duu =+=+-+òò.()22ln 12222u u u arctgu c c =+-++=-++62.求积分:.()12ln 11x dx x++ò解:令,,,,11t x t -=+211x t +=+()221dt dx t =-+()()22222111111t t x t t +æö-ç+=+=ççè++代入,则()12ln 11x I dx x +=+ò()()()()21122200ln 1122ln 11211x t I dx dt x t t t ++==×++++òò()()1112220001120ln 2ln 1ln 1ln 211112ln 2ln 214t x dt dt dx t t xI dt t p-++==-+++\==+òòòò.112011ln 221I dx x \=×+òln 28p =63.求积分:1ò解:记212t x t dx tdt==-=-当时,;当时,,则0x =t 1=1x =0t =原式.110202212dt arctgtt p ===-ò64.设在内有意义,且(1)可导;(2)有反函数;(3)()F x ()0,+¥()x j .求.()()5322115F x t dt x x j æö÷ç÷=-ç÷ç÷èøò()F x 解:由(3)可知,时,,0x =()()010F t dt j =ò()01F =记,则为其反函数()x F y =()y x j =且或()()F y y j =()()F x xj =对(3)的式子两边求导,有,即.()()()23321123F x F x x x j ¢=- ()23321123x F x x x ¢×=-化简有()F x ¢=()23321132F x dx x x c æö\==-+ò而,故.()01F =()233211132F x x x =-+65.求积分:1ò解:11I -==òò.112-==òò12arcsin tp ==66.求积分:1ò解:令sin 02x t t p =<<.()22202200sin cos cos 1cos 1cos 4t d t I dt arctg t tt p pp p==-=-=++òò67.证明:.()4011212n tg xdx n np<<+ò证明:记,则.14201n nn t I tg xdx dt t p==+òò()11212n I n n<<+68.求积分:.244sin 1xxdx ep p --+ò解:.224404sin 11sin 111x x x x dx xdx e e e pp p ---æö÷ç=+÷ç÷çèø+++òò2402sin 8xdx p p -==ò69.设,且,则方程0在()[],f x C a b Î()0f x >()()1xxabf x dx dx f x +=òò(),a b内有几个根.解:记,,()()()1xxabF x f t dt dt f t =+òò()()()110abbaF a dt dt f t f t ==-<òò,而.;()()0baF b f x dx =>ò()0f x >[],x a b Î()()()10F x f x f x ¢=+>在内严格单调增加.因此,在内只有一个根.()F x \(),a b ()F x (),a b 70.在上连续可微,且满足.试证存在一点.使()f x [)0,1()()1212f xf x dx =ò()0,1x Î.()()0f f x x x ¢+=证:设.则,()()F x xf x =()()0000F f =´=.()()()()112211122F f xf x dx F x dx =´==´òò由于在上可微,由积分中值定理,必存在一点,使得()F x []0,110,2h æö÷çÎ÷ç÷çèø,在上,满足Rolle 定理的三个条件,固而存在()()()1122F F F h h =´´=[],1h ()F x ,使得.即.x (),1h Î()0,1Ì()0F x ¢=()()0f f x x x ¢+=71.设求,.()11010x x xe x f x e x ìïïïï¹ï=íï+ïïï=ïî()0f -¢()0f +¢解:由知()()()000limx x f x f x f x x x ®-¢=-()0f -¢()()11000lim lim lim 0011txt t x x x f x f e e x e e --®-¥®®-====-++()0f +¢()()11000lim lim lim 1011txt t x x xf x f e e x ee ++®+¥®®-====-++另,时0x ¹()1121111xx x e e x f x e æö÷ç÷-+ç÷ç÷èø¢=æö÷ç÷+ç÷ç÷èø;()0f -¢()1121011lim lim 1xx x x xe e xf x e --®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()121lim01u u u xu u e u e e =®-¥-+¾¾¾®=+()0f +¢()1121011lim lim 1xx x x xe e xf x e ++®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()21lim1u u u u e u e e ®+¥-+=+()()()11lim21u u u u u uu e u e e e e e ®+¥-++-=+()22lim21u uu uu e ue e e ®+¥-=+.()221lim lim 1221u u u u u u e u e e e ®+¥®+¥--===+72.设在上连续,且,证明:必存在,使()f x []0,n ()()()0f f n n N =Î()0,n x Î.