高等数学基本知识大全
高等数学基本知识点大全
们 论单值函数
函数相等
由函数的定 可知 个函数的构 要素 定 域 对 关系和值域 由于值域是由定 域和对
关系决定的 所 如果 个函数的定 域和对 关系完全
们就 个函数相等
域函数的表示方法
⑷核 解析法 用数学式子表示自 量和因 量之间的对 关系的方法 是解析法 例 直角坐标系中
222
半径 征 圆心在原点的圆的方程是 x 为y =征
的元素完全
因 集合 A 集合 B 相等 记作 A B
真子集 如何集合 A 是集合 B 的子集 但 在 个元素属于 B 但 属于 A 们 集合 A 是集合
B 的真子集 空集
们把
任何元素的集合 做空集 记作 ∅ 并规定 空集是任何集合的子集
由 述集合之间的基本关系 可 得到 面的结论
任何 个集合是它本身的子集
函数的
函数的表达式
函数的 形
函数的性质
⑷核 定 域 光样-∞主为∞核 曲
⑸核 是奇函数
干核 在定 域内是单调增
曲余
曲
们再来看
曲函数 角函数的区 曲函数的性质
s穷x t穷x 是奇函数 干穷x 是偶函数
它们都 是周期函数 曲函数 有和差 式
⑷核 定 域 光样-∞主为∞核
⑸核 是偶函数
干核
像过点样0主1核
B
A B {x|x∈A 且 x∈B}
的集合 的集合
A B 的并集 记作 A A B 的交集 记作 A
补集
全集 通常记作 U
般地 如果 个集合 有 们所研
题中所涉及的所有元素 那 就
个集合 全集
补集 对于 个集合 A 由全集 U 中 属于集合 A 的所有元素
的补集 简 集合 A 的补集 记作 CUA
高等数学必须的知识点总结
高等数学必须的知识点总结高等数学是大学数学的一门重要课程,它是数学学科中的一颗明珠。
在学习高等数学的过程中,我们需要掌握一些基础的数学知识点,这些知识点将为我们建立起一个坚实的数学基础。
本文将从基础知识点开始,逐步展开,为大家总结高等数学必须掌握的知识点。
一、函数与极限1.函数:函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
函数的定义域、值域、图像等是我们需要了解的基本概念。
2.极限:极限是函数分析中的重要概念,它描述了函数在某一点附近的趋势。
极限的求解需要掌握极限的性质、极限的运算法则等。
二、导数与微分1.导数:导数是函数在某一点处的变化率,它描述了函数在该点的瞬时变化情况。
导数的求解需要使用导数的定义、导数的性质、导数的运算法则等。
2.微分:微分是导数的一种应用,它描述了函数在某一点附近的近似变化情况。
微分的计算需要使用微分的定义、微分的性质等。
三、定积分与不定积分1.定积分:定积分是函数在一个区间上的累积变化量,它描述了函数在该区间上的总体变化情况。
定积分的计算需要使用定积分的定义、定积分的性质以及定积分的计算方法等。
2.不定积分:不定积分是定积分的逆运算,它描述了函数在某一点的原函数。
不定积分的计算需要使用不定积分的定义、不定积分的性质以及不定积分的计算方法等。
四、级数1.数项级数:数项级数是将一列数相加得到的无穷级数,它可以是收敛的或发散的。
数项级数的求和需要使用级数的定义、级数的收敛判别法等。
2.函数项级数:函数项级数是将一列函数相加得到的无穷级数,它可以是收敛的或发散的。
函数项级数的求和需要使用函数项级数的定义、函数项级数的收敛判别法等。
五、常微分方程常微分方程是描述物理、生物、经济等领域中变化规律的一种数学模型。
常微分方程的解法需要使用常微分方程的分类、常微分方程的求解方法等。
六、多元函数与偏导数多元函数是依赖于多个变量的函数,它在数学建模、物理、工程等领域中有广泛的应用。
(完整版)高数知识点总结
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学基本知识点大全
高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
高等数学知识点总结
高等数学是大学理工科学生的一门基础课程,涉及到数学分析、线性代数、概率论和数学物理方法等内容。
本文将对高等数学的知识点进行总结,以供参考。
一、数学分析1.极限与连续极限是数学分析的基础概念,主要研究函数在某一点的邻域内的性质。
极限的性质包括保号性、保序性等。
连续性是极限的一种特殊情况,一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。
2.导数与微分导数研究函数在某一点的切线斜率,是函数变化率的具体体现。
导数的计算方法包括定义法、导数法则和高阶导数等。
微分是导数的一种应用,主要研究函数在某一点的微小变化。
3.积分与不定积分积分是导数的逆运算,研究函数在某一区间内的累积变化。
积分的计算方法包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。
不定积分是积分的一种扩展,没有明确的积分界限,主要用于求解原函数。
级数是数学分析中的重要部分,研究函数的和式。
常见的级数包括幂级数、泰勒级数和傅里叶级数等。
级数的收敛性判断是级数研究的关键,常用的判断方法有比较判别法、比值判别法和根值判别法等。
5.多元函数微分学多元函数微分学研究多个变量之间的函数关系。
主要内容包括偏导数、全微分、方向导数和雅可比矩阵等。
重积分是研究函数在空间区域上的累积变化。
重积分的计算方法包括一重积分、二重积分和三重积分等。
