基于matlab风力发电系统的建模与仿真

合集下载

风力发电机组的建模与仿真

风力发电机组的建模与仿真

风力发电机组的建模与仿真风力发电是一项越来越受到重视的可再生能源。

为了更好地利用风能,风力发电机组已经越来越普及。

风力发电机组的效率,稳定性和可靠性是非常关键的,我们需要对其进行建模和仿真分析。

本文将介绍风力发电机组的建模和仿真过程,并分析其优缺点和应用范围。

一、风力发电机组的基本结构风力发电机组包括风轮、发电机、传动系统、控制系统和塔架等部分。

风轮是将风能转化为机械能的主要部分,其形状和材质不同,可以影响整个系统的性能。

发电机是将转动的机械能转化为电能的关键部件。

传动系统负责将风轮的转动传导到发电机上,其间隔离了风轮受到的不稳定风力,使发电机获得更稳定的转速。

控制系统负责监测和控制整个系统的运行状态,保证系统的安全和可靠性。

塔架是支撑整个系统的基础,必须满足足够的强度和刚度。

二、风力发电机组的建模建模是对系统进行研究和仿真的重要步骤。

我们需要建立准确的模型才能更好地了解系统的行为和性能。

风力发电机组的建模包括机械模型、电气模型和控制模型。

机械模型描述了风轮、传动系统和塔架之间的相互作用。

其中,风轮可由拟合风速的阻力模型和旋转惯量模型表示,传动系统可以通过多级齿轮系统表示,塔架可以使用弹簧阻尼系统进行建模。

电气模型描述了发电机和网侧逆变器之间的电能转换过程。

发电机模型需要考虑到其内部电气参数和转速特性,网侧逆变器模型一般采用PID控制器进行描述。

控制模型描述了控制系统的功能和行为。

其中,风速控制模型可以通过调节风轮转速实现,功率调节模型可以通过调节发电机电压和电流实现。

三、风力发电机组的仿真仿真是建模的重要应用,通过模拟和分析系统的行为和性能,可以准确预测系统的运行状况。

风力发电机组的仿真可以通过MATLAB/Simulink等仿真工具进行实现。

在仿真中,我们可以考虑不同的工况和故障条件,分析风轮、传动系统、发电机和控制系统的响应。

通过对系统的分析和优化,可以提高系统的效率和可靠性,并降低系统的维护成本和损失。

10MW变速直驱型风力发电机组的建模及Matlab仿真

10MW变速直驱型风力发电机组的建模及Matlab仿真

10 MW变速直驱型风力发电机组的建模及Matlab仿真谭勋琼1,2唐佶1吴政球21.长沙理工大学物理与电子科学学院,湖南长沙410114;2.湖南大学电气与信息工程学院,湖南长沙410082摘要:构建了一个包含风速模型、功率转换模型、传动链模型等三个部分的10MW变速直驱型风力发电机组的标么值的Matlab模型。

传动链模型是基于二质量块——轴数学模型所构建的动态模型。

通过标么值的转换及灵活的参数调整,该模型能较准确地模拟各种变速直驱型风力发电机组。

仿真分析获取了最大功率跟踪特性曲线,并得到了风力发电机组的四个工作区。

结果还能表明,电负荷电磁阻力矩能动态地调整电机转子转速,从而在低速风时能实现风能最大功率的追踪。

同时,风涡轮的桨距角能控制高速风的利用率,使风涡轮机工作在额定功率下,有效地防止整个风力发电系统的机械和电负荷容量的过载冲击。

作为原动力模型,该模型有助于进一步研究变速直驱风力发电系统的功率特性和并网发电控制技术。

风力发电;风力发电机组;传动链;Matlab建模;仿真10 MW variable speed direct-driven wind turbines modeling and Matlab simulationTAN Xun-qiongTANG JieWU Zheng-qiuTM315;TM74A1674-3415(2011)24-0008-08基金项目:湖南省教育厅科学研究项目(10C0355);长沙理工大学重点学科建设项目资助非线性i(15)matic di(30)风力发电@@[1] Anderson P M, Bose A. Stability simulation of wind  turbine systems[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(12).. 3791-3795.@@[2] Wasynczuk O, Man D T, Sullivan J P. Dynamic behavior of a class of wind turbine generators during random wind fluctuations[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(11): 2837-2845.@@[3] Zhou Xuesong, Li Ji, Ma Youjie. Review on wind speed model research in wind power systems dynamic analysis[C] // International Conference on Sustainable Power Generation and Supply. Nanjing: Hohai University Press, 2009: 1-5. @@[4] 曹娜,赵海翔,任普春,等.风电场动态分析中风速模 型的建立及应用[J].中国电机工程学报,2007,27(36): 68-72.CAO Na, ZHAO Hai-xiang, REN Pu-chun, et al.Establish and application of wind speed model in wind farm dynamic analysis[J]. Proceedings of the CSEE,2007, 27(36): 68-72.@@[5] 周卫,张尧,夏成军,等.基于BondGraph的风力发电 机建模[J].电力系统保护与控制,2010,38(5): 16-19. ZHOU Wei, ZHANG Yao, XIA Cheng-jun, et al. Wind-driven generator modeling based on Bond Graph[J]. Power System Protection and Control, 2010, 38(5): 16-19.@@[6] Petru T, Thiringer T. Modeling of wind turbines for power system studies[J]. IEEE Transactions on Power Systems, 2002, 17(4): 1132-1139.@@[7] Slootweg J G, de Haan S W, Polinder H et al. General model for representing variable speed wind turbines in power system dynamics simulations[J]. IEEE Transactions on Power Systems, 2003, 18(1): 144-151.@@[8] 田春筝,李琼林,宋晓凯.风电场建模及其对接入电 网稳定性的影响分析[J].电力系统保护与控制,2009, 37(19): 46-51. TIAN Chun-zheng, LI Qiong-lin, SONG Xiao-kai. Modeling and analysis of the stability for the power system considering the integration of the wind farms[J]. Power System Protection and Control, 2009, 37(19): 46-51.@@[9] Kelouwani S, Agbossou K. Nonlinear model identification of wind turbine with a neural network[J]. IEEE Transactions on Energy Conversion, 2004, 19(3): 607- 612.@@[10]杨秀嫒,肖洋,陈树勇.风电场风速和发电功率预测 研究[J].中国电机工程学报,2005,25(11): 1-5.YANG Xiu-yuan, XIAO Yang, CHEN Shu-yong. Wind speed and generated power forecasting in wind farm[J].Proceedings of the CSEE, 2005, 25(11): 1-5.@@[11]李东东,陈陈.风力发电机组动态模型研究[J].中国 电机工程学报,2005,25(3): 115-119.LI Dong-dong, CHEN Chen. A study on dynamic model of wind turbine generator sets[J]. Proceeding of the  CSEE, 2005, 25(3): 115-119.@@[12]刘其辉,贺益康,张建华.交流励磁变速恒频风力发 电机的运行控制及建模仿真[J].中国电机工程学报, 2006,26(5): 43-50. LIU Qi-hui, HE Yi-kang, ZHANG Jan-hua. Operation control and modeling simulation of ac-excited variable speed constant-frequency(AEVSC F) wind power generator[J]. Proceedings of the CSEE, 2006, 26(5): 43-50.@@[13] Albadi M H, E1-Saadany E F. Wind turbines capacity factor modeling-a novel approach[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1637-1638.@@[14] Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. Renewable Power Generation, IET, 2009, 3(1): 1-11.@@[15] Geng H, Yang G. Robust pitch controller for output power leveling of variable-speed variable-pitch wind turbine generator systems[J]. Renewable Power Generation, IET, 2009, 3(2): 168-179.@@[16] Kusiak A, Zhang Zijun, Li Mingyang. Optimization of wind turbine performance with data-driven models[J]. IEEE Transactions on Sustainable Energy, 2010, 1(2): 66-76.@@[17] Chen Peiyuan, Siano P, Bak-Jensen B, et al. Stochastic optimization of wind turbine power factor using stochastic model of wind power[J]. IEEE Transactions on Sustainable Energy, 2010, 1(1) : 19-29.@@[18]宋新甫,梁波.基于模糊自适应PID的风力发电系统 变桨距控制[J].电力系统保护与控制,2009,37(16): 50-53. SONG Xin-fu, LIANG Bo. Wind power system pitch control based on fuzzy self-learning emendation control theory[J]. Power System Protection and Control, 2009, 37(16): 50-53.@@[19] Muyeen S M, Hasan A M, Takahashi R, et al. Transient stability analysis of grid connected wind turbine generator system considering multi-mass shaft modeling[J]. Electric Power Components Systems, 2006, 34(10): 1121-1138.@@[20] Muyeen S M, Ali M H, Takahashi R, et al. Comparative study on transient stability analysis of wind turbine generator system using different drive train models[J]. Renewable Power Generation, IET, 2007, 1 (2): 131-141.@@[21] Coughlan Y, Smith P, Mullane A, et al. Wind turbine modeling for power system stability analysis-a system operator perspective[J]. IEEE Transactions on Power Systems, 2007, 22(3): 929-936.@@[22] Trudnowski D J, Gentile A, Khan J M. Fixed-speed wind-generator and wind-park modeling for transient stability studies[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1911-1917.@@[23] Kundur Prabha.电力系统稳定与控制[M].北京:中国 电力出版社,2002: 83-89.@@[24] Norton Robert L.Machine design[M]. Prentice Hall, 1998.2011-01-042011-03-07 谭勋琼(1967-),男,博士研究生,副教授,硕导,主要从事电力电子技术和有源电力滤波器及分布式发电的研究;E-mail: tanlaoshi5350@sina.com 唐佶(1989-),男,硕士研究生,主要从事固体电子学,电路与系统方向的研究; 吴政球(1964-),男,教授,博士生导师,主要从事分布式发电、电力电网稳定性计算与研究、电力电子技术等方面的教学与科研工作。