()()1f f x x +=证明:记,则在上连续,因而有最大(小)值()()()1x f x f x j =+-()x j []0,1n -,,;()M m ()m x M j ££[]0,1x n Î-而,,…,;()()()010f f j =-()()()121f f j =-()()()11n f n f n j -=--从而,()()()1110n n k k k f k f k m M nnj --==éù+-ëû£==£åå故而,必存在,使,即()0,n x Î()0j x =.()()1f f x x +=73.证明:函数在上一致连续.3)(x x f =[]1,0证明:任取两点,,不妨设,则,考虑到1x []1,02∈x 21x x ≠03231≠-x x ()321232312132232132121323121)()(x x x x x x x x x x x x x x x f x f +--≤++-=-=-;()2323121323121)()(x x x x x x x f x f --≤-=-即;2133231321)()(x x x x x f x f -≤-=-所以,对于任意小的正数,取,当时,必有0>ε3εη=η<-21x x 成立,ε<-≤-=-321323121)()(x x x x x f x f 故而函数在上一致连续.3)(x x f =[]1,074.函数在上有定义,且(1),(2)对于在,)(x f ()∞,0)1()(lim 1f x f x =→0>∀x ,则(为常数).)()(2x f x f =C x f ≡)(C 证明:任取,记,,,…,()∞+∈,0x x x =1x x x ==124123xx x x ===,….则1211-==-n x x x n n 由可知,,即)()(2x f x f =)()(x f x f =;)()()()()(321n x f x f x f x f x f ===== 而注意到,故)0(1lim >=+∞→x x n n ;)0(1lim lim 121>==-+∞→+∞→x x x n n n n 而,从而)1()(lim 1f x f x =→;)1()lim ()(lim )(11f x f x f x f n x n x ===→→所以,(为常数).C x f ≡)()1(f C =75.求极限:.21n n n tan n lim ⎪⎭⎫ ⎝⎛∞→解:注意到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛n tan n ln n exp n tan n n 1122,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-⋅=11111112n tan n n tan n ln n tan n n exp 且,111111=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+∞→ntan n n tan n ln lim n 而22111tan lim 11tan lim n n n n n n n n -=⎪⎭⎫ ⎝⎛-∞→∞→30201tan lim1tan lim y y y y y y y y ny -=-=→→=.yy tan lim y y sec lim y y 31331220220==-=→→故.e n tan n lim n n 3121=⎪⎭⎫⎝⎛∞→76.已知,,求.12a =()11112n n n a a n a +⎛⎫=+> ⎪⎝⎭lim n n a →∞解:很明显,,,,,12a =0n a >11112n n n a a a +⎛⎫=+≥ ⎪⎝⎭()12111122n n n a n a a +⎛⎫=+≤>⎪⎝⎭所以,,单调有界,存在;1212n n a a a +≤≤≤≤= {}n a lim n n a →∞记,则由得,注意到,解得.lim n n a l →∞=1112n n n a a a +⎛⎫=+ ⎪⎝⎭112l l l ⎛⎫=+ ⎪⎝⎭21≤≤l 1l =77.设函数,求.xx y +=12()n y 解:,,11112++-=+=x x x x y 2111111⎪⎭⎫⎝⎛+-='⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-='x x x y ,()()322121111+-='⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=''x x y 由数学归纳法可得:.()()())1(1!11>+-=+n x n yn n n 78.设函数在区间上连续,在内可导,且,()x f []0,1()0,1()()010==f f .试证:121=⎪⎭⎫ ⎝⎛f (1)存在,使;1,12η⎛⎫∈⎪⎝⎭()ηη=f (2)对任意实数,必存在,使得.λ()0,ξη∈()()1f f ξλξξ'--=⎡⎤⎣⎦证明:(1)设,则在区间上连续,在内可导,且()()h x x f x =-()h x []0,1()0,1,,,则存在,,即()00h =()11h =11022h ⎛⎫=-< ⎪⎝⎭1,12η⎛⎫∈ ⎪⎝⎭()()0h f ηηη=-=.()ηη=f (2)记,在区间上连续,在内可导,且,()()xF x f x x e λ-=-⎡⎤⎣⎦[]0,1()0,1()00F =,则由定理,必存在,使得,即()0F η=Rolle ()0,ξη∈()0F ξ'=.()()1f f ξλξξ'--=⎡⎤⎣⎦79.判断级数的敛散性.11nn ¥=åò提示:.220001122n xdx n n>=®<òòò80.证明:当时,.0>x ()x x xx<+<+1ln 1证明:记,则在上连续因而可积.tt f +=11)()(t f []x 0由积分第一中值定理,比存在一点,使得:()x 0∈ξ,()()x f dt t x x⋅=+=+⎰ξ0111ln 即.