2014届高三上学期期中考试数学试题

合集下载

望江中学2014届高三上学期期中考试数学(理)试题含答案

望江中学2014届高三上学期期中考试数学(理)试题含答案

望江中学2014届高三上学期期中考试数学(理)试题第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设p ∶22,x x q --<0∶12x x +-<0,则p 是q 的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件2. 若11222(21)(1)m m m +>+-,则实数m 的取值范围是 ( )111.(,].[,).(1,2).[,2)222A B C D ----∞+∞- 3.若方程0232=--k x x 在(-1,1)上有实根,则k 的取值范围为 ( ) A.)21,169[-- B.)25,21[- C.)25,169[- D.),169[+∞-4.若f (x )是偶函数,且当x ∈),0[∞+时,f (x ) = x -1,则f (x -1) < 0的解集是( )A .{x |-1 < x < 0}B .{x | x < 0或1< x < 2}C .{x | 0 < x < 2}D .{x | 1 < x < 2}5.函数f (x) =Asin(()(0,0),1x A x ωϕω+>>=-和x=1是函数f (x )图象相邻的两条对称轴,且x ∈[-1,1]时f (x)单调递增,则函数y=f (x -1)的( ) A .周期为2,图象关于y 轴对称 B .周期为2,图象关于原点对称 C .周期为4,图象关于原点对称 D .周期为4,图象关于y 轴对称6.要得到函数πs i n (2)3y x =-的图象,只需将函数)—(—πx 2cos y =的图象( )A .向左平移π6个单位 B .向左平移5π12个单位 C .向右平移5π12个单位D .向右平移π3个单位 7.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( )A 、(0,2]B 、1(0,]2C 、13[,]24D 、15[,]248. 把函数sin()0,||2y A x πωφωφ⎛⎫=+>< ⎪⎝⎭的图象向左平移3π个单位得到()y f x =的图象(如图),则ϕ=( ) A .6π-B .6πC . 3π-D .3π9.定义在R 上的函数)(x f 满足(4)1f =.)(x f '为)(x f 的导函数,已知函数)(x f y '=的图象如图所示.若两正数b a ,满足1)2(<+b a f ,则22b a ++的取值范围是 ( )A .11(,)32B .()1(,)3,2-∞+∞C .1(,3)2D .(,3)-∞-10.定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 在),0(+∞上至少有三个零点,则a 的取值范围是 ( ) A .)22,0( B .)33,0( C .)55,0( D .)66,0( 第II 卷(非选择题 共100分)二、 填空题:本大题共5小题,每小题5分,共25分. 11.已知tan 125tan αα+=-,则sin cos sin 2cos αααα+=-________________12.已知函数()x f 在[)+∞,0上是增函数,()()x f x g -=,若()()1lg g x g >,则x 的取值范围是________________13.已知函数⎩⎨⎧>≤≤=)1(log )10(sin )(2013x x x πx x f ,若c b a ,,互不相等,且f(c)f(b)f(a)==,则c b a ++的取值范围是________________xyO14.已知函数⎩⎨⎧<≥++=)1-(),2()1-(,)(2x -x-f x c bx ax x f ,在其图象上点(1,(1)f )处的切线方程为12+=x y ,则图象上点(-3,(-3)f )处的切线方程为________________15.设()sin2cos2f x a x b x =+,其中,,0a b R ab ∈≠. 若()6f x f π⎛⎫≤ ⎪⎝⎭对一切x R∈恒成立,则① 11012f π⎛⎫=⎪⎝⎭; ② 7125f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭; ③ ()f x 既不是奇函数也不是偶函数;④ ()f x 的单调递增区间是()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; ⑤ 存在经过点(),a b 的直线与函数()f x 的图象不相交.以上结论正确的是__________________(写出所有正确结论的编号). 三、解答题(解答应写出必要的文字说明、证明过程或演算步骤)16.(12分) 已知sin θ、cos θ是关于x 的方程x 2-ax +a =0(a ∈R )的两个根.(1)求)23sin()2cos(θπθπ+++的值;(2)求tan(π-θ)-1tan θ的值.17.(12分)命题p :实数x 满足03422<+a ax -x (其中a >0),命题q :实数x 满足⎪⎩⎪⎨⎧>+≤02321x-x x-18. (12分) 在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知3C π=.(Ⅰ)若2a =,3b =,求ABC ∆的外接圆的面积; (Ⅱ)若2c =,sin sin()2sin 2C B A A +-=,求ABC ∆的面积.19.(13分)设函数()ln f x a x =,21()2g x x =. (1)记()g x ’为()g x 的导函数,若不等式()2()(3)()f x g x a x g x +≤+-’ 在[1,]x e ∈上有解,求实数a 的取值范围;(2)若a =1,对任意的120x x >>,不等式121122[()()]()()m g x g x x f x x f x ->-恒成立,求m (m ∈Z ,m ≤1)的值.20.(13分)设函数()*() ,,n n f x x bx c n N b c R =++∈∈(Ⅰ)设2n ≥,1b =,1c =-,证明:()n f x 在区间1,12⎛⎫ ⎪⎝⎭内存在唯一的零点; (Ⅱ)设2n =,若对任意[]12,1,1x x ∈-,均有()()21224f x f x -≤,求b 的取值范围.21.(13分)已知2()3ln f x ax x x=--,其中a 为常数.(Ⅰ)当函数()f x 的图象在点22,33f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭处的切线的斜率为1时,求函数()f x 在3,32⎡⎤⎢⎥⎣⎦上的最小值; (Ⅱ)若函数()f x 在(0,)+∞上既有极大值又有极小值,求实数a 的取值范围; (Ⅲ)在(Ⅰ)的条件下,过点()1,4P -作函数[]2()()3ln 3F x x f x x =+-图象的切线,试问这样的切线有几条?并求这些切线的方程.高三理数参考答案三解答题(共75分)16.(12分)解: 由已知原方程判别式Δ≥0,即(-a )2-4a ≥0,∴a ≥4或a ≤0.又⎩⎪⎨⎪⎧sin θ+cos θ=a ,sin θcos θ=a ,∴(sin θ+cos θ)2=1+2sin θcos θ,即a 2-2a -1=0.∴a =1-2或a =1+2(舍去).∴sin θ+cos θ=sin θcos θ=1- 2. (1))23sin()2cos(θπθπ+++=-(sin θ+cos θ)=2-1 (2)tan(π-θ)-1tan θ=-tan θ-1tan θ=-⎝⎛⎭⎫tan θ+1tan θ=-⎝⎛⎭⎫sin θcos θ+cos θsin θ=-1sin θcos θ=-11-2=2+1.18. (12分)【解析】(Ⅰ)由已知及余弦定理得22223223cos 73c π=+-⨯⨯⨯=,则7c =.设外接圆的半径为R,由正弦定理知7722123sin2R π===,从而21R =,故外接圆的面积为273R ππ= …………………………………………………………………………………………5分(Ⅱ)∵A B C π++=,及sin sin()2sin 2C B A A +-= ,∴()()2sin 2sin sin()sin sin()2sin cos A A B B A A B B A B A π=-++-=++-=⎡⎤⎣⎦,即2sin cos sin cos A A B A =,亦即()2sin sin cos 0A B A -⋅=,∴cos 0A =或2sin sin 0A B -=。

山东省济南四校2014届高三上期中联考数学试题(理)(有答案)

山东省济南四校2014届高三上期中联考数学试题(理)(有答案)

山东省济南一中等四校2014届高三上学期期中联考 理科数学 Word版含答案本试卷共4页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟,第I 卷(选择题共60分)注意事项:l .答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其他答案标号.一、选择题(本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={0,1,2,3,4),集合A={1,2,3),B={2,4},则()U C A B 为 A.{1,2,4) B.{2,3,4) C.{0,2,4) D.{0,2,3,4) 2.设z ∈R ,则x=l 是21x =的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知函数()f x 为奇函数,且当x>0时,21()f x x x=+,则(1)f -= A. 2 B.0 C .1 D .-2 4.函数ln x xy x=的图像可能是5.已知数列{}n a 的前n 项和为n S ,且22n n S a =-则2a 等于 A .4 B .2 C .1 D .-26.为了得到函数sin 2y x =的图象,只需把函数sin(2)6y x π=+的图象A. 向左平移6π个单位 B .向左平移12π个单位 C .向右平移6π个单位 D .向右平移12π个单位7.已知各项均为正数的等比数列{}n a 中,1237895,10a a a a a a ==,则456a a a =-A.52 B .7 C .6 D.28.已知角x 的终边上一点坐标为55(sin,cos )66ππ,则角x 的最小正值为 A .56π B .116π C .53π D .23π9.设357log 6,log 10,log 14a b c ===,则A. c>b>aB.b>c>aC.a>c>bD. a>b>c10.已知向量(2,8),(8,16)a b a b +=--=-,则a 与b 夹角的余弦值为 A .6365 B .6365- C .6365± D .51311.若,则123,,S S S 的大小关系为A. 123S S S <<B. 213S S S <<C. 231S S S <<D. 321S S S <<12.设定义在R 上的偶函数()f x 满足(2)()f x f x +=,'()f x 是()f x 的导函数,当[]0,1x ∈时,0()1f x ≤≤;当(0,2)x ∈且1x ≠时,(1)'()0x x f x -<.则方程()lg f x x =根的个数为A .12B .1 6C .18D .20第Ⅱ卷(非选择题共90分)注意事项:1.将第Ⅱ卷答案用0.5 mm 的黑色签字笔答在答题纸的相应位置上. 2.答卷将密封线内的项目填写清楚. 二、填空题(本题共4小题,共1 6分)13.若向量(2,3),(4,7)BA CA ==,则BC =___________.14.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式n a =__________. 15.已知集合{}{}{}22,3,23,21,2,5U U a a A a C A =+-=-=,则实数a 的值为___________. 16.已知函数()ln(1)f x x =+,若()f x ax ≥,则a 的取值范围是____________. 三、解答题(本题共6小题,共74分) 17.(本小题满分12分)命题p :关于x 的不等式2240x ax ++>,对一切x R ∈恒成立;命题q :函()(32)xf x a =-是增函数.若p 或q 为真,p 且q 为假,求实数a 的取值范围. 18.(本小题满分12分)设递增等差数列{}n a 的前n 项和为n S ,已知31a =,4a 是3a 和7a 的等比中项. (l)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S 。

江苏省泰州市姜堰区2014届高三上学期期中考试数学试题(附答案)

江苏省泰州市姜堰区2014届高三上学期期中考试数学试题(附答案)

