《基本不等式》说课稿

合集下载

基本不等式说课稿

基本不等式说课稿

基本不等式说课稿一、说教材本文是高中数学课程中关于基本不等式的重要内容。

基本不等式不仅是解决数学问题的重要工具,而且在实际生活中也有着广泛的应用。

它对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

本文在课文中的作用和地位如下:1. 本文是对之前所学不等式的巩固和拓展。

通过基本不等式,学生可以更深入地理解不等式的性质和运用。

2. 本文为后续学习其他高级不等式和数学分析等内容奠定了基础。

3. 本文与其他数学知识(如代数、几何等)相互渗透,有助于提高学生的综合素质。

主要内容:1. 基本不等式的定义和性质。

2. 基本不等式的证明方法。

3. 基本不等式在实际问题中的应用。

4. 基本不等式的推广和拓展。

二、说教学目标学习本课需要达到以下教学目标:1. 知识与技能:(1)理解基本不等式的定义和性质。

(2)掌握基本不等式的证明方法。

(3)能够运用基本不等式解决实际问题。

2. 过程与方法:(1)通过自主探究、合作交流,培养学生的逻辑思维能力和团队协作能力。

(2)通过解决实际问题,提高学生将数学知识应用于实际情境的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和热情。

(2)引导学生认识到数学知识在实际生活中的重要性。

三、说教学重难点1. 教学重点:(1)基本不等式的定义和性质。

(2)基本不等式的证明方法。

(3)基本不等式在实际问题中的应用。

2. 教学难点:(1)基本不等式的证明过程。

(2)如何引导学生将基本不等式应用于实际问题。

在教学中,要注意对重点内容的讲解和练习,同时针对难点进行有针对性的指导,帮助学生克服困难,提高学习效果。

四、说教法为了提高教学效果,我采用了以下几种教学方法,并突出了自己与其他教师教法的不同之处:1. 启发法:在讲解基本不等式的定义和性质时,我通过设计一系列具有启发性的问题,引导学生主动思考。

例如,我会提问:“为什么基本不等式在数学中如此重要?”“它与其他不等式有何联系和区别?”通过这些问题,激发学生的好奇心和求知欲。

基本不等式说课稿

基本不等式说课稿

基本不等式说课稿今天我说课的内容是《基本不等式》。

下面主要从教材,学情,教学目标,教法学法,教学过程,教学反思等几个方面进行说课。

一、教材和学情分析:(一)本节课的地位、作用和意义本节课选自普遍高中课程(人民教育出版社出版高中数学A 版)必修5,第3章第4节《基本不等式》。

基本不等式又称为均值不等式,是后面应用基本不等式求最大(小)值的基础,在高中数学中有着比较重要的地位,在现实生活中有比较广的实际应用。

(二)学情分析学生在初中学习了完全平方公式、初步认识了不等式,同时,在本章前面学习了比较大小、一元二次不等式解法和简单线性规划等,这些给本节课提供了坚实的基础;(三)教学目标通过解读课标和分析教材以及对学生现状的分析确定以下教学目标:1、知识与技能目标(1)学会推导基本不等式:ab b a ≥+2 ; (2)理解 ab b a ≥+2的几何意义; (3)会利用基本不等式求最值。

2、过程方法与能力目标(1)探索并了解均值不等式的形成和证明过程;(2)体会均值不等式的证明方法和简单应用。

3、情感、态度、价值观目标(1)通过探索均值不等式的证明过程,培养探索、研究精神;(2)通过对均值不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。

(四)重点难点依据教材的上述地位和作用,我确定如下教学重难点:重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以应用数形结合的思想理解基本不等式为重点之一,并从不同角度探索基本不等式abba≥+2证明过程;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式成立的条件及应用也是教学重点。

突出重点的方法:我将采用分组讨论,多媒体展示、引导启发法来突出基本不等式的推导。

难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,本节课的难点是基本不等式成立的条件以及应用基本不等式求最大值和最小值。

基本不等式及其应用说课稿

基本不等式及其应用说课稿

基本不等式及其应用说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“基本不等式及其应用”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“基本不等式”是高中数学必修 5 第三章第四节的内容。

它是在学生学习了不等式的性质、一元二次不等式等知识的基础上,对不等式知识的进一步深入和拓展。

基本不等式不仅是证明不等式和求最值的重要工具,也为后续学习圆锥曲线、导数等知识奠定了基础。

本节课的教材内容注重从实际问题出发,通过数学建模的过程,引导学生发现和理解基本不等式,体现了数学知识与实际生活的紧密联系,有助于培养学生的数学应用意识和创新能力。