7.常微分方程常微分方程是描述自然界和工程技术中具有变化规律的数学模型。
常微分方程的解法包括分离变量法、常数变易法和线性微分方程组等。
二、线性代数矩阵是线性代数的基本工具,用于描述线性方程组和线性变换。
矩阵的运算包括加法、减法、数乘和矩阵乘法等。
矩阵的行列式用于判断线性方程组的解的情况。
2.线性方程组线性方程组是实际问题中常见的数学模型。
线性方程组的解法包括高斯消元法、矩阵求逆法和克莱姆法则等。
3.向量空间与线性变换向量空间是具有加法和数乘运算的向量集合。
线性变换是从一个向量空间到另一个向量空间的线性映射。
4.特征值与特征向量特征值和特征向量是描述矩阵性质的重要概念。
高等数学基本知识点大全
高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。
导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。
微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。
1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)〖(f(a+h)-f(a))/h〗。
- 导数的几何意义:导数表示曲线在某一点的切线斜率。
- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。
2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。
- 微分的性质:微分是线性近似,具有微分的小量运算法则。
3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。
- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。
二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。
它们是导数的逆运算。
1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。
- 定积分的性质:定积分具有线性性、加法性、估值性等。
2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。
- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。
3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。
高数基础知识点汇总
高数知识点汇总第一讲函数,极限,连续性1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集,记作N+。
⑶、全体整数组成的集合叫做整数集,记作Z。
⑷、全体有理数组成的集合叫做有理数集,记作Q。
⑸、全体实数组成的集合叫做实数集,记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A、B 有包含关系,称集合A 为集合B 的子集,记作A ⊂B。
⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A=B。
⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集,记作A 。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。
(完整版)大学全册高等数学知识点(全)
大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩ 四. 必备公式:1. 等价无穷小: 当()0u x →时, sin ()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -; ()1()u x eu x -; ln(1())()u x u x +; (1())1()u x u x αα+-;arcsin ()()u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx 5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简):x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰ 三. 