2013~2014学年度第一学期期中考试高三数学试题(数学Ⅰ)(考试时间:120分钟 总分160分)命题人: 金骏 黄萍 审题人: 孟太注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸相应的答题线上.)1.集合{}2,1=A ,{}3,2=B ,则=⋃B A ▲ .2.“∃2,20x R x ∈+>”的否定是 ▲ .3.函数21)(xx f =的定义域为▲ .4.函数x x f 2)(=的值域为 ▲ . 5.=+5lg 2lg ▲ . 6.已知31cos ),2,0(=∈απα,则=αsin ▲ . 7.数列{}n a 满足n n a a 21=+,若11=a ,则=4a ▲ .8.设等差数列{}n a 前n 项和为n S ,若2,0,111==-=+-m m m S S S ,则=m ▲ .9.设)(x f 是定义在R 上的奇函数,当0<x 时,xe x xf +=)( (e 为自然对数的底数),则()ln6f 的值为 ▲ .10.已知全集R U =集合{}062<--=x x x A ,{}0822>-+=x x x B ,{}03422<+-=a ax x x C ,若C B A C U ⊆⋃)(,则实数a 的取值范围是 ▲ .11.已知方程01222=+--n x m x (其中0,0>>n m )有两个相等的实根,则nm 11+的最小值为 ▲ . 12.已知函数⎩⎨⎧≤+->+=0,20),1(log )(22x x x x x x f ,若ax x f ≥)(,则a 的取值范围是 ▲ .13.设)(n u 表示正整数n 的个位数,例如3)23(=u ,)()(2n u n u a n -=,则数列{}n a 的前2012项和等于 ▲ .14.如图,,,A B C 是直线上三点,P 是直线外一点,1==BC AB ,︒=∠90APB ,︒=∠30BPC ,则PA PC ⋅二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分) 设已知(2cos sin)22a αβαβ+-=,,(cos3sin)22b αβαβ+-=,,其中(0,)αβπ∈、.(Ⅰ)若32πβα=+,且2a b =,求βα、的值; (Ⅱ)若52a b ⋅=,求βαtan tan 的值.16.(本题满分14分)不等式组⎪⎩⎪⎨⎧≤≥≤40x y x y 表示的平面区域为A .(Ⅰ)画出平面区域A ,并求面积;(Ⅱ)点),(y x 在平面区域内,求y x z +=2的取值范围; (Ⅲ)一次函数b x y +=21的图像平分区域A 的面积,求b .17.(本题满分14分)已知等差数列}{n a 中,851115,19a a a =-=. (Ⅰ)求数列}{n a 的前n 项和n S 的最小值; (Ⅱ)求数列|}{|n a 的前n 项和n T .18.(本题满分16分)已知函数)()(23R a ax x x f ∈-=. (Ⅰ)若3)1('=f ,(i)求曲线)(x f y =在点())1(,1f 处的切线方程, (ii)求)(x f 在区间]2,0[上的最大值;(Ⅱ)若当]2,0[∈x 时,0)(≥+x x f 恒成立,求实数a 的取值范围.19.(本题满分16分)某单位设计一个展览沙盘,现欲在沙盘平面内,布设一个对角线在l 上的四边形电气线路,如图所示,为充分利用现有材料,边BC,CD 用一根5米长的材料弯折而成,边BA,AD 用一根9米长的材料弯折而成,要求A ∠和C ∠互补,且AB=BC . (Ⅰ)设AB=x 米,cosA=()f x ,求()f x 的解析式,并指出x 的取值范围; 求四边形ABCD 面积的最大值.20.(本题满分16分)设n n n C B A ∆的三边长分别为n n n c b a ,,,面积为)(n f ,已知3,5,4111===c b a ,*)(2,2,111N n b a c c a b a a nn n n n n n n ∈+=+==+++. (Ⅰ)求数列{}n n c b -的通项公式;(Ⅱ)求证:无论n 取何正整数,n n c b +恒为定值; (Ⅲ)判断函数*))((N n n f ∈的单调性,并加以说明.2013~2014学年度第一学期期中考试高三数学试题(数学Ⅱ) (考试时间:30分钟 总分40分)命题人: 金骏 黄萍 审题人: 孟太注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.21.(本题分A 、B 两题,每题10分)A .已知二次函数)(x f 有两个零点1,2,且在y 轴上的截距为3. (Ⅰ)求函数)(x f 的解析式;(Ⅱ)求函数)(x f y =在区间[0,3]上的值域.B .在等比数列}{n a 中.(Ⅰ)已知96,361==a a ,求5S ;(Ⅱ)已知121,81,11===n n S a a ,求q .22.(本题10分)设平面向量)23,21(),1,3(=-=,若存在实数)0(≠m m 和角θ,其中)2,2(ππθ-∈,使向量θθtan ,)3(tan2⋅+-=-+=m ,且⊥.(Ⅰ)求)(θf m =的关系式; (Ⅱ)若]3,6[ππθ-∈,求)(θf 的最小值,并求出此时的θ值.23.(本题10分) 已知1ln ()xf x x+=. (Ⅰ)若函数()f x 在区间(,1)a a +上有极值,求实数a 的取值范围;(Ⅱ)若关于x 的方程2()2f x x x k =-+有实数解,求实数k 的取值范围; (Ⅲ)当*n N ∈,2n ≥时,求证:111()2231nf n n <+++⋅⋅⋅+-.2013~2014学年度第一学期期中考试高三数学参考答案一、填空题:1.{}3,2,12.02,2≤+∈∀x R x3.),0[+∞4. ),0(+∞5. 16.322 7. 88.3 9. 616ln - 10.)34,2(-- 11.223+ 12 .]0,2[- 13.2 14.74-二、解答题15.解:(Ⅰ)∵2a b =,∴⎪⎪⎩⎪⎪⎨⎧-=-+=+2sin 62sin 2cos 22cos 2βαβαβαβα,----------------2分∴02sin=-βα,∴πβαk =-2,----------------------4分 而(0,)αβπ∈、,∴)2,2(2ππβα-∈-,∴02=-βα,即βα=,------6分又32πβα=+,所以,3πβα==---------------------------7分 (Ⅱ)2)cos(132)cos(122sin 32cos222βαβαβαβα--⨯+++⨯=-++=⋅252)cos(3)cos(25=--++=βαβα----------------------10分 ∴0)cos(3)cos(2=--+βαβα,即0sin sin 5cos cos =--βαβα ∴51tan tan -=βα-------------------------14分16.解:(Ⅰ)不等式x y ≤表示直线x y =及直线下方的平面区域;不等式0≥y 表示直线0=y 及直线上方的平面区域;不等式4≤x 表示直线4=x 及直线左侧的平面区域。

河北衡水中学2014届高三上学期期中考试 数学理试题及答案

河北衡水中学2014届高三上学期期中考试 数学理试题及答案

河北衡水中学2013~2014学年度上学期期中考试高三年级数学(理科)试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1.平面向量a 与b 的夹角为60°,(2,0),1,==a b 则2+=a b ( ) (A(B)(C )4 (D )122.若集合{}{}2540;1,A x x x B x x a =-+=-<<则“(2,3)a ∈”是“B A ⊆”的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件3.已知平面向量,m n u r r 的夹角为,6π23==,在ABC ∆中,22AB m n =+uu u r u r r , 26AC m n =-uu u r u r r,D 为BC 中点,则AD =( )A.2B.4C.6D.84.某几何体的三视图如右图(其中侧视图中的圆弧是半圆), 则该几何体的表面积为( )(A )9214+π (B )8214+π (C )9224+π (D )8224+π 5.已知等差数列{}n a 中,37101140,4a a a a a +-=-=,记12n n S a a a =+++,S 13=( )A .78B .68C .56D .526.已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .221169x y -= B .22134x y -= C .221916x y -= D .22143x y -=侧视正视图俯视图7.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos a B b A =,cos B C -的最大值是( )A .1 B. 3 C. 7 D. 27 8.若函数1()e (0,)axf x a b b=->>0的图象在0x =处的切线与圆221x y +=相切,则a b +的最大值是( )(A )4 (B)(C )2 (D9. 在椭圆22221(0)x y a b a b+=>>中,12,F F 分别是其左右焦点,若椭圆上存在一点P 使得122PF PF =,则该椭圆离心率的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .1,13⎡⎫⎪⎢⎣⎭ C .10,3⎛⎫ ⎪⎝⎭ D .10,3⎛⎤⎥⎝⎦10.已知A 、B 、C 是球O 的球面上三点,三棱锥O ﹣ABC 的高为2且∠ABC=60°,AB=2,BC=4,则球O 的表面积为( )A .24π B. 32π C. 48π D. 192π11.已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 取值范围是( )(A )10,5,5+∞(]() (B )10,[5,5+∞())(C )11,]5,775(() (D )11,[5,775())12.对于定义域为的函数和常数,若对任意正实数,使得恒成立,则称函数为“敛函数”.现给出如下函数:①; ②;③ ; ④.其中为“敛1函数”的有D ()y f x =c ξ,x D ∃∈0|()|f x c ξ<-<()y f x =c ()()f x x x Z =∈()()112xf x x Z ⎛⎫=+∈ ⎪⎝⎭()2log f x x =()1x f x x -=A .①②B .③④C . ②③④D .①②③Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13. 过点(1,1)-的直线与圆2224110x y x y +---=截得的弦长为,则该直线的方程为 。

北京市第14中学2014届高三上学期期中考试数学(理)试题 Word版含答案

北京市第14中学2014届高三上学期期中考试数学(理)试题 Word版含答案

北京市第14中学2013-2014学年度第一学期期中测试 高三数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1 页至第2 页;第Ⅱ卷第3页至第5页,答题纸第7页至第12 页。

共150分,考试时间120分钟。

请在答题纸第7、9、11 页左侧密封线内书写班级、姓名、准考证号。

考试结束后,将本试卷的答题纸和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合S = R ,}2|2||{},032|{2<-=≤--=x x B x x x A ,那么集合)(B A C S 等于( )A .}30|{≤<x xB .}21|{<≤-x xC .{|0,3}x x x ≤>或D .}2,1|{≥-<x x x 或2.下列说法错误的是( )A .“1x >”是“1x >”的充分不必要条件B .若p 且q 为假命题,则p q 、均为假命题C .命题“若2430x x -+=,则3x =”的逆否命题是:“若3x ≠,则2430x x -+≠”D .命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥”3.若向量a 、b 满足a +b =(2,-1),a =(1,2),则向量a 与b 的夹角等于( )A .︒135 B . ︒120 C .︒60 D .︒454. 下列函数中,周期为1的奇函数是( ) A.212sin y x π=- B. sin cos y x x ππ=C.tan2y x π= D. sin 23y x ππ=+() 5.若定义在R 上的偶函数)(x f 满足),()2(x f x f =+ 且当]1,0[∈x 时,,)(x x f =则方程0||log )(3=-x x f 的根的个数是( )A .2B .3C .4D .66.设函数ax x x f m +=)(的导函数'()21f x x =+,则数列⎭⎬⎫⎩⎨⎧)(1n f 的前n 项和为( ) A.1n n + B. 12++n n C.1-n nD.nn 1+ 7.已知△ABC 中,︒=∠30A ,AB ,BC 分别是23+,23-的等差中项与等比中项,则△ABC 的面积等于( )A .23 B .43 C .23或3 D .23或438. 对于下列命题:①已知i 是虚数单位,函数1,(0)()1,(0)x ii x f x ia a x +⎧⋅>⎪=-⎨⎪-≤⎩在R 上连续,则实数a=2.②五本书排成一排,若A 、B 、C 三本书左右顺序一定(不一定相邻),那么不同排法有3333A A ⋅③如图,⊙O 中的弦AB 与直径CD 相交于点p ,M 为DC 延长线上一点,MN 为⊙O 的切线,N 为切点,若AP =8, PB =6, PD =4, MC =6,则MN 的长为332④在极坐标系(ρ,θ)(0 ≤θ <2π)中,曲线ρ=2sin θ 与1cos -=θρ交点的极坐标为3)4π⑤设2014cos ,()n n xdx x xπ=-⎰则二项式的展开式的常数项为6其中假命题的序号是( ) A .②⑤ B . ②③ C . ② D . ①④第Ⅱ卷(共110分)二、填空题:(本大题每小题5分,满分30分) 9.若33sin()25-=πα,且α的终边过点(),2P x ,则x = ;tan()πα+= . 10.已知数列}{n a 是等差数列,其前n 项和为S n ,12,2344==S a . 则数列}{n a 的通项公式=n a ;n=时,S n 最大.11.函数2sin cos cos sin ++=ϕωϕωx A x A y)20,0,0(πϕω<<>>A 的图象如右,则ω=______,ϕ=______.12.函数())1,0(13log ≠>-+=a a x y a 的图象恒过定点A ,且点A 在直线01=++ny mx 上,其中0>mn ,则nm 21+的最小值为 . 13.在正方形ABCD 中,已知AB =2,M 为BC 的中点,若N 为正方形内(含边界)任意一点,则AM ·AN 的最大值为 .14. 已知函数2,(0)()21,(0)x e x f x ax x -⎧-≤=⎨->(a 是常数且0>a ).对于下列命题:三、解答题(本大题共6小题,共80分.) 15. (本小题满分13分)在数列{}n a 中,13a =,121n n a a n -=--+ *(2)n n ≥∈N ,且 . (Ⅰ)证明:数列{}n a n +是等比数列; (Ⅱ)求{}n a 的通项公式; (Ⅲ)求数列{}n a 的前n 项和n S .16.(本小题满分13分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得1-分.现从盒内一次性取3个球. (Ⅰ)求取出的3个球得分之和恰为1分的概率;(Ⅱ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望. 17.(本小题共13分)已知向量(sin , cos )x x =a ,(cos ,sin 2cos )x x x =-b ,24ππ<<-x .(Ⅰ)若a b ∥,求x ;(Ⅱ)设()f x =⋅a b ,求()f x 的单调减区间;(Ⅲ)函数()f x 经过平移后所得的图象对应的函数是否能成为奇函数?如果是,说出平移方案;如果否,说明理由.18. (本小题共13分)已知函数.)2ln()(2c bx x x x f ++-+=(Ⅰ)若函数 f (x )在点x=1处的切线与直线0273=++y x 垂直,且f (-1)=0,求函数f (x )在区间[0,3]上的最小值;(Ⅱ)若f (x )在区间[0,1]上为单调减函数,求b 的取值范围. 19.(本小题共14分)设函数2()(1)2ln(1)f x x x =+-+(Ⅰ)若在定义域内存在0x ,而使得不等式0()0f x m -≤能成立,求实数m 的最小值; (Ⅱ)若函数2()()g x f x x x a =---在区间[]0,2上恰有两个不同的零点,求实数a 的取值范围20. (本小题共14分)已知)(x f 是定义在R 上的函数,1)1(=f ,且∀R x x ∈21,,总有1)()()(2121++=+x f x f x x f 恒成立.(Ⅰ)记()()1g x f x =+,求证:()g x 是奇函数; (Ⅱ)对∀*N n ∈,有)(1n f a n =,1)21(1+=+n n f b ,记n n nb c a =,求{}n c 的前n 项和n S ;(Ⅲ)求n n n a a a n F 221)(+++=++ ),2(N n n ∈≥的最小值.高三数学期中测试答案及评分标准(理科)一、选择题:本大题每小题5分,满分40分. CBAB CADC 二、填空题:本大题每小题5分,满分30分.9. 32-,43- 10. n a n -=211;n=5 11.ω=3,ϕ=3π12. 8 13. 6 14.①③④ 三、解答题:本大题6小题,满分80分15.(13分)解: (Ⅰ)11121111-=-++--=-++---n a n a n a n a n n n n ,由定义知数列{}na n +是等比数列;…5分(Ⅱ)因为数列{}n a n +是等比数列,公比为-1,首项为4, 则4)1(1⋅-+-=-n n n a *∈N n …….8分(Ⅲ) (1),(2,)2(1)4,(21,)2n n nn k k N S n n n k k N**+⎧-=∈⎪⎪=⎨+⎪-+=-∈⎪⎩ …13分17. ( 13分)解:(I )若a b ∥,则2sin (sin 2cos )cos ,x x x x ⋅-=……1分sin 2cos 2,x x -=即tan 21x ∴=-…………2分又∵24ππ<<-x , ∴ππ<<-x 22,∴42π-=x 或43π, 8π-=x 或83π………4分(II )2()2sin cos 2cos sin2cos21=2sin(2)14f x x π=⋅⋅--a b =x x -x =x -x -2()2sin cos 2cos sin2cos2)14x x π=⋅⋅--a b =x x -x =x -x -………7分令Z k k x k ∈+≤-≤+,2234222πππππ得,Z k k x k ∈+≤≤+,8783ππππ,又24ππ≤≤-x ∴)8,4(ππ--和)2,83(ππ是()f x 的单调减区间………11分 (Ⅲ)是,将函数()f x 的图象向上平移1个单位,再向左平移,8k k N +∈ππ个单位或向右平移7,8k k N +∈ππ个单位,即得函数()2g x x =的图象,而()g x 为奇函数………13分18. (13分)解:(1).221)(b x x x f +-+=' (2分) 因为与直线0273=++y x 垂直的直线的斜率为4,37)1(,37=='b f 得令又f (-1)=ln (2-1)-1-4+c =0,所以c =5 f (x )=ln (x +2)-x 2+4x -5,4221)(+-+='x x x f (6分) 由223,0)(=='x x f 得 当]223,0[∈x 时,f ′(x )≥0,f (x )单调递增 当]3,223[∈x 时,f ′(x )≤0,f (x )单调递减(8分) 又f (0)=ln2+5,f (3)=ln5+8,所以f (x )在[0,3]最小值为ln2+5 (10分) (Ⅱ)因为f (x )是减函数所以]1,0[2120221)(∈+-≤≤+-+='x x x b b x x x f 对即恒成立(12分) 因为212+-x x 在[0,1]上单调递增 所以(2x -21+x )min =-21所以当b ≤-21时,f (x )在区间[0,1]上单调递减(13分)19. (14分)解:(Ⅰ)要使得不等式0()0f x m -≤能成立,只需min ()m f x ≥。