基于MATLAB的风力发电系统设计

基于MATLAB的风力发电系统设计

基于MATLAB的风力发电系统设计风力发电是一种利用风能将其转化为电力的可再生能源技术。

在风力发电系统设计中,MATLAB是一个非常有用的工具,可以用于建立模型、仿真和优化算法等。

在本文中,将介绍基于MATLAB的风力发电系统设计的一般流程,并重点讨论一些关键的设计步骤和注意事项。

风力发电系统设计的一般流程如下:1.风资源评估和选择合适的发电机:风力发电的第一步是评估目标地区的风资源,并选择合适的风力发电机。

MATLAB可以用于分析风速数据,预测风资源,并基于性能曲线选择合适的发电机。

2.发电机功率曲线建模:在设计风力发电系统时,需要建立发电机功率曲线模型。

MATLAB可以用于拟合风力发电机的性能数据,建立功率曲线模型,并用于后续的系统模拟和优化。

3. 风力发电系统建模:建立风力发电系统的模型是设计的关键一步。

MATLAB提供了丰富的工具和函数,可以用于建立风力发电系统的模型,包括风轮、变速传动系统、发电机、电力网等。

可以使用Simulink来建立系统的动态模型,并进行仿真分析。

4.控制系统设计:风力发电系统的控制系统设计对系统的性能和稳定性有着重要影响。

MATLAB可以用于设计和优化控制算法,包括风轮的速度控制和发电机的电力输出控制。

5.系统优化和性能评估:MATLAB提供了优化工具箱,可以用于系统参数的优化和性能评估。

可以通过调整系统参数,以提高发电量、降低成本、提高系统稳定性等指标。

在进行基于MATLAB的风力发电系统设计时1.数据准确性:风力发电系统设计的准确性和可靠性取决于输入数据的准确性。

因此,需要确保使用的风速数据和发电机性能数据是准确可靠的。

2.模型验证:在设计系统模型和控制算法之前,需要对模型进行验证。

可以使用现场实验数据与模型仿真结果进行对比,验证模型的准确性。

3.多学科交叉:风力发电系统设计涉及多个学科领域,包括机械、电气、控制等。

需要与相关专业人员进行合作,并充分考虑系统的多学科交叉问题。

基于MatlabSimulink的永磁直驱风力发电机组建模和仿真研究

基于MatlabSimulink的永磁直驱风力发电机组建模和仿真研究
基于MatlabSimulink的永磁 直驱风力发电机组建模和仿真
研究
01 引言
03 建模与仿真 05 结论与展望
目录
02 相关技术综述 04 结果与分析
引言
随着环境污染和能源短缺问题的日益严重,可再生能源的开发和利用逐渐成 为研究热点。风能作为一种清洁、可再生的能源,在全球范围内得到了广泛应用。 永磁直驱风力发电机组是一种新型的风力发电系统,具有高效、可靠、节能等优 点,在风能利用领域具有广阔的应用前景。MatlabSimulink作为一种强大的数值 计算和仿真工具,为永磁直驱风力发电机组的建模和仿真研究提供了有效的手段。
结论与展望
本次演示基于MatlabSimulink对永磁直驱风力发电机组进行了建模和仿真研 究,探讨了风速、控制策略和冷却系统等因素对发电机组性能的影响。通过仿真 实验,发现了一些有实用价值的结果,为实际应用提供了参考。然而,本研究也 存在一定的局限性,未来可以对风速模型、控制策略和整个风力发电系统进行更 深入的研究和优化。
通过仿真研究,可以分析不同设置条件对模型和仿真的影响。例如,改变风 速大小和变化规律,分析发电机组的输出功率和效率变化;调整控制策略,研究 其对电机控制性能的影响;改变冷却系统参数,分析其对电机温度场分布的影响 等。通过对比实验和仿真结果,可以总结出建模与仿真的方法与技巧,为实际应 用提供参考。
结果与分析
建模与仿真
在MatlabSimulink中建立永磁直驱风力发电机组的模型,需要对各个组成部 分进行详细建模。首先,建立风速模型,根据风速的变化,通过控制电力电子变 换器来调节发电机转速,实现风能的最大捕获。其次,建立永磁发电机模型,根 据磁场分布和电机的结构参数,计算电机的电磁性能。此外,还需要建立电力电 子变换器和控制系统模型,实现电能的转用价值的结果。首先,风速对永磁直驱 风力发电机组的输出功率和效率具有显著影响。在平均风速较高的情况下,发电 机组的输出功率和效率较高;而在风速波动较大的情况下,发电机组的输出功率 和效率会受到一定影响。其次,控制策略对发电机组的性能具有重要影响。