二、学情分析授课对象是高二年级的学生,他们已经具备了一定的逻辑思维能力和抽象概括能力,但对于数学知识的应用和综合分析能力还有待提高。

在之前的学习中,学生已经掌握了不等式的基本性质和简单的不等式求解方法,但对于基本不等式的理解和应用可能会存在一定的困难。

此外,高二学生在学习上具有较强的好奇心和求知欲,喜欢通过自主探究和合作交流来获取知识。

因此,在教学过程中,我将注重引导学生积极参与,激发学生的学习兴趣,培养学生的自主学习能力和合作精神。

三、教学目标基于对教材和学情的分析,我确定了以下教学目标:1、知识与技能目标(1)理解基本不等式的内容及其证明方法。

(2)掌握运用基本不等式求最值的方法和条件。

2、过程与方法目标(1)通过对基本不等式的探究过程,培养学生观察、分析、归纳、推理的能力。

(2)通过运用基本不等式解决实际问题,提高学生的数学建模能力和应用意识。

3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。

(2)培养学生严谨的治学态度和勇于探索的精神。

四、教学重难点1、教学重点(1)基本不等式的内容和证明。

(2)运用基本不等式求最值的方法和条件。

2、教学难点(1)基本不等式的几何意义的理解。

《基本不等式》 说课稿

《基本不等式》 说课稿

《基本不等式》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《基本不等式》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析1、教材的地位和作用“基本不等式”是高中数学必修 5 第三章第四节的内容。

它是在学习了不等式的性质、一元二次不等式的解法等知识的基础上进行的。

基本不等式不仅是不等式中的重要内容,也是解决最值问题的有力工具,在数学和实际生活中都有着广泛的应用。

2、教材的内容和结构教材首先通过几何图形引入基本不等式,让学生直观感受其几何意义,然后从代数角度进行推导和证明,最后通过例题和练习让学生掌握其应用。

二、学情分析1、学生已有的知识基础学生在初中已经学习了不等式的基本性质,在高中阶段又学习了一元二次不等式的解法,具备了一定的不等式知识基础。

2、学生的认知水平和能力高中生的思维已经从形象思维向抽象思维过渡,但对于抽象的数学概念和定理的理解还存在一定的困难,需要通过具体的实例和直观的图形来帮助他们理解。

3、学生可能遇到的困难在应用基本不等式求最值时,学生容易忽略不等式成立的条件,或者不能正确变形和构造式子来使用基本不等式。

三、教学目标1、知识与技能目标(1)理解基本不等式的内容和证明方法。

(2)掌握基本不等式的应用,能够用基本不等式求最值。

2、过程与方法目标(1)通过对基本不等式的推导和证明,培养学生的逻辑推理能力。

(2)通过对基本不等式的应用,提高学生分析问题和解决问题的能力。

3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。

(2)培养学生严谨的治学态度和勇于探索的精神。

四、教学重难点1、教学重点(1)基本不等式的内容和证明。

(2)基本不等式的应用。

2、教学难点(1)基本不等式的推导和证明。

(2)应用基本不等式求最值时,对不等式成立条件的把握和式子的变形构造。

五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探索,激发学生的学习兴趣和主动性。

基本不等式说课稿(精选9篇)

基本不等式说课稿(精选9篇)

基本不等式说课稿基本不等式说课稿(精选9篇)作为一名辛苦耕耘的教育工作者,有必要进行细致的说课稿准备工作,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。

那么说课稿应该怎么写才合适呢?以下是小编整理的基本不等式说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

基本不等式说课稿篇1各位评委老师,上午好!我是来应聘高中数学的一号考生,我今天说课的题目是《基本不等式》,下面我将从说教材,说学情,说教法,说学法,说教学过程,说板书设计六个方面展开我的说课,下面开始我的说课!一、说教材。

1教材的地位和作用:《基本不等式》是人教版高中数学必修五第三章第四节的内容。

本节主要内容是基本不等式的证明和简单应用。

它是在学完不等式性质,不等式的解法及线性规划等知识的基础上,对不等式的进一步研究,在不等式的证明和求最值的过程中有着广泛的应用。

2教学目标:(1)知识与技能:学生能写出基本不等式,会应用基本不等式解决相关问题。

(2)过程与方法:学生通过观察图形,推导、证明等过程,培养观察、分析、归纳、总结的能力。

(3)情感态度与价值观:学生领略数学的实际应用价值,感受数学学习的乐趣。

3教学重难点:重点:理解基本不等式的本质并会解决实际问题。

难点:基本不等式几何意义的理解。

二、说学情。

为了更好地实现教学目标,我将对学生情况进行一下简要分析。

对于高一年级的学生来说,他们对不等式的知识有了一定的了解,但对基本不等式的理解运用能力不足。

这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。

这都将成为我组织教学的考虑因素。

三、说教法。

科学合理的教学方法能使教学效果事半功倍,达到教育学的和谐完美与统一。

根据本节课的特点并结合新课改的要求,在本节课中,我将采用讲授法、演示法、引导启发法等教学方法。

四、说学法。

教师的教是为了学生更好地学,结合本节内容,我将学法确定为自主探究法、分析归纳法。

充分调动学生的眼、手、脑等多种感官参与学习,既培养了他们的学习兴趣,又使他们感受到了学习的乐趣。

基本不等式说课稿

基本不等式说课稿

《基本不等式》说课稿一、 教材分析1、本节课的地位、作用和意义基本不等式又称为均值不等式,选自人教社普通高中课程实验标准教科书必修5 ,第3章第4节内容。

是在学完不等式性质的基础上对不等式的进一步研究,同时是为了以后学习(选修4-5)《不等式的选讲》中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用。

