新北师大版九年级数学上册第三章检测题附答案
新北师大版九年级数学上册第三章检测题答案
九上第三章概率的进一步认识检测题(一)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是( )A .P(C)<P(A)=P(B)B .P(C)<P(A)<P(B)C .P(C)<P(B)<P(A)D .P(A)<P(B)<P(C)2.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A .0 B.13 C.23 D .1 3.如图,2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A 、12B 、 25C 、37D 、474.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( )A.12B.712C.58D.345.掷两枚普通正六面体骰子,所得点数之和为11的概率为( )A.118B.136C.112D.1156.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5258.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是( )A.16B.13C.12D.239.从长为10 cm,7 cm,5 cm,3 cm的四条线段中任选三条能够组成三角形的概率是( )A.14B.13C.12D.3410.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )A.34B.13C.23D.12二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为__ __.12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾,小明通过多次捕捞试验,发现鲤鱼、草鱼的概率是51%和26%,则水库里有__ _ _尾鲫鱼.13.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有_ ___个.14.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是_ __.15.袋中装有4个完全相同的球,分别标有1,2,3,4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为_ ___.16.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是_ _.三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y 分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.20.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)现有一项资助贫困生的公益活动由你来主持,每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各指向一个数字(若指针在分格线上,则重转一次,直到指针指向某一数字为止).若指针最后所得的数字之和为12,则获一等奖,奖金20元;数字之和为9,则获二等奖,奖金10元;数字之和为7,则获三等奖,奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加,活动结束后至少有多少赞助费用于资助贫困生.22.(10分)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( A )A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.新北师大版九年级数学上册第三章检测题答案一、选择题: 1、B 2、B 3、D 4、C 5、A6、D7、C8、B9、C 10、D A.34 B.13 C.23 D.12 二、填空题(每小题3分,共18分)11.47 12、460 13、4 14、12 15、12 16、16三、解答题(共72分)17. 解:画树状图:P(都是蓝色)=26=1318. 解:(1)14 (2)这个游戏公平,理由如下 :两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)=816=12,两次摸出纸牌上数字之和为奇数与和为偶数的概率相同,所以这个游戏公平19. 解:(1)列表:-7 -1 3-2 (-7,-2) (-1,-2) (3,-2)1 (-7,1) (-1,1) (3,1)6 (-7,6) (-1,6) (3,6)可知,点A 共有9种情况 (2)由(1)知点A 的坐标共有9种等可能的情况,点A 落在第三象限(事件A)共有(-7,-2),(-1,-2)两种情况,∴P(A)=2910分)20. 解:(1)共有12种情况,积为奇数的情况有6种, 所以欢欢胜的概率是612=12(2)由(1)得乐乐胜的概率为1-12=12,两人获胜的概率相同,所以游戏公平21.解:(1)P(一等奖)=136;P(二等奖)=19;P(三等奖)=16(2)(136×20+19×10+16×5)×2 000=5 000,5×2 000-5 000=5 000,即活动结束后至少有5 000元用于资助贫困生22.解:(2)依题意可画树状图:(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲,②丙甲乙,∴P(A)=26=1323.解:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一次摸到绿球,第二次摸到红球的概率为:416=14;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率为:8 16=12(2)23九上第三章 概率的进一步认识测试题(二)一、选择题1.在布袋中装有两个大小一样,质地相同的球,其中一个为红色,一个为白色。
北师大版九年级上册数学第三章测试题(附答案)
北师大版九年级上册数学第三章测试题(附答案)一、单选题(共12题;共24分)1.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A. 0.85B. 0.57C. 0.42D. 0.152.随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是( )A. B. C. D.3.在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是()A. 12B. 16C. 20D. 304.在抛掷硬币的试验中,下列结论正确的是()A. 经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定B. 抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同C. 抛掷50000次硬币,可得“正面向上”的频率为0.5D. 若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.5185.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽频率0.9 0.94 0.952 0.951 0.95A. 0.8B. 0.9C. 0.95D. 16.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A. B. C. D.7.寒假结束了,开学后小明对本校七年级部分同学寒假阅读总时间(结果保留整10小时)进行了抽样调查,所得数据整理后制作成如图所示的频数分布直方图.观察这个频数分布直方图,给出如下结论,正确的是()A. 小明调查了100名同学B. 所得数据的众数是40小时C. 所得数据的中位数是30小时D. 全区有七年级学生6000名,寒假阅读总时间在20小时(含20小时)以上的约有5000名8.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. B. C. D.9.从2种不同款式的衬衣和2种不同款式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A. 1B. 2C. 3D. 410.有五张卡片的正面分别写有“我”“的”“中”“国”“梦”,五张卡片洗匀后将其反反面放在桌面上,小明从中任意抽取两张卡片,恰好是“中国”的概率是()A. B. C. D.11.下列说法正确的是().①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A. ①②B. ②③C. ③④D. ①③12.小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是().A. 两次摸到红色球B. 两次摸到白色球C. 两次摸到不同颜色的球D. 先摸到红色球,后摸到白色球二、填空题(共8题;共17分)13.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是________.14.一个暗箱中放有除颜色外其他完全相同的m个红球,6个黄球,3个白球现将球搅匀后,任意摸出1个球记下颜色,再放回暗箱,通过大量重复试验后发现,摸到黄球的频率稳定在附近,由此可以估算m的值是________.15.在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数:依此估计这种幼树成活的概率是________.(结果用小数表示,精确到0.1)16.从1,2,3,4,5五个数中任意取2个(不可重复),它们的和是偶数的概率为________ .17.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为________ .18.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有________个.19.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种的可能性相同,则两辆汽车经过十字路口全部继续直行的概率为________.20.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;优等品频率 ________ ________ ________ ________ ________(2)该厂生产乒乓球优等品的概率约为多少?三、解答题(共3题;共15分)21.有四张完全一样的白色硬纸片,每张纸片的其中一个面上写有一个数字,它们分别是2、-1、0、-2.小华把这四张纸片写有数字的一面朝下洗匀,随机抽出一张记下数字;将抽出的纸片数字朝下放回,洗匀后再随机抽出一张记下数字.求小华两次记下的数字之和是正数的概率。
北师大版九年级数学上册 第三章 概率的进一步认识 单元检测试题(有答案)
第三章概率的进一步认识单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 某人有红、白、蓝三条长裤和红、白、蓝三件衬衣,他从中任意拿一条长裤和一件衬衣,恰好颜色配套的概率是()A.1 8B.16C.13D.122. 在一个不透明的塑料袋中装有红色、白色球共20个,除颜色外,其它都相同.小明通过多次摸球实验后发现,其中摸到红球的频率稳定在25%左右.则口袋中红球大约有()个.A.5个B.10个C.12个D.15个3. 在一个不透明的袋子中有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出红球的概率是15,则估计袋子中大概有球的个数是()个.A.25B.50C.75D.1004. 如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.2 5B.310C.320D.155. 有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.1 3B.49C.59D.236. 在毕业晚会上,有一项同桌默契游戏,规则是:甲、乙两个不透明的纸箱中都放有红、黄、白三个球(除颜色外完全相同),同桌两人分别从不同的箱中各摸出一球,若颜色相同,则能得到一份默契奖礼物.同桌的小亮和小洁参加这项活动,他们能获得默契奖礼物的概率是()A.2 3B.13C.16D.197. 一个不透明的盒子有有n个除颜色外其它完全相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在20%,那么可以推算出n大约是()A.30B.20C.12D.68. 不透明的口袋中装有同型号的红球m个、黄球n个,小明做试验:往该口袋中再放入同型号的红球1个,把球摇匀后,从中任取一球出来,做了大量重复试验,发现它是红球的频率越来越稳定于0.5;小聪做试验:从该口袋中取出2个红球,把球摇匀后,从中任取一球出来,做了大量重复试验,发现它是红球的频率越来越稳定于0.2,则m+n的值为()A.10B.9C.7D.59. 已知甲袋有5张分别标示1∼5的号码牌,乙袋有6张分别标示6∼11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?()A.1 10B.13C.715D.815二、填空题(本题共计8 小题,每题3 分,共计24分,)10. 从1,2,3,4中任取两个不同的数,其乘积大于4的概率是________.11. 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.12. 经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是________.13. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”,如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两个数,能与2组成“V数”的概率是________.14. 小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每天每次从每组中抽出一张,两张牌的数字之积为2的概率为________.15. 在一个不透明的袋子里放有黑,白各两个小球,它们只有颜色上的区别,从袋子中随机摸出一个小球记下颜色后不放回,再随机摸一个,则摸出两个小球为同一颜色概率是________.,0,√2,−1这四个数中随机取出两个数,则取出的两个数均为正数的概率是16. 在13________.17. 某批乒乓球的质量检验结果如表:从这批乒乓球中,任意抽取一只乒乓球是优等品的概率的估计值是________.(精确到0.01)三、解答题(本题共计8 小题,共计69分,)18. 经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.19. 本校有A、B两个餐厅,甲、乙两名学生各自随机选择其中一个餐厅用餐,请用列表或画树状图的方法解答:(1)甲、乙两名学生在同一餐厅用餐的概率;(2)甲、乙两名学生至少有一人在B餐厅的概率.20. 为了促进学生的全面发展,学校成立了各种丰富的社团.其中羽毛球社团利用假期组织了一场社员之间的羽毛球比赛,比赛将参赛人员分为甲、乙两队,共进行男单、女单、男双、女双、混双5场比赛,采用五局三胜制,且5场比赛必须全部打完.假如甲、乙两队每一局获胜的概率相同,在已经进行了的两场比赛中,甲队以2:0领先.(1)甲队再进行一场比赛就能获胜的概率为________;(2)求甲队至少要进行两场比赛才能获胜的概率.21. 均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是多少?(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是1”的说法正确吗?为什3么?22. 现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)23. 有两组相同的牌,每组两张,两张牌的牌面数字分别是4和5,从每组牌中各摸出一张称为一次试验,小明一共进行了50次试验.(1)在一次试验中两张牌的牌面数字的和可能有哪些值?(2)小明做了50次试验,作了如下统计,请完成统计表.(4)如果经过次数足够多的试验,请你估计两张牌数字和等于9的频率是多少?牌面数字的和等于8或10的概率又是多少?24. 某校九年级兴趣小组进行投针实验,在地面上有一组平行线,相邻两条平行线间的距离都为5cm,将一长为3cm的针任意投向这组平行线,下表是他们的实验数据.(1)计算出针与平行线相交的频率,并完成统计表;(2)估算出针与平行线相交的频率;(3)由表中的数据说明:在以上条件下相交于不相交的可能性相同吗?(4)能否利用列表或树形图法求出针与平行线相交的概率?25. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时,(1)利用画树状图的方法,求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往我市新建经济开发区的,因此交管部门的汽车行驶高,向左转和直行的频峰时段对车流量做了统计,发现汽车在此十字路口向右转的频率为25率均为3,目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯10亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】C【解答】解:画树状图得:∵ 共有9种等可能的结果,恰好颜色配套的由3种情况,∵ 恰好颜色配套的概率是:39=13.故选C.2.【答案】A【解答】解:设有红球x个,根据题意得:x÷20=25%解得:x=5,故选A.3.【答案】D【解答】解:由题意可得,袋子中大概有球的个数是:20÷15=20×5=100.故选D.4.【答案】B【解答】解:列表得:所以两个转盘的组合有20种结果,其中有6种指针都落在奇数,所以指针都落在奇数上的概率是620=310,故选B.5.【答案】C【解答】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等可能情况,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59.故选C.6.【答案】B【解答】解:画树状图得:∵ 一共有9种等可能的结果,摸出两球的颜色相同的有3种情况,∵ 摸出两球的颜色相同的概率是39=13.即他们能获得默契奖礼物的概率是13.故选:B .7. 【答案】 A 【解答】解:由题意可得,6n ×100%=20%,解得,n =30(个). 故估计n 大约有30个. 故选:A . 8. 【答案】 C 【解答】解:根据题意知{m+1m+n+1=0.5,m−2m+n−2=0.2, 整理,得:{m −n =−1,4m −n =8,解得:{m =3,n =4.经检验:m =3,n =4均为原分式方程的解, ∵ m +n =7. 故选C . 9. 【答案】 C【解答】根据题意列表得:所有等可能的结果为30种,其中是3的倍数的有14种,则P=1430=715.二、填空题(本题共计8 小题,每题 3 分,共计24分)10.【答案】12【解答】解:画树状图得:∵ 共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∵ 从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:612=12.故答案为:12.11.【答案】【解答】此题暂无解答12.【答案】19【解答】解:画树状图为:共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以两辆汽车都直行的概率为19.故答案为:19.13.