()x x ξ+=+111ln 而,,x <<ξ011111<+<+ξx ∴,)0(11><+<+x x x x x ξ即.()x x x x<+<+1ln 181.求在条件下,()22212312323,,2334f x x x x x x x x =+++2221231x x x ++=()123,,f x x x 的最大值和最大值点.解:利用拉格朗日乘数法,设,()()22222212312323123,,,23341L x x x x x x x x x x x λλ=++++++-,则123112233322221234206240624010x x x L x x L x x x L x x x L x x x λλλλ'=+=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩.1231222312323(1)020121(2)05x x x x Maxf x x x x x Maxf x x λ≠⇒=-⇒==→=±⇒=⎧+=⎪=⇒⇒==⇒=⎨=⎪⎩82.设随机变量,问:当取何值时,落入区间的概率最大?()2~,X N μσσX ()1,3解:因为,()212~x X f x σ⎛⎫- ⎝⎭=,{}133113()X P X P g σσσσσσ∆⎧⎫⎛⎫⎛⎫<<=<<=Φ-Φ=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭利用微积分中求极值的方法,有223311()g σσσσσ⎛⎫⎛⎫⎛⎫'''=-Φ+Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;222222221311111422231111130e e σσσσ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎢⎥==-=⎢⎥⎣⎦令得,则;又,故.404ln 3σ=0σ=0()0g σ''<0σ=故当落入区间的概率最大.σ=X ()1,383.设,讨论方程的实数根.x e x f x λ-=)(0=-x e x λ解:(1)显然,当时,方程没有实根;0λ=0=-x e x λ(2)当时,方程有唯一实根;0λ<0=-x e xλ(3)当时,;曲线为下凸的,0>λ0)(,)(>=''-='x x e x f e x f λx e x f x λ-=)(呈∪型;由可知,驻点,极小值,0)(=-='λx e x f λln 0=x )ln 1()(0λλ-=x f 由此可知,当时,方程没有实根;e <<λ00=-x e x λ当,极小值,方程只有一个实根;e =λ0)ln 1()(0=-=λλxf 0=-x e x λλln 0=x 当,极小值,方程有2个实根.e >λ0)ln 1()(0<-=λλxf 0=-x e xλ84.函数的单调增减区间、凹凸区间与极值.()()()211f x x x =-+解:,()()()()()()()()()22111211131f x x x ,f x x x x x x '=-+=++-+=+-由得驻点:;()0f x '=113x ,=-由上可知,函数在与内单调递增,在内递减;极()f x ()1,-∞-13,⎛⎫+∞ ⎪⎝⎭113,⎛⎫- ⎪⎝⎭大值,极小值;()10f -=132327f ⎛⎫=-⎪⎝⎭由可得,因而函数曲线在内()()()211f x x x =-+()62f x x ''=+13,⎛⎫-∞- ⎪⎝⎭,函数曲线上凸;在内下凸,如下图.()0f x ''<13,⎛⎫-+∞ ⎪⎝⎭85.已知收益函数为,其中为价格,为需求量,求需求弹性时260R=Q Q -P Q 2d ε=-的边际收益.MR 解:因为,所以需求函数,边际收益函数为,且260R=Q Q -60P Q =-602R =Q '-需求弹性函数为;60601d P dQ Q Q dP Q Qε-==-=-当需求弹性时,,此时的边际收益.2d ε=-20Q =()20604020MR R '==-=86.设函数,求其渐近线.xx exe x f y 111)(+==解:首先考虑其水平渐近线和垂直渐近线:x()1,-∞-1-113,⎛⎫- ⎪⎝⎭1313,⎛⎫+∞ ⎪⎝⎭()f x '+0-0+()f x 增加极大值递减极小值递增因为,,,所以,1lim 1=∞→x x e +∞=+→x x e 100lim 0lim 100=-→xx e ;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e+-→+∞→+∞→⎛⎫==== ⎪++⎝⎭+;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e--→-∞→-∞→⎛⎫==== ⎪++⎝⎭+;110011limlim lim (1)(1)1t x t t x t t xxee t t e t e x e-→∞→→⎛⎫===∞=⎪++⎝⎭+故而没有水平渐近线和垂直渐近线;xx exex f y 111)(+==由于,()111limlim 21xx x xf x e a x e →∞→∞===+()1111111211lim lim lim 2211x x x x x x x x xe x e xe b fx x x e e →∞→∞→∞⎡⎤⎛⎫-+⎢⎥⎡⎤ ⎪⎡⎤⎝⎭⎢⎥⎢⎥=-=-=⎢⎥⎢⎢⎥⎣⎦++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,11011111122lim lim 2(1)41x t t x t xx xe e t t e x e→∞→-+-⎛⎫==== ⎪+⎝⎭+故而有斜渐近线:.xx exe x f y 111)(+==4121+=x y 87.求函数曲线的渐近线.