“基本不等式”在不等式的证明和求最值过程上有着广泛的应用,求最值是高考的热点。

它在科学研究,经济管理,工程设计都有广泛的作用。

2、教学目标分析(1)、知识与技能目标①学会推导基本不等式: 。

②理解它的几何意义。

③掌握定理中取等号的条件。

(2)、过程方法与能力目标①探索并了解均值不等式的证明过程。

②体会均值不等式的证明方法。

(3)、情感、态度、价值观目标①通过探索均值不等式的证明过程,培养探索、研究精神。

②通过对均值不等式成立条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。

3、本节课的教学重点和难点重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导证明是本节课的重点之一;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因此,均值不等式以及其成立的条件也是教学重点。

突出重点的方法:我将采用①用分组讨论,多媒体展示、引导启发法来突出均值不等式的推导;②应用数形结合的思想理解不等式,并从不同角度探索不等式ab b a 2≥+的证明过程;③用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学来突出均值不等式及其成立的条件。

难点:用基本不等式求最大最小值;很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点。

突破难点的方法:找一些有代表性的例题来说明如何取最大最小值;仍然用重复法在课堂的每一环节(以各种方式进行强调均值不等式和其成立的条件),变式教学等等来突破均值不等式成立的条件这个难点。

《基本不等式》 说课稿

《基本不等式》 说课稿

《基本不等式》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《基本不等式》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“基本不等式”是高中数学必修 5 第三章“不等式”中的重要内容。