【答案】12【解答】解:从1,3,4,5中选取两个数,所有等可能的情况数有12种,分别为1,3;1,4;1,5;3,4;3,5;4,5;3,1;4,1;5,1;4,3;5,3;5,4;其中“V数”的情况数有6种,分别为3,4;3,5;4,5;4,3;5,3;5,4,则$P_{能与2组成``V数"} = \frac{6}{12} = \frac{1}{2}$.故答案为:1214.【答案】12【解答】解:画树形图得:由树状图可知共有2×2=4种可能,两张牌的积为2的有2种,所以概率24=12.故答案为:12.15.【答案】13【解答】画树状图为:,共有12种等可能的结果数,其中两次都摸到相同颜色的结果数为4,所以两次都摸到相同颜色的概率=412=13.16.【答案】16【解答】画树状图为:共有12种等可能的结果数,其中取出的两个数均为正数的结果数为2,所以取出的两个数均为正数的概率=212=16.17.【答案】0.95【解答】解:从这批乒乓球中,任意抽取一只乒乓球是优等品的概率的估计值是0.95.故答案为0.95.三、解答题(本题共计8 小题,每题10 分,共计80分)18.【答案】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.19.【答案】解:(1)画树形图得:∵ 甲、乙两名学生在餐厅用餐的情况有AB、AA、BA、BB,∵ P(甲、乙两名学生在同一餐厅用餐)=24=12;(2)由(1)的树形图可知P(甲、乙两名学生至少有一人在B餐厅)=34.【解答】解:(1)画树形图得:∵ 甲、乙两名学生在餐厅用餐的情况有AB、AA、BA、BB,∵ P(甲、乙两名学生在同一餐厅用餐)=24=12;(2)由(1)的树形图可知P(甲、乙两名学生至少有一人在B餐厅)=34.20.【答案】12(2)画树状图如解图:由树状图可知,后三局比赛共有8种等可能的结果,其中甲队至少要进行两场比赛才能获胜的结果有(乙、甲、甲),(乙、甲、乙),(乙、乙、甲)共3种,∵ P(甲队至少要进行两场比赛才能获胜)=3.8【解答】解:(1)(2)画树状图如解图:由树状图可知,后三局比赛共有8种等可能的结果,其中甲队至少要进行两场比赛才能获胜的结果有(乙、甲、甲),(乙、甲、乙),(乙、乙、甲)共3种,.∵ P(甲队至少要进行两场比赛才能获胜)=3821.【答案】上述试验中“4朝下”的频率是:16;(2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.【解答】解:(1)根据图表中数据可以得出:“4朝下”的频率:1060=16;答:上述试验中“4朝下”的频率是:16;(2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.22.【答案】解:(1)如表所示:所有可能的结果有9种,两次抽得相同花色的可能性有5种,∵ P相同花色=59,∵ 两次抽得相同花色的概率为:59.(2)他们两次抽得的数字和是奇数的可能性大小一样.当x为奇数时,两次抽得的数字和是奇数的可能性有4种,;∵ P甲=49当x为偶数时,两次抽得的数字和是奇数的可能性有4种,,∵ P乙=49∵ P甲=P乙,∵ 他们两次抽得的数字和是奇数的可能性大小一样.【解答】解:(1)如表所示:所有可能的结果有9种,两次抽得相同花色的可能性有5种,,∵ P相同花色=59.∵ 两次抽得相同花色的概率为:59(2)他们两次抽得的数字和是奇数的可能性大小一样.当x为奇数时,两次抽得的数字和是奇数的可能性有4种,;∵ P甲=49当x为偶数时,两次抽得的数字和是奇数的可能性有4种,,∵ P乙=49∵ P甲=P乙,∵ 他们两次抽得的数字和是奇数的可能性大小一样.23.【答案】解:(1)在一次试验中两张牌的牌面数字的和可能有:4+4=8,4+5=9,5+5=10; (2)∵1450=0.28,1950=0.38,1750=0.34,∵ 完成统计表如下:9的频率最大;(4)如果经过次数足够多的试验,和等于9的概率为12,和为8或10的概率为12.【解答】 解:(1)在一次试验中两张牌的牌面数字的和可能有:4+4=8,4+5=9,5+5=10; (2)∵ 1450=0.28,1950=0.38,1750=0.34, ∵ 完成统计表如下:9的频率最大;(4)如果经过次数足够多的试验,和等于9的概率为12,和为8或10的概率为12. 24. 【答案】解:(1)根据相交频率=相交次数投掷次数, 可计算出100∼5000次的相交频率依次为48100=0.48,281600=0.47,4541000=0.45,8612500=0.34,13713500=0.39,19015000=0.38;(2)∵ 当实验次数为5000时,实验频率稳定于概率附近, ∵ 估计与平行线相交的概频率约为0.38;(3)根据表中实验频率的变化,说明在题设的前提下,针与平行线相交与不相交的可能性不完全相同;(4)由于相交与不相交的可能性不一定相同,因此很难用列表法和画树形图法求针与平行线相交的概率.【解答】解:(1)根据相交频率=相交次数投掷次数,可计算出100∼5000次的相交频率依次为48100=0.48,281600=0.47,454 1000=0.45,8612500=0.34,13713500=0.39,19015000=0.38;∵ 估计与平行线相交的概频率约为0.38;(3)根据表中实验频率的变化,说明在题设的前提下,针与平行线相交与不相交的可能性不完全相同;(4)由于相交与不相交的可能性不一定相同,因此很难用列表法和画树形图法求针与平行线相交的概率.25.【答案】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵ 共有27种等可能的结果,三辆车全部同向而行的有3种情况,∵ P(三车全部同向而行)=19;(2)∵ 至少有两辆车向左转的有7种情况,∵ P(至少两辆车向左转)=727;(3)∵ 汽车向右转、向左转、直行的概率分别为25,∵ 在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【解答】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵ 共有27种等可能的结果,三辆车全部同向而行的有3种情况,∵ P(三车全部同向而行)=19;(2)∵ 至少有两辆车向左转的有7种情况,∵ P(至少两辆车向左转)=727;(3)∵ 汽车向右转、向左转、直行的概率分别为25,∵ 在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).。
新北师大版九年级数学[上册]第三章检测题(附答案)
新北师大版九年级数学[上册]第三章检测题(附答案)(时间:120分钟 满分:120分)一、选择题(每小题3分;共30分)1.事件A :打开电视;它正在播广告;事件B :抛掷一个均匀的骰子;朝上的点数小于7;事件C :在标准大气压下;温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C );则P (A )、P (B )、P (C )的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1;2;-3三个数中;随机抽取两个数相乘;积是正数的概率是( )1.D 23C. 13B. 0.A 3.如图;2×2的正方形网格中有9个格点;已经取定点A 和B ;在余下的7个点中任取一点C ;使△ABC 为直角三角形的概率是( D)25B. 12A. 47D. 37C. 4.袋子里有4个球;标有2;3;4;5;先抽取一个并记住;放回;然后再抽取一个;问抽取的两个球数字之和大于6的概率是() 34D. 58C. 712B. 12A. 5.掷两枚普通正六面体骰子;所得点数之和为11的概率为( )115D. 112C. 136B. 118A. 6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘;若其中一个转出红色;另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()12D. 13C. 34B. 14A.,第6题图),第7题图)7.如图所示的两个转盘中;指针落在每一个数上的机会均等;那么两个指针同时落在偶数上的概率是( )525D. 625C. 1025B. 1925A. 8.有三张正面分别写有数字-1;1;2的卡片;它们背面完全相同;现将这三张卡片背面朝上洗匀后随机抽取一张;以其正面的数字作为a 的值;然后再从剩余的两张卡片中随机抽取一张;以其正面的数字作为b 的值;则点(a ;b )在第二象限的概率是( )23D. 12C. 13B. 16A. 9.从长为10 cm;7 cm;5 cm;3 cm 的四条线段中任选三条能够组成三角形的概率是( )34D. 12C. 13B. 14A.其坐标分别为;轴上y 在2B ;1B 点;轴上x 在2A ;1A 点;在平面直角坐标系中;如图.10;为顶点作三角形O 其中的任意两点与点2B ;1B ;2A ;1A 分别以(0;2);2B (0;1);1B (2;0);2A (1;0);1A 所作三角形是等腰三角形的概率是( )12D. 23C. 13B. 34A. 二、填空题(每小题3分;共18分)11.一个布袋中装有3个红球和4个白球;这些除颜色外其他都相同.从袋子中随机摸出一个球;这个球是白球的概率为____.12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾;小明通过多次捕捞试验;发现鲤鱼、草鱼的概率是51%和26%;则水库里有____尾鲫鱼.13.在一个不透明的袋子中有10个除颜色外均相同的小球;通过多次摸球试验后;发现摸到白球的频率约为40%;估计袋中白球有____个.14.有两把不同的锁和三把钥匙;其中两把钥匙能打开同一把锁;第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁;一次能打开锁的概率是____.15.袋中装有4个完全相同的球;分别标有1;2;3;4;从中随机取出一个球;以该球上的数字作为十位数;再从袋中剩余3个球中随机取出一个球;以该球上的数字作为个位数;所得的两位数大于30的概率为____.16.一天晚上;小伟帮妈妈清洗茶杯;三个茶杯只有颜色不同;其中一个无盖.突然停电了;小伟只好把杯盖与茶杯随机地搭配在一起;则花色完全搭配正确的概率是____.三、解答题(共72分)17.(10分)小明有2件上衣;分别为红色和蓝色;有3条裤子;其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果;并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌;它们分别标有数字1;2;3;4.随机地摸取出一张纸牌记下数字然后放回;再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏;如果两次摸出纸牌上数字之和为奇数;则甲胜;如果两次摸出纸牌上数字之和为偶数;则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片;甲袋中的三张卡片上所标有的三个数值为-7;-1;3.乙袋中的三张卡片所标的数值为-2;1;6.先从甲袋中随机取出一张卡片;用x表示取出的卡片上的数值;再从乙袋中随机取出一张卡片;用y表示取出卡片上的数值;把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x;y)的所有情况;(2)求点A落在第三象限的概率.20.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域;并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏;游戏规则是:同时转动两个转盘;当转盘停止时;若指针所指两区域的数字之积为奇数;则欢欢胜;若指针所指两区域的数字之积为偶数;则乐乐胜;若有指针落在分割线上;则无效;需重新转动转盘.(1)试用列表或画树状图的方法;求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)现有一项资助贫困生的公益活动由你来主持;每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘;每个转盘被分成6个相等的扇形;参与者转动这两个转盘;转盘停止后;指针各指向一个数字(若指针在分格线上;则重转一次;直到指针指向某一数字为止).若指针最后所得的数字之和为12;则获一等奖;奖金20元;数字之和为9;则获二等奖;奖金10元;数字之和为7;则获三等奖;奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外;其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加;活动结束后至少有多少赞助费用于资助贫困生.22.(10分)甲、乙、丙3人聚会;每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同);将3件礼物放在一起;每人从中随机抽取一件.(1)下列事件是必然事件的是( )A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A);请列出事件A的所有可能的结果;并求事件A的概率.23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回;混合均匀后再摸出1个球.①求第一次摸到绿球;第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回;再摸出1个球;则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.新北师大版九年级数学上册第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分;共30分)1.事件A :打开电视;它正在播广告;事件B :抛掷一个均匀的骰子;朝上的点数小于7;事件C :在标准大气压下;温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C );则P (A )、P (B )、P (C )的大小关系正确的是( B )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1;2;-3三个数中;随机抽取两个数相乘;积是正数的概率是( B )1.D 23C. 13B. 0.A 3.如图;2×2的正方形网格中有9个格点;已经取定点A 和B ;在余下的7个点中任取一点C ;使△ABC 为直角三角形的概率是( D)25B. 12A. 47D. 37C. 4.袋子里有4个球;标有2;3;4;5;先抽取一个并记住;放回;然后再抽取一个;问抽取的两个球数字之和大于6的概率是( C) 34D. 58C. 712B. 12A. 5.掷两枚普通正六面体骰子;所得点数之和为11的概率为( A )115D. 112C. 136B. 118A. 6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘;若其中一个转出红色;另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( D)12D. 13C. 34B. 14A.,第6题图),第7题图)7.如图所示的两个转盘中;指针落在每一个数上的机会均等;那么两个指针同时落在偶数上的概率是( C )525D. 625C. 1025B. 1925A. 8.有三张正面分别写有数字-1;1;2的卡片;它们背面完全相同;现将这三张卡片背面朝上洗匀后随机抽取一张;以其正面的数字作为a 的值;然后再从剩余的两张卡片中随机抽取一张;以其正面的数字作为b 的值;则点(a ;b )在第二象限的概率是( B )23D. 12C. 13B. 16A. 9.从长为10 cm;7 cm;5 cm;3 cm 的四条线段中任选三条能够组成三角形的概率是( C )34D. 12C. 13B. 14A.其坐标分别为;轴上y 在2B ;1B 点;轴上x 在2A ;1A 点;在平面直角坐标系中;如图.10;为顶点作三角形O 其中的任意两点与点2B ;1B ;2A ;1A 分别以(0;2);2B (0;1);1B (2;0);2A (1;0);1A 所作三角形是等腰三角形的概率是( D )12D. 23C. 13B. 34A. 二、填空题(每小题3分;共18分)11.一个布袋中装有3个红球和4个白球;这些除颜色外其他都相同.从袋子中随机摸出.__47__这个球是白球的概率为;一个球 12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾;小明通过多次捕捞试验;发现鲤鱼、草鱼尾鲫鱼.__460__则水库里有26%;和51%的概率是 13.在一个不透明的袋子中有10个除颜色外均相同的小球;通过多次摸球试验后;发现摸个.__4__估计袋中白球有40%;到白球的频率约为 14.有两把不同的锁和三把钥匙;其中两把钥匙能打开同一把锁;第三把钥匙能打开另一.__12__一次能打开锁的概率是;把锁.任意取出一把钥匙去开任意一把锁 15.袋中装有4个完全相同的球;分别标有1;2;3;4;从中随机取出一个球;以该球上的数字作为十位数;再从袋中剩余3个球中随机取出一个球;以该球上的数字作为个位数;所得的两.__12__的概率为30位数大于 16.一天晚上;小伟帮妈妈清洗茶杯;三个茶杯只有颜色不同;其中一个无盖.突然停电了;.__16__则花色完全搭配正确的概率是;地搭配在一起小伟只好把杯盖与茶杯随机 三、解答题(共72分)17.(10分)小明有2件上衣;分别为红色和蓝色;有3条裤子;其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果;并求小明穿的上衣和裤子恰好都是蓝色的概率.解:画树状图:13=26=)都是蓝色(P 18.(10分)在一个不透明的口袋中装有4张相同的纸牌;它们分别标有数字1;2;3;4.随机地摸取出一张纸牌记下数字然后放回;再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏;如果两次摸出纸牌上数字之和为奇数;则甲胜;如果两次摸出纸牌上数字之和为偶数;则乙胜.这是个公平的游戏吗?请说明理由.)B 记为事件(:两次摸出纸牌上数字之和为奇数 理由如下;这个游戏公平)2( 14)1(解: 所以这个游戏;两次摸出纸牌上数字之和为奇数与和为偶数的概率相同;12=816=)B (P ;个8有公平19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片;甲袋中的三张卡片上所标有的三个数值为-7;-1;3.乙袋中的三张卡片所标的数值为-2;1;6.先从甲袋中随机取出一张卡片;用x 表示取出的卡片上的数值;再从乙袋中随机取出一张卡片;用y 表示取出卡片上的数值;把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ;y )的所有情况;(2)求点A 落在第三象限的概率.1)列表:可知;点A 落在第三29=)A (P ∴;两种情况)2-;1-(;)2-;7-(共有)A 事件(象限20.(10分)分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域;并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏;游戏规则是:同时转动两个转盘;当转盘停止时;若指针所指两区域的数字之积为奇数;则欢欢胜;若指针所指两区域的数字之积为偶数;则乐乐胜;若有指针落在分割线上;则无效;需重新转动转盘.(1)试用列表或画树状图的方法;求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.12=612所以欢欢胜的概率是;种6积为奇数的情况有;种情况12共有)1(解:所以游戏公平;两人获胜的概率相同;12=12-1得乐乐胜的概率为)1(由)2( 21.(10分)现有一项资助贫困生的公益活动由你来主持;每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘;每个转盘被分成6个相等的扇形;参与者转动这两个转盘;转盘停止后;指针各指向一个数字(若指针在分格线上;则重转一次;直到指针指向某一数字为止).若指针最后所得的数字之和为12;则获一等奖;奖金20元;数字之和为9;则获二等奖;奖金10元;数字之和为7;则获三等奖;奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外;其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加;活动结束后至少有多少赞助费用于资助贫困生.×)5×16+10×19+20×136)(2( 16=)三等奖(P ;19=)二等奖(P ;136=)一等奖(P )1(解: 2 000=5 000;5×2 000-5 000=5 000;即活动结束后至少有5 000元用于资助贫困生22.(10分)甲、乙、丙3人聚会;每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同);将3件礼物放在一起;每人从中随机抽取一件.(1)下列事件是必然事件的是( A )A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A );请列出事件A 的所有可能的结果;并求事件A 的概率.解:(2)依题意可画树状图:(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲;②丙甲乙;∴P (A )13=26=23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回;混合均匀后再摸出1个球.①求第一次摸到绿球;第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回;再摸出1个球;则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)①画树状图得:∵共有16种等可能的结果;第一次摸到绿球;第二次摸到红球的有4种情况;∴第一次摸个红球的有1个绿球和1②∵两次摸到的球中有;14=416第二次摸到红球的概率为:;到绿球 23)2( 12=816个红球的概率为:1个绿球和1∴两次摸到的球中有;种情况8。