山东省潍坊2014届高三上学期期中考试理科数学

山东省潍坊2014届高三上学期期中考试理科数学

山东省潍坊2014届高三上学期期中考试理科数学一、选择题(本大题共12小题。

每小题5分,共60分.在每小题给出的四个选项中。

只有一个符合题目要求的选项.) 1.设x ∈Z ,集合A 为偶数集,若命题p :∀x ∈Z ,2x ∈A,则 p ⌝A .∀x ∈Z ,2x ∉AB .∀x ∉Z ,2x ∈AC .∃x ∈Z ,2x ∈AD .∃x ∈Z ,2x ∉A2. 设集合A={1,2,3},B={4,5},C={x |x =B b A a a b ∈∈-,,},则C 中元素的个数是A .3B .4C .5D . 63.已知幂函数)(x f y =的图像过点(21,22),则)2(log 2f 的值为A .21B .-21C .-1D .14.在△ABC 中,内角A 、B 的对边分别是a 、b ,若abB A =cos cos ,则△ABC 为A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形5.若当x ∈R 时,函数0()(||>=a a x f x 且1≠a )满足)(x f ≤1,则函数)1(log +=x y a 的图像大致为6.已知011<<ba ,给出下列四个结论:①b a < ②ab b a <+ ③||||b a > ④2b ab < 其中正确结论的序号是A .①②B .②④C .②③D .③④7.等差数列{n a }的前20项和为300,则4a +6a +8a +13a +15a +17a 等于A .60B .80C .90D .1208.已知函数⎩⎨⎧>-≤-=0,120,2)(x x x a x f x (R a ∈),若函数)(x f 在R 上有两个零点,则a 的取值范围是A .)1,(--∞B . ]1,(-∞C .)0,1[-D . ]1,0(9.已知数列{n a }的前n 项和为n s ,且n s +n a =2n (n ∈N *),则下列数列中一定是等比数列的是A .{n a }B .{n a -1}C .{n a -2}D .{n a +2}10.已知函数)3sin()(πω+=x x f (0>ω)的最小正周期为π,将函数)(x f y =的图像向右平移m (m >0)个单位长度后,所得到的图像关于原点对称,则m 的最小值为A .6π B .3π C .125π D .65π 11.设函数x x x x f sin )(2+=,对任意),(,21ππ-∈x x ,若)()(21x f x f >,则下列式子成立的是A .21x x >B .2221x x > C .||21x x >D .||||21x x <12.不等式222y axy x +-≤0对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是A .a ≤22B .a ≥22C .a ≥311D .a ≥29 二、填空题(本大题共4小题,每小题4分,共16分) 13.=⎰2123dt t .14.若21)4tan(=-θπ,则=θθcos sin .15.已知一元二次不等式0)(<x f 的解集为{}221|<<x x ,则0)2(>xf 的解集为 。

江苏省徐州市2014届高三上学期期中考试数学试题

江苏省徐州市2014届高三上学期期中考试数学试题

江苏省徐州市2014届高三上学期期中考试数学试题一、填空题1.已知全集U R =,集合{|M x y ==,则U C M = 。

2.复数12iz i-=的虚部是 。

3.“1x >”是“21x >”的 条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) 4.已知扇形的半径为10cm ,圆心角为120︒,则扇形的面积为 。

5.如果22log log 1x y +=,则2x y +的最小值是 。

6.设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S = 。

7.曲线xy e =(其中 2.71828e =)在1x =处的切线方程为 。

8.方程sin 0x x a +=在(0,2)π内有相异两解,αβ,则αβ+= 。

9.已知ABC ∆中,,,a b c 分别是角,,A B C的对边,45,60a A B ==︒=︒,那么ABC ∆的面积ABC S ∆= 。

10.已知函数22log (1) (0)()2 (0)x x f x x x x +>⎧=⎨--≤⎩,,若函数()()g x f x m =-有3个零点,则实数m 的取值范围是 。

11.若不等式21()2()12xxm m -<对一切(,1]x ∈-∞-恒成立,则实数m 的取值范围是 。

12.设等比数列{}n a 满足公比**,n q N a N ∈∈,且{}n a 中的任意两项之积也是该数列中的一项,若1112a =,则q 的所有可能取值的集合为 。

13.已知O 是ABC ∆的外心,10,6==AC AB ,若y x ⋅+⋅=且5102=+y x ,则=∠BAC cos 。

14.定义在R 上的函数()y f x =满足1(0)0,()(1)1,()()52x f f x f x f f x =+-==,且当1201x x ≤<≤时, 12()()f x f x ≤,则1()2013f = 。

山东省青岛市2014届高三上学期期中考试 理科数学 Word版含答案

山东省青岛市2014届高三上学期期中考试 理科数学 Word版含答案

高三数学(理科)练习题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题纸各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R U =,{|A x y ==,则U C A =A .[0,)+∞B .(,0)-∞C .(0,)+∞D .(,0]-∞ 2.已知命题p 、q ,则“p ∧q 为真”是“p ∨q 为真”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3.向量1(,tan )3a α= ,(cos ,1)b α= ,且a ∥b ,则cos 2α=A. 13-B. 13C. 79-D. 794.在正项等比数列}{n a 中,369lg lg lg 6a a a ++=,则111a a 的值是 A. 10000 B. 1000 C. 100 D. 105.已知0,a >且1a ≠,函数log ,,x a y x y a y x a ===+在同一坐标系中的图象可能是6.定义运算a b ad bc c d =-,若函数()123x f x x x -=-+在(,)m -∞上单调递减,则实数m 的取值范围是 A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D .(,2]-∞-7.设x ,y 满足约束条件0023x y x y a≥⎧⎪≥⎨⎪+≤⎩,若目标函数11y z x +=+的最小值为12,则a 的值为A .2B .4C .6D .88.已知33)6cos(-=-πx ,则=-+)3cos(cos πx xA .332-B .332±C .1-D .1±9.下列命题中正确的是A .1y x x =+的最小值是2 B .()4230y x x x=-->的最大值是2-C .224sin sin y x x=+的最小值是4 D .()4230y x x x =--<的最小值是2-10.已知等差数列{}n a 的公差0d >,若12320132013t a a a aa ++++= (*N t ∈),则t = A .2014 B .2013 C .1007 D .100611.设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是A .13a b =-B .//a bC .2a b =D .a b ⊥12.已知函数()f x 的导函数图象如图所示,若ABC ∆为锐角三角形,则一定成立的是 A .(cos )(cos )f A f B < B .(sin )(cos )f A f B < C .(sin )(sin )f A f B >D .(sin )(cos )f A f B >第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数12log ,1()24,1xx x f x x >⎧⎪=⎨⎪+≤⎩,则1(())2f f = .14.曲线2sin 0)y x x π=≤≤(与直线1y =围成的封闭图形的面积为 . 15.已知函数()f x 是(,)-∞+∞上的奇函数,且()f x 的图象关于直线1x =对称,当[1,0]x ∈-时,()f x x =-,则(2013)(2014)f f += .16.若对任意x A ∈,y B ∈,(A 、R B ⊆)有唯一确定的(,)f x y 与之对应,称(,)f x y 为关于x 、y 的二元函数. 现定义满足下列性质的二元函数(,)f x y 为关于实数x 、y 的广义“距离”:(1)非负性:(,)0f x y ≥,当且仅当x y =时取等号; (2)对称性:(,)(,)f x y f y x =;(3)三角形不等式:(,)(,)(,)f x y f x z f z y ≤+对任意的实数z 均成立.今给出四个二元函数:①(,)||f x y x y =-;②2(,)()f x y x y =-③(,)f x y =;④(,)sin()f x y x y =-.则能够成为关于的x 、y 的广义“距离”的函数的所有序号是 .三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数2()2sin cos f x x x x ωωω=+0ω>)的最小正周期为π. (Ⅰ)求函数)(x f 的单调增区间; (Ⅱ)将函数)(x f 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象.若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.18.(本小题满分12分)已知数列{}n d 满足n d n =,等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,N n *∈.(Ⅰ)求n a ;(Ⅱ)令1(1)n n n c a =--,不等式2014(1100,N )k c k k *≥≤≤∈的解集为M ,求所有()k k d a k M +∈的和.19.(本小题满分12分)在ABC ∆中,角A B C 、、对边分别是a b c 、、,且满足222()AB AC a b c ⋅=-+ .(Ⅰ)求角A 的大小;(Ⅱ)若a =ABC ∆的面积为,b c .20.(本小题满分12分)已知函数2()2(R)f x x x b b =++∈.(Ⅰ)若函数()f x 的值域为[0,)+∞,若关于x 的不等式()(0)f x c c <>的解集为(,6)(R)k k k +∈,求c 的值;(Ⅱ)当0b =时,m 为常数,且01m <<,11m t m -≤≤+,求2()()21f t t t f t t ---+的取值范围.21.(本小题满分13分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交(13)a a ≤≤元的管理费,预计当每件商品的售价为(79)x x ≤≤元时,一年的销售量为2(10)x -万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件商品的售价x 的函数关系式()L x ; (Ⅱ)当每件商品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值. 22.(本小题满分13分)已知函数21()2xf x e x ax =--(R)a ∈. (Ⅰ)若函数()f x 的图象在0x =处的切线方程为2y x b =+,求a ,b 的值; (Ⅱ)若函数在R 上是增函数,求实数a 的取值范围;(Ⅲ)如果函数21()()()2g x f x a x =--有两个不同的极值点12,x x ,证明:a >高三数学(理科)练习题 参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. B A D A C D A C B C A D二、填空题:本大题共4小题,每小题4分,共16分.13.2- 14. 23π15.1- 16.① 三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由题意得()f x =22sin cos x x x ωωω+sin 222sin(2)3x x x πωωω=-=- ………………2分由周期为π,得1ω=. 得()2sin(2)3f x x π=- ………………4分由正弦函数的单调增区间得222232k x k πππππ-≤-≤+,得5,1212k x k k Z ππππ-≤≤+∈ 所以函数)(x f 的单调增区间是5[,],Z 1212k k k ππππ-+∈ ………………6分 (Ⅱ)将函数)(x f 的图象向左平移6π个单位,再向上平移1个单位, 得到2sin 21y x =+的图象,所以()2sin 21g x x =+…………………………8分 令()0g x =,得:712x k ππ=+或11(Z)12x k k ππ=+∈…………………………10分 所以在每个周期上恰好有两个零点,若()y g x =在[0,]b 上有10个零点, 则b 不小于第10个零点的横坐标即可, 即b 的最小值为115941212πππ+= …………………………12分18.(本小题满分12分)解:(Ⅰ)设{}n a 的首项为1a ,公比为q ,所以42911()a q a q =,解得1a q = …………2分 又因为212()5n n n a a a +++=,所以22()5n n n a a q a q += 则22(1)5q q +=,22520q q -+=,解得12q =(舍)或2q = …………4分 所以1222n n n a -=⨯= …………6分 (Ⅱ)则1(1)1(2)n n n n c a =--=--, n d n =当n 为偶数,122014n n c =-≥,即22013n≤-,不成立当n 为奇数,1+22014n n c =≥,即22013n≥,因为10112=10242=2048,,所以21,549n m m =+≤≤ …………9分 则{}k d 组成首项为11,公差为2的等差数列{}()k a k M ∈组成首项为112,公比为4的等比数列则所有()k k d a k M +∈的和为114510110145(11+99)2(14)2204825377247521433--++=+=-…………12分 19.(本小题满分12分) 解:(Ⅰ)由题意可得2222cos 2bc A a b c bc =---, ………………2分由余弦定理2222cos a b c bc A =+-得4cos 2bc A bc =-, ……………4分∴1cos 2A =-, ∵0A π<<,∴23A π= ………………6分(Ⅱ)1sin 162S bc A bc ==⇔= ………………8分222222c o s 328a b c b c A b c b c =+-⇔+=⇔+=………………10分解得:4b c == ………………12分20.(本小题满分12分)解(Ⅰ)由值域为[0)+∞,,当22=0x x b ++时有440b =-=V , 即1b = …………2分则22()21(1)f x x x x =++=+,由已知2()(1)f x x c =+<解得1x +<11x < ……………4分不等式()f x c <的解集为(6)k k +,,∴1)(1)6-==, 解得9c = ……………6分(Ⅱ)当0b =时,2()2f x x x =+,所以22()=()211f t t t t f t t t ---++因为01m <<,11m t m -≤≤+,所以0112m t m <-≤≤+<令2()=1t g t t +,则2221()=(1)t g t t -'+……………8分当01t <<时,()0g t '>,()g t 单调增,当12t <<时,()0g t '<,()g t 单调减, 所以当1t =时,()g t 取最大值,1(1)2g =……………10分 因为2211(1)(1)(1)1(1)1m mg m g m m m -+--+=--+++ 32220[(1)1][(1)1]m m m -=<-+++,所以(1)(1)g m g m -<+ 所以2()=1t g t t +的范围为211[,](1)12m m --+……………12分 21.(本小题满分13分)解: (Ⅰ)由题得该连锁分店一年的利润L (万元)与售价x 的函数关系式为2()(4)(10),[7,9]L x x a x x =---∈. ……………………………3分(Ⅱ)2()(10)2(4)(10)L x x x a x '=-----(10)(1823),x a x =-+- …………………………………………6分 令'()0L x =,得263x a =+或10x = ……………………………8分 20213,6833a a ≤≤∴≤+≤ . ①当2673a +≤,即312a ≤≤时,[7,9]x ∴∈时,()0L x '≤,()L x 在[7,9]x ∈上单调递减,故max ()(7)279L x L a ==- ……………10分②当2673a +>,即332a <≤时,2[7,6]3x a ∴∈+时,'()0L x >;2[6,9]3x a ∈+时,()0L x '<()L x ∴在2[7,6]3x a ∈+上单调递增;在2[6,9]3x a ∈+上单调递减,故3max 2()(6)4(2)33a L x L a =+=- ……………12分答:当312a ≤≤每件商品的售价为7元时,该连锁分店一年的利润L 最大,最大值为279a -万元;当332a <≤每件商品的售价为263a +元时,该连锁分店一年的利润L 最大,最大值为34(2)3a-万元. ……………13分22.(本小题满分13分) 解:(Ⅰ)∵()x f x e x a '=--,∴ (0)1f a '=-.于是由题知12a -=,解得1a =-.………………………………………………2分 ∴ 21()2xf x e x x =-+. ∴ (0)1f =,于是120b =⨯+,解得1b =.……………………………………………………4分(Ⅱ)由题意()0f x '>即0xe x a --≥恒成立,∴ xa e x ≤-恒成立.……………………………………………………5分 设()xh x e x =-,则()1xh x e '=-.当x 变化时,()h x '、()h x 的变化情况如下表:∴min()h x ,∴1a ≤…………………………………………………………………………8分 (Ⅲ)由已知222211()22xx g x e x ax ax x e ax ax =---+=--, ∴ ()2x g x e ax a '=--.∵12 ,x x 是函数()g x 的两个不同极值点(不妨设12x x <), ∴20xe ax a --=(*)有两个不同的实数根12 ,x x ………………………10分当12x =-时,方程(*)不成立 则21x e a x =+,令()21x e p x x =+,则2(21)()(21)x e x p x x -'=+ 由()0p x '=得:12x =当x 变化时,()p x ,()p x '变化情况如下表:x1(,)2-∞- 11(,)22- 12 1(,)2+∞ ()p x - - 0 + ()p x ' 单调递减 单调递减 极小值 单调递增 ∴当1(,)2x ∈-∞-时,方程(*)至多有一解,不合题意;……………12分当1(,)2x ∈-+∞时,方程(*)若有两个解,则1()22a p >=所以,a >13分。