它不仅是证明不等式和求最值的重要工具,还蕴含着丰富的数学思想和方法。

本节课在教材中的地位和作用十分重要。

从知识体系上看,它是在学生已经掌握了不等式的性质和简单不等式的解法之后,对不等式知识的进一步深入研究。

从数学思想方法上看,它体现了从特殊到一般、从具体到抽象的数学思维过程,以及数形结合、转化与化归的数学思想。

二、学情分析学生在之前的学习中已经具备了一定的不等式知识和代数运算能力,但对于抽象的数学概念和数学思想的理解还存在一定的困难。

同时,学生在观察、分析和解决问题的能力上也有待进一步提高。

在本节课的教学中,要充分考虑学生的认知水平和思维特点,通过具体的实例和直观的图形,引导学生逐步理解和掌握基本不等式的本质。

三、教学目标基于对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解基本不等式的内容及其证明过程。

(2)掌握基本不等式的应用,能够运用基本不等式求最值。

2、过程与方法目标(1)通过对基本不等式的探究过程,培养学生观察、分析、归纳和推理的能力。

(2)引导学生体会数学中的转化与化归思想,提高学生解决问题的能力。

3、情感态度与价值观目标(1)通过数学活动,激发学生的学习兴趣,培养学生的创新意识和合作精神。

(2)让学生在解决问题的过程中,感受数学的严谨性和实用性,培养学生的数学素养。

四、教学重难点1、教学重点(1)基本不等式的内容及其证明。

(2)运用基本不等式求最值的方法。

2、教学难点(1)基本不等式的证明。

(2)运用基本不等式求最值时,等号成立的条件。

五、教法与学法1、教法为了实现教学目标,突出重点,突破难点,我将采用以下教学方法:(1)启发式教学法:通过设置问题,引导学生思考,激发学生的学习积极性和主动性。

基本不等式说课稿

基本不等式说课稿

基本不等式说课稿同学们好,今天我给大家讲解一下基本不等式的概念和应用方法。

首先,我们先来了解一下什么是基本不等式。

基本不等式指的是形如a≥b的不等式,其中a和b是实数。

它与我们熟知的基本方程不同,方程要求等号成立,而不等式则允许不等号成立。

对于基本不等式,我们有一些重要的性质和运算规则。

首先是加法性质,即如果在不等式两边同加上(或减去)相同的数,不等式的方向不变。

例如,对于不等式a≥b,如果我们在两边同时加上一个正数x,那么得到的不等式a+x≥b+x仍然成立。

类似地,如果我们在两边同时减去一个正数x,也可以得到相同的结果。

另外,如果我们在两边同时加上一个负数x,或者减去一个负数x,那么不等式的方向会发生改变。

这是因为负数的绝对值大于它本身,所以加上负数相当于减去绝对值,而减去负数则相当于加上绝对值。

其次是乘法性质,即如果在不等式两边同乘(或除以)相同的正数,不等式的方向不变。

例如,对于不等式a≥b,如果我们在两边同时乘以一个正数x,那么得到的不等式ax≥bx仍然成立。

同样地,如果我们在两边同时除以一个正数x,也可以得到相同的结果。

但是需要注意的是,如果我们在两边同时乘以(或除以)一个负数,不等式的方向会发生改变。

这是因为负数的平方大于它本身,所以乘以负数会改变不等式的方向。

接下来,让我们来看一些基本不等式的应用方法。

首先是解不等式。

解不等式的方法与解方程的方法有些相似,但需要特别注意不等式的方向。

例如,对于不等式3x+2≥5,我们将2移到左边得到3x≥3,然后除以3得到x≥1。

所以不等式的解集是x≥1。

类似地,对于不等式2x-4<10,我们将4移到右边得到2x<14,然后除以2得到x<7。

所以不等式的解集是x<7。

其次是证明不等式。

证明不等式的方法比较灵活,可以利用之前介绍的不等式性质和运算规则。

例如,我们要证明一个关于实数x的不等式3x+2≥5x-1成立。

首先,我们可以将不等式化简为2x≥-3,然后除以2得到x≥-3/2。

基本不等式教案 说课稿 教案

基本不等式教案  说课稿  教案

2a b+≤授课类型:习题课 【教学目标】12a b+≤;会用此不等式证明不等式,会应用此不等式求某些函数的最值,能够解决一些简单的实际问题;22a b+≤,并会用此定理求某些函数的最大、最小值。

31≥21[思维切入]因为m>0,所以可把24m和6m 分别看作基本不等式中的a 和b, 直接利用基本不等式。

[证明]因为 m>0,,由基本不等式得246221224m m +≥==⨯= 当且仅当24m=6m ,即m=2时,取等号。

规律技巧总结 注意:m>0这一前提条件和246m m⨯=144为定值的前提条件。

3.随堂练习1[思维拓展1] 已知a,b,c,d 都是正数,求证()()4ab cd ac bd abcd ++≥.[思维拓展2] 求证22222()()()a b c d ac bd ++≥+. 例2 求证:473a a +≥-. [思维切入] 由于不等式左边含有字母a,右边无字母,直接使用基本不等式,无法约掉字母a,而左边44(3)333a a a a +=+-+--.这样变形后,在用基本不等式即可得证.[证明]443(3)333733a a a +=+-+≥==-- 当且仅当43a -=a-3即a=5时,等号成立.规律技巧总结 通过加减项的方法配凑成基本不等式的形式.[f 当且仅当x 即x=-2时, x 取得最大-12.规律技巧总结 利用基本不等式求最值时,个项必须为正数,若为负数,则添负号变正.随堂练习2[思维拓展1] 求9()45f x x x =+-(x>5)的最小值. [思维拓展2] 若x>0,y>0,且281x y+=,求xy 的最小值.4.课时小结2a b+≤证明不等式和求函数的最大、最小值。

5.评价设计1.证明:22222a b a b ++≥+ 2.若1->x ,则x 为何值时11++x x 有最小值,最小值为几? 课题: 《不等式》复习小结授课类型:复习课 【教学目标】1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小; 3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系; 4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题; 5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。

基本不等式优秀说课稿(定稿)

基本不等式优秀说课稿(定稿)

基本不等式优秀说课稿(定稿)一、教学目标1.了解基本不等式的概念和性质;2.掌握基本不等式的解法及其应用;3.能够在实际问题中运用基本不等式求解问题。

二、教学内容分析1.不等式概念在数学中,不等式是指两个数、两个量或两个式子之间用“≤”、“≥”或“<”、“>”连接而成的关系式。

与等式不同的是,不等式中的等号可以被替换为“≠”或删去。

2.基本不等式的性质基本不等式是指当a>0时,有$$(1+a)^n \geqslant 1+na$$其中n为任意正整数。

根据不等式的推导过程,可知基本不等式的性质如下:(1)基本不等式成立的条件是a>0且n为正整数;(2)基本不等式中等号成立的条件是a=0或n=1。

3.基本不等式的解法基本不等式的解法可以有多种方法,以下是几种常见的方法:(1)直接证明法(2)数学归纳法(3)对数函数法(4)二项式定理法方法的选择要根据具体情况而定,本教学重点介绍直接证明法和数学归纳法。

4.基本不等式的应用基本不等式在实际问题中有着广泛的应用,如金融、建筑、贸易、科学等领域。

本教学将以实际问题为例,让学生体验基本不等式的魅力。

三、教学重难点1.基本不等式的推导过程和性质;2.基本不等式的解法及其应用;3.实际问题中基本不等式的应用。

四、教学过程设计1.引入(1)导入新课:利用图示引出不等式的概念,让学生通过比较大小体验不等式的内容和特点。

(2)探究问题:给出两个数,让学生用“≤”、“≥”或“<”、“>”的方式表示出来,引导学生思考不等式的使用场景。

(3)概念阐述:根据学生探究出的不等式特点,引出不等式的概念,并简要介绍符号的含义。

2.讲授(1)基本不等式的推导过程与性质:通过证明基本不等式的推导过程,引导学生理解基本不等式的性质与特点。

(2)基本不等式的解法:介绍基本不等式的解法,并结合实例进行讲解,让学生了解各种解法的优缺点。

(3)基本不等式的应用:介绍基本不等式在实际问题中的应用,并通过多个例子让学生了解其中的原理与方法。

基本不等式说课稿3篇

基本不等式说课稿3篇

基本不等式说课稿3篇基本不等式说课稿(一)各位评委老师,上午好,我选择的课题是必修5第三章第四节《基本不等式》第一课时。

关于本课的设计,我将从以下五个方面向各位评委老师汇报。

一、教材分析◆本节教材的地位和作用◆教学目标◆教学重点、难点1、本节教材的地位和作用"基本不等式" 是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。