北师大版九年级上册数学第三章测试题附答案
北师大版九年级上册数学第三章测试题附答案(满分:120分考试时间:120分钟)一、选择题(本大题共6小题,每小题3分,共18分)1.小军进行射击练习,共射击600次,其中380次击中了靶子,由此可以估计,小军射击一次击中靶子的概率约为(C) A.38% B.60% C.63% D.无法确定2.如图,随机闭合开关S1,S2,S3中的两个,则能让灯泡⊗发光的概率为( C )A.12 B.13C.23 D.143.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1,卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是(B)A.14 B.13 C.12 D.344.小明所在的学校准备在国庆节当天举办一个大型的联欢会,为此小明设计了如图所示的A,B两个转盘和同学们做“配紫色”(红、蓝可配成紫色)的游戏,使用这两个转盘可以配成紫色的概率是(C)A.12 B.13 C.14 D.235.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是( A )A.12 B.34 C.14 D.186.三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是(A)A.19 B.127 C.59 D.13二、填空题(本大题共6小题,每小题3分,共18分) 7.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为16.8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地完全相同,小刚通过多次摸球试验后发现摸到红色、黑色球的概率分别稳定在20%和40%,则布袋中白色球的个数很可能是20个.9.一个均匀的正方体各面上分别标有数字1,2,3,4,5,6,这个正方体的表面展开图如图.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是13.10.甲、乙两人进行乒乓球比赛,比赛规则为3局2胜制,如果两人在每局比赛中获胜的机会均等,且比赛开始后,甲先胜了第1局,那么最后甲获胜的概率是34.11.已知一次函数y=kx+b,k从1,-2中随机取一个值,b从-1,2,3中随机取一个值,则该一次函数的图象同时经过一、二、三象限的概率为1 3.12.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A,B,C,D和四个不同的算式.将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是23.三、(本大题共5小题,每小题6分,共30分)13.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是12; (2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.解:34.14.一个不透明袋子中有1个红球,1个绿球和n 个白球,这些球除颜色外无其他差别.(1)当n =1时,从袋子中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出1个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,则n 的值是________;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率. 解:(1)相同;(2)2;(3)由树状图可知:共有12种结果,且每种结果出现的可能性相同,P (颜色不同)=1012=56.15.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其他都相同.从口袋中随机摸出1个球,记录其颜色,然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色.请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.解:根据题意,画树状图如图.∴P(两次摸到球都是红球)=1 9.16.(青岛中考)小明和小亮用如图两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.解:这个游戏对双方是公平的.理由如下:画树状图如图,由树状图可知,共有6种等可能的情况,其中两次数字之积大于2的有3种情况,数字之积小于等于2的有3种情况,∴P(小明胜)=36=12,P(小亮胜)=12.∴公平.17.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球试验,每次摸出1个球(有放回),下表是活动进行中的一组统计数据:(1)补全表中的有关数据,根据表中数据估计从袋中摸出1个球是黑球的概率是0.25;(结果精确到0.01)(2)估算袋中白球的个数.解:设袋中白球有x个.根据题意,得11+x=0.25.解得x=3,经检验,x=3是原方程的解.答:估计袋中有3个白球.四、(本大题共3小题,每小题8分,共24分)18.袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球. ①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)列表略.有放回地摸2个球共有16种等可能结果.①其中第一次摸到绿球,第二次摸到红球的结果有4种,∴P (第一次摸到绿球,第二次摸到红球)=416=14; ②其中两次摸到的球中有1个绿球和1个红球的结果有8种,∴P (两次摸到的球中有1个绿球和1个红球)=816=12; (2)23. 19.(贵阳中考)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是__0__;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.解:用1,2,3,4分别表示第一排、第二排、第三排和第四排灯.画树状图如下:由树状图可知,共有12种等可能的结果,其中恰好关掉第一排与第三排灯的结果有2种,∴P(恰好关掉第一排与第三排灯)=212=16.20.(2018·白银)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.解:(1)米粒落在阴影部分的概率为39=13;(2)列表如下:由列表可知,共有30种等可能的情况,新图案是轴对称图形的情况有10种,故图案是轴对称图形的概率为1030=13.五、(本大题共2小题,每小题9分,共18分)21.如图,有两个可以自由转动的转盘A,B,转盘A被均匀分成4等份,每份标上1,2,3,4四个数字;转盘B被均匀分成6等份,每份标上1,2,3,4,5,6六个数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.解:游戏不公平.列出表格略.所有可能结果共24种,其中积为奇数的结果有6种,积为偶数的结果有18种,因为P(奇)=14,P(偶)=34,因为P(偶)>P(奇),所以不公平.新规则:(1)同时自由转动转盘A和B;(2)转盘停止后,指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜.理由:因为P(奇)=12;P(偶)=12;所以P(偶)=P(奇),所以规则公平.22.(2018·恩施州)为了解某校九年级男生1 000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D,C,B,A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=__2__,b=__45__,c=__20__;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为__72__度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1 000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.解:由题意列表如下:由上表可知,可能出现的结果有12种,并且它们出现的可能性相等,其中甲、乙两名同学同时被选中的结果有2种.∴P(甲、乙两名同学同时被选中)=212=1 6.六、(本大题共12分)23.一个不透明的口袋中装有4个分别标有数-1,-2,3,4的小球,它们的形状、大小完全相同,小红先从口袋中随机摸出1个小球记下数为x ,小颖在剩下的3个小球中随机摸出1个小球记下数为y .(1)小红摸出标有数3的小球的概率是________;(2)请用列表法或画树状图法表示出由x ,y 确定的点P (x ,y )所有可能的结果;(3)若规定:点P (x ,y )在第一象限或第三象限小红获胜,点P (x ,y )在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.解:(1)14(2)画树状图为(3)从(2)的树状图可以看出,所有可能出现的结果共有12种,且每种结果出现的可能性相等,其中点(x ,y )在第一象限或第三象限的结果有4种,在第二象限或第四象限的结果有8种.∴小红、小颖两人获胜的概率分别为P(小红胜)=412=13,P(小颖胜)=812=2 3.。
北师大版九年级数学上册第三章检测题(含答案)
第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( D ) A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率2.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( B )A .14B .12C .34D .1 3.在一个不透明的袋子中装有1个白球,1个黄球,2个红球,这4个球大小形状质地等完全相同,从袋中摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( C )A .12B .13C .16D .184.(恩施州中考)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( D )A .16B .13C .12D .235.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为( C )A .12B .23C .13D .346.忽如一夜春风来,千树万树梨花开,在清明假期期间,小梅和小北姐弟二人准备一起去采摘园赏梨花,但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去赏梨花,游戏规则:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同,游戏时先由小梅从中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小北从口袋中摸出1个乒乓球,记下颜色,如果姐弟二人摸到的乒乓球颜色相同,则小梅赢,否则小北赢.则小北赢的概率是( D )A .12B .13C .59D .497.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( D )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为16,第5题图) ,第7题图),第10题图)8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( D )A .16个B .15个C .13个D .12个9.一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于54n 2,则算过关;否则不算过关,则能过第二关的概率是( A )A .1318B .518C .14D .1910.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1、A 2、B 1、B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( D )A .34B .13C .23D .12二、填空题(每小题3分,共18分)11.(深圳中考)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是__23__.12.如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是__12__.13.(青海中考)有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为__415__. 14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有__6__个.15.已知a 、b 可以取-2、-1、1、2中任意一个值(a ≠b),则直线y =ax +b 的图象不经过第四象限的概率是__16__.16.(成都期末)现有三张分别标有数字1、2、6的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回),再从中任意抽取一张,将上面的数字记为b ,这样的数字a ,b 能使关于x 的一元二次方程x 2-2(a -3)x -b 2+9=0有两个正根的概率为__13__.三、解答题(共72分)17.(6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.解:(1)13 (2)画树状图略,所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=1618.(6分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.解:画树状图略,共有12种等可能的结果,甲抽到的牌面数字比乙大的有5种情况,小于等于乙的有7种情况,∴P(甲胜)=512,P(乙胜)=712,∴甲、乙获胜的机会不相同19.(7分)(日照中考)若n 是一个两位正整数,且n 的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个 (2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=315=1520.(7分)(扬州中考)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.(1)小明和小刚都在本周日上午去游玩的概率为________; (2)求他们三人在同一个半天去游玩的概率. 解:(1)14(2)由树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,∴他们三人在同一个半天去游玩的概率为28=1421.(8分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是______;(2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).解:(1)14(2)用树状图列出所有可能的结果:∵以点A 、E 、B 、C 为顶点及以D 、F 、B 、C 为顶点所画的四边形是平行四边形, ∴所画的四边形是平行四边形的概率P =412=1322抽取的彩色弹力球数n500 1000 1500 2000 2500 优等品频数m471946 142618982370优等品频率mn0.942 0.946 0.951 0.949 0.948(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图;(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(直接写出结果,精确到0.01) (3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率;(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?解:(1)如图 (2)0.95 (3)18 (4)设取出了x 个黑球,则放入了x 个黄球,则5+x 5+13+22=14,解得x =5.答:取出了5个黑球 23.(8分)随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同, 正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab ≥0,∴满足ab ≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024.(10分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表: 摸球总次数 1020306090120180240330450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图法说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.解:(1)0.33(2)当x =7时,则两个小球上数字之和为9的概率是:212=16,故x 的值不可以取7,∵出现和为9的概率是三分之一,即有3种可能,∴3+x =9 或 5+x =9 或 4+x =9,解得 x =4,x =5,x =6,当x =6时,出现和为8的概率为16,故x =6舍去,故x 的值可以为4,5其中一个24.(10分)小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14. (1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个求,摸后放回)得20分,问小明有哪几种摸法?解:(1)1个(2)画树状图如下,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。