()1ln 1x y e x=++解:显然,,为其垂直渐近线;()01lim ln 1x x e x→⎡⎤++=∞⎢⎥⎣⎦0x =,为其水平渐近线;()()1lim ln 1lim ln 10x xx x e e x →-∞→-∞⎡⎤++=+=⎢⎥⎣⎦0y =又,,,因而()()11ln 1ln 1x x y e x e x x -=++=+++()1lim ln 10x x e x -→+∞⎡⎤++=⎢⎥⎣⎦为其一条斜渐近线.y x=88.若,试证明:与具有相同的敛散性.lim (0)n n a a a →∞=≠∑∞=+-11n n n a a ∑∞=+-1111n nn a a 证明:问题为讨论两个正项级数的敛散性,可以用比较法的极限形式,因为不是具体的级数形式.记,则,111nn n a a V -=+0,0>>n n V U ==n n n V U ∞→limnn nn n a a a a 11lim11--=++∞→1.lim +∞→n n n a a )0(2≠a 可见,与具有相同的敛散性.∑∞=+-11n n n a a∑∞=+-1111n nn a a 89.讨论下列级数的敛散性:(1)2);(3);(4)1n ∞=11tan 2n n n ∞+=∑()3113nnn n n ∞=⎤+-⎣⎦∑()∑∞=+-+121211n n n n n(5);(6);(7).()()1111ln 1n n n ∞+=-+∑()211nn n n ∞=-+∑()()1111ln n n nn e e ∞+-=-+∑解:(1)当充分大时,比如时,有,从而n 3>n ()n n <+<1ln 1,而当时,,()n n n n <+<1ln 1∞→n 1→n n由极限的夹逼性定理知,当时,,所以,∞→n 1→1n ∞=(2)注意到,这是正项级数,当时,(等价无穷小),0→x x x ~tan 所以,而后者收敛,所以收敛.11tan ~2n n n π∞+=∑112n n n π∞+=∑11tan 2n nn π∞+=∑(3)利用柯西判别法:也是正项级数,,可见原()33113n+-=<→级数收敛;事实上,,,)())333111333nnnn nnnn nn ⎤+-+⎣⎦<<3113nnn n ∞=⎤⎣⎦∑都收敛,且同为正项级数,因而原级数收敛.3113nn n n ∞=⎤⎣⎦∑(4)因为,()()111111122221212112121→+⋅+⋅=+=+=+-+-nn nnnn n n n n n n nnnnnu 改用比较判别法:取,则21nv n =;()11lim 1lim lim 122121=⎪⎪⎭⎫⎝⎛+=+=+∞→++∞→∞→n n n n n nn n n n n nv u其中()(){}1122222lim lim exp lim 12ln ln 111n x n x x n x x x x n x ++→∞→+∞→+∞⎛⎫⎛⎫⎡⎤==+-+ ⎪ ⎪⎣⎦++⎝⎭⎝⎭,()()()()()22222222ln ln 1211exp lim exp lim exp lim 111111x x x x x x x x x x x x x →+∞→+∞→+∞⎧⎫⎧⎫⎪⎪-⎪⎪⎧⎫-++⎪⎪⎪⎪⎪⎪+===-=⎨⎬⎨⎬⎨⎬+⎪⎪⎪⎪⎪⎪-⎩⎭+⎪⎪⎪⎪+⎩⎭⎩⎭所以,与同时收敛.()∑∞=+-+121211n n n nn ∑∞=121n n(5)条件收敛.(6),发散.()()22111111nnn n n nn n n∞∞∞===-+-=+∑∑∑(7)=,()()1111ln n n n n e e ∞+-=-+∑()()12111ln 1n n n e n∞+=-+-∑,()222ln 1n n n e n e n e +-<-<()()()22222lim lim lim ln 1ln 1ln n x xn x x x n x x e e e e n e x e e -→∞→+∞→+∞==+-+-+==∞.()=+-=--+∞→x x x x xx e e e e e 22lim ()22221lim 1x x x x e e e →+∞+-x xx x ee e 2532106lim ++∞→另一方面,==,;()x x e e -+ln 1()xe x 21ln 1-++()x e xx x 1~1ln 11112-++()+∞→x 可见,原级数非绝对收敛;但是单调减少且趋于0,所以,原级数条件收敛.()x x e e -+ln 190.若正项级数与都发散,讨论与的敛散性.1nn v∞=∑1nn u∞=∑{}1max ,nnn u v ∞=∑{}1min ,nnn u v ∞=∑解:,,{}{}1max ,2n n n n n n u v u v u v =++-{}{}1min ,2n n n n n n u v u v u v =+--(1)显然,,或者,故而{}{}1max ,2n n n n n n n u v u v u v u =++-≥{}max ,n n n u v v ≥发散;{}1max ,nnn u v ∞=∑(2)而的敛散性未定.{}1min ,nnn u v ∞=∑例如,若,()222211111111123456212n n u n n ∞==+++++++++-∑ ,()222=11111111123456221n n v n n ∞=+++++++++-∑。
大学数学期末复习专题:微积分问题经典例题解析
大学数学期末复习专题:微积分问题经典例题解析微积分作为数学的一个重要分支,是大学数学课程中的核心内容之一。
在期末复中,重点理解和掌握微积分的经典例题是非常重要的。
本文将对一些微积分经典例题进行解析,帮助同学们加深对这些题目的理解。
1.定积分问题例题1:已知函数 $f(x) = 2x^3 - 3x^2 + 1$,求 $f(x)$ 在区间 $[0.2]$ 上的定积分 $\int_0^2 f(x) dx$。
