初一数学找规律题讲解重点
初一找规律经典题型(含部分问题详解)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1)6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3 n =4 n =5 ……数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
初一数学找规律方法
初一数学找规律方法初中数学考试中,经常出现数列的找规律题,今天小编就此类题的解题方法为大家介绍。
初一数学找规律方法一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n 项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数 2,4,8,16,32,64, (1)5,7,11,19,35,67 (2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差有关找规律的初中数学题1) 4,16,36,64,,144,196,… (第一百个数)2) 2,6,18,,162,486,3) 白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4) 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式解答:1)2的平方,4的平方,6的平方,8的平方,(10的平方),12的平方,.(第一百个)(2*100)的平方=400002)2,2*3=6,2*3*3=18,(2*3*3*3=54),2*3*3*3*3=162,486,14583)18894)(N+2)^2-N^2=4N+4=888,再算出N223的平方-221的平方=888最全初中数学公式和规律最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点.特殊点的坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x轴上y为0,x为0在y轴.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行x 轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧.对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行.函数图象的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y 增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见.若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是直角三角形的边的比值,可以把两个字用/隔开,再用下面的.一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:“正对鱼磷(余邻)直刀切.”正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边.三角函数的增减性:正增余减特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行.对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成.梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线.添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形两边中点,连接则成中位线;三角形中有中线,延长中线翻一番.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦.圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系.正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键.。
(完整版)七年级找规律方法总结
七年级找规律方法总结有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方.一、通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.二、相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用三、绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.四、乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+.例3 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)n=1,S=1①n=2,S=5②③n=3,S=9字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.例 1 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25 352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225= (1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.例2如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n表示S的公式.【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61 ①填空:第11,12,13三个数分别是 , , ;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来: 找规律方法总结:一、 基本方法——看增幅增幅相等;增幅不相等(增幅有规律、增幅无规律);二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
【重点梳理】-初一数学-找规律
作业帮一课初中独家资料之【初一数学】
核心知识点一:等差型规律
相邻两项之差(后减前)等于定值的数列.
例如:4,10,16,22,28…,增幅是6,第一位数是4,所以,第n 位数为:()41662n n +-⨯=-. 核心知识点二:等比型规律
相邻两项之比(后比前)等于定值的数列.
例如:3,6,12,24,48…,比值是2,第一位数是3,所以,第n 位数为:132n -⨯.核心知识点三:平方型规律
常见的平方型规律数列:1,4,9,16,25… 第n 位数为:2n .
变形①:0,3,8,15,24…
变形②:2,5,10,17,26…
核心知识点四:求和型规律
常见的求和型规律数列:1,3,6,10,15…
变形:2,4,7,11,16…
核心知识点五:符号型规律
符号型数列的特点是,正数与负数交替出现;
解决方法:先不考虑符号,找到数列的规律,并用含n 的式子表示,然后再乘以()1n -或()11n +-. 例如:1-、5、9-、13、17-…第n 项为()()
143n n --2,4-,8,16-,32…第n 项为()112n n +-
核心知识点六:周期型规律
周期型依次重复出现的规律.