(含答案)九年级数学北师大版上册第3章《单元测试》03
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!北师大版九年级上单元测试第3单元班级________姓名________一、选择题(共8小题,4*8=32)1.用频率估计概率,可以发现某种幼树在一定条件下移植成活的概率为0.9,则下列说法正确的是()A .种植10棵幼树,结果一定有9棵幼树成活B .种植100棵幼树,结果一定有90棵幼树成活和10棵幼树不成活C .种植10n 棵幼树,恰好有n 棵幼树不成活D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.92.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是()A.18 B.16 C.14 D.123.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是()A.12B.25C.37D.474.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币.若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是()A .三人赢的概率相等B .小文赢的概率最小C .小亮赢的概率最小D .小强赢的概率最小5.在一个不透明的盒中有20个除颜色外均相同的球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计盒中红球的个数为()A .4个B .6个C .8个D .12个6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A .13B .49C .35D .237.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘.每个转盘被分成面积相等的四个区域,分别用数字“1”“2”“3”“4”表示,固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次,在该游戏中乙获胜的概率是()A .14B .12C .34D .568.如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是()A.34B.13C.23D.12二.填空题(共6小题,4*6=24)9.一个布袋中装有3个红球和4个白球,这些球除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为____.10.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到白球的频率稳定在20%附近,则估计口袋中的球大约有______个.11.在如图所示的电路图中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是________.12.某射击运动员在同一条件下的射击成绩记录如下:射击次数20401002004001000“射中9环以上”的次数153378158321801“射中9环以上”的频率(结果保留小数点后两位)0.750.830.780.790.800.80根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是____(结果保留小数点后一位).13.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其试验次数分别为10次、50次、100次、200次,其中试验相对科学的是________. 14.小明和小亮各转动四等分转盘,转盘上已标有数字“2”“3”“4”,若两人各转动一次的数字之和是8的概率为316,则转盘上未标注的一部分数字是________.三.解答题(共5小题,44分)15.(6分)随机掷一枚质地均匀的硬币两次,至少有一次正面朝上的概率是多少?(请用树状图或列表法说明)16.(8分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.17.(8分)在“我可爱的家乡”主题班会中,主持人准备了“龙门石窟”“嵩山少林寺”“云台山”“清明上河园”这四处景点的照片各一张,并将它们背面朝上放置(照片背面完全相同).甲同学从中随机抽取一张,不放回,乙再从剩下的照片中随机抽取一张,若要根据抽取的照片作相关景点介绍,请用画树状图或列表的方法,求甲、乙两人中恰好有一人介绍“清明上河园”的概率.A.龙门石窟B.嵩山少林寺C.云台山D.清明上河园18.(10分)如图,一转盘被等分成三个扇形,上面分别标有数-1,1,2,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当作指向右边的扇形).(1)若小静转动转盘一次,求得到负数的概率.(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“英雄所见略同”.用列表法(或画树状图法)求两人“英雄所见略同”的概率.19.(12分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)参考答案1-4DCDD 5-8CBCD9.4710.511.1312.0.813.丁组14.5或615.解:随机掷一枚均匀的硬币两次,所有可能出现的结果如下:第一次第二次正反正(正,正)(正,反)反(反,正)(反,反)共有4种可能出现的结果,且每种结果出现的可能性都相同,其中至少有一次正面朝上的有3种,因此至少有一次正面朝上的概率为3416.解:画树状图:P(都是蓝色)=26=13.17.解:画树状图如下:由树状图可知共有12种等可能的结果,其中甲、乙两人中恰好有一人介绍“清明上河园”的情况有6种,∴甲、乙两人中恰好有一人介绍“清明上河园”的概率为612=1218.解:(1)P(得到负数)=13.(2)列表如下:小静-112小宇-1(-1,-1)(-1,1)(-1,2)1(1,-1)(1,1)(1,2)2(2,-1)(2,1)(2,2)由表可知共有9种等可能的结果,两人得到的数相同的结果有3种,故P(两人“英雄所见略同”)=39=13.19.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:13(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为19(3)∵如果在第一题使用“求助”小明顺利通关的概率为18;如果在第二题使用“求助”小明顺利通关的概率为19;∴建议小明在第一题使用“求助”。
(常考题)北师大版初中数学九年级数学上册第三单元《概率的进一步认识》检测题(包含答案解析)
一、选择题1.小明在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则最可能符合这一结果的实验是()A.掷一枚骰子,出现3点的概率B.抛一枚硬币,出现反面的概率C.任意写一个整数,它能被3整除的概率D.从一副扑克中任取一张,取到“大王”的概率2.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.12B.13C.14D.13.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A.19B.13C.59D.795.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球()A.24个B.10个C.9个D.4个6.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.13B.49C.59D.237.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A.29B.13C.59D.238.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.69.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是()A.18B.38C.58D.1210.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是()A.12B.13C.14D.1611.一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个12.老师组织学生做分组摸球实验.给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球和若干个白球.先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球.统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A.1个B.2个C.3个D.4个二、填空题13.在一个不透明的布袋中装有52个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有________.14.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.15.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.16.一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验3000次,记录结果如下:实验次数n100200300500800100020003000摸到红球次数m6512417830248162012401845摸到红球频率m0.650.620.5930.6040.6010.6200.6200.615n估计从袋子中随机摸出一个球恰好是红球的概率约为_______________.(精确到0.1)17.小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.18.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.19.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.20.对一批防PM2.5口罩进行抽检,经统计合格口罩的概率是0.9,若这批口罩共有2000只,则其中合格的大约有__只.三、解答题21.从2名男生和2名女生中随机抽取上海迪斯尼乐园志愿者.(1)抽取1名,恰好是男生的概率是;(2)抽取2名,用列表法或画树状图法求恰好是1名男生和1名女生的概率.22.某校有A,B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐,用列表或列树状图的方法解决下列问题:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率.(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.23.为加强素质教育,某学校自主开设了A书法、B阅读、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)学生小明计划选修两门课程,请写出所有可能的选法;(用树状图或列表法表示选法)(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好同时选修书法或足球的概率是多少?24.小秋打算去某影城看电影.她用手机打开购票页面,座位已选情况如图所示(虚线边框内为黄金区域,其余为普通区域;深色为已售座位,白色为可选座位).求下列事件的概率:(1)小秋独自观影,他选择第4排或第5排的概率是_________;(2)小秋约小叶一同观影,求小秋选择2个同排相邻的座位恰好都在黄金区域的概率.25.如图三张不透明的卡片,正面图案分别是我国著名的古代数学家祖冲之、杨辉和赵爽的头像,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀从中随机抽出一张,记录图像后放回,重新洗匀后再从中随机抽取一张,请你用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“祖冲之”的概率.26.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知试验结果的频率在30%—40%之间,然后分别计算出四个选项的概率,概率在30%—40%之间即符合题意.【详解】A、掷一枚骰子,出现4点的概率为16,不符合题意;B、抛一枚硬币,出现反面的概率为12,不符合题意;C、任意写出一个整数,能被3整除的概率为13,符合题意;D、从一副扑克中任取一张,取到“大王”的概率为1 54.故答案为C.【点睛】本题主要考查了利用频率估计概率以及运用概率公式求概率,掌握利用频率估计概率的方法成为解答本题的关键.2.C解析:C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=14.故选C.【点睛】本题考查概率公式.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21=.63故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155=.279故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.6.C解析:C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59;故选:C.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.B解析:B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果, ∴两张牌的牌面数字之和等于4的概率为 39=13, 故选:B . 【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.8.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D . 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.9.B解析:B 【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案. 【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种, 则遇到两次红灯的概率是38,故选:B . 【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.10.A解析:A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案. 【详解】 解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况, ∴小灯泡发光的概率为612=12. 故选:A . 【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.A解析:A 【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数” 【详解】设盒子里有白球x 个, 根据=黑球个数摸到黑球次数小球总数摸球总次数得:8808400x =+ 解得:x=32.经检验得x=32是方程的解. 答:盒中大约有白球32个. 故选;A . 【点睛】此题主要考查了利用频率估计概率,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意分式方程要验根.12.B解析:B 【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此根据概率公式可得答案. 【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4, ∴在袋子中摸出一个球,是白球的概率为0.4, 设白球有x 个,则3xx+=0.4, 解得:x=2, 故选:B . 【点睛】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键.二、填空题13.13【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手设出未知数列出方程求解【详解】解:设袋中有黑球x 个由题意得:=02解得:x=13经检验x=13是原方程的解解析:13 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解. 【详解】解:设袋中有黑球x 个,由题意得:52xx +=0.2, 解得:x=13,经检验x=13是原方程的解, 则布袋中黑球的个数可能有13个. 故答案为:13. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193=,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.15.4【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率【详解】设袋子中白球有x个由题意得=04解得:x=4经检验x=4是原方程的解故袋子中白球有4个故答解析:4【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x个,由题意得,6xx+=0.4,解得:x=4,经检验x=4是原方程的解故袋子中白球有4个, 故答案为:4. 【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn是解题关键. 16.6【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可【详解】解:由表格中的数据可得摸到红球频率大约为06则随机摸出一个球恰好是红球的概率约为06故答案为06【点睛】本题主要考查了利解析:6 【分析】利用表格中摸到红球频率估计随机摸出一个球恰好是红球的概率即可. 【详解】解:由表格中的数据可得,摸到红球频率大约为0.6,则随机摸出一个球恰好是红球的概率约为0.6. 故答案为0.6. 【点睛】本题主要考查了利用频数估计概率,明确题意、掌握频率和概率的关系是解答本题的关键.17.【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数【详解】解:抽中数学题的概率为故答案为:【点睛】本题考查了概率正确利用概率公式计算是解题的关键解析:13【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:抽中数学题的概率为615673=++,故答案为:13. 【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.18.10【分析】先由频率=频数÷数据总数计算出频率再由简单事件的概率公式列出方程求解即可【详解】解:摸了150次其中有50次摸到黑球则摸到黑球的频率是设口袋中大约有x 个白球则解得故答案为:10【点睛】考解析:10【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可. 