基于Matlab_Simulink的双馈感应风力发电机组建模和仿真研究

基于Matlab_Simulink的双馈感应风力发电机组建模和仿真研究

要控制机组的转速来实现最大风能捕获,可以
检测当前的风速并计算出最佳转速后进行转速控
制,这实际上是一种直接转速控制的方法,控制目标
明确,原理简单。但现场中风速的准确检测比较困
难,实现起来存在很多问题,风速检测的误差会降低
最大风能捕获的效果[14-15]。在实际应用中,可以通过
控制策略和控制方法的改进来避免风速的检测。这
2
2
P = 2
2 2
2
2
3 2
(ud2id2+uq2iq2)
2
2
2
P = 2
2 2
2
2
3 2
(uq2id2-ud2iq2)
(10)
清洁能源 Cle a n Ene rgy
第 26 卷 第 11 期
电网与清洁能源
97
式中,P1、Q1为定子侧向电网输出有功无功;P2、Q2为 转子侧从电网输入有功无功。
图2 风能利用系数-叶尖速比
从轮毂到发电机转子之间的机械传动部分在硬
度和阻尼系数被忽略时,可用一质量块的实用模型
来描述[6-7],如式(4)所示。
Tgen-T'wtr=Jd
dΩgen dt
(4)
式中,Jd为等效转动惯量;T'wtr为等效风轮转矩;Tgen为 转子转矩;Ωgen为转子机械角速度。 1.2 双馈感应发电机数学模型
系:
u2 2
2 d1 2
22 2
u2 2
2 q1 2 22
= 2 2 u2 d2 2
22
u22 22
2 q2 2
-R1-L1P -ω1L1 -LmP -ωsLm
ω1L1 -R1-L1P
ωsLm -LmP

基于matlab的风力发电机组的建模与仿真

基于matlab的风力发电机组的建模与仿真

实验一:风力发电机组的建模与仿真姓名:学号:一、实验目标:1.能够对风力发电机组的系统结构有深入的了解。

2.能熟练的利用MATLAB软件进行模块的搭建以及仿真。

3.对仿真结果进行研究并找出最优控制策略。

二、实验类容:对风速模型、风力机模型、传动模型和发电机模型建模,并研究各自控制方法及控制策略;如对风力发电基本系统,包括风速、风轮、传动系统、各种发电机的数学模型进行全面分析,探索风力发电系统各个部风最通用的模型、包括了可供电网分析的各系统的简单数学模型,对各个数学模型,应用MATLAB 软件进行了仿真。

三、实验原理:风力发电系统的模型主要包括风速模型、传动系统模型、发电机模型和变桨距模型,下文将从以上几方面进行研究。

1、风速的设计自然风是风力发电系统能量的来源,其在流动过程中,速度和方向是不断变化的,具有很强的随机性和突变性。

本文不考虑风向问题,仅从其变化特点出发,着重描述其随机性和间歇性,认为其时空模型由以下四种成分构成:基本风速 V b、阵风风速V g、渐变风速V r和噪声风速V n。

即模拟风速的模型为:V= V b+ V +V r+V n(1-1)g(1).基本风V b =8m/sStep Scope基本风仿真模块( 2)阵风风速0t t 1gVg v cos t1 g t t1 g T g(1-2)0t t1g T g式中:Gmax1 cos 2tt1g(1-3)vcos()2T g T gt 为时间,单位 s ; T 为阵风的周期,单位s ;v cos , V g 为阵风风速,单位 m /s ; t 1g为阵风开始时间,单位s ; G max 为阵风的最大值,单位m/s 。

ANDStepLogicalOperatorStep1Scope1f(u)ClockProductFcn3Constant本例中,阵风开始时间为 3 秒,阵风终止时间为 9 秒,阵风周期为 6 秒,阵风最大值为 6m/s 。

使用MATLAB进行风力发电和太阳能利用分析

使用MATLAB进行风力发电和太阳能利用分析

使用MATLAB进行风力发电和太阳能利用分析近年来,随着能源需求的不断增长和全球环保意识的提高,风力发电和太阳能利用逐渐成为人们关注的焦点。

借助先进的计算工具,如MATLAB,我们可以对这两种可再生能源进行全面的分析和优化,以实现更高效、可持续的能源利用。

1. 风力发电分析风力发电是一种通过利用风的能量转化为电力的技术。

通过MATLAB的计算和模拟工具,我们可以分析风力发电系统的性能、效率和可行性,用以指导工程设计和运营。

首先,我们可以利用MATLAB对风速和风能资源进行建模和分析。

通过历史气象数据和风速传感器的收集,我们可以获取到特定区域的风速分布,并利用MATLAB的统计工具进行数据处理和建模。

通过这些模型,我们可以预测不同时间和地点的风能资源,并评估风力发电系统的可行性。

其次,我们可以利用MATLAB进行风力涡轮机的设计和优化。

风力涡轮机是风力发电系统的核心部件,它将风能转化为机械能,然后通过发电机转化为电能。

通过MATLAB的优化工具,我们可以在考虑各种约束条件和性能指标的情况下,自动化地设计出效率更高、更可靠的风力涡轮机。

最后,我们可以利用MATLAB对风力发电系统的效率和运营进行仿真和分析。

在不同的运营条件和参数设置下,我们可以利用MATLAB建立系统级的模型,并通过模拟分析和优化,寻找最佳的运营策略和参数配置,以提高风力发电系统的整体性能和经济效益。