找规律の重点梳理
一、基础知识梳理
二、知识体系梳理。
初中数学找规律题型解题技巧
初中数学找规律题型解题技巧
初中数学中的找规律题型是考察学生观察、归纳和推理能力的一种题目。
这种题目通常会给出一些数列、图形或者操作方式,让学生找出其中的规律,然后根据这个规律继续填写后面的数列或图形。
解题技巧如下:
1.观察和分析:首先要仔细观察给出的数列或图形,尝试找出它们之间的规律。
可以从数
列的项、项与项之间的关系、图形的形状和结构等方面入手。
2.归纳规律:在观察的基础上,尝试归纳出数列或图形的变化规律。
这个规律可以是递增、
递减、周期性变化等。
3.应用规律:根据归纳出的规律,推算出数列或图形中缺失的部分。
4.检验答案:最后,需要检验得出的答案是否符合数列或图形的变化规律,以确保解题正
确。
例如,对于数列“1,2,4,8,16...”,我们可以观察到每一项都是前一项的2倍。
因此,根据这个规律,我们可以推算出接下来的项应该是32(因为16 * 2 = 32)。
再如,对于图形题,如果一个三角形每次增加一条边,那么我们可以根据这个规律画出接下来的图形。
找规律题目的解题关键在于观察、归纳和推理。
通过不断练习这种题目,可以提高自己的数学思维和解决问题的能力。
同时,也要注意耐心和细心,不要因为题目复杂而放弃。
初一数学找规律题讲解 重点
探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒★注意引导学生概括“探索规律”的一般步骤:① 寻找数量关系:②用代数式表示规律:③ 验证规律:★练习:四棱柱有几个顶点、几条棱、几个面五棱柱呢十棱柱呢n棱柱呢活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人3张呢n张呢⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系⑵这个关系对其它这样的方框成立吗你能用代数式表示这个关系吗⑶这个关系对任何一个月的日历都成立吗为什么⑷你还能发现这样的方框中9个数之间的其他关系吗用代数式表示。
⑸你还能提出那些问题中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
初一数学找规律题讲解【重点】
初一数学找规律题讲解【重点】在初一数学中,找规律题是比较常见的题型。
这类题目可以锻炼学生的逻辑能力和数学思维能力,同时也是提高学生数学成绩的有效方法之一。
本篇文档将针对初一数学找规律题进行讲解,旨在帮助学生更好地掌握此类题目的解题方法。
1. 什么是找规律题?找规律题是在一组数中寻找隐藏的规律,并利用这个规律推出未知数据的题目。
例如:2, 4, 6, 8, ? , ?你能够在这组数据中寻找隐藏的“规律”吗?如果你能找到规律,就能推出这两个数,并将这个规律应用到其他问题中。
2. 如何解决找规律题?找规律题的解法通常包括以下几个步骤:步骤1:观察现象,列出数据在看到题目时,应该首先列出现有数据,并对它们进行仔细观察,找出其中的一些特征。
例如:3, 6, 9, 12, 15, ?我们可以将这些数据列出来:数字 3 6 9 12 15 ?步骤2:找出规律接下来,我们需要根据数据中的规律来确定隐藏的规律。
规律可以涉及数值、运算符、变化方式等方面。
在上面的例子中,每个数字都可以被 3 整除,因此这个“规律”就是“每个数字都是 3 的倍数”。
步骤3:运用规律找到规律之后,我们需要将规律应用到其他数据中,以便推出未知的数据。
该规律的下一个数字就应该是 18。
我们可以将答案填入数据表格中:数字 3 6 9 12 15 18步骤4:检查答案最后,我们需要检查我们的答案是否符合这个规律。
我们可以使用推理或插入一个新的数字来检查答案。
在这个例子中,如果我们将 18 作为下一个数字,并确定规律会继续下去,那么我们就可以确认答案是正确的。
3. 找规律题的常见类型3.1 加减法规律这个类型的规律主要是通过对相邻两个数之间的差值进行分析。
如果差值相等,那么这个规律就是一个加减规律。
例如:2 4 6 8 ?解:观察这组数列,两个之间的差值都为 2 ,因此下一个数字应该是 10。
3.2 乘除法规律这种类型的规律依据的是相邻两个数之间的倍数关系。
人教版七年级数学找规律专题讲义
规律探索专练(讲义)一、知识点睛1.数与式的规律:2.图形规律:3.循环规律:二、精讲精练【板块一】数与式的规律1.直接写出下列数的第n项:(1)4, 6, 8, 10, 12,…,则它的第n个数是;(2)6, 18, 54, 162,…,则它的第n个数是;(3)9, 27, 81, 243,…,则它的第n个数是;(4)2, 6, 12, 20, 30,…,则它的第n个数是;(5)0, 3, 8, 15, 24,…,则它的第n个数是;(6)-2, 3, -4, 5,-6,…,则它的第n个数是;(7)1 , 3,…,则它的第n个数是.3 5 7 92.直接写出下列数的第n项:(1)5, 8, 11, 14, 17,…,则它的第n个数是;(2)4, 8, 16, 32, 64,…,则它的第n个数是;(3)3, 3, 3,…,则它的第n个数是;2 4 8 16(4)2, 5, 10, 17, 26,…,则它的第n个数是;3 5 7 9(5)3, -5, 7,…,则它的第n个数是.2 4 8 16 ------3 .观察表1,寻找规律.