解析通过积分的定义,我们可以得到:int_0^2 f(x) dx = F(2) - F(0)$$其中 $F(x)$ 是函数 $f(x)$ 的原函数。
根据函数的求导规则,求得 $F(x)$ 的表达式为:F(x) = \frac{1}{2}x^4 - x^3 + x + C$$将 $x$ 的取值代入 $F(x)$ 中,我们可得:F(2) - F(0) = (4 - 8 + 2 + C) - (0 - 0 + 0 + C) = -2$$所以,函数 $f(x)$ 在区间 $[0.2]$ 上的定积分为 $-2$。
例题2:已知函数 $f(x) = \sqrt{x+1}$,求 $f(x)$ 在区间 $[0.3]$ 上的定积分 $\int_0^3 f(x) dx$。
解析首先,我们可以直接计算函数 $f(x)$ 的原函数 $F(x)$ 如下:F(x) = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$$将 $x$ 的取值代入 $F(x)$,可得:F(3) - F(0) = \frac{2}{3}(4^{\frac{3}{2}} - 1)$$经过计算,得出定积分 $\int_0^3 f(x) dx$ 的值为$\frac{2}{3}(4^{\frac{3}{2}} - 1)$。
2.导数和极值问题例题3:已知函数 $f(x) = x^3 - 6x^2 + 9x + 2$,求函数 $f(x)$ 的极值点和极值。
大学微积分(常见问题与解答)
辅导答疑第一章微积分的基础和研究对象1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么?答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。
到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。
可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。
但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。
微积分这座大厦是从上往下施工建造起来的。
微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。
在以后的发展中,后继者才对逻辑细节作了逐一的修补。
重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。
微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。
而初等数学研究不变的数和形,属于常量数学的范畴。
2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处?答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。
函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。
《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。
第二章微积分的直接基础-极限1.问:阿基里斯追赶乌龟的悖论到底如何解决的?答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。
如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。
大学数学基础教程课后答案(微积分)
z c -a
-b a x
O
b y
(4) D = ( x, y, z ) x ≥ 0, y ≥ 0, z ≥ 0, x 2 + y 2 + z 2 < 1
{
}
z 1
O x 1
1
y
2
4.求下列各极限: (1) lim 1 − xy 1−0 = =1 2 2 x +y 0 +1 ln( x + e y ) = ln( 1 + e 0 ) = ln 2 1+ 0
4
t t t t z x = −2 sin 2( x − ), z t = sin 2( x − ), z xt = 2 cos 2( x − ), z tt = − cos 2( x − ) 2 2 2 2 t t 2 z tt + z xt = −2 cos 2( x − ) + 2 cos 2( x − ) = 0 . 2 2 y x 1 y 1 x e , z y = e x , dz = − 2 e x dx + e dy ; 2 x x x x
(1)为使函数表达式有意义,需 y − 2 x ≠ 0 ,所以在 y − 2 x = 0 处,函数间
(2)为使函数表达式有意义,需 x ≠ y ,所以在 x = y 处,函数间断。 习题 1—2 1.( 1) z =
x y + y x
∂z 1 y ∂z 1 x = − 2; = − . ∂x y x ∂y x y 2 (2) ∂z = y cos( xy) − 2 y cos( xy) sin( xy) = y[cos( xy) − sin( 2 xy)] ∂x ∂z = x cos( xy) − 2 x cos( xy) sin( xy) = x[cos( xy) − sin( 2 xy)] ∂y (3) ∂z = y (1 + xy) y −1 y = y 2 (1 + xy) y −1 , ∂x lnz= yln(1+xy),两边同时对 y 求偏导得 1 ∂z x = ln( 1 + xy) + y , z ∂y 1 + xy
大一微积分习题及答案
大一微积分习题及答案大一微积分习题及答案微积分是大一学生必修的一门重要课程,它是数学的一个分支,主要研究函数的变化规律和面积、体积等数学概念。
学习微积分的过程中,习题是不可或缺的一部分,通过解答习题可以巩固所学的知识,并提高解决问题的能力。