定积分:1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*2(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰,(4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰220sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds =(1)(),[,]y f x x a b =∈ as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩ 21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+ (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆ (3)22,lim()()x y f df f x f ydf x y ∆-++ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx yf x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln k n n ∑3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):np ka n(估计), 如10()n f x dx ⎰; ()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0nn a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)n na-∑;na∑;2na∑之间的敛散关系四. 幂级数:1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!xe x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω= 35111(),23!5!x x e e x x x R --=+++Ω= 3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+ 2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=)3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G :(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分 (2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点): (1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换:A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径(3)L⎰(x y Q P =但D 内有奇点)*LL =⎰⎰(变形)3. 推广(路径无关性):P Q y y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰(Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分: 1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =-- [()()]xyPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ= (cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用: (1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点)4. 通量与积分: A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xa y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。
高数基础知识
高数基础知识
高等数学是大学数学的重要组成部分,包括初等数学的基础知识和更高级的数学概念和方法。
以下是一些高数基础知识的解释。
1. 极限
极限是一个数列或函数在接近某个值时的表现。
可以用极限定义连续性、导数和积分等概念。
当数列或函数的值无限接近某个值时,它就趋近于这个值的极限。
2. 微积分
微积分是研究数学中变化率和面积问题的分支。
它主要包括求导和求积分两个方面。
求导是指求出函数在某一点的导数,即函数在该点的切线斜率。
求积分是指求出函数在某一区间上的面积,可以用于计算曲线下面积、体积、质心等问题。
3. 线性代数
线性代数是研究向量空间和线性变换的分支。
它主要研究向量的运算规律、向量空间的性质、矩阵的变换以及线性方程组的求解等问题。
线性代数在计算机图形学、信号处理等领域有广泛的应用。
4. 偏微分方程
偏微分方程是描述物理现象中变量随时间和空间变化的方程。
它包括泊松方程、热方程、波动方程等。
偏微分方程的解法通常涉及到高级数学工具,如分离变量法、格林函数法、变分法等。
5. 概率统计
概率统计是一门研究随机事件和数据分析的分支。
它主要包括概率论、数理统计和应用统计三个部分。
概率论研究随机事件的概率和分布规律,数理统计研究如何用概率论解决数据分析问题,应用统计则将概率统计方法应用到实际问题中。
以上是一些高数基础知识的解释,它们都是大学数学中的重要部分,对于学习更高级的数学和应用数学都非常重要。
(完整版)高数知识点总结
高数重点知识总结1、基本初等函数: 反函数 (y=arctanx),对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( y a x ),三角函数 (y=sinx) ,常数函数 (y=c) 2、分段函数不是初等函数。