2. 太阳能利用分析太阳能是另一种重要的可再生能源。

利用光伏技术,太阳能可以转化为电能,为人们提供绿色的、可持续的能源供应。

借助MATLAB的强大功能,我们可以对太阳能利用进行全面的分析和优化。

首先,我们可以利用MATLAB对太阳能资源进行评估和预测。

通过太阳辐射数据和气象信息,我们可以利用MATLAB进行计算和建模,得到不同时间和地点的太阳辐射强度和分布情况。

这些数据可以帮助我们确定适合光伏发电的地点和设计光伏发电系统的规模。

其次,我们可以利用MATLAB进行光伏系统的建模和仿真。

基于matlab风力发电系统的建模与仿真设计

基于matlab风力发电系统的建模与仿真设计

基于matlab风力发电系统的建模与仿真设计一、介绍在当今世界上,可再生能源已经成为人们关注的焦点之一。

其中,风力发电作为一种清洁能源方式,被广泛应用并受到了越来越多的关注。

针对风力发电系统的建模与仿真设计,基于Matlab评台的应用是一种常见的方法。

本文将深入探讨基于Matlab的风力发电系统建模与仿真设计,旨在帮助读者全面理解这一主题。

二、风力发电系统的基本原理风力发电系统是将风能转化为电能的设备。

其基本原理是通过风力驱动风轮转动,通过风轮与发电机之间的转动装置,将机械能转化为电能。

风力发电系统包括风力发电机组、变流器、电网连接等部分。

在设计和优化风力发电系统时,建模与仿真是非常重要的工具。

三、Matlab在风力发电系统建模中的应用Matlab是一种功能强大的数学建模软件,广泛应用于工程、科学和数学领域。

在风力发电系统的建模与仿真设计中,Matlab可以用于模拟风速、风向、风机性能、电网连接等多个方面。

通过Matlab工具箱,可以实现对风力发电系统各个环节的建模和仿真分析。

四、基于Matlab的风力发电系统建模与仿真设计在实际建模中,需要进行风速、风向、风机特性、变流器控制策略等多方面的建模工作。

通过Matlab,可以建立风力机的数学模型,进行风能的模拟,并结合电网连接及功率控制策略进行仿真设计。

通过建模和仿真,可以分析系统在不同工况下的性能表现,指导系统设计和运行。

五、对风力发电系统建模与仿真设计的个人观点和理解在我看来,基于Matlab的风力发电系统建模与仿真设计是一种高效且可靠的方法。

通过Matlab评台,可以更好地对风力发电系统进行综合性的分析和设计。

Matlab提供了丰富的工具箱,能够支持复杂系统的建模和仿真工作。

我认为Matlab在风力发电系统建模与仿真设计上具有很高的应用价值。

六、总结通过本文的阐述,我们全面深入地探讨了基于Matlab的风力发电系统建模与仿真设计。

从风力发电系统的基本原理开始,介绍了Matlab 在该领域的应用,并着重强调了建模与仿真的重要性。

风力发电系统的建模与仿真研究

风力发电系统的建模与仿真研究

风力发电系统的建模与仿真研究近年来,由于对可再生能源的需求不断增加,风力发电成为了一种备受关注的清洁能源选择。

为了确保风力发电系统的高效性和可靠性,建立一个准确的模型并进行仿真研究非常重要。

本文将介绍风力发电系统的建模与仿真研究的背景、方法和结果。

背景风力发电是利用风能将风速转化为机械能的过程,然后通过发电机将机械能转化为电能。

风力发电系统由风机、发电机、变频器、电网等组成。

为了提高风力发电的效率和可靠性,我们需要建立一个准确的模型来研究系统的各个方面。

方法首先,我们需要获取风速数据,可以通过气象站或者其他可靠来源获取。

然后,利用获取的风速数据,我们可以确定系统的主要参数,如风机的切入风速、额定风速和切出风速等。

接下来,我们可以使用Matlab、Simulink或其他仿真软件来建立风力发电系统的数学模型。

在建立模型时,需要考虑以下几个因素:1. 风机特性:风机的性能曲线可以很好地描述风机在不同风速下的输出特性。

通过将风速作为输入,我们可以根据性能曲线确定风机的输出功率。

2. 发电机特性:发电机的特性包括额定功率、转速和效率等。

我们可以将风机输出的机械功率转化为发电机的输出电功率。

3. 变频器控制:为了确保风力发电系统的稳定运行,我们需要利用变频器对发电机的输出进行调节。

通过调整变频器的控制参数,我们可以使系统在不同的工况下都能够正常运行。

4. 电网连接:将风力发电系统与电网连接起来是非常重要的。

我们需要研究系统的接口特性,确保系统与电网的匹配,并进行功率平衡控制。

通过建立风力发电系统的数学模型,我们可以进行系统的仿真研究,验证系统设计的合理性,并优化系统的性能。

结果通过对风力发电系统的建模与仿真研究,我们可以得到以下结果:1. 系统效率:我们可以评估系统的效率,并找出影响系统效率的主要因素。

根据仿真结果,我们可以对系统进行优化,提高发电效率。

2. 系统稳定性:通过仿真,我们可以研究系统在不同工况下的稳定性。

风力发电系统的建模与仿真(风力发电工程技术丛书)

风力发电系统的建模与仿真(风力发电工程技术丛书)

目录分析
1
1.1力发电
机组的类型及 构成
4 1.4风力发电
系统的仿真
5 1.5仿真软件
概述
1
2.1概述
2
2.2风速模型
3
2.3风轮模型
4
2.4轴系模型
5
2.5仿真算例
3.1概述 3.2结构和原理
3.3稳态模型及特性 3.4仿真算例
1
4.1概述
4.2运行原理
风力发电系统的建模与仿真(风力 发电工程技术丛书)
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
关键字分析思维导图
电网
系统
工程技术
原理
稳定性
电压
控制策略
丛书
风电
模型 机组
影响
仿真
概述
电网
功率
电力系统
原理
控制
内容摘要
本书首先介绍风力发电的机械和电气系统数学模型及并网控制策略的原理,然后结合具体算例,通过 DIgSILENT和MATLAB/Simulink两种仿真软件建立典型风电机组的仿真模型,分析其最大功率跟踪控制、有功和 频率调节、无功和电压控制、低电压穿越、虚拟惯性控制等风电机组并网控制的主要特性,以及电网允许风电接 纳能力、电网潮流计算与无功优化计算、风电接入对电网暂态稳定性影响等。此外,通过柔性直流输电的海上风 电和大型风电基地的风电场并网已成为新的研究热点,本书将介绍其基本原理和仿真建模。
6.5仿真算例
7.1概述
7.2 PMSG的低电压 穿越技术
7.3 DFIG在电网电 压不平衡时的控制

基于MATLAB的风力发电系统仿真研究

基于MATLAB的风力发电系统仿真研究

基于MATLAB的风力发电系统仿真研究电气工程及其自动化07101班学生姓名:赵爽指导教师:薛继汉教授冯月春助教摘要:本文介绍了风力发电机组的结构组成及原理,并建立了风力发电系统风速的数学模型、传动系统模型、发电机的数学模型, 并用MATLAB软件对风速模型进行了仿真, 结果证明了这些模型的正确性和有效性,说明了风力发电系统的仿真在对风力发电系统分析中的重要作用。