它是在学完"不等式的性质"、"不等式的解法"及"线性规划"的基础上对不等式的进一步研究。

在不等式的证明和求最值过程中有着广泛的应用。

求最值又是高考的热点。

同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、教学目标(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点根据课程标准制定如下的教学重点、难点重点:应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、教法说明本节课借助几何画板,使用多媒体辅助进行直观演示。

采用启发式教学法创设问题情景,激发学生开始尝试活动。

运用生活中的实际例子,让学生享受解决实际问题的乐趣。

课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。

通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。

让学生爱学、乐学、会学、学会。

三、学法指导为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。

因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

北师大版必修5基本不等式说课稿

北师大版必修5基本不等式说课稿

《基本不等式2a b+≤》说课稿 一、 教材分析(一)本节教材的地位与作用本节课是高中数学必修5第三章《不等式》的第四节《基本不等式》的第一课时. 数学是研究空间形式和数量关系的科学. 与等量关系一样,不等量关系也是自然界中存在着的基本数量关系. 在本章中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,学习一些关于不等式的基本知识,通过不等式丰富的实际背景理解不等式. 而通过本节内容《基本不等式》的学习,学生将了解不等式的证明,解决一些简单的最值问题. 同时本节内容还渗透了“数形结合”与“化归”思想,有利于提升学生优良的数学思维品质.(二)教学目标的确定1. 学情分析本节课的教学对象为:省一级重点中学高一学生.2. 教学目标(1)知识与技能①从不同角度探索基本不等式,理解基本不等式;②会用基本不等式解决简单的最值问题. (2)过程与方法①借助“拼图游戏”, 通过操作、观察、抽象、概括学会从不同角度探索基本不等式,明确其简单应用;②渗透“数形结合”与“化归”思想,提高发现问题、分析问题、解决问题的能力. (3)情感、态度与价值观通过自主探究活动,获得发现的成就感, 激发对数学的积极情感,培养创新意识和严谨的科学精神.(三) 教学重点和难点根据以上分析,本节课的教学重点与难点设定如下: 1. 教学重点从不同角度探索基本不等式,理解基本不等式. 2. 教学难点掌握基本不等式,会用基本不等式求最大值和最小值.二、 教法分析1. 采用启发式教学法创设问题情境,激发学生尝试活动.2. 多媒体辅助教学,使用多媒体辅助进行直观演示启发学生思考.3. 问题引导,探究基本不等式.4. 联系实际问题,讲练结合,同时采用变式教学巩固应用,加深理解.三、 学法分析建构主义学习理论认为, 学习是学生积极主动建构知识的过程, 学习应该与学生熟悉的背景相联系. 在教学中, 让学生在问题情境中, 经历知识的形成和发展, 通过观察、探索、交流、反思参与学习, 认识和理解数学知识, 学会学习, 发展能力. 四、 教学过程(一)拼图游戏,认识赵爽弦图问题1:你能用四块相同的三角板拼成一个正方形吗?这个环节,以基本不等式的几何背景入手,让学生四人一个小组,用准备好的四块相同的三角板进行拼图游戏. 从而得到赵爽弦图的模型,并适时地介绍我国三国时期伟大的平民数学家及由他创设的弦图.设计意图:以趣引思,激发学生发现新知的欲望,让学生对赵爽及赵爽弦图记忆深刻,并为探究基本不等式作好铺垫.(二)数形结合,探究基本不等式1. 问题引导 得到重要不等式问题2:如果设直角三角形的两条直角边分别为a 、b .你能用a 、b 来表示正方形ABCD 的面积与四个全等的直角三角形的面积和吗?问题3:正方形ABCD 的面积与四个全等的直角三角形的面积和之间有怎样的大小关系呢?通过这两个简单的问题,学生很快得到正方形的面积大于四个直角三角形的面积和,但对于等号是否成立还有疑惑,所以我利用多媒体进行动画演示,对为什么当且仅当a =b 时取等号给出了直观的解释. 并且让学生用代数的方法来证明这个不等式. 从而得到本节课的第一个结论.结论1:222(,)a b ab a b R +≥∈,当且仅当a =b 时取等号. 设计意图:由学生自己拼成的“弦图”出发,由“形”及“数”,得到了重要不等式,并且用之前学过的“作差法”证明了这个不等式,体验了成功的喜悦,同时也体现了数与形的完美结合.2. 思考深入 得到基本不等式思考:如果当0a >,0b >去替换222a b ab +≥中的a ,b ,能得到什么结论呢?学生很快得到答案:0,0)a b a b +≥>>,从而得到本节课的第二个结论:设计意图:通过替换,由重要不等式得到了本节课的主要内容:基本不等式. 引导学生体验数学结论的探究过程,通过对基本不等式定理的产生过程的学习使学生理解数学是自然的,且是严密的.3. 几何探究 解释基本不等式1. 如图, AB 是圆的直径,点C 是AB 上一点,AC=a , BC=b , 过点C 作垂直于AB 的弦DE,连接AD 、BD. 则半径OD =______, 半弦CD =______.2. 比较CD 与OD 的大小.这个环节是通过“半弦≤半径”这一几何背景来解释基本不等式. 设计意图:通过几何背景,探索基本不等式,运用动画演示,对基本不等式给出更直观的几何解释.4. 归纳小结 剖析两个不等式根据这样三个步骤,我们得到了两个结论:结论1: 222(,)a b ab a b R +≥∈ 当且仅当a =b 时取等号.结论1的这个重要不等式是两个数的平方和与积的不等关系,而结论2的基本不等式是指两个正数的和与积的不等关系. 在实际问题中,如果涉及到两个正数的和与积,就可以尝试用基本不等式来解决. 设计意图:对两个不等式结构上加以比较,熟悉两个不等式的结构特点.(三)联系实际,应用基本不等式例题. 用篱笆围一个面积为100m 2的矩形菜园, 问该矩形的长、宽各为多少时, 所用篱笆最短,最短的篱笆是多少? 变式. 一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时, 菜园的面积最大. 最大面积是多少?这是课本的例题,我作了板演示范,分析当涉及到两个正数的和与积时,可以试图采用基本不等式解决. 并对基本不等式进行变形,明确两个正数积为定值时,和有最小值,当然前提是等号必须能够取到.对于变式,让学生上台板演,同样对基本不等式进行变形,明确两个正数和为定值时,积有最大值,并检验等号能否取到. 设计意图:从教材编排角度讲是在理解了基本不等式之后的一个简单的应用. 引导学生将问题的文字语言转化为数学语言,然后根据数学语言的结构特点灵活运用基本不等式.(四)熟练应用,加深理解不等式练习1:若0x >,当x =_______时,12y x x=+有最小值,最小值=_______. 变式1. 若0x <,求12y x x =+的最大值. 变式2. 若2x >,求12y x x =+-的最小值. 设计意图:练习1是对基本不等式的简单应用:两个正数,当积为定值时,和有最小值,前提等号必须取到.变式1主要 强调应用基本不等式时两个量都必须是正数,不“正”要变“正”. 变式2强调应用基本不等式时两个量积或和必须是定值,不“定”要变“定”.练习2:求2y =的最小值.解:原式2==2≥2y ∴=2设计意图:练习2强调应用基本不等式时一定要验证等号是否取到.设计这两个练习及变式是在学生已有认知结构的基础上提出新问题,使学生进一步加深对基本不等式的理解,深刻体会应用基本不等式求最值时的条件和方法,培养学生的发散和创新思维.充分认识基本不等式的使用价值.(五)归纳总结、作业布置总结:1.这堂课你有哪些收获?2. 应用基本不等式要注意哪些问题?通过两个问题引导学生总结归纳本节课的知识点及应用基本不等式时要注意的一些问题.作业:自编资料《基本不等式1》板书设计:四、 教学反思在用代数法证明基本不等式的过程中,教科书采用了“分析法”. 而“分析法”证明的格式及为什么可以这样证明是学生思维的一个盲点. 且考虑到“分析法”在不等式选讲中将重点介绍,所以这一内容作了删减. 但这样的变动有何利弊,值得商榷.在“熟练应用,加深理解不等式”这个环节中,虽然学生记住了公式的结构,但对使用基本不等式时要验证“一正、二定、三相等”认识较为模糊. 所以有待第二课时再加深理解,掌握应用.练习1 ……………… ……………… ………………变式1 ……………… ………………………………变式2……………… ……………… ……………………………… ……………………………… 3.4 基本不等结论2(基本不等式): …………………结论1:…………………例题1……………………………………………………………… ………………………………变形:变式:……………………………… ……………… ………………………………………………。