山西2014届高三数学上学期期中试题 文(含解析)

山西2014届高三数学上学期期中试题 文(含解析)

数学试题(文科)【试卷综述】本试卷是高三文科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面试题重点考查:集合、不等式、向量、三视图、导数、简单的线性规划、直线与圆、数列、充要条件等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的). 【题文】1.若{}{}{}1,2,3,4,5,1,2,3,2,4U A B ===,则u A C B =( )A .{}2,4B .{}1,3C .{}1,2,3,4D .{}1,2,3,4,5【知识点】集合运算 A1【答案】【解析】B 解析:因为{}{}{}1,2,3,4,5,1,2,3,2,4U A B ===,所以{1,3,5}u C B = 因此{1,3}u AC B =,故选B.【思路点拨】根据集合的运算直接求解即可.【题文】2.已知命题p :对任意的x R ∈,有ln 1x >,则p ⌝是( ) A .存在0x R ∈,有0ln 1x <B .对任意的x R ∈,有ln 1x <C .存在0x R ∈,有0ln 1x ≤D .对任意的x R ∈,有ln 1x ≤【知识点】全称命题 A3【答案】【解析】C 解析:命题p :对任意的x R ∈,有ln 1x >,由全称命题的否定是特称命题可得:p ⌝是“存在0x R ∈,有0ln 1x ≤”.故选C. 【思路点拨】由全称命题的否定是特称命题直接可得.【题文】3.若公比为2且各项均为正数的等比数列{}n a 中,41264a a ⋅=,则7a 的值等于( )A .2 B .4 C .8 D .16 【知识点】等比数列D3【答案】【解析】B 解析:因为41264a a ⋅=所以8784a a =∴=.故选B.【思路点拨】因为41264a a ⋅=,由等比数列性质可得2412864a a a ⋅==,可求8a ,从而可求7a .【题文】4.设x R ∈,则“1x =”是“复数2(1)(1)z x x i =-++为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【知识点】充分、必要条件A2【答案】【解析】C 解析:当1x =时,2z i =,充分性成立;当2(1)(1)z x x i =-++为纯虚数时,21101110x x x x x =±⎧-=⎧∴∴=⎨⎨≠-+≠⎩⎩,必要性成立.故选C.【思路点拨】判断充要条件时,应先明确条件和结论,由条件能推出结论,充分性满足,由结论能推出条件,则必要性满足.【题文】5.已知角θ的终边过点(4,3)(0)P k k k -<,则2sin cos θθ+的值是( ) A .25 B .25- C .25或25- D .随着k 的取值不同其值不同 【知识点】三角函数定义C1【答案】【解析】B 解析:因为角θ的终边过点(4,3)(0)P k k k -<所以5r k =-,所以33sin 55k k θ==--,44cos 55k k θ-==-, 3422sin cos 2()555θθ+=⨯-+=-,故选B.【思路点拨】由三角函数定义sin y r θ=,cos xrθ=即可求得.【题文】6.已知直线,m n 及平面,αβ,则下列命题正确的是 ( )A. m n //////αβαβ⎫⎬⎭⇒B.m m n n //////αα⎫⎬⎭⇒ C. m m ⊥⊥⎫⎬⎭⇒ααββ// D. m n m n ⊥⎫⎬⎭⇒⊥αα// 【知识点】命题的真假判断A2【答案】【解析】D 解析:A 中,αβ还可能相交,B 中还可能n α⊂,C 中还可能m β⊂, 故选D.【思路点拨】由空间中线面的位置关系即可求得结果. 【题文】7.曲线2x y =上的点P 处的切线的倾斜角为4π,则点P 的坐标为 ( ) A .00(,) B .24(,)C .)161,41(D .)41,21(【知识点】导数应用B12【答案】【解析】D 解析:因为2x y =所以'2y x =,1tan 242x x π=∴=,代入2x y =, 得14y =,因此点P 的坐标为)41,21(,故选D. 【思路点拨】由'2y x k ==,可得点P 横坐标,代入2x y =可求纵坐标.【题文】8.“2=a ”是“函数1)(2++=ax x x f 在区间)1[∞+-,上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【知识点】充分、必要条件 A2【答案】【解析】A 解析:当2=a 时,2()21f x x x =++,此函数在区间)1[∞+-,上为增函数,充分性成立;当函数1)(2++=ax x x f 在区间)1[∞+-,上为增函数时,它的单调增区间为,2a ⎡⎫-+∞⎪⎢⎣⎭,所以122a a -≤-∴≥,因此必要性不成立,故选A【思路点拨】判断充要条件时,应先明确条件和结论,由条件能推出结论,充分性满足,由结论能推出条件,则必要性满足. 【题文】9. 下列函数中周期是2的函数是 ( ) A . 22cos 1y x π=- B .sin 2cos 2y x x ππ=+ C .)32tan(ππ+=x y D . sin cos y x x ππ=【知识点】函数周期 C8【答案】【解析】C 解析:A 中()22cos 1cos 2y x x ππ=-=周期为1; B中sin 2cos 224y x x x ππππ⎛⎫=+=+ ⎪⎝⎭周期为1;C 中)32tan(ππ+=x y 周期为2;D 中1sin cos sin 22y x x x πππ==周期为1.故选C. 【思路点拨】正弦余弦函数的周期为2πω,正切函数的周期为πω.【题文】10.椭圆122=+by ax 与直线x y -=1交于,A B 两点,过原点与线段AB 中点的直线的斜率为ba,23的值为 ( )A .23 B .332 C .239 D .2732 【知识点】椭圆的应用 H5【答案】【解析】A 解析:把x y -=1代入椭圆122=+by ax 得2211ax b x +-=(), 整理得2210a b x bx b +-+-=(), 设1122A x y B x y (,),(,),则122a x b x b +=+ ,1222y y ba b+=-+, ∴线段AB 的中点坐标为()b a a b a b++,, ∴过原点与线段AB 中点的直线的斜率aa ab k b b a b+===+A .【思路点拨】把x y -=1代入椭圆122=+by ax 得2211ax b x +-=(),由根与系数的关系可以推出线段AB 的中点坐标为()b a a b a b ++,,,再由过原点与线段AB中点的直线的斜率为2,能够导出ab的值. 【题文】11.数列{}n a 满足11a =,且对于任意的n *N ∈都有11,n n a a a n +=++则20131a ++等于( )【知识点】数列递推式;数列的求和 D1 D4【答案】【解析】B 解析:因为111n n n a a a n a n +=++=++,11n n a a n +∴-=+用叠加法:()12111122n n n n n a a a a a a n -+=+-+⋯+-=++⋯+=()() , 所以()2112111n a n n n n ==-++(), 201311111111212233420132014a ⎛⎫++=-+-+-++- ⎪⎝⎭1212014⎛⎫=- ⎪⎝⎭40262014=,故答案为:B. 【思路点拨】先找递推关系11n n a a n +-=+并求通项公式,再利用通项的特征求和,即可得到结论.【题文】12.已知函数2lg(),0()64,0x x f x x x x ⎧-<=⎨-+≥⎩若关于x 的函数2()()1y f x bf x =-+有8个不同的零点,则实数b 的取值范围是( ) A .),2(+∞ B .),2[+∞ C .)417,2( D .]417,2(【知识点】根的存在性及根的个数判断B1 【答案】【解析】D 解析:∵函数2lg(),()64,0x x f x x x x ⎧-<=⎨-+≥⎩,作出f x ()的简图,如图所示:由图象可得当f x ()在04](,上任意取一个值时,都有四个不同的x 与f x ()的值对应. 再结合题中函数2()()1y f x bf x =-+ 有8个不同的零点,可得关于k 的方程210k bk -+=有两个不同的实数根12k k 、,且120404k k ≤≤<,<.∴应有 2 40042001016410b b b b =--⨯+-+⎧⎪⎪⎪⎨⎪⎪⎪≥⎩><<>,解得17 24b ≤<,故选D . 【思路点拨】方程2()()10y f x bf x =-+=有8个不同实数解,即要求对应于f x ()等于某个常数k ,有2个不同的k ,再根据函数对应法则,每一个常数可以找到4个x 与之对应,就出现了8个不同实数解故先根据题意作出f x ()的简图:由图可知,只有满足条件的k 在开区间04](,时符合题意.再根据一元二次方程根的分布的理论可以得出答案. 【题文】二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上).【题文】13.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。

2014年潍坊市高三数学上期中质量检测(理科附解析新人教)

2014年潍坊市高三数学上期中质量检测(理科附解析新人教)

2014年潍坊市高三数学上期中质量检测(理科附解析新人教)2014年潍坊市高三数学上期中质量检测(理科附解析新人教)第Ⅰ卷(共50分)一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