关键词:风力发电;MATLAB仿真; 动态模型; 风力发电机组绪论近几年来,风力发电机组单机容量和风电场建设规模都日益扩大,成为电网电源中的重要组成部分。

风力的随机性和间歇性以及机组运行时的对无功的需求都会影响电力系统稳定运行。

所以,在风电场建设前,需要论证分析风电场接入电网的可行性和确定允许接入的容量水平。

作为分析的基础,需要建立正确的风电机组和风电场的数学模型。

另外,针对新型风力发电机组,也需要根据其特性建立适当的数学模型,并应用于电力系统中,分析它的运行结果。

因此,关于风力发电的课题研究是非常有必要的,对我国的能源结构调整将起到重要的推动作用。

1风力发电机结构组成原理风力发电机组通常亦被称为风能转换系统。

典型的并网型风力发电机组主要包括起支撑作用的塔架、风能的吸收和转换装置—风轮机(叶片、轮毂及其控制器)、起连接作用的传动机构—传动轴、齿轮箱、能量转换装置—发电机及其它风机运行控制系统—偏航系统和制动系统等。

风力发电过程是:自然风吹转叶轮,带动轮毂转动,将风能转变为机械能,然后通过传动机构将机械能送至发电机转子,带动着转子旋转发电,实现由机械能向电能的转换,最后风电场将电能通过区域变电站注入电网。

其能量转换过程是:风能→机械能→电能。

2 风力发电系统对并网运行的影响风力发电机并网过程对电网的冲击影响异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程。

异步发电机并网时的冲击电流的大小,与并网时网络电压的大小、发电机的暂态电抗以及并网时的滑差有关。

基于MATLAB的风力发电机组建模和仿真研究

基于MATLAB的风力发电机组建模和仿真研究

比A对应与其相应的最大风能利用系数C。。。对于 任意的叶尖速比,随着桨距角的减小,风能利用系数
逐渐增大。上述结论为变桨距控制提供了理论基
础:在风速低于额定风速时,桨叶节距角口=0。。发
电机输出功率未达到额定功率,随风速变化通过改
变发电机转子转速或者叶尖速比使风能利用系数恒
定在C。。。捕捉最大风能。在风速高于额定风速
从自然风只能获取有限能量。风轮实际获得的风能 功率为
P,=c,(A,卢)·专-plrR2移3
(6)
A:坚
(7)
风轮转矩与风速、风轮转速有关,关系式为
t=岳-cp㈧鲈扣树毒 ∞,

Z。
∞,
(8)
式中P。——风轮实际吸收的功率/w;
CA,·(叶A,尖卢速)—比—;功率系数;
rB空——气桨密距度角/(。kg);·m~;
数,有
云=后 (蠡为常数)
(2)
2.1.2 阵风
阵风反映了风速的突变性。其数学模型为
‰=孚[1一c。s21T(争一争)] (3)

1g
1g
2.1.3 渐变风
渐变风风速是反映风速缓慢变化的特性。其数
学模蚴”尺一(1一等) (4)
·25·
万方数据
2.1.4随机风
随机风速(%)反映风速变化的随机性,用随机
收稿日期20ll—07一16 修订稿日期20ll—10—20 基金项目:国家自然科学基金项目(N0.511670lI);内蒙古自治
区自然科学基金项目(N0.2010Ms0905) 作者简介:陈虎(19黼一),男.硕士研究生,研究方向:风力发电
机组的智能控制技术。
·24·
O引言
风力发电作为一种不竭的可再生资源,具有其 它能源不可取代的优势和竞争力。风能的利用一直 是世界上增长最快的能源,装机容量近年每年增长 超过30%。预计到2020年全球的风力发电装机将

基于Matlab的双馈风电机组的建模与仿真

基于Matlab的双馈风电机组的建模与仿真

− LAB − LBA −LCB −LaB −LbB −LcB
− LAC − LBA −LCC −LaC −LbC −LcC
− LAa − LBa −LCa −Laa −Lba −Lca
− LAb −LBb −LCb −Lab −Lbb −Lcb
−LAc iA

LBc
iB
−LCc −Lac
关键词:Matlab 双馈风电机 变速恒频
作为一种无污染、易获取以及零成本的可再生清洁能 源,风能具有广阔的发展前景。风力发电技术作为发展最快、 最可能商品化的技术之一,具有很多其他能源无法比拟的 优势。例如,风电技术建设周期短,一台风机安装时间不 超过三个月;万千瓦级风电场建设期不超过一年,即可再 投产一台。风力发电因为其具有特殊优势受到各个国家重 视,许多国家都将其列入发展计划中,并投入大量人力、 财力,获得了较大的成绩。
图 1 双馈变速发电机运行原理
2 双馈发电机的数学模型
双馈风电机也称为交流励磁风电机,是一个高阶非线
性强耦合多变量系统,若只对励磁电压进行标量控制,是
无法满足要求的,所以需要将定子绕组磁场作为定向控制
目标,以便达到简化系统的目的。通过坐标变换能够得到
同步发电机在两相同步旋转坐标系上的数学模型。
双馈风电机定子绕组的电压方程如式(1)所示。
+
iiCa
(4)
−Lbc
ib
−Lcc ic
双馈发电机内部电磁关系与输入机械转矩以及机械转
矩变换成的电磁转矩有着十分紧密的关系。忽略电机各部
分传动摩擦,转矩间平衡关系如式(5)所示。
Tm
= Te
+
J np
dω dt
(5)

基于MWorks的双馈风力发电系统建模与仿真研究

基于MWorks的双馈风力发电系统建模与仿真研究

基于MWorks的双馈风力发电系统建模与仿真研究吴伟强;常虹;张宇昉;文姝璇;赵雪晴【摘要】以双馈风力发电机组为例,采用面向物理对象的建模方法,基于Modelica 语言的仿真软件MWorks搭建了双馈风力发电系统的仿真模型,得到发电机功率、发电机转子转速、发电机电磁转矩、风力机转速、发电机输出电压和输出电流等重要参数曲线,为风力发电机的研究提供了模型基础.【期刊名称】《机械工程师》【年(卷),期】2018(000)011【总页数】4页(P47-50)【关键词】风力发电系统;MWorks;双馈;仿真建模【作者】吴伟强;常虹;张宇昉;文姝璇;赵雪晴【作者单位】华东理工大学信息科学与工程学院,上海 200237;华东理工大学信息科学与工程学院,上海 200237;华东理工大学信息科学与工程学院,上海 200237;华东理工大学信息科学与工程学院,上海 200237;华东理工大学信息科学与工程学院,上海 200237【正文语种】中文【中图分类】TP391.7;TK830 引言风力发电是一种可持续再生的清洁能源,环境污染小、自动化程度高、易于远程控制,可提供人口稀少、电网不易到达的地区用电,具有更重要的经济效益和社会效益。