(1)表2、表3分别是从表1中选取的一部分,则a+b 的值为; (2)表4、表5分别是从表1中选取的一部分,则c+d 的值为.4 .如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第 n 行的第一个数是 ,最后一个数 是,第n 行共有 个数.5 .观察下列等式:①1 = 12;②2+3+4=32;③3+4+ 5+ 6+ 7 = 52;④4+5 + 6+7+8+9+10= 72;…;请你根据观察得到的规律判断下列各式正确的是()A. 1005+1006+ 1007+-+ 3016 = 20112B. 1005+1006+1007+ •+ 3017= 20112C. 1006+1007+ 1008+ •+ 3016=20112D. 1007+1008+1009+^+ 3017= 2011212 3 45 6 7 8 910 11 12 1314 15 17 18 19 20 21 22 23 27 28 29 30 313233 26 16 24 25 34 35 360 1 2 3 …1 3 5 7 …2 5 8 11 …3711 15………………表1【板块二】图形规律如图,是由若干盆花组成的形如正多边形的图案,每条边(包括两个顶点)有n (n>2)盆花,每个图案中花盆总数为 S,按此规律推断S 与n (n>)下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第 n个图案中白色正方形个数为 .8.下列图形都是由同样大小的五角星按一定的规律组成, 其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五 角星,…,则第6个图形中五角星的个数为 ,第n 个图形中五角星的个 数为. ★★★★ ★★★★★★ ★★★★ ★★★★★★★★ ★★★★★★B ⑦ 触2 圈)39 .如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案, 则第n 个图案中阴影小三角形的个数是图1 图2 图310 .如图,下面是按照一定规律画出的一行“树形图”,经观察可以发现:图A 2比图A 1多出了 2个“树枝”,图A 3比图A 2多出了 4个“树枝”,图A 4比图A 3多出了 8个“树枝”,…,照此规律,则图 A 6比图A 2多出6. 7. 图111.图1是一瓷砖的图案,用这种瓷砖铺设地面,图2铺成了一个2>2的近似正方形,其中完整的菱形共有5个;若铺成3M的近似正方形图3,其中完整的菱形有13个;铺成4季的近似正方形图4,其中完整的菱形有25个;如此下去,可铺成一个nxn的近似正方形图案.当得到完整的菱形共181个时, n的值为()A. 7B. 8C. 9D. 10图1 图2 图3 图44 3 2 1 12.如图,广场地面的图案是用大小相同的黑、白正方形镶I I I I I I " 嵌而成.图中,第1个黑色」形由3个正方形组成,第2 |II I II " 个黑色」形由7个正方形组成,…,那么组成第6个色」形的正方形个数是()A. 22B. 23C. 24D. 25【板块三】循环规律13.如图,圆圈内分别标有0, 1, 2, 3, 4,…,11这12个数字.电子跳蚤每跳一次,可以从一个圆圈跳到相邻的圆圈,现在,一只电子跳蚤从标有数字“ 2”的圆圈开始,按逆时针方向跳了2012次后,落在一个圆圈中,该圆圈所标的数字是.14.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2012次交换位置后,小鼠所在的座号是.15.右图为手的示意图,在各个手指间标记字母A、B、C、D.请你按图中箭头所指方式(即A^UACp—A^—g…的方式)从人开始数连续的正整数1, 2, 3, 4,…,当数到14时,对应的字母是;当字母C第2012次出现时,恰好数到的数是;当字母C第2n+1次出现时(n为正整数),恰好数到的数是州含n的代数式表示).16.如图,平面内有公共端点的六条射线OA, OB, OC, OD, OE, OF,从射线OA开始按逆时针方向依次在射线上写出数字1, 2, 3, 4, 5, 6, 7,(1) “17”在射线上;(2)请任意写出三条射线上数字的排列规律;(3) “2012”在哪条射线上?三、回顾与思考【参考答案】、知识点睛1 .数与式的规律:①标序号;②找结构;③处理符号。
初中数学规律题的总结归纳
初中数学规律题的总结归纳数学规律题是初中数学中的重要内容,它不仅能够锻炼学生的逻辑思维能力,也能够帮助学生发现数学中的一些重要规律。
在这篇文章中,我将对初中数学规律题进行总结归纳,以帮助学生更好地掌握和应用这一知识点。
一、基本概念在学习数学规律题之前,我们首先要了解一些基本概念。
数学规律题是指通过观察一系列数字或图形,寻找其中的规律并进行总结归纳的问题。
在解决规律题时,我们需要注意以下几个方面:1. 观察数据的增减规律:我们可以通过观察数列中的数字或图形的变化规律来推断出下一个数字或图形是什么样的。
2. 寻找通项公式:当我们找到了数列中数字的增减规律时,可以进一步列出通项公式,以求出任意一项的值。
3. 推广运用:数学规律题并不限于数列问题,还包括图形和数学运算中的规律。
我们需要将所学的规律应用到不同的场景中,扩展思维。
二、数列规律题数列规律题是初中数学中常见且重要的一类题型。
它要求我们观察数列中数字的增减规律,并根据规律填写缺失的数字或预测下一个数字。