【题文】1.集合A={0,2,a},B={1,2, },若A∪B={-4,0,1,2,16},则a的值为() A.1 B.2 C.-4 D.4 【知识点】集合及其运算A1 【答案解析】C ∵集合A={0,2,a},B={1,2,a2},A∪B={-4,0,1,2,16},∴a∈{-4,16},a2∈{-4,16},故a=-4,或a2=-4(舍去),故a=-4,故选C 【思路点拨】由A={0,2,a},B={1,2,a2},若A∪B={-4,0,1,2,16},可得:a=-4,或a2=-4,讨论后,可得答案.【题文】2. A..2 B.-2 C.6 D.-6 【知识点】函数的奇偶性与周期性B4 【答案解析】B ∵函数f(x)=ax5-bx3+cx,∴f(-x)=-f(x)∵f(-3)=2,∴f(3)=-2,故选B 【思路点拨】函数f(x)=ax5-bx3+cx,可判断奇函数,运用奇函数定义式求解即可.【题文】3 【知识点】两角和与差的正弦、余弦、正切C5 【答案解析】A 由三角函数的定义可得cosα= ,又∵cosα= x,∴ = x,又α是第二象限角,∴x<0,故可解得x=-3∴cosα=- ,sinα= = ,∴tanα= =- ∴tan2α= = 故选A 【思路点拨】由三角函数的定义可得x的方程,解方程可得cosα,再由同角三角函数的基本关系可得tanα,由二倍角的正切公式可得.【题文】4.【知识点】平面向量基本定理及向量坐标运算F2 【答案解析】D ∵ =(2, 3), =(-1,2) ∴m +4 =(2m-4,3m+8); -2 =(4,-1)∵(m +4 )∥( -2 )∴4-2m=4(3m+8)解得m=-2故答案为D 【思路点拨】利用向量的坐标运算求出两个向量的坐标;利用向量共线的充要条件列出方程求出m的值.【题文】5.若定义在R上的函数满足且则对于任意的,都有 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【知识点】函数的单调性与最值B3 【答案解析】C ∵ ∴f(x)=f(5-x),即函数y=f(x)的图象关于直线x= 对称.又因(x- )f′(x)>0,故函数y=f(x)在(,+∞)上是增函数.再由对称性可得,函数y=f(x)在(-∞,)上是减函数.∵任意的x1<x2,都有f(x1)>f(x2),故x1和x2在区间(-∞,)上,∴x1+x2<5.反之,若 x1+x2<5,则有x2 - < -x1,故x1离对称轴较远,x2 离对称轴较近,由函数的图象的对称性和单调性,可得f(x1)>f(x2).综上可得,“任意的x1<x2,都有f(x1)>f(x2)”是“x1+x2<5”的充要条件,故选C.【思路点拨】由已知中可得函数y=f(x)的图象关于直线x= 对称,由(x- )f′(x)<0可得函数y=f(x)在(,+∞)上是增函数,在(-∞,)上是减函数,结合函数的图象和性质和充要条件的定义,可判断f (x1)>f(x2)和x1+x2>5的充要关系,得到答案.【题文】6.如图,阴影区域的边界是直线y=0,x=2,x=0及曲线,则这个区域的面积是 A 4 B 8 C D 【知识点】定积分与微积分基本定理B13 【答案解析】B 这个区域的面积是 3x2dx= =23-0=8,故选B.【思路点拨】将阴影部分的面积是函数在[0,2]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.【题文】7.,三角形的面积,则三角形外接圆的半径为【知识点】解三角形C8 【答案解析】B △ABC中,∵b=2,A=120°,三角形的面积S= = bc•sinA=c• ,∴c=2=b,故B= (180°-A)=30°.再由正弦定理可得 =4,∴三角形外接圆的半径R=2,故选B.【思路点拨】由条件求得 c=2=b,可得B的值,再由正弦定理求得三角形外接圆的半径R的值.【题文】8.已知,若是的最小值,则的取值范围为 A.[-1,2] B.[-1,0] C.[1,2] D.[0,2] 【知识点】函数的单调性与最值B3 【答案解析】D 法一:排除法.当t=0时,结论成立,排除C;当t=-1时,f(0)不是最小值,排除A、B,选D.法二:直接法.由于当x>0时,f (x)=x+ +t在x=1时取得最小值为2+t,由题意当x≤0时,f(x)=(x-t)2,若t≥0,此时最小值为f(0)=t2,故t2≤t+2,即t2-t-2≤0,解得-1≤t≤2,此时0≤t≤2,若t<0,则f(t)<f(0),条件不成立,选D.【思路点拨】法1利用排除法进行判断,法2根据二次函数的图象以及基本不等式的性质即可得到结论.【题文】9.已知【知识点】导数的应用B12 【答案解析】A 由题意得为奇函数,所以排除B D,当x= , ,所以排除D,故选A 【思路点拨】求出导数判断奇偶性,然后利用特殊值求出结果。

山东省青岛市2014届高三上学期期中考试 数学理 Word版

山东省青岛市2014届高三上学期期中考试 数学理 Word版

山东省青岛市2014届高三上学期期中考试数学(理科)练习题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题纸各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集R U =,{|A x y ==,则U C A =A .[0,)+∞B .(,0)-∞C .(0,)+∞D .(,0]-∞ 2.已知命题p 、q ,则“p ∧q 为真”是“p ∨q 为真”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.向量1(,tan )3a α=,(cos ,1)b α=,且a ∥b ,则cos2α= A. 13- B.13C. 79-D. 794.在正项等比数列}{n a 中,369lg lg lg 6a a a ++=,则111a a 的值是 A. 10000 B. 1000 C. 100 D. 105.已知0,a >且1a ≠,函数log ,,xa y x y a y x a ===+在同一坐标系中的图象可能是6.定义运算a b ad bc c d=-,若函数()123x f x xx -=-+在(,)m -∞上单调递减,则实数m 的取值范围是A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D .(,2]-∞-7.设x ,y 满足约束条件0023x y x y a≥⎧⎪≥⎨⎪+≤⎩,若目标函数11y z x +=+的最小值为12,则a 的值为A .2B .4C .6D .88.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x A .332-B .332±C .1-D .1±9.下列命题中正确的是A .1y x x =+的最小值是2 B .()4230y x x x=-->的最大值是2- C .224sin sin y x x=+的最小值是4 D .()4230y x x x =--<的最小值是2- 10.已知等差数列{}n a 的公差0d >,若12320132013t a a a a a ++++=(*N t ∈),则t =A . 2014B .2013C .1007D .1006 11.设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是 A .13a b =- B .//a b C .2a b = D .a b ⊥12.已知函数()f x 的导函数图象如图所示,若ABC ∆为锐角三角形,则一定成立的是A .(cos )(cos )f A fB < B .(sin )(cos )f A f B <C .(sin )(sin )f A f B >D .(sin )(cos )f A f B >第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数12log ,1()24,1x x x f x x >⎧⎪=⎨⎪+≤⎩,则1(())2f f = . 14.曲线2sin 0)y xx π=≤≤(与直线1y =围成的封闭图形的面积为 . 15.已知函数()f x 是(,)-∞+∞上的奇函数,且()f x 的图象关于直线1x =对称,当[1,0]x ∈-时,()f x x =-,则(2013)(2014)f f += .16.若对任意x A ∈,y B ∈,(A 、R B ⊆)有唯一确定的(,)f x y 与之对应,称(,)f x y 为关于x 、y 的二元函数. 现定义满足下列性质的二元函数(,)f x y 为关于实数x 、y 的广义“距离”:(1)非负性:(,)0f x y ≥,当且仅当x y =时取等号; (2)对称性:(,)(,)f x y f y x =;(3)三角形不等式:(,)(,)(,)f x y f x z f z y ≤+对任意的实数z 均成立. 今给出个二元函数:①(,)||f x y x y =-;②2(,)()f x y x y =-③(,)f x y =;④(,)sin()f x y x y =-.则能够成为关于的x 、y 的广义“距离”的函数的所有序号是 .三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数2()2sin cos f x x x x ωωω=+0ω>)的最小正周期为π.(Ⅰ)求函数)(x f 的单调增区间; (Ⅱ)将函数)(x f 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象.若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.18.(本小题满分12分)已知数列{}n d 满足n d n =,等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,N n *∈.(Ⅰ)求n a ;(Ⅱ)令1(1)nn n c a =--,不等式2014(1100,N )k c k k *≥≤≤∈的解集为M ,求所有()k k d a k M +∈的和.19.(本小题满分12分)在ABC ∆中,角A B C 、、对边分别是a b c 、、,且满足222()AB AC a b c ⋅=-+. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC ∆的面积为,b c .20.(本小题满分12分)已知函数2()2(R)f x x x b b =++∈.(Ⅰ)若函数()f x 的值域为[0,)+∞,若关于x 的不等式()(0)f x c c <>的解集为(,6)(R)k k k +∈,求c 的值;(Ⅱ)当0b =时,m 为常数,且01m <<,11m t m -≤≤+,求2()()21f t t t f t t ---+的取值范围.21.(本小题满分13分)某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交(13)a a ≤≤元的管理费,预计当每件商品的售价为(79)x x ≤≤元时,一年的销售量为2(10)x -万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件商品的售价x 的函数关系式()L x ; (Ⅱ)当每件商品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.22.(本小题满分13分)已知函数21()2xf x e x ax =--(R)a ∈. (Ⅰ)若函数()f x 的图象在0x =处的切线方程为2y x b =+,求a ,b 的值; (Ⅱ)若函数在R 上是增函数,求实数a 的取值范围;(Ⅲ)如果函数21()()()2g x f x a x =--有两个不同的极值点12,x x ,证明:2a >.高三数学(理科)练习题 参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. B A D A C D A C B C A D二、填空题:本大题共4小题,每小题4分,共16分.13.2- 14. 23π15.1- 16.① 三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分) 解:(Ⅰ)由题意得()f x =22sin cos x x x ωωω+-sin 222sin(2)3x x x πωωω==- ………………2分由周期为π,得1ω=. 得()2sin(2)3f x x π=- ………………4分由正弦函数的单调增区间得222232k x k πππππ-≤-≤+,得5,1212k x k k Z ππππ-≤≤+∈ 所以函数)(x f 的单调增区间是5[,],Z 1212k k k ππππ-+∈ ………………6分 (Ⅱ)将函数)(x f 的图象向左平移6π个单位,再向上平移1个单位, 得到2sin 21y x =+的图象,所以()2sin 21g x x =+…………………………8分 令()0g x =,得:712x k ππ=+或11(Z)12x k k ππ=+∈…………………………10分 所以在每个周期上恰好有两个零点, 若()y g x =在[0,]b 上有10个零点, 则b 不小于第10个零点的横坐标即可, 即b 的最小值为115941212πππ+=…………………………12分18.(本小题满分12分)解:(Ⅰ)设{}n a 的首项为1a ,公比为q ,所以42911()a q a q =,解得1a q = …………2分 又因为212()5n n n a a a +++=,所以22()5n n n a a q a q +=则22(1)5q q +=,22520q q -+=,解得12q =(舍)或2q = …………4分 所以1222n nn a -=⨯= …………6分 (Ⅱ)则1(1)1(2)n nn n c a =--=--, n d n =当n 为偶数,122014n n c =-≥,即22013n≤-,不成立 当n 为奇数,1+22014n n c =≥,即22013n≥,因为10112=10242=2048,,所以21,549n m m =+≤≤ …………9分 则{}k d 组成首项为11,公差为2的等差数列{}()k a k M ∈组成首项为112,公比为4的等比数列则所有()k k d a k M +∈的和为114510110145(11+99)2(14)2204825377247521433--++=+=-…………12分 19.(本小题满分12分) 解:(Ⅰ)由题意可得2222cos 2bc A a b c bc =---, ………………2分由余弦定理2222cos a b c bc A =+-得4cos 2bc A bc =-, ……………4分∴1cos 2A =-, ∵0A π<<,∴23A π= ………………6分(Ⅱ)1sin 162S bc A bc ==⇔= ………………8分 222222cos 328a b c bc A b c b c =+-⇔+=⇔+=………………10分 解得:4b c == ………………12分 20.(本小题满分12分)解(Ⅰ)由值域为[0)+∞,,当22=0x x b ++时有440b =-=V , 即1b = …………2分则22()21(1)f x x x x =++=+,由已知2()(1)f x x c =+<解得1x +<11x << ……………4分不等式()f x c <的解集为(6)k k +,,∴1)(1)6-==, 解得9c = ……………6分(Ⅱ)当0b =时,2()2f x x x =+,所以22()=()211f t t t tf t t t ---++因为01m <<,11m t m -≤≤+,所以0112m t m <-≤≤+<令2()=1tg t t +,则2221()=(1)t g t t -'+……………8分 当01t <<时,()0g t '>,()g t 单调增,当12t <<时,()0g t '<,()g t 单调减, 所以当1t =时,()g t 取最大值,1(1)2g =……………10分 因为2211(1)(1)(1)1(1)1m mg m g m m m -+--+=--+++32220[(1)1][(1)1]m m m -=<-+++,所以(1)(1)g m g m -<+ 所以2()=1tg t t +的范围为211[,](1)12m m --+……………12分 21.(本小题满分13分)解: (Ⅰ)由题得该连锁分店一年的利润L (万元)与售价x 的函数关系式为2()(4)(10),[7,9]L x x a x x =---∈. ……………………………3分(Ⅱ)2()(10)2(4)(10)L x x x a x '=-----(10)(1823),x a x =-+- …………………………………………6分 令'()0L x =,得263x a =+或10x = ……………………………8分 20213,6833a a ≤≤∴≤+≤.①当2673a +≤,即312a ≤≤时, [7,9]x ∴∈时,()0L x '≤,()L x 在[7,9]x ∈上单调递减,故max ()(7)279L x L a ==- ……………10分 ②当2673a +>,即332a <≤时, 2[7,6]3x a ∴∈+时,'()0L x >;2[6,9]3x a ∈+时,()0L x '<()L x ∴在2[7,6]3x a ∈+上单调递增;在2[6,9]3x a ∈+上单调递减,故3max 2()(6)4(2)33a L x L a =+=- ……………12分答:当312a ≤≤每件商品的售价为7元时,该连锁分店一年的利润L 最大,最大值为279a -万元;当332a <≤每件商品的售价为263a +元时,该连锁分店一年的利润L 最大,最大值为34(2)3a-万元. ……………13分22.(本小题满分13分) 解:(Ⅰ)∵()xf x e x a '=--,∴ (0)1f a '=-.于是由题知12a -=,解得1a =-.………………………………………………2分 ∴ 21()2xf x e x x =-+. ∴ (0)1f =,于是120b =⨯+,解得1b =.……………………………………………………4分(Ⅱ)由题意()0f x '>即0xe x a --≥恒成立,∴ xa e x ≤-恒成立.……………………………………………………5分 设()xh x e x =-,则()1xh x e '=-.当x 变化时,()h x '、()h x 的变化情况如下表:∴min()h x , ∴ 1a ≤…………………………………………………………………………8分 (Ⅲ)由已知222211()22xx g x e x ax ax x e ax ax =---+=--, ∴ ()2xg x e ax a '=--.∵12 ,x x 是函数()g x 的两个不同极值点(不妨设12x x <),∴20xe ax a --=(*)有两个不同的实数根12 ,x x ………………………10分当12x =-时,方程(*)不成立 则21x e a x =+,令()21xe p x x =+,则2(21)()(21)x e x p x x -'=+由()0p x '=得:12x =当x 变化时,()p x ,()p x '变化情况如下表:x1(,)2-∞-11(,)22-121(,)2+∞()p x--+()p x '单调递减单调递减极小值单调递增∴当1(,)2x ∈-∞-时,方程(*)至多有一解,不合题意;……………12分当1(,)2x ∈-+∞时,方程(*)若有两个解,则1()22a p >=所以,a >13分。