【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503=, 设口袋中大约有x 个白球,则5153x =+, 解得10x =. 故答案为:10. 【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.8【分析】设有红球有x 个利用频率约等于概率进行计算即可【详解】设红球有x 个根据题意得:=20解得:x =8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复解析:8 【分析】设有红球有x 个,利用频率约等于概率进行计算即可. 【详解】 设红球有x 个, 根据题意得:40x=20%, 解得:x =8,即红色球的个数为8个, 故答案为:8. 【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.20.【分析】用这批口罩的只数×合格口罩的概率列式计算即可得到合格的只数【详解】2000×09=2000×09=1800(只)故答案为:1800【点睛】本题主要考查了用样本估计总体生产中遇到的估算产量问题解析:【分析】用这批口罩的只数×合格口罩的概率,列式计算即可得到合格的只数. 【详解】2000×0.9=2000×0.9=1800(只). 故答案为:1800. 【点睛】本题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.三、解答题21.(1)12;(2)图表见解析,P=23【分析】(1)根据题意,抽取1名志愿者总共有4种可能,男生有2人,利用概率公式即可求解抽取1名恰好是男生的概率;(2)根据题意列表,可分别得到总共有多少种等可能的结果与符合条件的结果,根据概率公式即可求解.【详解】(1)抽取1名,恰好是男生的概率为:2142P==,(2)列表得:由表格可知:总共有12种等可能的结果,其中恰好是1名男生和1名女生的结果有8种结果,所以抽取2名,恰好是1名男生和1名女生的概率为:82123P==.【点睛】本题考查了概率的求解,解题关键是准确列出表格,得到所有的等可能结果,再从中选取符合条件的结果,然后利用概率公式计算.22.(1)14;(2)78【分析】(1)画树形图展示所有8种等可能的结果数,再找出甲、乙、丙三名学生在同一个餐厅用餐的结果数,然后根据概率公式求解;(2)从树状图中找出甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数,然后根据概率公式求解.【详解】解:画树状图如下:甲、乙、丙选择餐厅的所有可能结果有8种,(1)甲、乙、丙三名学生在同一个餐厅用餐的可能结果有2种,∴P(甲、乙、丙三名学生在同一个餐厅用餐)2184==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的可能结果有7种,∴P(甲、乙、丙三名学生中至少有一人在B餐厅用餐)=78.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.(1)树状图见解析,共有6种可能的选法;(2)18.【分析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:共有12种等可能的结果数,不重复的选法有6种:AB、AC、AD、BC、BD、CD.(2)画树状图如下:共有16种等可能的结果数,其中他们两人恰好修书法或足球的结果数为2,所以他们两人恰好选修书法或足球的概率为21 168=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)12;(2)12【分析】(1)由概率公式求解即可;(2)由概率公式求解即可.【详解】解:(1)由题意知:白色为可选座位,共2+2+1+3=8(个)其中,第4排1个空位,第5排3个空位,共4个空位,小秋独自观影,他选择第4排或第5排的概率是41 82 =,故答案为:12;(2)小秋选择2个同排相邻的座位共有4个结果,其中小秋选择2个同排相邻的座位恰好都在黄金区域的结果有2个,∴小秋选择2个同排相邻的座位恰好都在黄金区域的概率为21 =42.【点睛】.此题考查的是概率的应用与计算.用到的知识点为:概率=所求情况数与总情况数之比.25.1 9【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】解:用A表示祖冲之,用B表示杨辉,用C表示赵爽,列表如下:“祖冲之”的有1种结果,所以抽出的两张卡片上的图案都是“祖冲之”的概率为19.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.26.(1)14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为112.【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等可能的情况数和甲组抽到A小区,同时乙组抽到C 小区的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有A,B,C,D四个小区甲组抽到A小区的概率是14.答案为:14.(2)根据题意画树状图如下:∵共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为112.【点睛】本题考查了树状图法求概率,树状图法适合两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.。
北师大版数学九年级上册第三章测试题及答案解析(2套)
北师大版数学九年级上册第三章测试题(一)(概率的进一步认识测试卷)一、选择题1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B.C. D.2.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A. B.C. D.3.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A. B.C. D.二、填空题4.袋中装有一个红球和一个白球,他们除了颜色外其它都相同,随机从中摸出一个球,记录下颜色后放回袋中充分摇匀后,再随机摸出一个球,两次都摸到红球的概率是.5.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.6.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.7.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.8.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是.9.已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.三、解答题10.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.11.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.12.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;。
北师大版初中数学九上第三章综合测试试题试卷含答案
第三章综合测试一、单选题1.下列说法中正确的是( )A .“打开电视,正在播放新闻节目”是必然事件B .“抛一枚硬币,正面进上的概率为12”表示每抛两次就有一次正面朝上 C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近D .为了解某种节能灯的使用寿命,选择全面调查2.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为( )个. A .29B .30C .3D .73.下列说法:①事件发生的概率与实验次数有关;②掷10次硬币,结果正面向上出现3次,反面向上出现7次,由此可得正面向上的概率是0.3;③如果事件A 发生的概率为5100,那么大量反复做这种实验,事件A 平均每100次发生5次.其中正确的个数为( ) A .0个B .1个C .2个D .3个二、填空题4.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是________.5.在如图所示的电路图中,当随机闭合开关1K ,2K ,3K 中的两个时,能够让灯泡发光的概率为________.6.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.7.下表记录了一名篮球运动员在罚球线上投篮的结果:根据上表,这名篮球运动员投篮一次,投中的概率约为________.(结果精确到0.01)8.为了解某区24 000名初中生平均每天的体锻时间,随机调查了该区300名初中生.如图是根据调查结果绘制成的频数分布直方图(每小组数据含最小值,不含最大值),由此可估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为________人.三、综合题9.甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表法求:(1)取出的3个小球上恰好有一个偶数的概率; (2)取出的3个小球上全是奇数的概率.10.为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x 小时,将它分为4个等级:A (02x ≤<),B (24x ≤<),C (46x ≤<),D (6x ≥),并根据调查结果绘制了如两幅不完整的统计图:请你根据统计图的信息,解决下列问题: (1)本次共调查了________名学生;(2)在扇形统计图中,等级D 所对应的扇形的圆心角为________°; (3)请补全条形统计图;(4)在等级D 中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.11.今年,全球疫情大爆发,我国派遣医疗专家组对一些国家进行医疗援助,某批次派出20人组成的专家组,分别赴A 、B 、C 、D 四个国家开展援助工作,七人员分布情况如统计图(不完整)所示:(1)计算赴B 国女专家和D 国男专家的人数,并将条形统计图补充完整;(2)根据需要,从赴A 国的专家,随机抽取两名专家对当地医疗团队进行培训,求所抽取的两名专家恰好是一男一女的概率.12.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计当n 很大时,摸到白球的频率将会接近________;(精确到0.1); (2)假如随机摸一次,摸到白球的概率()P =白球________; (3)试估算盒子里白色的球有多少个?第三章综合测试答案解析一、1.【答案】C【解析】解:A.“打开电视,正在播放新闻节目”是随机事件,故本选项不符合题意;B.“抛一枚硬币正面朝上的概率为12”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在12附近,故本选项不符合题意;C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在16附近,故本选项符合题意;D.为了解某种节能灯的使用寿命,选择抽样调查,故本选项不符合题意.故答案为:C.2.【答案】C【解析】解:∵不断重复这一过程,共摸了100次球,发现有71次摸到红球,∴这10个球中,红球约占总数的71100,即红球约有71107100⨯≈个∴估计这个口袋中白球的数量为1073−=个故答案为:C.3.【答案】B【解析】解:①事件发生的概率与实验次数无关,故①错误;②实验次数过少,且频率只能估计概率,故②错误;③如果事件A发生的概率为5100,那么大量反复做这种实验,事件A平均每100次发生5次,故③正确.故答案为:B.二、4.【答案】2 3【解析】解:列表如下由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为4263=, 故答案为:23. 5.【答案】23【解析】分析电路图知:要让灯泡发光,1K 必须闭合,同时2K ,3K 中任意一个关闭时,满足: 一共有:1K ,2K 、2K ,3K 、1K ,3K 三种情况,满足条件的有1K ,2K 、1K ,3K 两种,∴能够让灯泡发光的概率为:23故答案为:23. 6.【答案】16【解析】解:如果试验的次数增多,出现数字“6”的频率的变化趋势是接近16. 故答案为:16. 7.【答案】0.68【解析】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.68附近,∴这名球员在罚球线上投篮一次,投中的概率为0.68,故答案为:0.68. 8.【答案】4 800【解析】解:估计该区初中生平均每天的体锻时间不少于 1.5小时的人数大约为30020100120240004800300−−−⨯=(人),故答案为:4 800. 三、9.【答案】(1)解:画树状图得:∵共有12种等可能的结果,取出的3个小球上恰好有1个偶数数字的有5种情况,∴取出的3个小球上只有1个偶数数字的概率是512.(2)∵共有12种等可能的结果,取出的3个小球上全是奇数数字的有2种情况,∴取出的3个小球上全是奇数数字的概率是21 126=.10.【答案】(1)50(2)108(3)解:由条形图和扇形图可知,D等级的人数是15名,所占百分比是26%所以样本容量为:1326%50÷=,所以C等级人数为:()504131518−++=补图如下:(4)解:方法一:列表如下,总共有12种结果,且每种结果出现的可能性相同,恰好选中甲和乙的结果有2种,所以P(恰好选中甲和乙)21 126 ==方法二:画树状图得,总共有12种结果,且每种结果出现的可能性相同,恰好选中甲和乙的结果有2种,所以P(恰好选中甲和乙)21 126 ==【解析】解:(1)本次共调查了1326%50÷=人; 故答案为:50;(2)等级D 所对应的扇形的圆心角为1536010850︒⨯=︒; 故答案为:108.11.【答案】(1)解:B 国女专家:2040%53⨯−=(人),D 国男专家:()20125%40%20%21⨯−−−−=(人),(注:补全条形图如图所示);(2)解:从5位专家中,随机抽取两名专家的所有可能结果是:由上表可知,随机抽取两名专家的所有可能有20种情况,并且出现的可能性相等, 其中恰好抽到一男一女的情况有12种, 则抽到一男一女专家的概率为:123205P ==. 12.【答案】(1)0.6 (2)0.6(3)盒子里白色的球有500.630⨯=(只).【解析】(1)由表中数据可知,当n 很大时,摸到白球的频率将会接近0.6, 故答案为:0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率()0.6P =白球,故答案为0.6.。
北师大版数学九年级上册第三章《概率的进一步认识》试卷含答案
北师大版数学九上第三章《概率的进一步认识》试卷、答案一、选择题(共12小题;共36分)1. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是A. B. C. D.2. 甲、乙两名同学在一次用频率去估计概率的实验中,统一了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 掷一枚正六面体的骰子,出现点的概率3. 小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,上午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上午、下午都选中球类运动的概率是A. B. C. D.4. 将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是A. B. C. D.5. 在不透明的袋子中有黑棋子枚和白棋子若干(它们除颜色外都相同),现随机从中摸出枚记下颜色后放回,这样连续做了次,记录了如下的数据:次数黑棋数根据以上数据,估算袋中的白棋子数量为A. 枚B. 枚C. 枚D. 枚6. 现有两枚质地均匀的骰子,每枚骰子的六个面上都分别标上数字,,,,,.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为的概率是A. B. C. D.7. 小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是A. B. C. D.8. 小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是A. 掷一枚质地均匀的硬币,正面朝上的概率B. 从一个装有个白球和个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率C. 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率D. 任意买一张电影票,座位号是的倍数的概率9. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是A. B. C. D.10. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时“参加社会调查”的概率为A. B. C. D.11. 王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出条鱼,将它们做上标记,然后放回鱼塘.经过一段时间后,再从鱼塘中随机捕捞条鱼,其中有标记的鱼有条,请你估计鱼塘里鱼的数量大约有A. 条B. 条C. 条D. 条12. 一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是A. B. C. D.二、填空题(共6小题;共24分)13. 在一个暗箱里放有个除颜色外其余完全相同的球,这个球中红球只有个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在,那么可以推测出大约是.14. 淘淘和丽丽是非常要好的九年级学生,在月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.15. 一个不透明的袋子中装有除颜色外均相同的个黑球、个白球和若干个红球.每次摇匀随机摸出一个球,记下颜色后再放回袋子中,通过大量重复摸球试验后,发现摸到红球的频率稳定于,由此可估计袋子中约有红球个.16. 在一个不透明的口袋中,装有,,,四个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.17. 如图,随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18. 在一只不透明的口袋中放人红球个,黑球个,黄球个,这些球除色不同外其他完全相同.搅匀后随机从中摸出一个,恰好是黄球的概率为,则放人口袋中的黄球总数.三、解答题(共7小题;共60分)19.(8分)甲、乙两个人做游戏:在一个不透明的口袋中装有张相同的纸牌,它们分别标有数字,,,.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.20.(10分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数摸到白球的次数摸到白球的频率(1)请你估计,当很大时,摸到白球的频率将会接近(精确到).(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球有多少只.21. (8分)小华和小军做摸球游戏,袋中装有编号为,,的三个小球,袋中装有编号为,,的三个小球,两袋中的所有小球除编号外都相同,从两个袋子中分别随机摸出一个小球,若袋摸出的小球的编号与袋摸出小球的编号之差为偶数,则小华胜,否则小军胜.这个游戏对双方公平吗?