我国的风力发电资源十分丰富,据统计全国范围内风能储量约为4.83×103MW,可开发利用的风能资源总量达2.53亿kW[1],目前来说,风能是传统能源的最佳替代品。

由于风力发电具有间歇性、不确定性、随机性等特点,大规模的风力发电系统与电网并网运行必将影响到整个电网的安全稳定运行。

采用风力发电系统仿真技术对风力发电系统分析进行有效分析,是整个风力发电系统设计、运行、维护的重要组成环节,具有非常重要的作用[2]。

传统的建模方法多为基于机理分析或实验统计的建模方法,常用的建模有键合图方法、系统图方法、面对对象的方法等[3]。

本文采用基于Modelica语言的仿真软件MWorks,结合面向物理对象的建模方法,建立了双馈风力发电系统的各子系统模型,搭建了完整的风力发电模型库:风能利用系数、风力机系统、机械系统、发电机系统等。

基于Matlab_Simulink的永磁直驱风力发电机组建模和仿真研究-2

基于Matlab_Simulink的永磁直驱风力发电机组建模和仿真研究-2

基于Matlab_Simulink的永磁直驱风⼒发电机组建模和仿真研究-2发电机参数:极对数42;d 轴电抗1.704mL ;q轴电抗1.216mL ;转⼦磁通4.7442Wb ;转动惯量11258J 。

PI 参数:⽹侧电流内环d 轴(1.5、1),q 轴(0.5、37);⽹侧功率外环(0.0002、0.05);直流侧电压(2、120);机侧电流内环d 轴(-3、-24),q 轴(-3、-80);机侧功率外环(-3、-60)。

本仿真中风速由6m/s 变化到9m/s ,最后变化到12m/s 。

在最⼤风能捕获控制情况下,随着风速的变化,转⼦转速不断调整,以保持最佳叶尖速⽐,从⽽达到最⼤风能利⽤,图8为风速、转⼦转速、机械和电磁转矩变化曲线。

机侧电压电流变化如图9所⽰,在最⼤风能捕获模式下,电压和电流频率随着风速的增⼤⽽增⼤,电压幅值从260V 变化到400V 、540V ,电流幅值变化为380A 、850A 、1500A 。

电⽹侧及直流侧电压电流变化如图10所⽰,电⽹电压保持恒定,电流幅值随着风速的增⼤⽽增⼤变化范围为:168A 、580A 、1290A 。

直流侧电压在风速突变时有⼀个充电过程,电压升⾼,最⾼达到1320V ,经过⼤约0.1s的暂态过程后恢复到额定值1200V 。

永磁直驱发电机输⼊电⽹有功及⽆功功率如图11所⽰,有功功率随着风速的升⾼⽽不断变化,最后维持在1.1MW ,⽆功功率基本保持为零,波动幅值为5kW 。

实际输出有功功率与参考功率的⽐较如图12所⽰,在风速突变后参考功率⼤于实际输出功率,经过⼤约0.1s 的暂态过程后基本吻合。

永磁直驱发电系统机侧及⽹侧电压电流的d 、q 轴分量的变化如图13、14所⽰。

机侧电压d 、q 轴分量随着风速变化⽽变化,机侧电流采⽤零d 轴控制策略,所以d 轴分量维持为零,q 轴分量反映功率的变化。

⽹侧电压保持恒定,因为⽆功参考值为零,所以图11输⼊电⽹有功及⽆功功率Fig.11Active and reactive power input togrid图12输⼊电⽹有功功率与参考功率图Fig.12Active power input to grid and it ’sreference第27卷第9期电⽹与清洁能源图10电⽹侧及直流侧电压电流变化Fig.10Variation of voltage and current of grid and DC side 图9机侧电压电流变化Fig.9Variation of generator-side voltage andcurrent图8风速、转⼦转速、转矩变化Fig.8Variation of wind speed,rotor speed andtorqueClean Energy97电流q 轴分量为零。

基于matlab风力发电系统的建模与仿真(DOC)

基于matlab风力发电系统的建模与仿真(DOC)
第二阶段:70年代初期,世界上相继爆发的几次能源危机很大地促进了风力发电的发展。此时,丹麦己研制出“55一630kw”的系列化风力发电机组。
第三阶段:出现在80年代,西方各国如德国、美国等国家开展节能计划,加上各国的鼓励政策,如对风电经行减少税费,对风电经行投资支持等促进了风力发电的发展。
第四阶段:到了90年代,随着全球能源环境问题加剧,人们的画报意识增强,在这种呼声下,各国更加注重发展风力发电,在科学技术进步的强有力的推动下,风力发电的发展前景令人瞩目。
1.2 国内外风力发电的发展概况[4][5][6]
1.2.1世界风力发电的发展状况
风力发电于1890年起源于丹麦,1891年丹麦建成了世界上第一座风力发电站,从此之后风力发电便开始迅速发展壮大起来,之后经过几个重要的发展阶段。
第一阶段:二战前后,随着能源能源需求的增大,很多国家陆续开始将注意力集中在风力发电上。1941年美国研制生产了一台1250kw的所谓的大型风力发电机组,当时还处于初级研制阶段而且技术复杂。因此这种风力发电机组仍处于科研阶段,无法在现实中投产生产。
近十年来,风力发电技术得到了飞速的发展和越来越广泛的应用。要进行风力发电系统的研究,传统的方法是将发电机与风轮机相连,在现场做实验,但是这样做成本较高并且可能影响电力系统的运行。仿真建模技术由于不受上述条件的限制,投入低,见效快,因而在风力发电的研究领域得到了越来越广泛的应用,极大地丰富了风力发电的研究手段[4]
This paper mainlyusingthe MATLAB simulation software, wind power system control model is established and the complete sample wind power generation system model, to build the control model for the simulation analysis, to verify the usability of the wind power system control model, and carries on the analysis to the simulation result through single curve drawing, and use the curve plotting module generates a graphics can be directly used in the simulation results of the study.