以下是几种常见的数列规律:1. 等差数列规律:等差数列是指数列中相邻两项之间的差恒定的数列。
通过观察数列中数字之间的差值,我们可以得出等差数列的公差,并进一步求解其通项公式。
2. 等比数列规律:等比数列是指数列中相邻两项之间的比值恒定的数列。
同样地,通过观察数列中数字之间的比值,我们可以得出等比数列的公比,并进一步求解其通项公式。
3. 奇偶数规律:有些数列中的数字可以按照奇偶性进行分组,我们可以通过观察奇数项和偶数项之间的规律来解答问题。
4. 平方数规律:部分数列中的数字可以分解为平方数的形式,我们可以通过寻找平方数的规律来预测下一个数字。
三、图形规律题除了数列规律题,图形规律题也是初中数学中的重点。
图形规律题要求我们观察一系列图形的变化规律,并根据规律填写缺失的图形或预测下一个图形。
以下是几种常见的图形规律:1. 平移规律:某些图形可以通过在平面上的平移来得到下一个图形。
七年级数学如何找规律重难点知识点讲解一
找规律知识点一例题一:按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为多少?解析:该题知识点涉及到(1)乘方的知识;(2)一元一次方程设最后三个数中间的数为x,依题意列方程得:76822=-+-x x x X=-516所以最后一个数为-2x=-516×(-2)=1032-2、4、-8、16、-32、64、……的公式为n)2(-所以:n )2(-=1032(n 为正整数)即:n=10答:n 为10.例题二:按下列规律排列的一列对数(1、2),(4、5),(7、8),……,第5个对数是多少?第n 个对数是多少?解析:这个题首先要找出对数的排列规律首先我们先看每个对数的第一个数:1、4、7、……每个数字之间相差3,即为等差数列;再看每个对数的第二个数:2、5、8、……每个数字之间相差3,即为等差数列;我们根据这两组数都相差3,根据等差公式:d n a a n )1(1-+=,就可以找出公式:3333第一个数为:1+(n -1)×3=3n -2;第二个数为:1+(n -2)×3=3n -1.那么这道题的解为:(1)第5个对数是(13,14)(2)第n 个对数是(3n -2,3n -1)例题3:定义:a 是不为1的有理数,我们把a -11称为a 的差倒数,如:2的差倒数是1211-=-,-1的差倒数是21)1(11=--。
已知311-=a ,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2013a 的值是多少?解:由题意可得:311-=a ,4331112=+=a ,443113=-=a ,314114-=-=a 可以看出每三个数为一个循环,那么得到:2013÷3=671,刚好除尽,所以42013=a 答:2013a 的值是4.。
七年级数学找规律经典题型
七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。
解析:首先观察这个数列,发现相邻两个数的差值都是2。
第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。
所以可以得出第n个数为2n 1。
例2:观察数列2,4,8,16,32,…,求第n个数。
解析:这个数列中,后一个数都是前一个数的2倍。
第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。
所以第n个数为2^n。
2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。
解析:观察这组数字,发现数字是1和 1交替出现。
当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。
可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。
二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。
解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。
所以搭n个三角形需要2n+1根火柴棒。
例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。
七年级数学找规律知识点
七年级数学找规律知识点数学中的找规律是指通过寻找一系列数字、图形或符号之间的关系模式,以推断出一种规则或模式,从而预测下一个数字、图形或符号。
在七年级数学中,找规律是一个非常重要的知识点。
在本文中,我们将探讨数学找规律的几个主要主题,并介绍如何在七年级中学习这些知识点。
一、数字规律数字规律是数学中找规律的最基本形式。
在数字规律中,我们会看到一系列数字,我们需要通过观察以及计算它们之间的关系,找出其中的规律。
1、加、减法规律这是最简单的数字规律。
比如,你可能会看到1,3,5,7,9......这个数列中,每个数字都比前一个数字大2。
或者1,4,7,10,13......这个数列中,每个数字都比前一个数字大3。
在这种情况下,规律是这样的:每次加一个固定的值。
同样,我们可能会看到一个数列中的数字之间是减去一个固定值。
例如10,7,4,1......这个数列,每个数字都比前一个数字小3。
规律是这样的:每次减去一个固定的值。
2、乘法规律在一些数字规律中,每个数字都是前一个数字乘以一个固定值而得来的。