请说明理由.22. (8分)小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜;若两次数字之和为偶数,则小亮胜,这个游戏对双方公平吗?说说你的理由.23. (8分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢,赢的一方得电影票.游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.24.(10分)“六一”期间,某公园游戏场举行“游园”活动.有一种游戏的规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个喜羊羊玩具.已知共有人次参加这种游戏,公园游戏场发放的喜羊羊玩具为个.(1)求参加一次这种游戏活动得到喜羊羊玩具的频率.(2)请你估计袋中白球接近多少个.25. (8分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字,,.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.答案第一部分1. C2. A3. A4. B5. C6. C7. C8. B9. C 【解析】本题考查列表法求概率.将征征、舟舟两名同学参加社团的可能情况列表如下:航模征征彩绘征征泥塑征征航模舟舟航模舟舟航模征征航模舟舟彩绘征征航模舟舟泥塑征征彩绘舟舟彩绘舟舟航模征征彩绘舟舟彩绘征征彩绘舟舟泥塑征征泥塑舟舟泥塑舟舟航模征征泥塑舟舟彩绘征征泥塑舟舟泥塑征征由上表可知征征和舟舟选择的可能情况有种,其中征征和舟舟选到同一社团的可能情况有种,所以概率为.10. A11. C12. D 【解析】列表法:符合题意的情况用“”表示,不符合题意用“”表示.黑白白黑白白所以(两次黑).第二部分13.14.15.16.17.【解析】随机地闭合开关,,,,中的三个共有种可能,能够使灯泡,同时发光有种可能(,,或,,).随机地闭合开关,,,,中的三个,能够使灯泡,同时发光的概率是.18.第三部分19. 不公平,根据题意列表如下:所有等可能的情况有种,其中两次摸出的纸牌上数字之和是的倍数的情况有:,,,,,共种,所以甲获胜,乙获胜,则该游戏不公平.20. (1)【解析】根据题意可得当很大时,摸到白球的频率将会接近.(2);【解析】因为当很大时,摸到白球的频率将会接近;所以摸到白球的概率是;摸到黑球的概率是.(3)因为摸到白球的概率是,摸到黑球的概率是,所以口袋中黑、白两种颜色的球,有白球是个,黑球是个.21. 列表如下共有种等可能结果,其中袋中数字减去袋中数字为偶数有种等可能结果.;小华胜则小军胜的概率为.,不公平.22. 这个游戏对双方不公平.理由如下:画树状图为:共有种等可能的结果数,其中两次数字之和为奇数的结果数为,两次数字之和为偶数的结果数为,小明胜的概率,小亮胜的概率,而,这个游戏对双方不公平.23. 不公平,画树状图如图所示.由上述树状图知,所有可能出现的结果共有种.小明赢,小亮赢.此游戏对双方不公平,小亮赢的可能性大.24. (1)因为所以参加一次这种游戏活动得到喜羊羊玩具的频率为.(2)因为试验次数很大,频率接近概率,所以估计从袋中任意摸出一个球恰好是红球的概率是.设袋中白球有个,则根据题意,得,解得.经检验是方程的解.所以估计袋中白球接近个.25. (1)所有可能出现的结果如图:【解析】树状图法:甲乙所有可能出现的结果从上面的表格(或树状图)可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同.数字的结果有种,所以两人抽取相同数字(2)不公平.从上面的表格(或树状图)可以看出,两人抽取数字和为的倍数有种,两人抽取数字和为的倍数有种,所以甲获胜;乙获胜.因为,所以甲获胜的概率大,游戏不公平.。
北师大版数学九年级上册第三章测试题及答案解析(2套)
北师大版数学九年级上册第三章测试题及答案解析(2套)北师大版数学九年级上册第三章测试题(一)(概率的进一步认识测试卷)一、选择题1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B.C. D.2.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A. B.C. D.3.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A. B.C. D.二、填空题4.袋中装有一个红球和一个白球,他们除了颜色外其它都相同,随机从中摸出一个球,记录下颜色后放回袋中充分摇匀后,再随机摸出一个球,两次都摸到红球的概率是.5.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意的一把锁,一次能打开锁的概率是.6.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.7.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.8.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是.9.已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.三、解答题10.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.11.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.12.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;。
新北师大版九年级数学上册单元测试卷附答案第三章概率的进一步认识
第三章概率的进一步认识一、选择题(共15小题;共45分)1. 关于频率和概率的关系,下列说法正确的是A. 频率等于概率B. 当试验次数很大时,频率稳定在概率附近C. 当试验次数很大时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等2. 小明将分别标有“爱”“我”“中”“华”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外都相同,每次摸球前先搅拌均匀,随机摸出一球记下汉字后放回,再随机摸出一球,两次摸出的球上的汉字能组成“中华”的概率是A. B. C. D.3. 在一个口袋中有个完全相同的小球,把它们分别标号为,,,,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于的概率是4. 布袋里装有个白球和个黑球,从中任意取出个球,设事件“取到的个球都是白球”和事件“取到的个球都是黑球”发生的概率分别为,,则A. B.C. D. 以上都有可能5. 在一个不透明的袋子里装有红球、黄球共个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在左右,则袋子中红球的个数最有可能是A. B. C. D.6. 甲从标有,,,的张卡片中任抽张,然后放回.乙再在张卡片中任抽张,两人抽到的标号的和是的倍数的(包括)概率是A. B. C. D.7. 如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①当投掷次数是时,计算机记录“钉尖向上”的次数是,所以“钉尖向上”的概率是;②随着试验次数的增加,“钉尖向上”的频率总在附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是;③若再次用计算机模拟此试验,则当投掷次数为时,“钉尖向上”的频率一定是.其中合理的是A. ①B. ②C. ①②D. ①③8. 某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是A. B. C. D.9. 同时投掷颗均匀的骰子,朝上一面点数的和是偶数的概率是A. D.10. 某号码锁有个拨盘,每个拨盘上有从到共个数字.当个拨盘上的数字组成某一个两位数字号码(即开锁号码)时,锁才能打开.如果不知道开锁号码,问试开一次就能把锁打开的概率是A. B.C. D. 以上结论都不对11. 气象台预报“本市明天降水概率是”,对此消息,下面几种说法正确的是A. 本市明天将有的地区降水B. 明天降水的可能性比较大C. 本市明天降有的时间降水D. 明天肯定下雨12. 小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是13. 有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是A. B. C. D.14. 一个质地均匀的正方体骰子任意掷两次,下列说法正确的是A. 得到的数字和必然是偶数B. 得到的数字和可能是奇数C. 得到的数字和不可能是D. 得到的数字和可能是15. 四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为D.二、填空题(共8小题;共40分)16. 在一个不透明的口袋中,装有A,B,C,D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.17. 一个不透明的口袋中只有若干个白球,小颖往袋中放入个黑球,它们与袋中白球只有颜色不同,每次从袋中摸出一球后放回摇匀.经过多次摸球试验,她发现摸到黑球的频率稳定在,则此口袋中原有白球个.18. 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在和,则口袋中白色球的个数很可能是个.19. 某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中环以上”的概率是(结果保留小数点后一位).20. 袋中共有个大小相同的红球、白球,任意摸出一球是红球的概率为出个球均为红球的概率是.21. 现有四张正面分别标有数字,,,的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为,,则点在第二象限的概率为.22. 掷两枚骰子,出现点数之和为的概率是.23. 将,,,四个号码牌放入一个布袋中,搅匀后随即摸出两张,将它们的号码相乘,结果不为的概率是.三、解答题(共5小题;共65分)24. 为了调节紧张的学习生活,小刚和小荣两位同学根据所学知识制作了如图两个可以自由转动的转盘A,B进行游戏娱乐,转盘是由红色和蓝色区域构成的,其中A转盘的蓝色区域占整个转盘的,B转盘的蓝色区域占整个转盘的.小刚同学转动A转盘,小荣同学转动B转盘.(1)两人分别转动各自的转盘,谁转到红色区域的概率大?(2)经过几次转动后,小林同学发现游戏规则不公平,因此建议新的游戏规则如下:A转盘与B转盘均由小林同学转动,如果两个转盘均转到了红色区域,则小刚同学获胜;否则,小荣同学获胜,请你帮助小林同学用概率的知识验证修改后的游戏规则是否公平?并说明理由.25. 在一个不透明的盒子里,装有个黑球和若干个白球,它们除颜色外其它都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复这一过程,共摸球次,其中次摸到黑球,则估计盒子中大约有白球多少个?26. 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“”的扇形圆心角为.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.27. 《阅读者》是一档由中央推出,旨在实现用文化感染人、鼓舞人、教育人的大型朗读类真人秀节目,一经播出,便掀起了全民阅读热潮,为培养广大青少年的阅读意识,蓝田某中学举办“阅读人生”朗读比赛,九(三)班通过内部初选,选出了小丽和小铭两位同学,但由于每个班级的参赛名额有限,现决定通过如图所示被等分的转盘游戏来决定由谁代表全班参赛.规则如下,小丽和小铭分别同时转动转盘甲、乙,转盘停止后,指针所指区域内数字之和小于,小丽获胜,指针所指区域内的数字之和等于,为平局,指针所指区域内的数字之和大于,小铭获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)求玩一轮上述游戏,小丽获胜的概率;(2)该游戏规则对小丽和小铭双方公平吗?为什么?28. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如表:(1)请直接写出,的值;(2)如果实验继续进行下去,根据如表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;(3)如果做这种实验次,那么“兵”字面朝上的次数大约是多少?答案第一部分1. B2. B 【解析】列表得:因为种可能的结果中,能组成“中华”有种可能,共种,所以两次摸出的球上的汉字能组成“中华”的概率.3. C4. B5. A【解析】设袋子中红球有个,根据题意,得:,解得,袋子中红球的个数最有可能是个.6. A7. B8. B9. C10. C【解析】个拨盘的数字正好是从一共个等可能的结果,只有其中个是开锁号码,因此概率为.11. B12. B13. A 【解析】根据题意,画出树形图.由图可知,任意翻开两张,共有种等可能情况,其中两张图案一样的共有种情况,故任意翻开两张,其中两张图案一样的概率为.14. B15. B第二部分16.17.18.19.【解析】从频率的波动情况可以发现频率稳定在附近,这名运动员射击一次时“射中9环以上”的概率大约是.20.【解析】题意可得红球有个,白球有个.列出所有等可能情况,如下表.由表可知,任意摸出两个球共有种情况,其中摸到的个球均为红球的有种,所以任意摸出个球均为红球的概率为.21.22.【解析】将四个号码牌放入一个布袋中,搅匀后随机摸出两张,可能的情况有,,,,,,共种.其中结果不为的只有一组,故结果不为的概率是第三部分24. (1)因为A转盘的蓝色区域占整个转盘的B转盘的蓝色区域占整个转盘的所以小刚同学转动A转盘转到红色区域的概率为B转盘转到红色区域的概率为;因为,所以小荣同学转到红色区域的概率大;(2)公平.理由如下:将A转盘红色区域部分等分为:红,红,B转盘红色区域等分为:红,红,红,画树状图如解图:共有种等可能的情况,其中两个转盘均转到红色区域的情况有种,所以,,所以小林同学修改后的游戏规则是公平的.25. 设盒子中大约有白球个,根据题意得:解得:经检验,是原方程的解,答:估计盒子中大约有白球个.26. (1)由题知:“”“”所占圆心角均为,,.(2)由()知,转出“”,“列表得:由表格可知:等可能出现的结果共种,其中积为正数的情况共种,.27. (1)画树状图如下:可见,共有种等可能的情况,其中和小于的有种;小丽获胜的概率为.(2)该游戏规则不公平.由()可知,共有种等可能的情况,其和大于的情况有种,小铭获胜的概率为,显然,故该游戏规则不公平.28. (1);【解析】;.(2)根据表中数据,试验频率为,,,,,,,稳定在左右,故估计概率的大小为.(3)朝上的概率接近于,所以抛掷次,朝上的次数为(次),所以“兵”字面朝上的次数大约是次.。
新北师大版九年级数学[上册]第三章检测题(附答案)
新北师大版九年级数学[上册]第三章检测题(附答案)(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C ),则P (A )、P (B )、P (C )的大小关系正确的是( )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )1.D 23C. 13B. 0.A 3.如图,2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( D )25B.12A. 47D.37C. 4.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( )34D. 58C. 712B.12A. 5.掷两枚普通正六面体骰子,所得点数之和为11的概率为( )115D. 112C. 136B. 118A.6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )12D.13C. 34B. 14A. ,第6题图) ,第7题图)7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )525D. 625C. 1025B. 1925A.8.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( )23D.12C. 13B. 16A. 9.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形的概率是( )34D.12C. 13B. 14A.轴上,其坐标分y 在2B ,1B 轴上,点x 在2A ,1A 如图,在平面直角坐标系中,点.10其中的任意两点与2B ,1B ,2A ,1A ,分别以2),(02B ,1),(01B ,0),(22A ,0),(11A 别为点O 为顶点作三角形,所作三角形是等腰三角形的概率是( )12D.23C. 13B. 34A. 二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为____.12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾,小明通过多次捕捞试验,发现鲤鱼、草鱼的概率是51%和26%,则水库里有____尾鲫鱼.13.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.14.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是____.15.袋中装有4个完全相同的球,分别标有1,2,3,4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为____.16.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是____.三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.20.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)现有一项资助贫困生的公益活动由你来主持,每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各指向一个数字(若指针在分格线上,则重转一次,直到指针指向某一数字为止).若指针最后所得的数字之和为12,则获一等奖,奖金20元;数字之和为9,则获二等奖,奖金10元;数字之和为7,则获三等奖,奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加,活动结束后至少有多少赞助费用于资助贫困生.22.(10分)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( )A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.新北师大版九年级数学上册第三章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P (A )、P (B )、P (C ),则P (A )、P (B )、P (C )的大小关系正确的是( B )A .P (C )<P (A )=P (B ) B .P (C )<P (A )<P (B )C .P (C )<P (B )<P (A )D .P (A )<P (B )<P (C )2.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( B )1.D 23C. 13B. 0.A 3.如图,2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( D )25B.12A. 47D.37C. 4.