下面将介绍几个常见的微积分习题及其答案。
1. 求函数f(x) = x^2在区间[0, 2]上的定积分。
解答:根据定积分的定义,可以将区间[0, 2]划分为若干个小区间,然后计算每个小区间上函数值的乘积,并将其累加起来。
在本题中,我们可以将区间[0, 2]划分为n个小区间,每个小区间的长度为Δx = (2-0)/n。
然后,计算每个小区间上函数值的乘积,即f(xi) * Δx,其中xi为小区间的中点。
最后,将所有小区间上的乘积累加起来,即可得到定积分的近似值。
2. 求函数f(x) = sin(x)在区间[0, π/2]上的定积分。
解答:同样地,我们可以将区间[0, π/2]划分为n个小区间,每个小区间的长度为Δx = (π/2-0)/n。
然后,计算每个小区间上函数值的乘积,即f(xi) * Δx,其中xi为小区间的中点。
最后,将所有小区间上的乘积累加起来,即可得到定积分的近似值。
3. 求函数f(x) = 3x^2 + 2x - 1的不定积分。
解答:不定积分是定积分的逆运算,即求函数的原函数。
在本题中,我们可以使用求导的逆运算来求解不定积分。
首先,对函数f(x)进行求导,得到f'(x) = 6x + 2。
然后,我们可以通过反向求导的方法,找到f(x)的原函数。
在本题中,f(x)的原函数为F(x) = 2x^3 + x^2 - x + C,其中C为常数。
因此,函数f(x)的不定积分为F(x) + C。
通过以上几个习题的解答,我们可以看到微积分的应用范围是非常广泛的。
无论是求解定积分还是不定积分,都需要我们熟练掌握微积分的基本概念和计算方法。
在学习微积分的过程中,我们可以通过大量的习题来提高自己的解题能力,同时也可以加深对微积分知识的理解和掌握。
大学数学微积分求导习题及答案
大学数学微积分求导习题及答案导言微积分是数学中的一门重要学科,求导是微积分中最基础的概念之一。
掌握求导的方法和技巧对于解决数学和物理问题至关重要。
以下是一些大学数学微积分中常见的求导题及其答案,供同学们练和参考。
题与答案1. 求导基本法则题:求函数 $f(x) = 3x^2 + 5x - 2$ 的导数。
答案:根据求导的基本法则,对于多项式函数求导,可以按照如下步骤进行:1. 按指数降低幂次,得到 $f'(x) = 6x + 5$。
2. 链式法则题:求函数 $g(x) = \sin(2x)$ 的导数。
答案:根据链式法则,对于复合函数求导,可以按照如下步骤进行:1. 令 $u = 2x$,则 $g(x) = \sin(u)$。
2. 求出 $u$ 对 $x$ 的导数,得到 $\frac{du}{dx} = 2$。
3. 求出 $g(u)$ 对 $u$ 的导数,得到 $\frac{dg}{du} = \cos(u)$。
4. 根据链式法则,$g(x)$ 对 $x$ 的导数为 $\frac{dg}{dx} =\frac{dg}{du} \cdot \frac{du}{dx} = 2\cos(2x)$。
3. 三角函数的导数题:求函数 $h(x) = \cos^2(x)$ 的导数。
答案:根据求导的基本法则和三角函数的导数公式,对于幂函数求导可以按照如下步骤进行:1. 使用恒等式 $\cos^2(x) = \frac{1 + \cos(2x)}{2}$ 将 $h(x)$ 转化为两个简单函数的和。
2. 求出 $\cos(2x)$ 的导数,得到 $\frac{d}{dx}(\cos(2x)) = -2\sin(2x)$。
3. 求出 $\frac{1 + \cos(2x)}{2}$ 的导数,得到$\frac{1}{2}\left(0 - 2\sin(2x)\right) = -\sin(2x)$。
4. 因此,$h(x)$ 的导数为 $h'(x) = -\sin(2x)$。
微积分考试题目及答案
微积分考试题目及答案1. 求函数f(x) = x^2的导数。
解答:根据导数的定义,导数是函数在某一点处的变化率。
对于f(x) = x^2,我们可以使用求导法则来求导数。
根据幂函数的求导法则,当函数为x^n时,导数为nx^(n-1)。
应用该法则,我们有:f'(x) = 2x^(2-1)= 2x因此,函数f(x) = x^2的导数为2x。
2. 求函数f(x) = e^x的导数。
解答:根据指数函数的求导法则,当函数为e^x时,导数也为e^x。
因此,函数f(x) = e^x的导数为e^x。
3. 求函数f(x) = ln(x)的导数。
解答:根据对数函数的求导法则,当函数为ln(x)时,导数为1/x。
因此,函数f(x) = ln(x)的导数为1/x。
4. 求函数f(x) = sin(x)的导数。
解答:根据三角函数的求导法则,当函数为sin(x)时,导数为cos(x)。
因此,函数f(x) = sin(x)的导数为cos(x)。
5. 求函数f(x) = cos(x)的导数。
解答:根据三角函数的求导法则,当函数为cos(x)时,导数为-sin(x)。
因此,函数f(x) = cos(x)的导数为-sin(x)。
6. 求函数f(x) = 2x^3 - 5x^2 + 3x - 7的导数。
解答:应用求导法则,我们对每一项分别求导。
根据幂函数的求导法则,导数为nx^(n-1)。
所以:f'(x) = 2*3x^(3-1) - 5*2x^(2-1) + 3*1x^(1-1) + 0= 6x^2 - 10x + 3因此,函数f(x) = 2x^3 - 5x^2 + 3x - 7的导数为6x^2 - 10x + 3。
7. 求函数f(x) = x^2的不定积分。
解答:对于幂函数的不定积分,可以使用幂函数的积分法则来求解。
根据该法则,当函数为x^n时(n不等于-1),不定积分为(1/(n+1))x^(n+1) + C,其中C为常量。
最新大学微积分l知识点总结(一)【精选】
【第一部分】大学阶段准备知识
1、不等式:
ab ab
2 a2 b 2 2ab