例如2,4,8,16......这个数列,每个数字都比前一个数字大2。
规律是这样的:每个数字都是前一个数字乘以2。
3、递推规律在递推规律中,每个数字都是前一个数字加上一个运算结果得到的。
例如1,3,6,10,15......这个数列,每个数字都是前一个数字加上一个递增的值。
规律是这样的:每次加一个递增的值。
二、图形规律图形规律是指通过一系列图形之间的关系找出规律的技能。
在七年级数学中,主要遇到的图形包括点阵、几何图形、折线图和条形图等。
当你试图找出这些图形中的规律时,你需要注意每个图形的数量、形状和位置。
你可能需要把它们画出来,以便更好地观察。
你可以寻找图形之间的相似之处和不同之处,或者你可以找到它们之间的对称性。
三、字母符号规律数学中的找规律不仅限于数字和图形,还可以涉及字母和其他符号。
例如,你可能会看到一些字母或符号之间的关系,并需要找出它们之间的规律。
七年级数学上册找规律专题方法解析
七年级数学上册找规律专题方法解析找规律题目解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧对解答数字推理问题大有帮助。
1.快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。
2.推导规律时往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。
3.空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。
找规律题目中常出现的数列关系(一)等差数列相邻数之间的差值相等,整个数字序列依次递增或递减。
等差数列是数字推理测验中排列数字的常见规律之一。
它还包括了几种最基本、最常见的数字排列方式:自然数数列:1,2,3,4,5,6……偶数数列:2,4,6,8,10,12……奇数数列:1,3,5,7,9,11,13……例题1:2,5,8,( )。
A.10B.11C.12D.13解析:从题中的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8 +3=11,第四项应该是11,即答案为B。
(二)等比数列相邻数之间的比值相等,整个数字序列依次递增或递减。
等比数列在数字推理测验中,也是排列数字的常见规律之一。
例题: 2,-4,8,-16,( )。
A.32 B.64 C.-32 D.-64解析:答案为A。
这仍然是一个等比数列,前后项的比值为-2。
(三)平方数列1、完全平方数列:正序:1,4,9,16,25逆序:100,81,64,49,362、一个数的平方是第二个数。
1)直接得出:2,4,16,( 256 )解析:前一个数的平方等于第二个数,答案为256。
七年级的找规律的题知识点
七年级的找规律的题知识点七年级数学找规律的题知识点随着教育改革的深入,学生的数学学习也在不断提高。
在七年级的数学学习中,找规律的题目是重点和难点之一。
如何发现规律,并能够运用所学知识进行解题,是每个学生需要掌握的技能。
本文将介绍七年级找规律题目需要掌握的基本知识点和解题技巧。
一、数列的概念数列是由一定的规则依次排列而成的数的集合。
数列中的每个数叫做这个数列的项。
数列的第一个数叫做首项,数列的第n项叫做通项公式,用an来表示。
二、通项公式的推导要求解数列中的第n项,就需要求出通项公式。
通项公式的推导方法有很多种,但其中一种是比较普遍和简单的方法,可以用来解决大部分的数列问题。
例如:已知数列1,3,5,7,9,求第n项,找到数列中的规律后可以列出如下公式:an=2n-1这个公式是通过观察数列中每一个项的变化得到的。
具体方法是找到相邻两项之间的差值,得到2,2,2,2,然后再找到相邻两项差值之间的差值,发现是一个定值,为2。
于是得出了通项公式an=2n-1。
三、常用的数列类型1.等差数列等差数列是指相邻两项之间的差值都是一个定值。
例如:1,3,5,7,9,……就是一个公差为2的等差数列。
求等差数列的通项公式有多种方法,其中比较简单的一种是利用首项和公差来表示第n项:an=a1+(n-1)d其中a1是首项,d是公差。
2.等比数列等比数列是指相邻两项之间的比值都是一个定值。
例如:2,4,8,16,32,……就是一个公比为2的等比数列。
求等比数列的通项公式也有多种方法,其中比较简单的一种是利用首项和公比来表示第n项:an=a1×q^(n-1)其中a1是首项,q是公比。
3.斐波那契数列斐波那契数列是指前两项是1,从第三项开始,每一项都是前两项之和。
例如:1,1,2,3,5,8,13,21,……就是一个斐波那契数列。
斐波那契数列是一种特殊的数列,求其通项公式的方法也比较特殊,需要利用斐波那契数列的特性来推导。
人教版初一数学有理数8类找规律题型精讲
人教版初一数学有理数8类找规律题型精讲1.数字找规律(1)等差型数列①一级等差数列例1.观察数列,在括号内填上适当的数。
-22,-20,-18,-16,(),()...()(第n个数)。
解:不难发现,后一个数比前一个数大2,所以括号内一次填上-14,-12.设a1=-22,a2=-20,a3=-18,a4=-16.......则a2-a1=2a3-a2=2a4-a3=2...an-an-1=2(第n-1个式子)将这n-1个式子相加,得an-a1=2(n-1)所以an=2(n-1)+a1=2(n-1)-22=2n-24,即第n项为2n-24②二级等差数列例2.观察数列,1,2,5,10,17,26,.....,请观察这组数的构成规律,根据规律确定第8个数为()。