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是( C )34D. 58C. 712B.12A. 5.掷两枚普通正六面体骰子,所得点数之和为11的概率为( A )115D. 112C. 136B. 118A.6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( D )12D.13C. 34B. 14A. ,第6题图) ,第7题图)7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( C )525D. 625C. 1025B. 1925A.8.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( B )23D.12C. 13B. 16A. 9.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条能够组成三角形的概率是( C )34D.12C. 13B. 14A.轴上,其坐标分y 在2B ,1B 轴上,点x 在2A ,1A 如图,在平面直角坐标系中,点.10其中的任意两点与2B ,1B ,2A ,1A ,分别以2),(02B ,1),(01B ,0),(22A ,0),(11A 别为点O 为顶点作三角形,所作三角形是等腰三角形的概率是( D )12D.23C. 13B. 34A. 二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些除颜色外其他都相同.从袋子中随机摸.__47__出一个球,这个球是白球的概率为 12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾,小明通过多次捕捞试验,发现鲤鱼、草尾鲫鱼.__460__,则水库里有26%和51%鱼的概率是 13.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发个.__4__,估计袋中白球有40%现摸到白球的频率约为 14.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另.__12__一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是 15.袋中装有4个完全相同的球,分别标有1,2,3,4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位.__12__的概率为30数,所得的两位数大于 16.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停.__16__地搭配在一起,则花色完全搭配正确的概率是电了,小伟只好把杯盖与茶杯随机 三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.解:画树状图:13=26=)都是蓝色(P 18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.记为事件(:两次摸出纸牌上数字之和为奇数 理由如下,这个游戏公平)2( 14)1(解: 所以这,两次摸出纸牌上数字之和为奇数与和为偶数的概率相同,12=816=)B (P ,个8有)B 个游戏公平19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况;(2)求点A 落在第三象限的概率.解:(1)列表:-7 -1 3 -2 (-7,-2) (-1,-2) (3,-2) 1 (-7,1) (-1,1) (3,1) 6 (-7,6) (-1,6) (3,6)可知,点A 共有9种情况 (2)由(1)知点A 的坐标共有9种等可能的情况,点A 落在第29=)A (P ∴,两种情况)2-,1-(,)2-,7-(共有)A 事件(三象限20.(10分)分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.12=612所以欢欢胜的概率是,种6积为奇数的情况有,种情况12共有)1(解:所以游戏公平,两人获胜的概率相同,12=12-1得乐乐胜的概率为)1(由)2( 21.(10分)现有一项资助贫困生的公益活动由你来主持,每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各指向一个数字(若指针在分格线上,则重转一次,直到指针指向某一数字为止).若指针最后所得的数字之和为12,则获一等奖,奖金20元;数字之和为9,则获二等奖,奖金10元;数字之和为7,则获三等奖,奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加,活动结束后至少有多少赞助费用于资助贫困生.×)5×16+10×19+20×136)(2( 16=)三等奖(P ;19=)二等奖(P ;136=)一等奖(P )1(解: 2 000=5 000,5×2 000-5 000=5 000,即活动结束后至少有5 000元用于资助贫困生22.(10分)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( A )A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率. 解:(2)依题意可画树状图:(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲,②丙甲乙,∴P (A )13=26=23.(12分)袋中装有大小相同的2个红球和2个绿球. (1)先从袋中摸出1个球放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一个红1个绿球和1②∵两次摸到的球中有;14=416第二次摸到红球的概率为:,次摸到绿球23)2( 12=816个红球的概率为:1个绿球和1∴两次摸到的球中有,种情况8球的有。
北师大版数学九年级上3第三单元《概率的进一步认识》全章同步练习附单元测试卷(含答案)
北师大版数学九年级上3第三单元《概率的进一步认识》全章同步练习附单元测试卷(含答案)3.1 用树状图或表格求概率第1课时 用树状图或表格求概率【基础练习】 一、选择题:同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大; (2)“两颗的点数相同”的概率是16 ;(3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同. A. (1)、(2) B. (3)、(4) C. (1)、(3) D. (2)、(4)二、填空题:用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是.用画树状图的方法求下列各事件发生的概率,并用所得的结果填空.4.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色....小球的概率是_______.5.妞妞和她的爸爸玩“锤子、剪刀、布”游戏.每次用一只手可以出锤子、剪刀、布三种手势之一,规则是锤子赢剪刀、剪刀赢布、布赢锤子,若两人出相同手势,则算打平.妞妞和爸爸出相同手势的概率是___________.6.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.三、解答题:有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.【综合练习】有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时投掷到桌面上,并以它们底面上的数字之和来计分,问:(1)共能组成多少种不同的计分?(2)底面上的数字之和为素数的概率是多少?(3)底面上的数字之和为偶数的概率是多少?【探究练习】中国队和韩国队等9支球队参加奥运会足球预选赛亚洲区决赛,把9支球队任意地分成3组,试求中、韩两队恰好分在同一组的概率.答案:【基础练习】一、D.二、1. 25 ; 2. 310 ; 3. 715 ; 4.13 ;5.13; 6.14.三、415.【综合练习】(1)7;(2)14 ;(3)12.【探究练习】14.第2课时 概率与游戏的综合应用1.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负. (1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏的规则,对小明、小芳公平吗?试说明理由.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜. (1)请你通过列表(或画树状图)计算甲获胜的概率. (2)你认为这个游戏公平吗?为什么?红 蓝 红 黄 转盘A 红蓝 黄 转盘B答案:1.解:用列表法将所有可能出现的结果表示如下:转盘B转盘A红蓝黄红(红,红)(红,蓝)(红,黄)蓝(蓝,红)(蓝,蓝)(蓝,黄)红(红,红)(红,蓝)(红,黄)黄(黄,红)(黄,蓝)(黄,黄)所以,所有可能出现的结果共有12种.(2)上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是31124=,即小芳获胜的概率是14;但只有2种情况才可能得到绿色,配成绿色的概率是21126=,即小明获胜的概率是16.而1146>,故小芳获胜的可能性大,这个“配色”游戏对小明、小芳双方是不公平的.2.解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为516P=甲.(2)这个游戏对双方不公平,因为甲获胜的概率516P=甲,乙获胜的概率1116P=乙,1116165≠,所以,游戏对双方是不公平的.3.为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率; (2)请你用所学的知识说明这个游戏是否公平?4. 甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A 、B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘. (1)试用列表或画树形图的方法,求甲获胜的概率; (2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.5. 甲、乙玩转盘游戏时,把质地相同的两个转盘A 、B 平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜。
北师大版九年级上册数学第三章测试题及答案
北师大版九年级上册数学第三章测试题及答案(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.有一新娘去商店买新婚礼服,购买了不同款式的上衣2件,不同颜色的裙子3条,则搭配衣服所有可能出现的结果为( D )A .2种B .3种C .5种D .6种2.某人将一枚均匀的硬币抛掷了10次,正面朝上的情况出现了6次,若用A 表示正面朝上这一事件,则A 的( B )A .概率是0.6B .频率是0.6C .频率是6D .概率接近0.63.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )A.15B.14C.13D.124.在数据1,-1,4,-4中,任选两个数据,均是一元二次方程x 2-3x -4=0的根的概率是( A )A.16B.13C.12D.14 5.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( A ) A.310B.625C.925D.356.小红上学要经过3个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( C )A.12B.13C.18D.38第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.分别从数-5,-2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为 13. 8.做任意抛掷一只纸杯的重复试验,记录杯口朝上的次数,获得如下数据:杯口朝上的概率约是 0.22 .9.★从数-2,-12,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第一、第三象限的概率是 16 .10.某学校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 13.11.★某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A ,B ,C 三个队和县区学校的D ,E ,F ,G ,H 五个队,如果从A ,B ,D ,E 四个队与C ,F ,G ,H 四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是 38. 12.某口袋中有20个球,其中白球x 个,绿球2x 个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x =__4__时,游戏对甲、乙双方公平.三、(本大题共5小题,每小题6分,共30分)13.(南京中考)从3名男生和2名女生中随机抽取2017年南京青奥会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)抽取1名,恰好是女生的概率是25;(2)分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同,所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A)的结果共6种,所以P(A)=610=35.14.(湘潭中考)从-2,1,3这三个数中任取两个不同的数,作为点的坐标. (1)写出该点所有可能的坐标; (2)求该点在第一象限的概率. 解:(1)列表如下:∴该点可能的坐标为(-2,1),(-2,3),(1,-2), (1,3),(3,-2),(3,1).(2)由(1)可知,共有6种等可能的结果,其中点在第一象限的结果有2种, ∴该点在第一象限的概率为26=13.15.儿童节期间,某公园游戏场举行一场活动.活动规则是:在一个装有8个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,如果是红球就得到一个世博会吉祥物海宝玩具.已知参加这种游戏的儿童有40 000人,公园游戏场发放海宝玩具8 000个.(每人只参加一次)(1)求参加此次活动得到海宝玩具的频率; (2)请你估计袋中白球的数量接近多少?解:(1)参加此次活动得到海宝玩具的频率为8 00040 000=15.(2)设袋中共有x 个球,则摸到红球的概率P(摸到红球)=8x .∴8x =15,解得x =40, ∴白球接近40-8=32个.16.某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币. (1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.解:某人从钱包内随机取出2张纸币,可能出现的结果有3种,即(10,20),(10,50),(20,50),并且它们出现的可能性相等.(1)取出纸币的总额是30元(记为事件A)的结果有1种,即(10,20),∴P(A)=13.(2)取出纸币的总额可购买一件51元的商品(记为事件B)的结果有2种,即(10,50),(20,50),∴P(B)=23.17.近几年“密室逃脱俱乐部”风靡全球.下图是俱乐部的通路俯视图,小明进入入口后,任选一条通道.(1)他进A 密室或B 密室的可能性哪个大?请说明理由(利用树状图或列表来求解); (2)求小明从中间通道进入A 密室的概率. 解:(1)画出树状图如下:∴由图可知,小明进入游戏区后一共有6种不同的可能路线. ∵小 明是任选一条道路,∴走各种路线的可能性认为是相等的,而其中进入A 密室有2种可能,进入B 密室有4种可能,∴进入B 密室可能性较大;(2)由(1)可知小明从中间通道进入A 密室的概率为16.四、(本大题共3小题,每小题8分,共24分)18.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等. (1)现随机转动转盘一次,停止后,指针指向2的概率为 13.(2)小明和小华利用这个转盘做游戏,若随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.你认为游戏规则对双方公平吗?如果不公平,请你修改游戏规则,使游戏公平.解:(1)13.(2)共有4种, ∴P(小明获胜)=59,P(小华获胜)=49,∵59> 49,∴该游戏不公平.修改规则:若积为2(或2的倍数)小明胜,若积为3(或3的倍数)小华胜等,若积为1或2和3的公倍数,则为平局.19.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上数字之和小于6,那么小王去,否则就是小李去.(1)用画树状图法或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.解:(1)画树状图:由上图可知,一共有12种等可能的结果,其中摸出的球上的数字之和小于6的结果有9种,∴P(小王去)=912=34; (2)我认同小李的说法,理由如下: ∵P(小王去)=34,P(小李去)=14,34≠14,∴这种规则不公平.20.(苏州中考)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等但面积相等的三角形是__△DFG (或△DHF )__.(只需要填一个三角形)(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表法求解).解:画树状图如图. 由树状图可知,共有6种等可能的结果,其中与△ABC 面积相等的有3种,即△DHF ,△DGF ,△EGF ,∴所画三角形与△ABC 面积相等的概率P =36=12.五、(本大题共2小题,每小题9分,共18分)21.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.(1)求袋子中白球的个数(请通过列式或列方程解答);(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答).解:(1)设袋子中白球有x 个,根据题意得x x +1=23,解得x =2,经验证,x =2是原分式方程的解, ∴袋子中白球有2个;(2)画树状图如下:∵共有9种等可能的结果,两次都摸到相同颜色的小球有5种情况,∴两次都摸到相同颜色的小球的概率为59.22.(广州中考)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?解:(1)P(不合格品)=11+3=14.(2)设1件不合格品为A,3件合格品分别为B1,B2,B3.任意抽取2件产品,所有可能出现的结果有(A,B1),(A,B2),(A,B3),(B1,B2),(B1,B3),(B2,B3),共有6种,它们出现的可能性相同.所有的结果中,满足抽取2件,都是合格品的结果有3种.∴P(都是合格品)=36=12.(3)∵抽到合格品的频率稳定在0.95,∴抽到合格品的概率为0.95.根据题意得3+x1+3+x=0.95,解这个方程得x=16.经检验,x=16是原方程的解且符合题意.答:可以推算x的值大约是16.六、(本大题共12分)23.(广元中考)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”“绘画类”“舞蹈类”“音乐类”“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为__7__人,参加球类活动的人数的百分比为__30%__;(2)请把图②(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为__105__;(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),现准备从中选取2名同学组成舞伴,请用列表法或画树状图的方法求恰好选中一男一女的概率.解:(2)补全条形统计图略.(4)画树状图:由图可知共有12种等可能的结果,其中选出的2人恰好是一男一女的情况有6种,所6 12=1 2.以选出的2人恰好是一男一女的概率为。