河北冀州中学2014届高三上学期期中考试 数学理A卷试题 含答案

河北冀州中学2014届高三上学期期中考试 数学理A卷试题 含答案

试卷类型:A 卷 河北冀州中学2013-2014学年上学期期中考试 高三年级数学试题(理科)考试时间 120分钟 满分150分 命题人:孟 春 审题人:戴洪涛第I 卷(共60分)一、选择题:本大题共15小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合2{|22},{|log (1)},M x x N x y x M N =-≤<==-则= ( )A .{|12}x x <<B .{|10}x x -<<C .{|20}x x -≤<D .{—2,0}[来源 2、已知A 是三角形ABC 的内角,则“1cos 2A =”是“23sin =A ”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件3、已知幂函数)(x f y =通过点(2,2)2,则幂函数的解析式为( ) A.212x y = B 。

21xy = C.23xy =D 。

2521x y =4、已知sin 2α = − 错误!,α∈错误!,则sin α+cos α=( )A 。

-错误!B 。

错误!C 。

-错误! D. 错误!5、非零向量,a b 使得a b a b +=-成立的一个充分非必要条件是 ( ) A 。

//a bB.a b =C.||||a ba b =D 。

0a b +=6、一个空间几何体的三视图如图,则该几何体的体积为( )A .23B .25C .433D .5337、已知等差数列{a n }的前n 项和为S n ,S 9=-36,S 13=-104,等比数列{b n }中,b 5=a 5,b 7=a 7,则b 6的值为()A .±4 2B .-4错误!C .4错误!D .无法确定8、若函数f (x )=()⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛≤+->1224)1x x x a a x )((是R 上的单调递增函数,则实数a 的取值犯围为( )A .(1,+∞)B .(1,8)C .(4,8)D .[4,8) 9、函数2log ||x y x=的图象大致是 ( )10、已知数列{}na 的前n 项和nS =2nn -,正项等比数列{}n b 中,23b a =,2134nn n b b b =⋅-+ (2n ≥∈+且n N )则2logn b =( )A 、n -1B 、2n -1C 、n -2D 、n 11.、设函数()sin cos 2f x x x =图象的一个对称轴是( )A . 4x π=- B .0x = C .4x π=D .2x π=12、已知各项均为正数的等比数列{}n a 1113810a a a a +=+( )中,13213a ,a ,2a 2成等差数列,则A.1-或3B.3 C 。

甘肃省兰州一中2014届高三上学期期中考试数学(理)试题

甘肃省兰州一中2014届高三上学期期中考试数学(理)试题

数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分, 考试时间120分钟. 请将答案填在答题卡上.第Ⅰ卷(选择题 共60分)注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并请认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目标号涂黑,如需改动,用橡皮擦干净后,再选择其它答案标号,在试卷上答案无效.一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合22{|20,},{|20,}M x x x x R N x x x x R =+=∈=-=∈,则 MN = ( )A . {0}B . {0,2}C . {2,0}-D . {2,0,2}-2. 若复数z 满足(34)43i z i -=+,则z 的虚部为 ( ) A .45-B .45C .4-D .4 3. 若3sin 5α=,α是第二象限的角,则tan 2α的值为 ( )A .247 B . 247- C . 724 D . 724- 4. 已知向量(3,1),(0,1),(,3)a b c k ==-=,若2a b -与c 共线,则k 的值为 ( ) A . 1B . 1-C . 2D . 2-5. 由曲线21y x =+,直线3y x =-+及坐标轴所围成图形的面积为 ( ) A . 73B .83C .103D . 36.“0a ≤”是“函数()(1)f x ax x =-在区间(0,)+∞内单调递增”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 7. 设函数1()ln (0)3f x x x x =->,则()y f x = ( ) A .在区间1(,1)e , (1,)e 内均有零点 B .在区间1(,1)e , (1,)e 内均无零点C .在区间1(,1)e 内有零点,在区间(1,)e 内无零点D .在区间1(,1)e内无零点,在区间(1,)e 内有零点8. 设123log 2,ln 2,5a b c -===则 ( )A .a b c <<B . b c a <<C . c a b <<D . c b a << 9. 函数cos(2)()y x ϕπϕπ=+-≤<的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ的值为 ( )A .56π B . 56π- C . 6π D . 6π- 10. 设,,a b c 是单位向量,且0a b ⋅=,则()()a c b c -⋅-的最小值为 ( )A 1-B . 1-C .D .11. 已知函数()cos sin 2f x x x =,下列结论中错误的是 ( ) A . ()y f x =的图象关于点 (,0)π中心对称 B . ()y f x =的图象关于直线2x π=对称C . ()f xD . ()f x 既是奇函数,又是周期函数12. 已知a 为常数,函数()(ln )f x x x ax =-有两个极值点12,x x 12()x x <,则 ( )A . 121()0,()2f x f x >>-B . 121()0,()2f x f x <<- C . 121()0,()2f x f x ><- D . 121()0,()2f x f x <>-第Ⅱ卷(非选择题 共90分)注意事项:本卷共10小题,用黑色碳素笔将答案答在答题卡上.答在试卷上的答案无效.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量(2,1),10,52a a b a b =⋅=+=,则b =_ _. 14. 若函数()sin (0)f x x ωω=>在区间[0,]3π上单调递增,在区间[,]32ππ上单调递减, 则ω= .15. 已知函数lg 010()16102x x f x x x ⎧<≤⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 .16. 在平面直角坐标系xOy 中,设定点(,)A a a ,P 是函数1(0)y x x=>图象上一动点. 若点,P A 之间的最短距离为,则实数a 值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分10分)设函数1()log (1)1a xf x a x+=>-.(Ⅰ)判断()f x 的奇偶性;(Ⅱ)当[0,1)x ∈时,()f x m ≥恒成立,求实数m 的取值范围. 18.(本小题满分12分)设向量(3sin ,sin ),(cos ,sin ).[0,]2a x xb x x x π==∈(Ⅰ)若,a b =求x 的值;(Ⅱ)设函数()f x a b =⋅,求()f x 的值域.19.(本小题满分12分)已知函数2()()4xf x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+. (Ⅰ)求,a b 的值; (Ⅱ)求()f x 的极大值.20.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos 2cos 2cos A C c aB b--=(Ⅰ)求sin sin CA的值;(Ⅱ)若1cos ,24B b ==,求ABC ∆的面积S .21.(本小题满分12分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m .在甲出发min 2后,乙从A 乘缆车到B ,在B 处停留min 1后,再B 从匀速步行到C .假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量, 1312cos =A ,53cos =C . (Ⅰ)求索道AB 的长;(Ⅱ)问乙出发多少分钟后,乙在缆车上与甲的距离最短? (Ⅲ)为使两位游客在C 处互相等待的时间不超过3分钟, 乙步行的速度应控制在什么范围内?22.(本小题满分12分)已知函数()1ln ()f x ax x a R =--∈.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 在1x =处取得极值,对(0,)x ∀∈+∞,不等式()2f x bx ≥- 恒成立. 求实数b 的取值范围;(Ⅲ)当1x y e >>-时,证明:ln(1)ln(1).xye y e x +>+CBA兰州一中2013-2014-1学期期中考试 高三数学试题参考答案(理科)一、选择题(本题共12小题,每小题5分,共60分。

江苏省兴化市2014届高三上学期期中考试数学试题 Word版含答案

江苏省兴化市2014届高三上学期期中考试数学试题 Word版含答案

江苏省兴化市2013~2014学年度第一学期期中考试高三数学试卷(考试用时:120分钟 总分:160分)注意事项:1.所有答案均在答题卡上完成,答案写在试卷上的无效. 2.注意第9、12、19三题文理科不同.一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合}2,1,1{-=M ,集合{}20<<=x x N ,则N M = ▲ .2.设向量b a ,,23,1=⋅b a 则向量b a ,的夹角为 ▲ . 3.若7.07.06.02.1,6.0,6.0===c b a ,试比较c b a ,,大小 ▲ .4.已知函数)(x f 是奇函数,且当0>x 时,12)(3++=x x x f ,则当0<x 时,)(x f 的 解析式为 ▲ . 5.计算:()3233ln 125.09log-++e= ▲ .6. 在ABC ∆,已知222sin sin sin sin sin 0A B C B C ---=,则A ∠的大小为 ▲ .7. 已知函数[]4(),1,5f x x x x=+∈,则函数()f x 的值域为 ▲ . 8. 已知函数a x x x x f ++-=96)(23在R x ∈上有三个零点,则实数a 的取值范围 是 ▲ .9. (理科)已知集合{}8224-<<-=k x k x A , {}k x k x B <<-=, 若A ⊂ ≠B , 则实数k 的取值范围是__________ ▲__________.(文科)集合{}100,,3<<∈==n N n n x x A ,{}60,,5≤≤∈==m N m m y y B , 则集合B A 的所有元素之和为 ▲ .10. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 ▲ .11. 在ABC ∆中,.4,3===AC BC AB 设O 是ABC ∆的内心,若AC n AB m AO +=, 则=n m : ▲ .12. (理科)已知函数)3(log 221a ax x y +-=在[)+∞,2上为减函数,则实数a 的取值范围是▲ .(文科)已知函数,133)(+=x xx f 正项等比数列{}n a 满足150=a ,则+)(ln 1a f+)(ln 2a f +)(ln 3a f =+)(ln 99a f ▲ .13.设实数y x ,满足⎪⎩⎪⎨⎧≤-≥-+≤--,02,052,02y y x y x 则xy x y u 22-=的取值范围是 ▲ .14. 已知),(11)(2424R x k x x kx x x f ∈++++=,则)(x f 的最大值与最小值的乘积为 ▲ . 二、解答题(本题共6小题,共90分。

江苏省盐城市2014届高三上学期期中考试数学试题 含解析

江苏省盐城市2014届高三上学期期中考试数学试题 含解析

盐城市2014届高三年级第一学期期中考试数 学 试 卷一、填空题:(本大题共14小题,每小题5分,计70分) 1.已知集合{}1,0,1,2A =-,{}2|10B x x =->,则A B =.2.命题“,sin 1x R x ∀∈≤”的否定是 .3.函数2cos y x =的最小正周期为 .4.设函数2()(2)1f x x a x =+--在区间[)2,+∞上是增函数,则实数a 的最小值为 .【答案】2- 【解析】试题分析:函数()f x 的图象开口向上,对称轴为22a x -=-,由其在[)2,+∞上是增函数得222a --≤,所以2a ≥-,所以实数a 的最小值为2-.考点:二次函数的单调性。

5。

设向量(1,),(3,4)a x b ==-,若//a b ,则实数x 的值为 。

6.在等比数列{}na 中,22a=,516a =,则10a = .7。

设函数()f x 是周期为5的奇函数,当02x <≤时,()23x f x =-,则(2013)f =.8.设命题:p 4>x ;命题082:2≥--x xq ,那么p 是q 的 条件(选填“充分不必要”、“必要不充分"、“充要”、“既不充分也不必要”).【答案】 充分不必要 【解析】试题分析:不等式2280xx --≥的解集是(,2][4,)-∞-+∞,因为(4,)(,2][4,)+∞-∞-⊆+∞,所以p 是q 的充分不必要条件。

考点:充分条件和必要条件.9。

已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 。

10.在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅的最小值为 .11.在数列{}na 中,11a=,2(1)2n n n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S = .。

河北衡水中学2014届高三上学期期中考试 数学文试题 含答案

河北衡水中学2014届高三上学期期中考试 数学文试题 含答案

衡水中学2013—2014学年度上学期期中考试高三年级数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷共2页,第Ⅱ卷共4页。

共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分.每小题所给选项只有一项符合题意,请将正确答案的选项填涂在答题卡上)1.设⎭⎬⎫⎩⎨⎧∈<<=Z x x x A ,521|,{}a x x B >=|,若B A ⊆,则实数a 的取值范围是( ) A 。

1<aB 。

1≤a C.21<a D.21≤a2。

已知条件3:=k p ;条件q :直线2+=kx y 与圆122=+y x 相切,则p 是q 的()A .充要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件 3.已知数列12463579{}1(),18,log ()nn n a aa n N a a a a a a ++=+∈++=++满足且则等于( )A .2B .-2C .-3D .34. 定义在R 上的可导函数()f x ,已知()f x y e '=的图象如图所示,则()y f x =的增区间是( )A .(,1)-∞B .(,2)-∞C .(0,1)D .(1,2)5.设0>ϖ,函数23sin +⎪⎭⎫⎝⎛+=πϖx y 图像向右平移34π个单位与原图像重合,则ω最小值是( ) D.3A 32。