解:用上面数列中后一项减前一项得到新数列为:1,3,5,7,9,11,13,15,.....,这个数列是个一级等差数列,所以原数列1+1=2,2+3=5,5+5=10,10+7=17,17+9=26,26+11=37,37+13=50,50+15=65......第8个数为50.(2)等比型数列例3.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为______,第n个数为______.解:观察数列,可知后一项除以前一项始终等于2,设a1=1,a2=2,a3=4,a4=8.......则a2/a1=2,a3/a2=2,a4/a3=2,....an/an-1=2(第n-1个式子)将这n-1个式子相乘,得an/a1=2^(n-1),所以an=2^(n-1)第8项a8=2^7=128(3)含n^2型数列规律例4.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为______,第n个数为______.解:设a1=1=1^2,a2=4=2^2,a3=9=3^2;a4=16=4^2;a5=25=5^2....an=n^2所以第8个数a8=8^2=64;第n个数为an=n^2(4)循环型数列例5.已知2^1=2,2^2=4,2^3=8,2^4=16,2^5=32...观察上面规律,试猜想2^2008的个位数是______.解:个位数4次幂循环一次,所以2008÷4=502,所以2^2008的个位数是6. (5)算式型数列例6.已知:2+2/3=2^2x2/3,3+3/8=3^2x3/8,4+4/15=4^2x4/15,若8+a/b=8^2xa/b(a、b为正整数),则a+b=______.解:观察算式可发现:a=8,b=8^2-1=63,所以a+b=8+63=71.(6)数列阵型例7.观察下列三行数:第一行:-1,2,-3,4,-5第二行:1,4,9,16,25第三行:0,3,8,15,24(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.解:(1)第一行的规律:(-1)^nxn;(2)第二行的规律:n^2; 第三行的规律:n^2-1(3)第一行的第10个数为:(-1)^10x10=10;第二行的第10个数为10^2=100;第三行的第10个数为10^2-1=100-1=99,这三个数的和为:10+100+99=209.(7)其他规律题型例8.计算:1+2+3+…+99+100解:1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)= 101×50=50502.图形找规律例9.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有______(五角星)。
七上找规律解题技巧
七上找规律解题技巧解题技巧在学习过程中是非常重要的一部分,尤其是对于七年级学生来说。
在七上数学课本中,有一个章节专门讲解找规律解题的方法,这是一项非常实用的技巧。
找规律解题可以帮助学生更好地理解数学问题,并能够快速找出解决办法。
本文将介绍七上找规律解题的技巧,并通过一些例子来详细说明。
找规律解题的关键在于观察和发现问题中的规律。
首先,学生需要仔细阅读题目,并理解题目中的信息和要求。
接下来,可以开始尝试寻找规律。
有一些常见的找规律方法,包括逐项列举、观察数字的变化规律、寻找数列规律等等。
通过这些方法,学生可以更好地理解问题,并更容易找到解决办法。
在七上数学课本中,有很多例题展示了找规律解题的过程。
例如,有一个题目是这样的:“某数列的前两项分别为1和3,之后的每一项都是前两项的和。
求这个数列的第十项是多少?”这个问题可以通过找规律来解决。
观察这个数列的前几个项,我们可以发现每一项都是前两项的和。
因此,我们可以得出结论,这个数列的第十项应该是前两项之和。
根据这个规律,我们可以轻松地得出答案。
除了以上的方法,还有一些其他的找规律解题的技巧。
例如,可以通过画图来观察规律;可以进行递归计算,用前一项的结果来求后一项;可以利用数学公式来表达规律等等。
通过灵活运用这些方法,学生可以更加高效地解决问题。
总之,找规律解题是一种非常实用的数学技巧,在七上数学课本中有很多具体的例题可以帮助学生理解和掌握这个技巧。
通过观察和发现问题中的规律,学生可以更好地理解数学问题,并能够快速找到解决办法。
希望本文对学生们在七上找规律解题方面的学习有所帮助。
初一数学找规律题讲解【重点】
探索规律:活动一:探索常见图形的规律,用火柴棒按以下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?★注意引导学生概括“探索规律〞的一般步骤:①寻找数量关系:②用代数式表示规律:③验证规律:★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.假设有两X长方形的桌子,把它们拼成一X大的长方形桌子,有几种拼法?问题2.假设按图2方式摆放桌子和椅子⑴一X桌子可坐6人,2X桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2X桌子拼在一起可坐多少人?3X呢?nX呢?⑵教室有40X这样的桌子,按上图方式每5X拼成1X大桌子,那么40X桌子可拼成8X大桌子,共可坐人。