基于MATLAB的风力发电系统仿真研究 案例范本

基于MATLAB的风力发电系统仿真研究 案例范本

基于MATLAB的风力发电系统仿真研究案例范本摘要:本文基于MATLAB对风力发电系统进行了仿真研究,建立了风力发电机组模型、风能转换模型和电网模型,并进行了系统级联仿真。

通过仿真结果分析,得出了风速、风轮转速、发电机转速、输出电压和电流等参数的变化规律,为风力发电系统的设计和优化提供了参考。

关键词:MATLAB;风力发电系统;仿真研究;模型建立;系统级联仿真Abstract: This paper conducts a simulation study on wind power generation system based on MATLAB, and establishes the models of wind turbine generator, wind energy conversion and power grid, and conducts system-level cascading simulation. Through the analysis of simulation results, the variation laws of wind speed, wind wheel speed, generator speed, output voltage and current and other parameters are obtained, which provides a reference for the design and optimization of wind power generation system.Keywords: MATLAB; wind power generation system; simulation study; model establishment; system-level cascading simulation一、引言随着环保意识的逐渐提高和能源危机的日益加剧,风力发电作为一种清洁、可再生的能源形式,受到了越来越多的关注和重视。

基于MATLAB的风力发电系统仿真研究

基于MATLAB的风力发电系统仿真研究

基于MATLAB的风力发电系统仿真研究本文旨在介绍风力发电系统仿真研究的背景和重要性,并解释研究的目的和方法。

风力发电是一种可再生能源,具有广泛的应用前景。

通过风能转换为电能,风力发电系统为我们提供了一种环保和可持续的能源选择。

然而,在设计和运行风力发电系统时,我们需要充分了解和优化其运行模式和性能,以提高发电效率和可靠性。

仿真研究是一种有效的手段,可以模拟和分析风力发电系统的性能。

基于MATLAB的仿真研究方法可以提供准确且可靠的结果,帮助工程师和研究人员更好地理解和优化风力发电系统。

本研究的目的是通过基于MATLAB的仿真研究,深入探究风力发电系统的运行原理和特性,并分析不同因素对系统性能的影响。

通过模拟不同的工况和参数,我们可以评估系统的发电能力、效率和稳定性,并提出相应的优化策略。

研究方法将基于MATLAB软件平台,利用数学建模和计算机仿真技术,构建风力发电系统的仿真模型。

通过调整参数和输入条件,我们可以模拟不同的工作环境并进行系统性能分析。

通过本文的研究,我们将深入了解风力发电系统的运行原理,并为实际的工程设计和优化提供可靠的依据和指导。

引用1的参考文献]引用2的参考文献]引用3的参考文献]风力发电的基本原理风力发电是一种利用风能将其转化为电能的过程。

风是地球上大气层中的空气运动,而风能则是由这种空气运动所携带的动能。

风力发电利用了风的动能,通过转子将风能转化为机械能,然后再通过发电机将机械能转化为电能。

风力发电的原理方程风力发电的原理方程可以描述风能转化为机械能和电能的过程。

下面是风力发电的原理方程示意:风能 = 0.5 * 空气密度 * 受风面积 * 风速^3其中。

风能表示单位时间内风所携带的能量空气密度表示空气在单位体积内所含的质量受风面积表示受到风的装置的有效面积风速表示风的运动速度风能通过转子转化为机械能,进而转化为电能。

风力发电的转化效率可以通过以下方程表示:转化效率 = 发电机的输出电能 / 风能本文将介绍基于MATLAB的风力发电系统仿真模型的建立和模拟过程。

实验一 风力发电机组的建模与仿真

实验一 风力发电机组的建模与仿真

实验一:风力发电机组的建模与仿真
一、实验课题: 风力发电机组的建模与仿真
二、实验内容: 熟悉Matlab编程,通过调用Simulink相关模块搭建风速模型,传动系统模型,发电机模型和变桨距模型
三、实验目标:
1.掌握Matlab模拟仿真方法;
2.掌握Matlab搭建风速模型,传动系统模型,发电机模型和变桨距模型方法
四、实验准备:
1.了解Matlab中Simulink如何构建子系统;
2.通过查阅资料,搞清楚风速模型,传动系统模型,发电机模型和变桨距模型
实现方法。

五、实验重点: 掌握Matlab中Simulink如何构建子系统
六、实验难点: 风速模型,传动系统模型,发电机模型和变桨距模型实现
七、实验步骤:
1.启动Matlab,调用Simulink,搭建风速模型,传动系统模型,发电机模
型和变桨距模型。

2.观察各子系统输出波形,并学会分析结果。

八、报告指导:
1、强调实验报告撰写的规范性:包括实验课题、实验内容、实验要求、
实验步骤、实验结果及分析和实验体会;
2、整个实验工程,源代码应上交,并独立实验调试,随机提出问题,以
便及时了解学生学习情况。

九、实验思考:
调试过程中,程序为何出错,并学出原因。

十、教学后记:
实验指导不要面面俱到、范范而谈,必须及时指出学生编程中出现的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.风力发电系统的基本原理
a)了解风力发电的基本原理,以及当前的发展及应用情况。
b)风力发电机的结构与组成等。
2.风力发电控制系统模型的建立。
a)结合控制系统工作原理,风力发电系统的控制策略。
b)利用软件建模。
c)仿真,特例举例。
1.3.2 研究方法步骤
本设计是以我们学校现有的5KW风力发电机为原形进行的建模与仿真。具体方法步骤如下:
论文作者签名:签名日期:年月日
授权声明
学校有权保留送论文交的原件,允许论文被查阅和借阅,学校可以公布论文的全部或部分内容,可以影印、缩印或其他复制手段保存论文,学校必须严格按照授权对论文进行处理,不得超越授权对论文进行任意处置。
论文作者签名:签名日期:年月日
风力发电系统的建模与仿真