a b c 3 abc 3
3
3
3
a b c 3abc
引申
a1
a1 a2 ... n
a2 ... an n a1a2...an an n n a1a 2...an
2 11 ab
ab ab
2
a2 b2 2
a
b
acosA bsinA x cosA sinA
x
x
2
2
由题, a
b 1,sinM a ,cosM b
x
x
x
x
x a2 b2 原式得证
4、数学归纳法
数学上证明与自然数 N 有关的命题的一种特殊方法, 它主要用来研究与正整 数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
例如:前 n 个奇数的总和是 n2,那么前 n 个偶数的总和是: n2+n 最简单和最常见的数学归纳法证明方法是证明当 n 属于所有正整数时一个 表达式成立,这种方法由下面两步组成: ①递推的基础:证明当 n=1 时表达式成立
sin - sin cos - cos sin
cos
cos cos - sin sin
cos - cos cos sin sin
tan
tan tan
1- tan tan
tan -
tan - tan 1 tan tan
和差化积公式:
O(∩ _ ∩ )O
sin sin 2sin
1
1
cos -
2
2
sin - sin 2cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学微积分(常见问题与解答)辅导答疑第一章微积分的基础和研究对象1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么?答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。
到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。
可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。
但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。
微积分这座大厦是从上往下施工建造起来的。
微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。
在以后的发展中,后继者才对逻辑细节作了逐一的修补。
重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。
微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。
而初等数学研究不变的数和形,属于常量数学的范畴。
2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处?答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。
函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。
《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。
第二章微积分的直接基础-极限1.问:阿基里斯追赶乌龟的悖论到底如何解决的?答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。
如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。
芝诺的说法中有合理的成分:阿基里斯追赶乌龟的过程确实是一个无穷的过程--一个无穷的位置变化过程。
芝诺的说法中的错误在于:他把阿基里斯追赶乌龟的无穷的位置变化过程与无穷的时间变化过程混为一谈了。
芝诺的结论"阿基里斯永远也追不上乌龟"中的"永远"一词,指的当然是"时间"。
条件中谈的是"位置"的变化,结论却谈"时间",这是芝诺悖论偷梁换柱之所在。
事实上,阿基里斯追赶乌龟的悖论的解决借助于高等数学的一部分重要内容---无穷级数,在那里,我们将会看到,尽管是无穷多个数相加,却可以等于一个有限的数。
虽然芝诺将追赶时间一段一段叙述,造成无穷多个时间的迷惑,实际上,这无穷多个时间的和是个有限的数。
从而,阿基里斯在有限的时间内就可以追赶上乌龟了,这与我们的生活常识一致。
2.问:极限的定性描述和定量描述有何不同之处?答:极限的定性描述是用所谓的描述性语言,例如,“无限趋近”“越来越靠近”这些都只是一种模糊的描述,一种直观的想象,缺乏精确性;为避免直观想象可能带来的错误判断,作为微积分工具的极限概念,必须有定量描述的精确定义。
在R.克朗的名著《数学是什么》一书中,数学大师也提到:定量描述极限的语言接受起来有一定的心理上的困难,但是文科学生要通过这种定量定义,理解、领悟、欣赏数学语言区别于自然语言的简洁、一义、科学、严谨的方面。
3.问:如何理解连续的概念?连续函数有什么应用?答:自然界中连续变化的现象是很多的,例如,我们身边的容易理解例子:空气的流动,植物的生长,温度的变化,这种种现象反映到数学的函数关系上,就是函数的连续性。
实际遇到的情形是:当自变量的改变非常小时,相应的函数值改变也非常小。
例如,气温作为时间的函数,就有这种性质。
一天之中的温差可能很大,但考虑时间间隔很短的瞬间,温度的改变将是很微小的。
连续函数是大学数学中着重要讨论的一类重要函数。
一方面,连续函数是人们在科学实验,生产实践中经常碰到的一类函数(例如,初等函数在其有定义的区间内均为连续的);另一方面,在数学上,人们经常用连续函数去逼近非连续函数,进而研究非连续函数的性质和近似计算函数值。
第三章变量变化速度与局部改变量估值问题-导数与微分1. 问:导数是如何引进的?举例说明导数的实际运用。
答:在生产实践和科学实验中,常常需要研究函数相对于自变量变化的快慢程度。