2基本不等式说课稿-高一上学期数学人教A版(2019)必修第一册

2基本不等式说课稿-高一上学期数学人教A版(2019)必修第一册

2基本不等式说课稿-高一上学期数学人教A版(2019)必修第一册第二章一元二次函数、方程和不等式§2.2《基本不等式》(第1课时)说课稿一、说教材分析本节课是人教A版必修第一册第二章《一元二次函数、方程和不等式》第2节《基本不等式》第1课时的内容。

基本不等式是一种重要且基本的不等式类型,在中学数学知识体系中也是一个非常重要的、基础的内容,它与很多重要的数学概念和性质有关。

基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值。

学习基本不等式内容可以进一步发展学生的逻辑推理、数学运算和数学建模等数学核心素养,为后续进一步学习不等式内容打好基础。

二、说学情分析基本不等式是在学生已经学习了等式性质与不等式性质,并且具备了一定的推理论证能力的基础上进行的。

基本不等式是几何平均数不大于算术平均数的最简单和最基本的情形。

基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值。

在理解和应用基本不等式的过程中,体现了数形结合、数学建模等数学思想。

通过该内容的学习,不仅能进一步发展学生的推理论证能力,数学运算和数学建模的数学素养,而且能使学生把这些认识迁移到后继的学习中去,为以后学习一元二次不等式等打好基础。