⑶在⑵中,改成每8X桌子拼成1X大桌子,那么共可坐人。
活动三:探索图表的规律 下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系? ⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗? ⑶这个关系对任何一个月的日历都成立吗?为什么?⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码〔又叫数字〕:0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。
初一数学,详解各种图形找规律方法,值得收藏
例题6、注意观察图形排列方式,左边都是1个,右边排列个数按照行和列相乘。
例题4如果把红色的正方形补齐右上角刚好是完整的图形并且小正方形的个数刚好是某个数的平方
初一数学,详解各种图形找规律方法,值得收藏
例题1、注意根据排列的规则,从上到下依次计算。
例题2、棋子的个数是每次增加的个数都是4个。
ቤተ መጻሕፍቲ ባይዱ例题3、看清题中的描述,不是计算所有正三角形的个数,计算的是小正三角形的个数。
例题4、如果把红色的正方形补齐右上角,刚好是完整的图形,并且小正方形的个数刚好是某个数的平方。
初中数学找规律题技巧学霸都掌握了
初中数学找规律题技巧学霸都掌握了找规律题看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
等差与等比技巧等差数列:相邻数之间的差值相等,整个数字序列依次递增或递减。
等差数列是数字推理测验中排列数字的常见规律之一。
等差数列{an}的通项公式为:an=a1+(n-1)d。
前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。
注意:以上n均属于正整数。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?★注意引导学生概括“探索规律”的一般步骤:①寻找数量关系:②用代数式表示规律:③验证规律:★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律 下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系? ⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗? ⑶这个关系对任何一个月的日历都成立吗?为什么?⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数 。
2、从1开始,将连续的奇数相加,和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始,将前10个奇数(即当最后一个奇数是19时),它们的和是 。
3、小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入 (1)2345… 输出…2152 103 174 265…A 、618B 、638C 、658D 、6784、如下左图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子 用了 块石子。
6、如下图是用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子;(2)(2)第n个“上”字需用枚棋子。
7、如图一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有_______颗.8、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图(2)比图(1)多出2个“树枝”,图(3)比图(2)多出5个“树枝”,图(4)比图(3)多出10个“树枝”,照此规律,图(7)比图(6)多出个“树枝”。
9、观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n个点阵相对应的等式_____________________。
10、用边长为1cm的小正方形搭成如下的塔状图形,则第n次所搭图形的周长是_______________cm(用含n 的代数式表示)。
…………①1=12;②1+3=22;③1+3+5=32④;⑤;(1)(2)(3)第1次第2次第3次第4次······⑴ ⑵ ⑶(1)(2)(3)(4)12、如图,都是由边长为1的正方体叠成的图形。
例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(5)个图形的表面积 个平方单位。