3、无量小:高阶 +低阶 =低阶比方: limx 2x lim x 1xxx 0x(1)limsin x11 x4、两个重要极限: 1(2) lim 1 x xe lim 1ex 0xx 0x xx 0 , f ( x) 0, g( x)f ( x)g ( x) lim f ( x) g (x)经验公式:当 x, lim 1ex x 0xx 01lim3xxe 3比方: lim 1 3x xe x 0x 05、可导必然连续,连续未必可导。
比方: y | x |连续但不可以导。
6、导数的定义: limf (xx) f ( x)f '( x)lim f (x)f (x 0 )f ' x 0x 0xxx 0xx 07、复合函数求导: df g( x)f ' g( x) ? g'( x)dx112 x2 x 1比方: yxx , y'2 xx4 x 2x x8、隐函数求导: (1)直接求导法; (2)方程两边同时微分,再求出dy/dxx 2 y 2 1比方: 解:法 (1), 左右两边同时求导 , 2x 2 yy' 0 y'xy法( 2), 左右两边同时微分 ,2xdx 2 ydy dy xdx y9、由参数方程所确定的函数求导: 若yg(t) ,则 dy dy / dtg '(t),其二阶导数:xh(t)dxdx / dth'(t)d 2 y d dy / dxd (dy / dx)d g' (t ) / h'(t )dt dtdx 2dxdx / dth' (t )10、微分的近似计算: f ( x 0 x) f ( x 0 )x ? f '( x 0 ) 比方:计算 sin 3111、函数中止点的种类: (1) 第一类:可去中止点和跳跃中止点;比方:y sin x ( x=0x 是函数可去中止点) , y sgn(x) (x=0 是函数的跳跃中止点)(2) 第二类:振荡中止点和无量中止点;比方:f ( x) sin1 (x=0 是函数的振荡中止点) , y 1(x=0 是函xx数的无量中止点) 12、渐近线:水平渐近线: ylim f (x)cx铅直渐近线: 若,lim f ( x),则 x a 是铅直渐近线 .x a斜渐近线: 设斜渐近线为 yax b, 即求 a limf ( x), b lim f ( x)axxxx比方:求函数 yx3x 2x 1的渐近线x 2113、驻点:令函数 y=f(x) ,若 f'(x0)=0 ,称 x0 是驻点。
高等数学常用基础知识点
高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。
当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。
极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。
连续是指函数在某个点上无间断的性质。
如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。
连续函数的性质包括介值定理、零点定理和罗尔定理等。
二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。
导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。
微分是函数在某一点的局部线性逼近。
微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。
三、不定积分与定积分不定积分是导数的逆运算。
不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。
定积分是函数在某一区间上的累积效应。
定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。
四、级数与幂级数级数是无穷个数的和。
级数的收敛与发散是级数理论中的重要问题。
级数的测试方法包括比值判别法、根值判别法和积分判别法等。
幂级数是形如∑(a_n*x^n)的级数。
幂级数的收敛半径是幂级数理论中的重要概念。
幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。
五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。
常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。
偏微分方程是描述多变量函数的方程。
偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。
六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。
空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。
向量代数是研究向量及其运算的数学分支。
向量代数的内容包括向量的加法、数量积和向量积等。
七、多元函数与多元函数微分学多元函数是多个自变量的函数。
高等数学基础知识
高等数学基础知识《高等数学》是大学中最为基础的一门课程。