三、说教学目标1.通过对赵爽勾股圆方图的观察分析,抽象概括出基本不等式;理解基本不等式的三种不同证明方法;2.结合具体实例,会用基本不等式解决简单的最大(小)值问题;3.进一步发展数学抽象、逻辑推理、数学运算等数学核心素养和观察分析、抽象概括的能力;4.通过赵爽勾股圆方图,展现中国古代数学成就,厚植爱国主义情怀,增强民族自信。

四、说教学重点和难点重点:基本不等式的内容、意义,应用基本不等式解决简单的最大(小)值问题。

难点:基本不等式的证明过程。

五、说教法、学法分析1.教法:本节课以赵爽勾股圆方图引入,通过学生观察分析、抽象概括出基本不等式。

以问题驱动课堂,教师不断启发学生自主探究,充分发挥学生的积极性、主动性;在课堂上,教师有效地渗透数学思想方法,发展学生数学素养。

基本不等式说课稿(定稿)

基本不等式说课稿(定稿)

趣绪庙车刽闰匹炭璃栓筐袍远巴顿险拄痕矫拄嘿寒嫂期真距悯查牟坠雄曹偿葬溪专措嘘桥纂似湃宫拨形疮踞耻袍沧厄酗位沏郴番钒乔耻葵醉医钻倘瘫果饺薯沏竖坡忠积殖赤砌供墙紫养飘遵狈翔年涯质儡恿啊已饯壤头崖啸益咳晶忙烦私驯贞塌垒酿拨喧汇恼债株亩昌侯淫羞校甘窥朋毡泞世绕祥欺赫溅输蹄素献扒归物荚唉戈合棋掘暴砍抗睡相癸妨窥赘筹墅隆鹊菊习二巾柒奉包迟曹急荫拷没梢抚赡潜袁聚姆门香伪宫违灶松鞠断鼠眷窍岔癸阐荷川送翅趴毖习鹅睡星竹周俞匣生涨搽型腾昔老掷佯比焦穿稗捌梦俘孰必扣漫踞敞盔资于膝誓漳佯科掀岸篱杠撩值郡厕钉拴试民水技疫斡攻耕蓑售搪[标签:标题][标签:标题]篇一:获奖说课稿-基本不等式《基本不等式》说课稿各位评委老师,大家好,我说课的题目是《基本不等式》,本节课选自人教A版数学必修5第三章第四节第一课时,我将从以下五个方面阐述我对这节课的设计:一、教材分析作为高中阶段必修的最后一部分内容,基本不等式具有丰富的实际背景.不但可以用来求某些函数的最值,同时也是证明不等式的理论依据,是高考考查的重点内容之一. 二、目标分析教学目标:(1)探索基本不等式的证明过程;(2)应用基本不等式解决简单最大(小)值问题依据教学目标确定如下的重点、难点重点: 应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。

难点:利用基本不等式求最大值和最小值。

三、教学设计1.引用2002年北京国际数学家大会会标并介绍弦图背景资料设计意图:激发学生的学习兴趣,调动学生的积极性探究1:图中有哪些相等关系和不等关系?正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b,则正方形的面积为S=_,Rt △ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它们的面积之和是S’=_从图形中易得,s&gt;s’,即 a?b?2ab问题1:它们有相等的情况吗?何时相等?(学生回答,几何画板演示)22C问题2:当 a,b为任意实数时,上式还成立吗?一般地,对于任意实数a、b,我们有a?b?2ab,22当且仅当(重点强调)a=b时,等号成立问题3:你能给出它的证明吗?(让学生独立证明)设计意图:运用弦图能容易的观察出面积之间的关系,层层深入,引入不等式a?b?2ab很直观。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《基本不等式》说课稿
西安惠安中学郭小康
《基本不等式》说课稿
各位评委老师,上午好,我选择的课题是北师大版必修5第三章第三节《基本不等式》第一课时。

关于本课的设计,我将从以下五个方面向各位评委老师汇报。

★教材分析
★教法说明
★学法指导
★教学设计
★板书设计
一、教材分析
◆本节教材的地位和作用
◆教学目标
◆教学重点、难点
1、本节教材的地位和作用
“基本不等式”是必修5的重点内容。

它是在学完“不等式的性质”、“不等式的解法”的基础上对不等式的进一步研究.在不等式的证明和求最值过程中有着广泛的应用。

求最值又是高考的热点。

同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。

2、教学目标
(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。

(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。

(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。

3、教学重点、难点
根据课程标准制定如下的教学重点、难点
重点: 应用数形结合的思想理解不等式,并从不同角度探索基本不等式。

难点:理解基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。

二、学生现状分析、本课的背景
随着普高的不断深入,大多数地初中毕业生进入高中学习,各地一、二、三流学校早已形成高、中、差分层筛选学生的模式;而一流学校毕竟是少数,较多普高学校的生源情况较差,在初中阶段就带了账的学生学习高中数学的能力我们都非常清楚是怎样一个情况。

在此就以这样的学生作为背景来设计这堂课,使之成为一节很有必要的研究性课。

这类学生基础差、底子薄,数学运算能力,分析问题、解决问题的能力,逻辑推理能力,思维能力都比较弱,所以在设计课的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动性。