例如,要预报人造地球卫星飞过各大城市的时间,就要知道卫星的飞行速度,要研究轴和梁的弯曲变形问题,就必须会求曲线的切线的斜率,等等。
求曲线的切线斜率、求速度的问题,叫做求变化率的问题,数学上称为求导数。
例如,我们可以应用导数的概念,证明旋转抛物面的光学性质。
(抛物线绕它的对称轴旋转所形成的曲面就是旋转抛物面。
放在焦点处的光源所发出的光,经过旋转抛物面各点反射之后就形成平行光束,人们利用这一性质制造需要发射平行光的灯具,例如,探照灯、汽车前灯等)。
2. 问:如何理解微分的概念?答:可以从多个角度和方面来理解和加深对微分的认识。
1)从几何角度考,微分dx x f dy )(0'=正好是切线函数的增量;2)从代数角度看,微分dx x f dy )(0'=是增量)()(00x f x x f y -∆+=∆的线性主要部分,二者之差是一个高阶无穷小量)(x o ∆;3)有了微分的概念以后,可以把导数的记号dxdy 解释为dy 与dx 之商:)(0x f dxdy '=,故导数也称为微商; 4)可以利用微分做近似计算和误差估计(dy y ≈∆),但精度受限。
第四章 导数的应用问题-洛必达法则、函数的性质和图像1. 问:微分学的中值定理的作用?如何运用中值定理解决问题答:微分中值定理是由函数的局部性质来研究函数的整体性质的桥梁,其应用十分广泛。
在具体处理问题时,注意首先确定函数以及讨论的区间,判断函数在所讨论的区间上是否满足中值定理的条件。
人们常用中值定理证明某些不等式或者涉及函数和它的一阶导数的问题。
补充一点:中值定理有三种常用的形式:Rolle 中值定理,Lagrange 中值定理,Cauchy 中值定理,这三种形式一个比一个适用范围要广。
但最常用的还是Lagrange 中值定理,故人们一般提到微分中值定理时均指Lagrange 中值定理。
2. 问:应用计算不定式极限的一般方法-洛必达法则时,有什么注意事项? 答:1)洛必达法则可以处理7种函数不定式极限,十分好用;但是在)()(x g x f ''极限不存在的情况下,洛必达法则失效;故,不能从)()(x g x f ''极限不存在推出)()(x g x f 极限不存在; 2)尽管洛必达法则只针对未定式是函数的极限形式,但对于未定式是数列的极限形式,可以通过归结原则将数列极限转化为函数极限,再利用洛必达法则。
(注意:没有数列极限的洛必达法则)3. 问:利用导数研究函数的图像和进行函数图像的绘制与初等数学中的描点作图的区别是什么?答:中学《代数》应用描点法绘制了一些简单函数的图像。
但是应用描点法得到的函数是比较粗糙的,这是因为,描点法所选取的点不可能很多,而一些关键的点,如极值点、拐点等可能被漏掉;曲线的单调性、描述其弯曲性质的凸性等一些重要性态常常得不到确切的反映。
因此,用描点法所描绘的函数图象常与真实的函数图象相差很多。
现在,有了微积分这个工具,我们已经掌握了应用导数讨论函数单调性、极值、凸性、拐点、渐近线等的方法,再结合前面所讲的周期性、奇偶性等知识就能比较准确地描绘函数的图像。
注意,利用微积分的方法作图,也具有一定的局限性,更何况许多实际问题所得到的函数不一定可以用公式表示的,而只是测得一系列数据,因而数值计算适当地多算出一些点,然后描点作图,仍不失为一种有效的作图方法。
随着电子计算机的发展和应用的普及,用描点作图就更方便、更精确了。
第五章 微积分的逆运算问题-不定积分1. 问:不定积分与原函数是同一个概念吗?答:不是同一个概念。
前者是一个集合,是所有原函数构成的集合,后者是集合中的一个元素。
2.问:不定积分运算与微分运算(求导运算)有何关系?答:由不定积分的定义,有如下关系式:d dx f x dx f x [()]()⎰= 或 d f x dx f x dx [()]()=⎰'=+⎰F x dx F x C ()() 或 dF x F x C ()()=+⎰由此可见,微分运算 (记号为d ) 与不定积分运算 (记号为⎰)是互逆的。
当记号合在一起时,或者抵消,或者抵消后差一个常数。
3. 问:第一类换元积分法与第二类换元积分法有何不同?答:第一类换元积分法:若 连续可导, 则C x F dx x x f +='⎰))(()())((ϕϕϕ。
第二类换元积分法:设 是单调的可微函数,并且 又具有原函数. 则有换元公式不同在于:前者是作变量代换t x =)(ϕ,后者是作变量代换)(t x ϕ=。
在求不定积分时,先考虑用第一换元积分法,即凑微分法,如果用此法失效,再考虑用第二换元积分法。
4. 问:在分部积分法如何选取)(),(x v x u ?答:在分部积分公式⎰⎰-=vdu uv udv 中,一般来说,选取)(),(x v x u 的原则就是:使得dx x u x v )()(⎰'比dx x v x u )()(⎰'简单,具体说有2个原则:(1)积分容易者选为dv ;(2)求导简单者选为u ,在二者不可兼得的情况下,首先要保证的是前者。
在分部积分法中常用凑微分的形式将dx x v )('凑成)(x dv ,因此应熟记常见的凑微分形式。
5.问:是不是所有的初等函数都可以求出其不定积分?答:不是。
如dx x dx xx x dx ⎰⎰⎰2sin ,sin ,ln 都“积不出来”,它们都不能用初等函数表示。
第六章 求总量的问题-定积分1.问:定积分与不定积分有何区别?答:定积分和不定积分有很大的不同,不定积分⎰dx x f )(表示函数)(x f 的所有原函数构成的集合,而⎰ba dx x f )(是一个常数。
并且定积分有明显的几何意义。
但在计算方法上二者是相通的,各种求不定积分的方法都适用于定积分,结合牛顿-莱布尼兹公式便可以求得定积分。
2.问:积分中值定理与微分中值定理有何区别?答:积分中值定理:如果函数)(x f 在闭区间],[b a 上连续,则在积分区间],[b a 上至少存在一点ξ,使下式成立:⎰-⋅=ba ab f dx x f )()()(ξ。