那么你对高等数学了解多少呢?以下是由店铺整理关于高等数学基础知识的内容,希望大家喜欢!高等数学基础知识1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
高等数学基本知识大全
高等数学基本知识大全
高等数学是现代数学中的重要分支,是大学本科阶段的核心学科,提供了一种强有力
的工具和方法,用于理解和解决科学和工程问题。
以下是高等数学中的一些基本知识:
1. 函数和极限
函数是输入和输出之间的映射关系,其中每个输入对应一个唯一的输出。
极限是一个
数列趋近于一个固定值的过程,当数列逐渐接近该值时,称其趋近于该值,并用符号“→”表示。
2. 导数和微分
导数是函数的斜率,表示函数在某一点的变化率。
微分是一种数学工具,用于计算函
数在某一点的微小变化。
3. 积分和定积分
积分是在一个区间内求一个函数的总面积的过程。
定积分是一个函数在一个区间内的
积分。
4. 三角函数
三角函数是一类定义在角度上的函数。
常见三角函数包括正弦、余弦和正切函数。
5. 矢量和矢量空间
矢量是带有大小和方向的量,可以用几何元素来表示。
矢量空间是一组满足特定条件
的向量的集合。
6. 矩阵和行列式
矩阵是一个二维数组,由行和列组成。
行列式是一个与矩阵相关的值,用于解决线性
方程组。
7. 偏导数
偏导数是多元函数中的一种变量导数,其中只考虑其中一个变量的变化,其他变量保
持不变。
8. 多元积分
多元积分是在多维空间中求解一个函数在一个体积内的积分。
9. 常微分方程
常微分方程是描述某个变量对其本身的一阶或高阶导数的关系的方程。
高等数学上重要知识点归纳
高等数学上重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义以数列为例,,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质1 )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小; 2保号性若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f ; 3无穷小乘以有界函数仍为无穷小; 二、求极限的主要方法与工具 1、两个重要极限公式 11sin lim=∆∆→∆ 2e =◊+◊∞→◊)11(lim 2、两个准则 1 夹逼准则 2单调有界准则 3、等价无穷小替换法 常用替换:当0→∆时(1)∆∆~sin 2∆∆~tan 3∆∆~arcsin 4∆∆~arctan (5)∆∆+~)1ln( 6∆-∆~1e (7)221~cos 1∆∆- 8nn ∆-∆+~11 4、分子或分母有理化法 5、分解因式法 6用定积分定义 三、无穷小阶的比较 高阶、同阶、等价 四、连续与间断点的分类 1、连续的定义)(x f 在a 点连续2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线 五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义 2、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(0 3、导数的几何意义 4、导数的物理意义5、可导与连续的关系: 连续,反之不然。
高数知识点整理
高数知识点整理高等数学是大学理工科和经济金融等专业的重要基础课程,其知识点繁多且复杂。
下面为大家整理了一些重要的高数知识点,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。
简单来说,对于定义域中的每个输入值,都有唯一的输出值与之对应。
2、函数的性质包括单调性、奇偶性、周期性和有界性等。
单调性指函数在某个区间内是递增或递减的;奇偶性是指函数关于原点对称(奇函数)或关于 y 轴对称(偶函数);周期性是指函数在一定的区间内重复出现相同的取值规律;有界性则表示函数的值在一定范围内。
3、极限的概念极限是指当自变量趋近于某个值时,函数的趋近值。
4、极限的计算方法包括直接代入法、因式分解法、有理化法、洛必达法则等。
直接代入法适用于简单的函数;因式分解法常用于分式函数;有理化法可用于消除根号;洛必达法则则用于求解 0/0 或∞/∞ 型的极限。
5、无穷小与无穷大无穷小是以 0 为极限的变量;无穷大是绝对值无限增大的变量。
无穷小的性质在极限计算中经常用到。
二、导数与微分1、导数的定义函数在某一点的导数表示函数在该点的变化率。
2、导数的几何意义导数就是函数图像在某一点的切线斜率。
3、基本导数公式如常数的导数为 0,幂函数的导数,指数函数的导数,对数函数的导数等。
4、导数的四则运算包括加法、减法、乘法和除法的求导法则。
5、复合函数求导设 y = f(u),u = g(x),则复合函数 y = fg(x) 的导数为 f'(u) g'(x)。
6、隐函数求导对于方程 F(x, y) = 0 确定的隐函数 y = y(x),通过对方程两边同时求导来求解 y'。
7、微分的定义函数的微分是函数增量的线性主部。
8、微分的运算法则与导数的运算法则类似。
三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a, b 上连续,在开区间(a, b) 内可导,且 f(a) = f(b),那么在(a, b) 内至少存在一点ξ,使得 f'(ξ) = 0。