北师大版九年级数学上册数学_第三章_概率的进一步认识_单元检测试题【有答案】
北师大版九年级数学上册数学第三章概率的进一步认识单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.将分别写有数字,,的三张卡片(除数字外,其余均相同)洗匀后背面朝上摆放,然后从中任意抽取两张,则抽到的两张卡片上的数字之和为偶数的概率是()A. B. C. D.2.在一个不透明的纸箱中放入个除颜色外其他都完全相同的球,这些球中有个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出的值大约是()A. B. C. D.3.在一个不透明的布袋中,红色、黑色的球共有个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在附近,则口袋中红球的个数很可能是()A.个B.个C.个D.个4.一个不透明的口袋里装有除颜色外都相同的个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了次,其中有次摸到白球,因此小亮估计口袋中的红球大约为()A.个B.个C.个D.个5.某一部三册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第,,册的概率为()A. B. C. D.6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回A. B. C. D.7.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有到的点数,则两个骰子向上的一面的点数和为的概率为()A. B. C. D.8.一个口袋中有个黑球和若干个白球,从口袋中随机摸出一球,记下颜色,再放回口袋,不断重复上述过程,共做了次,其中有次摸到黑球,因此估计袋中白球有()A.个B.个C.个D.个9.从、、三个数中随机取一个数为,再随机取一个数(可重复)为,则直线与轴的交点在轴正半轴的概率是()A. B. C. D.10.图示的两个圆盘中,指针落在每一个数字所在的扇形区域上的机会是相等的,那么两个指针同时落在偶数所在的扇形区域上的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是________.12.如图所示,一只蚂蚁从点出发到,,处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的路径(比如岔路口可以向左下到达处,也可以向右下到达处,其中,,都是岔路口).那么,蚂蚁从出发到达处的概率是________.13.口袋中有红色、黄色、蓝色的玻璃球共个,小华通过多次试验后,发现摸到红球、黄球的频率依次是、,则估计口袋中篮球的个数约为________个.14.小李和小王准备到古隆中、水镜庄、黄家湾三个景点去游玩,如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选古隆中为第一站的概率是________.15.分别从数,,,中,任取两个不同的数,则所取两数的和为正数的概率为________.16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是________.17.一个袋子中装有个球,其中个黑球个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是________.18.一水塘里有鲤鱼、鲫鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是和,则这个水塘里大约有鲢鱼________尾. 19.有红黄蓝三种颜色的小球各一个,它们除颜色外完全相同,将这三个小球随机放入编号为①②③的盒子中,若每个盒子放入一个小球,且只放入一个小球,则黄球恰好被放入③号盒子的概率为________.20.两个不透明的袋子,一个装有两个球(个白球,一个红球),另一个装有个球(个白球,个红球,个绿球),小球除颜色不同外,其余完全相同.现从两个袋子中各随机摸出个小球,两球颜色恰好相同的概率是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在四张背面完全相同的纸牌、、、,其中正面分别画有四个不同的几何图形(如图),小华将这张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用、、、表示);求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.22.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于,那么甲获胜;如果积不大于,那么乙获胜.请你解决下列问题:利用树状图(或列表)的方法表示游戏所有可能出现的结果;求甲、乙两人获胜的概率.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:.打扫街道卫生;.慰问孤寡老人;.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;求九年级学生代表到社区进行义务文艺演出的概率.24.一个不透明的盒中装有若干个只有颜色不同的红球与白球.若盒中有个红球和个白球,从中任意摸出两个球恰好是一红一白的概率是多少?请用画树状图或列表的方式说明;若先从盒中摸出个球,画上记号放回盒中,再进行摸球实验.摸球实验的要求:每次摸球前先搅拌均匀,摸出一个球,记录颜色后放回盒中,再继续,在的条件下估算盒中红球的个数.“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的只火腿粽子和只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?若妈妈从盒中取出火腿粽子只、豆沙粽子只送爷爷和奶奶后,再让小亮从盒中不放回地任取只,问恰有火腿粽子、豆沙粽子各只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)26.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为分)作了统计分析,请你根据图表提供的信息,解答下列问题:根据学校规定将有的学生参加校级数学冬令营活动,试确定参赛学生的最低资格线?数学老师准备从不低于分的学生中选人介绍学习经验,其中符合条件的小华、小丽同时被选中的概率是多少?答案1.B2.D3.A4.C5.A6.C7.B8.B9.A10.B11.12.13.14.15.16.17.18.19.20.21.解画树状图得:则共有种等可能的结果; ∵既是中心对称又是轴对称图形的只有、,∴既是轴对称图形又是中心对称图形的有种情况,∴既是轴对称图形又是中心对称图形的概率为:.22.解:树状图法:或列表法:根据列出的表,甲,乙.23.解:由题意可画出树状图:由树状图可知共有种可能,九年级学生代表到社区进行义务文艺演出的有种,所以概率是九年级学生代表到社区进行义务文艺演出的概率为.24.红球占,白球占;由题意可知,次摸球实验活动中,出现有记号的球次,∴总球数为,∴红球数为,答:盒中红球有个.25.第一次爸爸买了只火腿粽子,只豆沙粽子.现在有火腿粽子只,豆沙粽子只,送给爷爷,奶奶后,还有火腿粽子只,豆沙粽子只.记豆沙粽子,,;火腿粽子,,,,.恰好火腿粽子、豆沙粽子各只的概率为.分;设四人分别为甲(小华)、乙(小丽)、丙、丁,根据题意,列表可得,∴小华、小丽两同学同时被选中的概率.。
2023年北师大版九年级上册数学第三章综合测试试卷及答案
第三章综合练习
12.社团课上,同学们进行了“摸球游戏”:在一个不透明的盒 子里装有50个除颜色不同外其余均相同的黑、白两种球,将盒 子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回 盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的 频率”与“摸球的总次数”的关系图象如图所示,经分析可以估计 盒子里白球有 40 个.
A.转动转盘20次,一定有6次获得“文具盒”
B.转动转盘1次,获得“铅笔”的概率大约是0.70
C.转动转盘100次,指针落在“铅笔”区域的次数不一定是68
D.若转动转盘3000次,则指针落在“文具盒”区域的次数大约是900
-7-
第三章综合练习
7.如图,一只蚂蚁从A点出发到D,E,F处寻觅食
物.假定蚂蚁在每个岔路口都等可能的随机选择一条
-13-
第三章综合练习
13.小明从语文、数学、英语三本课本中任意抽取
一本,又从这3门课的作业中任意抽取一本,课本
和作业本恰好为同一门课的概率是
1 3
.
-14-
第三章综合练习
14.已知电路AB由如图所示的开关控制,闭合a,
b,c,d,e五个开关中的任意两个,则使电路形成
通路的概率是
3 5
.
-15-
D.12
-10-
第三章综合练习
10.在如图所示的3×3方格纸中,A,B,C,D, E,F均为小正方形的顶点.先从A,B,C中任取 两点,再从D,E,F中任取一点画三角形,则所画 三角形是直角三角形的概率是( C )
A.13 C.29
B.19 D.14
-11-
第三章综合练习
二、填空题(本大题共4小题,每小题5分,满分20分) 11.若从-2,0,1这三个数中任取两个数,其中一 个记为a,另一1个记为b,则点A(a,b)恰好落在x轴 上的概率是 3 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版九年级数学上册第三章检测题附答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】九年级数学上册第三章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是() A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)2.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0D.13.如图,2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是(D)4.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是()5.掷两枚普通正六面体骰子,所得点数之和为11的概率为()6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是(),第6题图),第7题图) 7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()8.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是()9.从长为10 cm,7 cm,5 cm,3 cm的四条线段中任选三条能够组成三角形的概率是()10.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为____.12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾,小明通过多次捕捞试验,发现鲤鱼、草鱼的概率是51%和26%,则水库里有____尾鲫鱼.13.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有____个.14.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是____.15.袋中装有4个完全相同的球,分别标有1,2,3,4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为____.16.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是____.三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.18.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.20.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.21.(10分)现有一项资助贫困生的公益活动由你来主持,每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各指向一个数字(若指针在分格线上,则重转一次,直到指针指向某一数字为止).若指针最后所得的数字之和为12,则获一等奖,奖金20元;数字之和为9,则获二等奖,奖金10元;数字之和为7,则获三等奖,奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加,活动结束后至少有多少赞助费用于资助贫困生.22.(10分)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物 B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物 D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.23.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.新北师大版九年级数学上册第三章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 ℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是(B) A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A) D.P(A)<P(B)<P(C)2.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是(B)A.0D.13.如图,2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是(D)4.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,问抽取的两个球数字之和大于6的概率是(C)5.掷两枚普通正六面体骰子,所得点数之和为11的概率为(A)6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是(D),第6题图),第7题图) 7.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是(C)8.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是(B)9.从长为10 cm,7 cm,5 cm,3 cm的四条线段中任选三条能够组成三角形的概率是(C)10.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是(D)二、填空题(每小题3分,共18分)11.一个布袋中装有3个红球和4个白球,这些除颜色外其他都相同.从袋子中随机摸出一个球,这个球是白球的概率为__47__.12.一水库里有鲤鱼、鲫鱼、草鱼共2 000尾,小明通过多次捕捞试验,发现鲤鱼、草鱼的概率是51%和26%,则水库里有__460__尾鲫鱼.13.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为40%,估计袋中白球有__4__个.14.有两把不同的锁和三把钥匙,其中两把钥匙能打开同一把锁,第三把钥匙能打开另一把锁.任意取出一把钥匙去开任意一把锁,一次能打开锁的概率是__12__.15.袋中装有4个完全相同的球,分别标有1,2,3,4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为__12__.16.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是__16__.三、解答题(共72分)17.(10分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.解:画树状图:P(都是蓝色)=26=1318.(10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌记下数字然后放回,再随机摸取一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.解:(1)14(2)这个游戏公平,理由如下:两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)=816=12,两次摸出纸牌上数字之和为奇数与和为偶数的概率相同,所以这个游戏公平19.(10分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况;(2)求点A落在第三象限的概率.解:(1)列表:-7 -1 3可知,点,点A落在第三象限(事件A)共有(-7,-2),(-1,-2)两种情况,∴P(A)=2 920.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.解:(1)共有12种情况,积为奇数的情况有6种,所以欢欢胜的概率是612=12(2)由(1)得乐乐胜的概率为1-12=12,两人获胜的概率相同,所以游戏公平21.(10分)现有一项资助贫困生的公益活动由你来主持,每位参与者交赞助费5元.活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各指向一个数字(若指针在分格线上,则重转一次,直到指针指向某一数字为止).若指针最后所得的数字之和为12,则获一等奖,奖金20元;数字之和为9,则获二等奖,奖金10元;数字之和为7,则获三等奖,奖金5元;其余的均不得奖.此次活动所集到的资助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活.(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此项活动有2 000人参加,活动结束后至少有多少赞助费用于资助贫困生.解:(1)P(一等奖)=136;P(二等奖)=19;P(三等奖)=16(2)(136×20+19×10+16×5)×2 000=5 000,5×2 000-5 000=5 000,即活动结束后至少有5 000元用于资助贫困生22.(10分)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是(A)A.乙抽到一件礼物 B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物 D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.解:(2)依题意可画树状图:(直接列举出6种可能结果也可)符合题意的只有两种情况:①乙丙甲,②丙甲乙,∴P(A)=26=1323.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一次摸到绿球,第二次摸到红球的概率为:416=14;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率为:816=12(2)2 3。