本篇论文主要介绍了风力发电机组的基本控制要求和控制策略,在定桨距风力发电机组控制系统仿真方面作了初步的探究和研究。通过控制系统保持了风力发电机组的安全可靠运行,并实现了稳定机组输出功率和优化功率曲线的控制功能。利用控制系统使风力发电系统在规定的时间内不出故障或少出故障,并在出故障之后能够以最快的速度修复系统使之恢复正常工作。
1.3.1 课题的研究内容和基本要求[7][8][9]
主要是通过MATLAB仿真软件,建立风力发电系统控制模型以及完整的风力发电样例系统模型,对自建的风力发电系统控制模型进行仿真分析,验证风力发电系统控制模型的可用性,并且通过单曲线绘图对模拟结果进行分析,并利用多曲线绘图模块产生可直接用于研究报告的模拟结果图形。以便通过控制系统保持了风力发电机组的安全可靠运行,并实现了稳定机组输出功率和优化功率曲线的控制功能。
第二阶段:70年代初期,世界上相继爆发的几次能源危机很大地促进了风力发电的发展。此时,丹麦己研制出“55一630kw”的系列化风力发电机组。
第三阶段:出现在80年代,西方各国如德国、美国等国家开展节能计划,加上各国的鼓励政策,如对风电经行减少税费,对风电经行投资支持等促进了风力发电的发展。
第四阶段:到了90年代,随着全球能源环境问题加剧,人们的画报意识增强,在这种呼声下,各国更加注重发展风力发电,在科学技术进步的强有力的推动下,风力发电的发展前景令人瞩目。
未来国外风力发电的发展有几个明显的趋势:一是发展海上风力发电技术在积极发展海上风力发电;二是风力发电机组向大型化发展,90年代,千瓦级的风力发电机组在欧洲广泛推广使用,在发达国家,兆瓦级的风力发电产品以初具规模,并呈稳步发展的势头;三是风力发电设备的生产制造技术不断成熟,可大大提高风力发电的发电效率,同时也能降低发电成本。今后应该将研发工作的重点放在如何在风速变化的情况下确保电网的稳定性。
53764台,装机容量75324.2MW,同比增长20.8%。
2001-2012年中国新增及累计风电装机容量
2006-2012年中国各区域累计风电装机容量
1.3 本论文的主要工作
在学习和掌握风力发电机组的基本控制要求和控制策略前提下,对定桨距风力发电机组控制系统仿真方面作初步的探究和研究。以使学生对大学所学的电气系统知识、自动化知识、电子技术和计算机技术知识综合运用于解决工程实践问题的能力进行有效的工程训练。
( 2009 届)
毕业设计(论文)
题 目:风力发电系统的建模与仿真
学 院:嘉兴学院
专 业:电气工程及其自动化
班 级:电气091
学 号:***********
姓 名:******
指导教师:*******
教 务 处 制
年 月 日
诚信声明
我声明,所呈交的论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得______或其他教育机构的学位或证书而使用过的材料。我承诺,论文中的所有内容均真实、可信。
我国有着丰富的风能资源,陆上的可开发风能有2.5亿千瓦左右,海上风能资源有10亿左右。几年来我国风力发电发展迅速,装机容量屡创新高,2009年我国风电新增装机容量1380.3万千瓦,增速超100%,增长速度最快。截止2010年底我国风电新增容量达1600万千瓦,累计装机容量达到4182.7万千瓦。
具中国风电协会统计,2012年,中国(不包括台湾地区)新增安装风电机组7872台,装机容量12960MW,同比下降26.5%;累计安装风电机组
第五步:对风力模型进行仿真并分析仿真结果。
2.1 风力发电的基本原理[10][11]
风力发电的原理是利用风带动风车叶片转动,将风能转化为机械能,然后机械能带动风力发电机发电。
图2-1风力发电原理图
风力发电机主要包含三部分∶风轮、机舱和塔杆。大型与电网接驳的风力发电机的最常见的结构,是横轴式三叶片风轮,并安装在直立管状塔杆上。
第一步:大量查阅国内外风力发电的相关资料,了解风力发电技术的发展趋势和最新动态。
第二步:确定风力发电机组的数学模型,主要有风速模型,风力发电机气动性能模型,传动系统动力学模型和感应电机模型。
第三步:学习MATLAB使用方法,研究MATLAB仿真建模的相关理论并使用其建模和仿真。
第四步:利用MATLAB仿真软件搭建仿真模块准备仿真。
Modeling and simulation of the wind power system
ABSTRACT
This paper mainly introduced the basic control requirements and control strategy of wind generating set, the fixed pitch wind turbine control system simulation has made a preliminary exploration and research. Through the control system to keep the safe and reliable operation of wind turbine, and realizes stable output power generating unit and the optimization of the control function of the power curve. Use control system to make wind power system within the prescribed period of time is not out of order or less out of order, andwhenfailedit willrepair with the quickest speed system to resume normal work.
本篇论文主要是通过MATLAB仿真软件,建立风力发电系统控制模型以及完整的风力发电样例系统模型,对自建的风力发电系统控制模型进行仿真分析,验证风力发电系统控制模型的可用性,并且通过单曲线绘图对模拟结果进行分析,并利用多曲线绘图模块产生可直接用于研究报告的模拟结果图形。
关键词:风力发电系统;建模;仿真
Keywords: wind power generation system; Modeling;Simulation
1 绪论
1.1风力发电系统的研究背景和意义[1][2]
工业生产的进步与发展带来的能源危机和环境问题,使得人们把目光转向可在生能源。以煤炭、石油、天然气、水利和核物质为原料的传统电力开发给环境造成了很大的负担,如环境污染、酸雨、气候异常、放射性废物处理、石油泄露等等。而风力发电对环境的影响则十分微小,具有显著的环境友好特性,是典型的清洁能源。
随着电力工业的飞速发展和对供电的需求,利用新能源发电日益受到人们的关注,风能资源是清洁的可再生能源,风力发电是新能源中技术最成熟、最具开发规模条件和商业化发展前景的发电方式之一。本次选题正是了解到发电系统的新趋势和国家节能减排的计划,对风力发电的研究产生了浓厚的兴趣。为了对风力发电系统的流程深入学习,熟悉一些建模仿真的实现方法,掌握一种仿真软件并且较好的应用,所以选择了风力发电系统的建模与仿真这个题目。
目前,在除水利发电以外的各种再生能源的开发中,风力发电的开发最具潜力,发电成本低,并且在技术上日趋成熟,从而形成一个新兴的产业,成为电力系统结构中相对增长速度最快的新能源发电。因此,对于风力发电技术的研究有着重要的意义。
风能是一种无污染、可持续发展的能源,近年来风能的利用越来越受到人类的重视。风力发电作为一种风能的主要利用形式正以前所未有的速度发展,风力发电代替传统能源发电的比例正逐步上升,并在电力系统受越来越受到欢迎和重视[3]。
近十年来,风力发电技术得到了飞速的发展和越来越广泛的应用。要进行风力发电系统的研究,传统的方法是将发电机与风轮机相连,在现场做实验,但是这样做成本较高并且可能影响电力系统的运行。仿真建模技术由于不受上述条件的限制,投入低,见效快,因而在风力发电的研究领域得到了越来越广泛的应用,极大地丰富了风力发电的研究手段[4]
1.2.2中国风力发电的发展状况[3][6]
风力发电在新能源发电技术中发展较为成熟,规模较大而且具有很好的发展前景,目前其发电成本已与其他常规发电方式相接近。中国的风能资源十分丰富。目前,我国主要使用国外生产的并网型风机,装机投产的大型风机也多位国外生产。在风机生产和研发方面,我国生产的风电机组最大功率为750千瓦,正在积极研发兆瓦级的放电设备。相信在不久的将来,兆瓦级的风电机组的研发成功和推广应用,中国的风电发展将取得突飞猛进的进步。
风力发电机组的研发和生产以欧洲国家为主,如丹麦、德国、美国等。其中丹麦的风力发电技术发展最早技术也较为成熟,德国的风力发电技术发展最快且发电量最大。印度的风力发电令人瞩目,是发展中国家中发展最快的国家。
到2003年底风电累计装机容量居前五位的国家依次是:德国(14612MW)、西班牙(6420MW)、美国(6361MW)、丹麦(3076MW)和印度(2120MW)。
相关文档
最新文档