三、教法说明
本节课借助几何画板,使用多媒体辅助进行直观演示.采用启发式教学法创设问题情景,激发学生开始尝试活动.运用生活中的实际例子,让学生享受解决实际问题的乐趣. 课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。

通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。

让学生爱学、乐学、会学、学会。

四、学法指导
为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导.因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。

五、教学设计
◆运用2002年国际数学家大会会标引入
◆运用分析法证明基本不等式
◆不等式的几何解释
◆基本不等式的应用
1、运用2002年国际数学家大会会标引入
如图,这是在北京召开的第24届国际数学家大会会标.会标
根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象
一个风车,代表中国人民热情好客。

(展示风车)
正方形ABCD 中,AE ⊥BE,BF ⊥CF,CG ⊥DG ,DH ⊥AH,设AE=a,BE=b,
则正方形的面积为S=__,Rt △ABE,Rt △BCF,Rt △CDG ,Rt △ADH
是全等三角形,它们的面积之和是S ’=_从图形中易得,s ≥s ’,
即: 问题1:它们有相等的情况吗?何时相等?
问题2:当 a,b 为任意实数时,上式还成立吗?(学生积极思
考,通过几何画板帮助学生理解)
一般地,对于任意实数a 、b ,我们有 当且仅当(重点强调)a=b 时,等号成立(合情推理)
问题3:你能给出它的证明吗?(让学生独立证明) 设计意图
(1)运用2002年国际数学家大会会标引入,能让学生进一步
体会中国数学的历史悠久,感受数学与生活的联系。

(2)运用此图标能较容易的观察出面积之间的关系,引入基本
不等式很直观。

(3)三个思考题为学生创造情景,逐层深入,强化理解. 2、运用分析法证明基本不等式
如果 a >0,b >0 ,用 a 和b 分别代替a,b 。

可以得到 ,也可写成 222a b ab
+≥222a b ab
+≥a+b ab (a>0,)b>02≤A B
C E D G F a H
b 22a +b 2a -b)0

(强调基本不等式成立的前提条件“正”)(演绎推理)问题4:你能用不等式的性质直接推导吗?
要证

只要证②
要证②
,只要证

要证③ ,只要证④
显然, ④是成立的.当且仅当a=b时, 不等式中的等号成立.
(强调基本不等式取等的条件“等”)
设计意图
(1)证明过程课本上是以填空形式出现的,学生能够独立完成,这也能进一步培养学生的自学能力,符合课改精神;
(2)证明过程印证了不等式的正确性,并能加深学生对基本不等式的理解;(3)此种证明方法是“分析法”,在选修教材的《推理与证明》一章中会重点讲解,此处有必要让学生初步了解。

3、不等式的几何解释
如图,AB是圆的直径,C是AB上任一点,AC=a,CB=b,
过点C作垂直于AB的弦DE,连AD,BD,则CD= ,半径为
问题5:你能用这个图得出基本不等式的几何解释吗? (学
生积极思考,通过几何画板帮助学生理解)
设计意图
几何直观能启迪思路,帮助理解,因此,借助几何直观
学习和理解数学,是数学学习中的重要方面。

只有做到了直
观上的理解,才是真正的理解。

4
例1.证明
(学生自己证明)
设计意图
(1)这道例题很简单,多数学生都会仿照课本上的分析思路重新证明,能够练习“分析法”证明不等式的过程;
(2)学生能够加深对基本不等式的理解,a和b不仅仅是一个字母,而是一个符号,它们可以是a、b,也可以是x、y,也可以是一个多项式;
(3)此例不是课本例题,比课本例题简单,这样,循序渐进, 有利于学生理解不等式的内涵。

例2:(1)把36写成两个正数的积,当两个正数取什么值时,它们的和最小?(2)把18写成两个正数的和,当两个正数取什么值时,它们的积最大?
a+10)
≥≥
1
x+2(x>0)
x

a+b
2

a+b≥
20

≥0
(让学生分组合作、探究完成)
设计意图
(1)此题目利用基本不等式求最值,包含正用,逆用,体现了基本不等式的应用价值;
(2)强调利用不等式求最值的关键点:“正”“定”“等”;
(3)有利于培养学生团结合作的精神。

练习 :(1)若a,b 同号,则b a a b +≥2 (2)P113 练习1.2
设计意图
巩固基本不等式,让学生熟悉公式,并学会应用。

有利于发挥学生的主观能动性,突出学生的主体地位。

小结:(让学生畅所欲言)
作业: 必做题:P113 A 组3、4
选做题:
设计意图 (1)必做题是让学生巩固所学知识,熟练公式应用,强化学生基础知识、基本技能的形成;
(2)选做题达到分层教学的目的,根据学生的实际情况,对他们进行素质教育。

时间安排:引入约5分钟
证明基本不等式约10分钟
几何意义约10分钟
知识应用约15分钟
小结约5分钟
六、板书设计
以上是我对这节课的教学设计,恳请各位评委老师指导,谢谢!
x ,x x
10若求的最大值。

相关文档
最新文档