高数基础知识总结与重点概念整理
高数基础知识总结与重点概念整理
一、导数与微分
导数:描述函数在某一点附近的变化率,是函数值的极限。
可导性:函数在某点可导,当且仅当该点附近存在一个定义恰当的导数。
微分:一个近似值,表示函数在某点附近的小变化所引起的函数值的大致变化。
二、积分
不定积分:求一个函数的原函数(或反导数),即求函数的不定积分。
定积分:对一个区间上函数的值的总和的量度,即求函数的定积分。
微积分基本定理:定积分可化为不定积分的计算。
三、级数
数列:一个数字序列。
无穷级数:无穷多个数的和,即数列的和。
收敛性:无穷级数趋于一个有限的和的性质称为收敛性。
发散性:无穷级数不收敛的性质称为发散性。
四、多元函数
多元函数:定义在多个变量上的函数。
偏导数:多元函数对一个变量的导数。
方向导数:描述函数在某点处沿某一方向的变化率。
梯度:方向导数的最大值,表示函数在某点处沿梯度方向的增长最快的方向。
五、微分方程
微分方程:包含未知函数的导数或微分的方程。
初值问题:给定初始条件的微分方程问题。
通解与特解:满足微分方程的解称为通解,满足特定初始条件的解称为特解。
高等数学知识点汇总
一.函数的概念1.用变上、下限积分表示的函数(1)()dt t f y x∫=0,其中()t f 连续,则()x f dxdy=(2)()()()dt t f y x x∫=21ϕϕ,其中()x 1ϕ,()x 2ϕ可导,()t f 连续,则()[]()()[]()x x f x x f dxdy1122ϕϕϕϕ′−′=2.两个无穷小的比较设()0lim =x f ,()0lim =x g ,且()()l x g x f =lim (1)0=l ,称()x f 是比()x g 高阶的无穷小,记以()()[]x g x f 0=,称()x g 是比()x f 低阶的无穷小。
(2)0≠l ,称()x f 与()x g 是同阶无穷小。
(3)1=l ,称()x f 与()x g 是等价无穷小,记以()()x g x f ~ 3.常见的等价无穷小当0→x 时x x ~sin ,x x ~tan ,x x ~arcsin ,xx ~arctan 221~cos 1x x −,x e x ~1−,()x x ~1ln +,()xx αα~11 −+二.求极限的方法1.利用极限的四则运算和幂指数运算法则2.两个准则准则1.单调有界数列极限一定存在(1)若n n x x ≤+1(n 为正整数)又m x n ≥(n 为正整数),则A x n n =∞→lim 存在,且m A ≥(2)若n n x x ≥+1(n 为正整数)又M x n ≤(n 为正整数),则A x n n =∞→lim 存在,且MA ≤准则2.(夹逼定理)设()()()x h x f x g ≤≤若()A x g =lim ,()A x h =lim ,则()A x f =lim 3.两个重要公式公式1.1sin lim0=→xxx 公式2.e n nn =⎟⎠⎞⎜⎝⎛+∞→11lim ;e u uu =⎟⎠⎞⎜⎝⎛+∞→11lim ;()ev vv =+→101lim 4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式当0→x 时,()n nxx n x x x e 0!!212+++++=Λ()()()1212530!121!5!3sin ++++−+++−=n n nx n x x x x x Λ()()()nnn x n xx x x 22420!21!4!21cos +−+−+−=Λ()()()n nn x n x x x x x 01321ln 132+−+−+−=++Λ()()1212153012153arctan +++++−+−+−=n n n x n xx x x x Λ()()()()[]()n n x x n n x x x 0!11!21112+−−−++−++=+αααααααΛΛ 6.洛必达法则 法则1.(型)设(1)()0lim =x f ,()0lim =x g (2)x 变化过程中,()x f ′,()x g ′皆存在(3)()()A x g x f =′′lim (或∞)则()()A x g x f =lim(或∞)(注:如果()()x g x f ′′lim不存在且不是无穷大量情形,则不能得出()()x g x f lim不存在且不是无穷大量情形)法则2.(∞∞型)设(1)()∞=x f lim ,()∞=x g lim (2)x 变化过程中,()x f ′,()x g ′皆存在(3)()()A x g x f =′′lim (或∞) 则()()A x g x f =lim(或∞)7.利用导数定义求极限基本公式:()()()0000limx f xx f x x f x ′=∆−∆+→∆ [如果存在]8.利用定积分定义求极限基本公式()∫∑=⎟⎠⎞⎜⎝⎛=∞→1011lim dx x f n k f n n k n [如果存在]三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数()x f y =的间断点。
高等数学基础知识
THANKS
感谢观看
式;常数变易法则是将方程中的常数项视为未知数,通过求解得到常数的值。
二阶线性微分方程的解法
总结词
二阶线性微分方程是含有两个导数的微分方程,其解 法包括特征值法、常系数线性微分方程的解法等。