B 。

34 C.236.一个四棱锥的三视图如图所示,其中主视图是腰长为1的等腰直角三角形,则这个几何体的体积是 ( )A .1B .21 C .23 D .27。

点C B A O ,,,共面,若20OA OB OC ++=,则AOC ∆的面积与ABC ∆的面积之比为( )A. 13 B 。

23 C 。

12D. 148. 已知三条不重合的直线,,m n l 和两个不重合的平面α、β,下列命题中正确命题个数为( )①若//,,//;m n n m αα⊂则 ②βαβα⊥⊥⊥⊥则且若m l m l ,③m l n m n l //,,则若⊥⊥ ④αββαβα⊥⊥⊂=⊥n m n n m 则若,,,, A .1 B .2 C .3 D .4 9.若直线)2(-=x k y 与曲线21x y -=有交点,则( )A .k 有最大值33,最小值33- B .k 有最大值21,最小值21- C .k 有最大值0,最小值 33- D .k 有最大值0,最小值21-10. 设椭圆22221(0)x y a b a b+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程主视俯视图20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( ) A.必在圆222x y +=内 B.必在圆222xy +=上C.必在圆222x y +=外D.以上三种情形都有可能 11。

江苏省扬州市2014届高三上学期期中考试数学试题(含答案)

江苏省扬州市2014届高三上学期期中考试数学试题(含答案)

扬州市2014届高三上学期期中考试数学试题2013.11全卷分两部分:第一部分为所有考生必做部分(满分160分,考试时间120分钟),第二部分为选修物理考生的加试部分(满分40分,考试时间30分钟). 注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.第一部分试题答案均写在答题卷相应位置,答在其它地方无效.3.选修物理的考生在第一部分考试结束后,将答卷交回,再参加加试部分的考试.第 一 部 分一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.复数21iz i+=-的实部为 ▲ . 2.命题“2,10x R x ∀∈+>”的否定是 ▲ .3.已知向量(1,2),(2,)a b k ==-r r,且a b r r ∥,则实数=k ▲ .4.已知直线1:210l ax y a -++=和2:2(1)20l x a y --+=()a R ∈,若12l l ⊥,则a = ▲ .5.已知(,)2παπ∈,且tan 2α=-,则cos2α= ▲ .6.已知实数x ,y 满足5030x y x x y -+≥⎧⎪≤⎨⎪+≥⎩,则目标函数2z x y =+的最小值为 ▲ .7.已知函数()1ln f x x x=-,若函数()f x 的零点所在的区间为()(),1k k k Z +∈,则 k = ▲ .8.若双曲线2212x y m m -=+的一个焦点与抛物线28y x =的焦点相同,则m = ▲ .9.若函数()()(2)f x x a bx a =++(,)a b R ∈是偶函数,且它的值域为(,8]-∞,则ab = ▲ .10.1()sin()(0)26f x x πωω=+>的图象与直线y m =相切,相邻切点之间的距离为π.若点00(,)A x y 是()y f x =图象的一个对称中心,且00,2x π⎡⎤∈⎢⎥⎣⎦, 则0x = ▲ . 11.椭圆()2222:10x y C a b a b+=>>的一条准线与x 轴的交点为P ,点A 为其短轴的一个端点,若PA的中点在椭圆C 上,则椭圆的离心率为 ▲ .12.函数()2()241f x x x x R =-+∈,若12()()f x f x =,且12x x >,则221212x x x x +-的最小值为 ▲ .13. 已知向量OA u u u r ,OB uuu r 满足||1OA =u u u r ,||2OB =u u u r,||AB =u u u r ()()AC OA OB R λλ=+∈u u u r u u u r u u u r,若||BC =u u u rλ所有可能的值为 ▲ .14.设圆22(1)1x y +-=的切线l 与x 轴正半轴,y 轴正半轴分别交于点,A B ,当AB 取最小值时,切线l 在y 轴上的截距为 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分) 已知集合4|1+1A x x ⎧⎫=>⎨⎬⎩⎭,()(){}|410B x x m x m =---+>. (1)若2m =,求集合A B U ;(2)若A B =∅I ,求实数m 的取值范围. 16.(本题满分14分)在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,已知向量()cos ,sin m B B =u r,()sin 2sin ,cos n C A C =-r,且m n ⊥u r r .(1)求角B 的大小;(2)若7a c +=,b =BA BC ⋅u u u r u u u r的值.17.(本小题满分15分)在平面直角坐标系xOy 中,已知圆M :22860x y x +-+=,过点(0,2)P 且斜率为k 的直线与圆M 相交于不同的两点,A B ,线段AB 的中点为N 。

盐城市2014届高三年级第一学期期中考试数学试题(含答案)

盐城市2014届高三年级第一学期期中考试数学试题(含答案)

盐城市2014届高三年级第一学期期中考试数 学 试 题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上. 1.已知集合{}1,0,1,2A =-, {}2|10B x x =->,则A B = ▲ .2.命题“,sin 1x R x ∀∈≤”的否定是 ▲ . 3.函数2cos y x =的最小正周期为 ▲ .4.设函数2()(2)1f x x a x =+--在区间[)2,+∞上是增函数,则实数a 的最小值为 ▲ .5.设向量(1,),(3,4)a x b ==-,若//a b ,则实数x 的值为 ▲ . 6.在等比数列{}n a 中,22a =,516a =,则10a = ▲ .7.设函数()f x 是周期为5的奇函数,当02x <≤时,()23xf x =-,则(2013)f= ▲ .8.设命题:p 4>x ;命题082:2≥--x x q ,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).9.已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 ▲ .10.在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅的最小值为 ▲ .11.在数列{}n a 中,11a =,2(1)2nn n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S = ▲ .12.在ABC ∆中,若22()||5CA CB AB AB +⋅=,则tan tan AB= ▲ . 13.在数列{}n a 中,10a =,111111n n a a +-=--,设n b =,记n S 为数列{}n b 的前n 项和,则99S = ▲ .14. 设)(x f '和)(x g '分别是()f x 和()g x 的导函数,若()()0f x g x ''≤在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性相反.若函数31()23f x x ax =-与2()2g x x bx =+在开区间(,)a b 上单调性相反(0a >),则b a -的最大值为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15. (本小题满分14分)已知函数()2sin(2)f x x ϕ=+,其中角ϕ的终边经过点3)P ,且0ϕπ<<. (1)求ϕ的值;(2)求()f x 在[0,]π上的单调减区间.16. (本小题满分14分)设集合{}21A x x =-<<-,|lg ,0,3x a B x y a a R a x -⎧⎫==≠∈⎨⎬-⎩⎭. (1)当a =1时,求集合B ;(2)当A B B =时,求a 的取值范围.17. (本小题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,设(1,1)m =,(cos ,sin )n A A =-, 记()f A m n =⋅.(1)求()f A 的取值范围; (2)若m 与n 的夹角为3π,3C π=,6c =b 的值.18. (本小题满分16分)某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人. 某数学兴趣小组综合各种因素预测:①该景点每年的游客人数会逐年增加;②该景点每年的游客都达不到130万人. 该兴趣小组想找一个函数()y f x =来拟合该景点对外开放的第x (1)x ≥年与当年的游客人数y (单位:万人)之间的关系.(1)根据上述两点预测,请用数学语言描述.......函数()y f x =所具有的性质; (2)若()f x =mn x +,试确定,m n 的值,并考察该函数是否符合上述两点预测; (3)若()f x =(0,1)xa b c b b ⋅+>≠,欲使得该函数符合上述两点预测,试确定b 的取值范围.19. (本小题满分16分)若函数()(ln )f x x x a =-(a 为实常数).(1)当0a =时,求函数)(x f 在1x =处的切线方程; (2)设()|()|g x f x =.①求函数()g x 的单调区间; ②若函数1()()h x g x =的定义域为2[1,]e ,求函数()h x 的最小值()m a .20. (本小题满分16分)设数列{}n a 的各项均为正实数,2log n n b a =,若数列{}n b 满足20b =,12log n n b b p +=+,其中p为正常数,且1p ≠.(1)求数列{}n a 的通项公式;(2)是否存在正整数M ,使得当n M >时,1473216n a a a a a -⋅⋅⋅⋅⋅⋅⋅>恒成立?若存在,求出使结论成立的p 的取值范围和相应的M 的最小值;若不存在,请说明理由;(3)若2p =,设数列{}n c 对任意的*n N ∈,都有12132n n n c b c b c b --+++⋅⋅⋅1n c b +2n =-成立,问数列{}n c 是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.盐城市2014届高三年级第一学期期中考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1. {}22. ,sin 1x R x ∃∈>3. π4.-25. 43-6.5127.-18.充分不必要9.2ln 22- 10.-5 11. 930 12. 73 13. 910 14. 12二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解:(1)角ϕ的终边经过点3)P ,tan 3ϕ∴=, ……………………4分又0ϕπ<<,3πϕ∴=; ……………………7分(2)因为()2sin(2)3f x x π=+,由3222232k x k πππππ+≤+≤+, 得71212k x k ππππ+≤≤+,k Z ∈, ……………………11分取0k =,则71212x ππ≤≤,()f x ∴在[0,]π上的单调减区间为7[,]1212ππ. ……………………14分16.解:(1)当a =1时,1lg3x y x -=-,由103x x->-, ……………………3分解得13x <<,所以集合{13}B x x =<<; ……………………7分(2)因为A B B =,则A B ⊆, (8)分由03x aa x->-,得()()30x a x a --<.(ⅰ)当0a >时,(,3)B a a =,显然不满足题意; (10)分(ⅱ)当0a <时,(3,)B a a =,由题意知32,1a a ≤-⎧⎨≥-⎩解得213a -≤≤-. (13)分综上所述,所求a 的取值范围是213a -≤≤-. ……………………14分17.解:(1)因为()f A m n =⋅=cos sin 4A A A π⎛⎫-+=- ⎪⎝⎭, (3)分0A π<<,3444A πππ∴-<-<,sin 124A π⎛⎫∴-<-≤ ⎪⎝⎭, ()f A ∴的取值范围是(-; (7)分(2)∵m n 与的夹角为3π,∴cos 3m n m n π⋅=,即cos sin 4A A A π⎛⎫-+=-= ⎪⎝⎭,1sin 42A π⎛⎫∴-= ⎪⎝⎭,46A ππ∴-=或546A ππ-=(舍去),512A π∴=, (10)分 又3C π=,4B π∴=,由正弦定理知sin sin c bC B =,即sin sin 34b ππ=,解得2b =. ……………………14分 18.解:(1)预测①:()f x 在[1,)+∞上单调递增;预测②:()130f x <对[1,)x ∈+∞恒成立; ……………………2分(2)将(1,100)、(2、120)代入到m y n x =+中,得1001202m nm n =+⎧⎪⎨=+⎪⎩,解得40140m n =-⎧⎨=⎩. ……………………5分因为40()140f x x =-+,所以240()0f x x'=>, 故()f x 在[1,)+∞上单调递增,符合预测①; ……………………7分又当4x ≥时,40()140130f x x=-+≥,所以此时()f x 不符合预测②. ……………………9分(3)由2100120ab c ab c =+⎧⎨=+⎩,解得20(1)201001a b b c b ⎧=⎪-⎪⎨⎪=-⎪-⎩. ……………………11分 因为()ln xf x a b b '=⋅⋅,要想符合预测①,则()0f x '>,即ln 0a b ⋅>,从而01a b >⎧⎨>⎩或001a b <⎧⎨<<⎩. ……………………12分[1]当1b >时,200(1)a b b =>-,此时符合预测①,但由()130f x ≥,解得23log ()22b bx b ≥-, 即当23log ()22b bx b ≥-时,()130f x ≥,所以此时()f x 不符合预测②; ……………………13分[2]当01b <<,200(1)a b b =<-,此时符合预测①,又由1x ≥,知(0,]x b b ∈,所以[,0)xa b ab ⋅∈,从而()[,)f x ab c c ∈+.欲()f x 也符合预测②,则130c ≤,即201001301b -≤-,又01b <<,解得103b <≤.综上所述,b 的取值范围是1(0,]3. ……………………16分19.解:(1)当0a =时,()ln f x x x =,()ln 1f x x '=+,()11k f '∴==, …………………2分又当1x =时,0y =,∴函数)(x f 在1x =处的切线方程1y x =-; ………………………4分(2)因为()()|()|ln g x f x x x a ==-ln ,|ln |ln ,aax x ax x e x x a ax x x x e⎧-≥=-=⎨-<⎩, ①当a x e ≥时,()ln 10g x x a '=+->恒成立,所以(,)ax e ∈+∞时,函数()g x 为增函数; ………………………7分 当a x e <时,()1ln g x a x '=--,令()1ln 0g x a x '=-->,得10a x e -<<, 令()1ln 0g x a x '=--<,得1a x e ->,所以函数()g x 的单调增区间为1(,),(0,)aa e e-+∞;单调减区间为1(,)a a e e -;…………………10分 ②当2[1,]x e ∈时,ln [0,2]x ∈,因为11()()|ln |h x g x x x a ==-的定义域为2[1,]e , 所以2a >或0a <. (11)分(ⅰ)当0a <时,1a e <,所以函数()g x 在2[1,]e 上单调递增,则()g x 的最大值为()22a e -,所以()h x 在区间2[1,]e 上的最小值为()21()2m a a e=-; ………………………13分 (ⅱ)当23a <<时,2a e e <,且121a e e -<<,所以函数()g x 在)1[1,a e -上单调递增,在(12,a e e -⎤⎦上单调递减,则()g x 的最大值为1a e -,所以()h x 在区间2[1,]e 上的最小值为11()a m a e -=; (14)分(ⅲ)当3a ≥时,12a ee ->,所以函数()g x 在2[1,]e 上单调递增,则()g x 的最大值为()22a e -,所以()h x 在区间2[1,]e 上的最小值为()21()2m a a e =-.综上所述,()()2121,0,21(),23,1,3.2a a a e m a a e a a e -⎧<⎪-⎪⎪=<<⎨⎪⎪≥⎪-⎩………………………16分 20.解:(1)因为12log n n b b p +=+,所以12log n n b b p +-=,所以数列{}n b 是以2log p 为公差的等差数列,又20b =,所以2222(2)(log )log n n b b n p p -=+-=, ………………………2分故由2log n n b a =,得22log 222n nb p n n a p --===. ………………………4分(2)因为2n n a p-=,所以14732n a a a a -⋅⋅⋅⋅⋅⋅⋅12534n p p pp--=(35)125(34)2n nn pp--++++-==,又16a =14p ,所以(35)2n np->14p , (6)分(ⅰ)当01p <<时,(35)2n n -14<,解得743n -<<,不符合题意; ………………………7分(ⅱ)当1p >时,(35)2n n -14>,解得4,n >或73n <-. (8)分综上所述,当1p >时,存在正整数M 使得1473216n a a a a a -⋅⋅⋅⋅⋅⋅⋅>恒成立,且M 的最小值为4.………………………9分 (3)因为2p =,由(1)得2n b n =-,所以123(2)(3)(4)(1)2n c n c n c n c n -+-+-+⋅⋅⋅+-=- ①, 则1231(1)(2)(3)(1)2(1)n c n c n c n c n +-+-+-+⋅⋅⋅+-=-+ ②,由②-①,得12312n n c c c c c ++++⋅⋅⋅+-=- ③, ………………………12分所以123122n n n c c c c c c +++++⋅⋅⋅++-=- ④, 再由④-③,得122n n c c ++=,即*212()n n c n N c ++=∈, 所以当2n ≥时,数列{}n c 成等比数列, ………………………15分又由①式,可得12c =,24c =,则212c c =,所以数列{}n c 一定是等比数列,且2n n c =. (16)分(说明:若第(3)小题学生由前几项猜出等比数列,再代回验证的,扣3分)。