13、图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( ) A 25 B 66 C 91 D 12014、如图是由大小相同的小立方体木块叠入而成的几何体,图⑴中有1个立方体,图⑵中有4个立方体,图⑶中有9个立方体,…… 按这样的规律叠放下去,第8个图中小立方体个数是 .15、图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:(1)按照要求填表:(1)(2)(3)图1 图2 图314题第18题图(2)写出当n=10时,s= .16、如图用火柴摆去系列图案,按这种方式摆下去,当每边摆10根时(即10n)时,需要的火柴棒总数为根;17、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律下去,搭n个三角形需要S支火柴棒,那么用n的式子表示S的式子是(n 为正整数).18、如图所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个图形中需用黑色瓷砖____ 块.(用含n的代数式表示)19、如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为块.20、观察下列由棱长为1的小立方体摆成的图形,寻找规律:如图1中:共有1 个小立方体,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有个。
21、下面的图形是由边长为l的正方形按照某种规律排列而组成的.n 1 2 3 4 …s 1 3 6 …A B C D(1)观察图形,填写下表:图形①②③正方形的个数8图形的周长18(2)推测第n个图形中,正方形的个数为________,周长为______________(都用含n的代数式表示).22、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
23、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求....的是( )24、如下图中的四个正方形的边长均相等,其中阴影部分面积最大的图形是( )25、如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是()A. <1>和<2>B. <2>和<3>C. <2>和<4>D. <1>和<4>26、某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图1;第2次把第1次铺的完全围起来,如图2;A DCB第3次把第2次铺的完全围起来,如图3;…依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块块数为 . (n为正整数)27、用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:⑴第4个图案中有白色地面砖块;⑵第n个图案中有白色地面砖块。
28、分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.初中数学规律题集锦一、棋牌游戏问题1.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,那么她所旋转的牌从左数起是( )A.第一张B.第二张C.第三张D.第四张2.小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 .4.图(4)是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A为已方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为()A.2步B.3步C.4步D.5步二、空间想象问题3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的5.图(1)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2个图形(它的中间为一个白色的正三角形);在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。
如此继续作下去,则在得到的第6个图形中,白色的正三角形的个数是……..11.一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图1中该正方体A、B、C三种状态所显示的数字,可推出“?”处的数字是.13.将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线).续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折n次,可以得到条折痕.15.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.26n+B.86n+程前你祝似锦图(7)图(1)图(2)图(3)(3)(2)(1)第17题图n=1n=2n=3……C .44n +D .8n17. 柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头,第二层有34⨯听罐头, 第三层有45⨯听罐头,……根据这堆罐头排列的规律,第n (n 为正整数)层 有 听罐头(用含n 的式子表示).18. 按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为________________.20. 如图,图①,图②,图③,……是用围棋棋子摆成的一列具有一定规律的“山”字.则第n 个“山”字中的棋子个数是 .21. 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。