详细描述
二阶线性微分方程是微分方程中较为复杂的一种类型 ,其解法主要包括特征值法和常系数线性微分方程的 解法等。特征值法是通过将方程转化为关于特征值和 特征向量的形式,然后求解特征值和特征向量;常系 数线性微分方程的解法则是在已知系数的情况下,通 过求解线性方程组得到微分方程的解。
02
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的重要体现。
导数的几何意义
在二维空间中,导数可以解释为函数图像在该点的切 线的斜率。
导数的物理意义
在物理中,导数可以用来描述物理量随时间的变化率, 如速度、加速度等。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、三角函ቤተ መጻሕፍቲ ባይዱ 等基本初等函数,需要熟记其
极限的运算与法则
总结词
掌握极限的四则运算和各种运算法则,如连续性、可导性、积分等。
详细描述
极限的四则运算包括加减法、乘除法等,各种运算法则如连续性(即函数在某点的极限值等于该点的函数值)、 可导性(即函数在某点的导数存在且等于该点的极限值)和积分(即对函数的积分结果仍存在极限)等。这些运 算法则和运算方法在高等数学中具有广泛的应用。
大学全册高等数学知识点(全套)
第 1 1 页页共 30 30 页页大学全册高等数学知识点(全套)极限与连续一. 数列函数: 1. 类型类型: (1)数列: *()n a f n =; *1()n na f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x £ì=í>î; *00()(),x x f x F x x x a ¹ì=í=î;* (4)复合(含f )函数: (),()y f u u x j == (5)隐式(方程): (,)0F x y = (6)参式(数一,二): ()()x x t y y t =ìí=î (7)变限积分函数: ()(,)xaF x f x t dt=ò (8)级数和函数(数一,三): (),n n n S x a x x ¥==ÎW å 2. 特征特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x Þ"--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数反函数与直接函数: 11()()()y f x x f y y f x --=Û=Þ=二. 极限性质: 1. 类型类型: *lim n n a ®¥; *lim ()x f x ®¥(含x ®±¥); *0lim ()x x x xf x ®(含0x x ±®) 2. 无穷小与无穷大无穷小与无穷大(注: 无穷量): 3. 未定型未定型: 000,,1,,0,0,0¥¥¥-¥×¥¥¥ 4. 性质性质: *有界性有界性, *保号性保号性, *归并性归并性第 2 2 页页 共 30 30 页页三. 常用结论: 四. 必备公式: 1. 等价无穷小等价无穷小: 当()0u x ®时, 2. 泰勒公式泰勒公式: (1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+; (3)341sin ()3!x x x o x =-+; (4)24511cos 1()2!4!x x x o x =-++; (5)22(1)(1)1()2!x x x o x a a a a -+=+++. 五. 常规方法: 前提前提: (1)准确判断准确判断0,,1,0M a ¥¥¥(其它如:00,0,0,¥-¥×¥¥); (2)变量代换(如:1t x=) 1. 抓大弃小抓大弃小()¥¥, 2. 无穷小与有界量乘积无穷小与有界量乘积 (M a ×) (注:1sin 1,x x£®¥) 3. 1¥处理(其它如:000,¥) 4. 左右极限左右极限(包括x ®±¥): (1)1(0)x x ®; (2)()xe x ®¥; 1(0)xe x ®; (3)分段函数: x , []x , max ()f x 5. 无穷小等价替换无穷小等价替换(因式中的无穷小)(注: 非零因子) 6. 洛必达法则洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比注意对比: 1ln lim 1x x x x ®-与0ln lim 1x x x x ®-) (2)幂指型处理: ()()ln ()()v x v x u x u x e =(如: 1111111(1)x x xx xe e e e -++-=-) 第 3 3 页页 共 30 30 页页 (3)含变限积分; (4)不能用与不便用 7. 泰勒公式泰勒公式(皮亚诺余项): 处理和式中的无穷小处理和式中的无穷小处理和式中的无穷小 8. 极限函数极限函数: ()lim (,)n f x F x n ®¥=(Þ分段函数) 六. 非常手段非常手段 1. 收敛准则收敛准则: (1)()lim ()n x a f n f x ®+¥=Þ (2)双边夹: *n n n b a c ££, *,?n n b c a ® (3)单边挤: 1()n n a f a += *21?a a ³ *?n a M £ *'()0?f x > 2. 导数定义导数定义(洛必达?): 0lim'()x ff x x®= 3. 