江苏省徐州市2014届高三上学期期中考试数学试题-Word版包含答案

江苏省徐州市2014届高三上学期期中考试数学试题-Word版包含答案

江苏省徐州市2014届高三上学期期中考试数学试题一、填空题1.已知全集U R =,集合{|M x y ==,则U C M = 。

2.复数12iz i-=的虚部是 。

3.“1x >”是“21x >”的 条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)4.已知扇形的半径为10cm ,圆心角为120︒,则扇形的面积为 。

5.如果22log log 1x y +=,则2x y +的最小值是 。

6.设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S = 。

7.曲线xy e =(其中 2.71828e =)在1x =处的切线方程为 。

8.方程sin 0x x a ++=在(0,2)π内有相异两解,αβ,则αβ+= 。

9.已知ABC ∆中,,,a b c 分别是角,,A B C 的对边,45,60a A B ==︒=︒,那么ABC∆的面积ABC S ∆= 。

10.已知函数22log (1) (0)()2 (0)x x f x x x x +>⎧=⎨--≤⎩,,若函数()()g x f x m =-有3个零点,则实数m 的取值范围是 。

11.若不等式21()2()12xxm m -<对一切(,1]x ∈-∞-恒成立,则实数m 的取值范围是 。

12.设等比数列{}n a 满足公比**,n q N a N ∈∈,且{}n a 中的任意两项之积也是该数列中的一项,若1112a =,则q 的所有可能取值的集合为 。

13.已知O 是ABC ∆的外心,10,6==AC AB ,若AC y AB x AO ⋅+⋅=且5102=+y x ,则=∠BAC cos 。

14.定义在R 上的函数()y f x =满足1(0)0,()(1)1,()()52xf f x f x f f x =+-==,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2013f = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014届高三上学期期中考试数学试题一、填空题1.已知全集U R =,集合{|M x y ==,则U C M = 。

2.复数12iz i-=的虚部是 。

3.“1x >”是“21x >”的 条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)4.已知扇形的半径为10cm ,圆心角为120︒,则扇形的面积为 。

5.如果22log log 1x y +=,则2x y +的最小值是 。

6.设n S 是等差数列{}n a 的前n 项和,已知263,11a a ==,则7S = 。

7.曲线x y e =(其中 2.71828e = )在1x =处的切线方程为 。

8.方程sin 0x x a +=在(0,2)π内有相异两解,αβ,则αβ+= 。

9.已知ABC ∆中,,,a b c 分别是角,,A B C 的对边,45,60a A B ==︒=︒,那么ABC ∆的面积ABC S ∆= 。

10.已知函数22log (1) (0)()2 (0)x x f x x x x +>⎧=⎨--≤⎩,,若函数()()g x f x m =-有3个零点,则实数m 的取值范围是 。

11.若不等式21()2()12xxm m -<对一切(,1]x ∈-∞-恒成立,则实数m 的取值范围是 。

12.设等比数列{}n a 满足公比**,n q N a N ∈∈,且{}n a 中的任意两项之积也是该数列中的一项,若1112a =,则q 的所有可能取值的集合为 。

13.已知O 是ABC ∆的外心,10,6==AC AB ,若y x ⋅+⋅=且5102=+y x ,则=∠BAC cos 。

14.定义在R 上的函数()y f x =满足1(0)0,()(1)1,()()52xf f x f x f f x =+-==,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2013f = 。

二、解答题15.已知等差数列{}n a 满足{}3577,26,n a a a a =+=的前n 项和为n S 。

(1)求n a 及n S ;(2)令*21()1n n b n N a =∈-,求数列{}n b 的前n 项和n T 。

16.设向量(2,sin ),(1,cos ),a b θθθ==为锐角。

(1)若136a b ⋅= ,求sin cos θθ+的值;(2)若//a b ,求sin(2)3πθ+的值。

17.已知a R ∈,函数()||f x x x a =-。

(1)当2a =时,写出函数()y f x =的单调递增区间; (2)当2a >时,求函数()y f x =在区间[1,2]上的最小值;(3)设0a ≠,函数()y f x =在(,)m n 上既有最大值又有最小值,请分别求出,m n 的取值范围(用a 表示)。

18.如图,某生态园欲把一块四边形地BCED 辟为水果园,其中90,C D BC BD ∠=∠=︒==,1CE DE ==。

若经过DB 上一点P 和EC 上一点Q 铺设一条道路PQ ,且PQ 将四边形BCED 分成面积相等的两部分,设,DP x EQ y ==。

(1)求,x y 的关系式;(2)如果PQ 是灌溉水管的位置,为了省钱,希望它最短,求PQ 的长的最小值; (3)如果PQ 是参观路线,希望它最长,那么P Q 、的位置在哪里?19.已知等比数列{}n a 满足*12111()2n n a a a a n N ++++=-∈ 。

(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入1n -个数组成一个公差为n d 的等差数列。

①设1n nb d =,求数列{}n b 的前n 项和n T ; ②在数列{}n d 中是否存在三项,,m k p d d d (其中,,m k p 成等差数列)成等比数列?求出这样的三项;若不存在,说明理由。

20.已知函数2()ln f x a x x =-。

(1)当2a =时,求函数()y f x =在1[,2]2上的最大值;(2)令()()g x f x ax =+,若()y g x =在区让(0,3)上不单调,求a 的取值范围; (3)当2a =时,函数()()h x f x mx =-的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<,又()y h x '=是()y h x =的导函数。

若正常数,αβ满足条件1,αββα+=≥。

证明12()0h x x αβ'+<。

2013~2014学年度第一学期期中考试高三数学参考答案与评分标准一、填空题1.{}1|<x x 2.—1 3.充分不必要 4.3100πcm 2 5.4 6.49 7.ex y = 8.3π,37π 9.433+ 10.(0,1) 11.32<<-m12.{2,32,92,272,812} 13.31 14.321二、解答题15. 解:(1)设等差数列}{n a 的首项为1a ,公差为d , ……1分 由26,7753=+=a a a ,解得2,31==d a . ……5分由于2)(,)1(11n n n a a n S d n a a +=-+=,所以n n S n a n n 2,122+=+=. ……7分 (2)因为12+=n a n ,所以)1(412+=-n n a n ,因此)111(41)1(41+-=+=n n n n b n .…9分故)1(4)111(41)1113121211(4121+=+-=--++-+-=+++=n n n n n b b b T n n , …13分所以数列}{n b 的前n 项和=n T )1(4+n n. ……14分16. 解:(1)因为a ·b =2 + sinθcosθ =136 , 所以sinθcosθ = 16, ……2分 所以(sinθ +cosθ)2 = 1+2sinθcosθ = 34 .又因为θ为锐角,所以sinθ + cosθ = 233…6分(2)因为a ∥b ,所以tanθ = 2, ……8分 所以sin2θ = 2sinθcosθ =2sinθcosθsin 2θ+cos 2θ = 2tanθtan 2θ+1 = 45, ……10分 cos2θ = cos 2θ-sin 2θ = cos 2θ-sin 2θsin 2θ+cos 2θ = 1-tan 2θtan 2θ+1 = — 35 . ……12分 所以sin(2θ+ π3 ) = 12 sin2θ + 32 cos2θ = 12 ×45+32 ×(-35) = 4-3310. ……14分17. 解:(1)当2=a 时,⎩⎨⎧<-≥-=-=2),2(2),2(|2|)(x x x x x x x x x f , ……2分由图象可知,)(x f y =的单调递增区间为),2[],1,(+∞-∞. ……4分(2)因为]2,1[,2∈>x a ,所以4)2()()(222a a x ax x x a x x f +--=+-=-=.……6分当2321≤<a ,即32≤<a 时,42)2()(m in -==a f x f ; ……7分当232>a ,即3>a 时,1)1()(m in -==a f x f . ……8分 ⎩⎨⎧>-≤<-=∴3,132,42)(min a a a a x f . ……9分 (3)⎩⎨⎧<-≥-=a x x a x ax a x x x f ),(),()(, ……10分①当0>a 时,图象如图1所示.由⎪⎩⎪⎨⎧-==)(42a x x y a y 得a n a a m a x 212,20.2)12(+≤<<≤∴+=. ……12分图1 图2 ②当0<a 时,图象如图2所示.由⎪⎩⎪⎨⎧-=-=),(,42x a x y a y 得02,212.221≤<<≤+∴+=n a a m a a x . ……14分 18. 解:(1)延长BD 、CE 交于点A ,则2,3==AE AD ,则23===∆∆∆B C EB D E A D E S S S . ABDEPQ34)2)(3(,3)2)(3(41,3=++∴=++∴=∆y x y x S APQ . ……4分(2)022230cos 2AQ AP AQ AP PQ ⋅-+=12381234223342)334()3(22-=-⨯≥⨯⨯-+++=x x ……6分当22)334()3(+=+x x ,即3324-=x 时,33221238min -=-=PQ . ……8分(3)令]12,316[],3,33[,)3(2∈∴∈+=t x x t , ……10分 则1248)(2-+==tt t f PQ , 2'481)(t t f -= ,令0481)(2'=-=tt f 得,34=t , ……12分 )(t f ∴在)34,0(上是减函数,在),34(+∞上是增函数,4)12()}12(),316(max{)(m ax ===∴f f f t f ,PQ max = 2, ……14分此时0,3,12)3(2===+=y x x t ,P 点在B 处,Q 点在E 处。

……16分 19. 解:(1)由已知,)(121*1N n a S n n ∈-=+,所以12121-=++n n a S , 两式相减得,)(21111+++-=n n n a qa a ,解得3=q , ……3分 又12111-⨯⨯=a q a ,解得21=a , ……5分 故.321-⨯=n n a ……6分 (2)由(1),知.34,.32,321111nd nd a a a a n n n n n nn n n -++-⨯=∴+=⨯=⨯= ……7分①1210321343433423411111-⨯++⨯+⨯+⨯=++++=n n n n d d d d T , ……8分 n n n T 3434334234131321⨯++⨯+⨯+⨯= , n n n n n n n T 343113114134341341341341321210⨯---⨯=⨯-⨯++⨯+⨯+⨯=∴- ……10分故n n n T 31)83169(169+-=……11分 ②假设在数列}{n d 中存在三项p k m d d d ,,(其中p k m ,,成等差数列)成等比数列,则p m kd d d ⋅=2,即pm k p m k 11213434)34(---⨯⋅⨯=⨯. ……13分 因为p k m ,,成等差数列,所以k p m 2=+,(*)代入上式得: mp k =2,(**)由(*),(**),得k p m ==,这与题设矛盾. ……15分 所以,在数列}{n d 中不存在三项p k m d d d ,,(其中p k m ,,成等差数列)成等比数列.…16分20. 解:(1) ,2222)(2'xx x x x f -=-= ……2分函数)(x f y =在[21,1]是增函数,在[1,2]是减函数,所以111ln 2)1()(2m ax -=-==f x f . ……4分 (2)因为ax x x a x g +-=2ln )(,所以a x xax g +-='2)(, ……5分 因为)(x g 在区间)3,0(上不单调,所以0)(='x g 在(0,3)上有实数解,且无重根,由0)(='x g ,有122+=x x a =)29,0(4)111(2∈-+++x x ,()3,0(∈x ) ……6分 又当8-=a 时,0)(='x g 有重根2-=x , ……7分综上∈a )29,0( ……8分 (3)∵m x xx h --=22)(',又0)(=-mx x f 有两个实根21,x x , ∴⎩⎨⎧=--=--0ln 20ln 222221211mx x x mx x x ,两式相减,得)()()ln (ln 221222121x x m x x x x -=---,)(,0)(,01,10,1'22t u t u t t ∴>∴<-∴<<≥αβ 在(0,1)上单调递增, ……15分 01ln ,0)1()(<+-+∴=<βαt tt u t u ,即0ln 2121<++-x x t x x βα.∴0)(21'<+x x h βα.……16分。

相关文档
最新文档