积分和积分和: 10112lim [()()()]()n nf f f f x dx n n nn ®¥+++=ò, 4. 中值定理中值定理: lim[()()]lim '()x x f x a f x a f x ®+¥®+¥+-= 5. 级数和级数和(数一三): (1)1n n a ¥=å收敛lim 0nn a ®¥Þ=, (如2!lim nnn n n ®¥) (2)121lim()n n n n a a a a ¥®¥=+++=å, (3){}n a 与11()n n n a a ¥-=-å同敛散同敛散七. 常见应用: 1. 无穷小比较无穷小比较(等价,阶): *(),(0)?nf x kx x ® (1)(1)()(0)'(0)(0)0,(0)n n f f ffa -=====Û()()!!n nna a f x x x x n n a =+ (2)0()x xn f t dt kt dtòò 2. 渐近线渐近线(含斜): (1)()lim ,lim[()]x x f x a b f x ax x®¥®¥==-()f x ax b a Þ++第 4 4 页页 共 30 30 页页 (2)()f x ax b a =++,(10x®) 3. 连续性连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质上连续函数性质 1. 连通性连通性: ([,])[,]f a b m M = (注:01l "<<, “平均”值:0()(1)()()f a f b f x l l +-=) 2. 介值定理介值定理: (附: 达布定理) (1)零点存在定理: ()()0f a f b <0()0f x Þ=(根的个数); (2)()0(())'0x a a f x f x dx =Þ=ò. 第二讲:导数及应用(一元)(含中值定理)一. 基本概念: 1. 差商与导数差商与导数: '()f x =0()()lim x f x x f x x®+-; 0'()f x =000()()lim x x f x f x x x ®-- (1)0()(0)'(0)lim x f x f f x ®-= (注:0()lim (x f x A f x ®=连续)(0)0,'(0)f f A Þ==) (2)左右导: ''00(),()f x f x -+; (3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+Þ= (1)可微Û可导; (2)比较,f df D 与"0"的大小比较(图示); 二. 求导准备: 1. 基本初等函数求导公式基本初等函数求导公式; (注: (())'f x ) 2. 法则法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤): 第 5 5 页页 共 30 30 页页 1. 定义导定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()lim h f x h f x h h®+-- (注: 00()(),x x F x f x x x a ¹ì=í=î, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导初等导(公式加法则): (1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xa F x f t dt =òò, 求:'()F x (注: ((,))',((,))',(())'xbba a a f x t dt f x t dt f t dt òòòòòò) (3)0102(),()x x f x y x x f x <ì=í³î,求''00(),()f x f x -+及0'()f x (待定系数) 3. 隐式隐式((,)0f x y =)导: 22,dy d ydx dx (1)存在定理; (2)微分法(一阶微分的形式不变性). (3)对数求导法. 4. 参式导参式导(数一,二): ()()x x t y y t =ìí=î, 求:22,dy d ydx dx 5. 高阶导高阶导()()n f x 公式: 注: ()(0)n f 与泰勒展式: 2012()nnf x a a x a x a x =+++++()(0)!n nf a n Þ=四. 各类应用: 1. 斜率与切线斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线) 2. 物理物理: (相对相对)变化率-速度; 3. 曲率曲率(数一二): 23"()(1'())f x f x r =+(曲率半径, 曲率中心, 曲率圆) 4. 边际与弹性边际与弹性(数三): (附: 需求, 收益, 成本, 利润)第 6 6 页页 共 30 30 页页五. 单调性与极值(必求导) 1. 判别判别(驻点0'()0f x =): (1) '()0()f x f x ³Þ; '()0()f x f x £Þ; (2)分段函数的单调性分段函数的单调性 (3)'()0f x >Þ零点唯一; "()0f x >Þ驻点唯一(必为极值,最值). 2. 极值点极值点: (1)表格('()f x 变号); (由0002'()'()''()lim 0,lim 0,lim 00xx x x x x f x f x f x x x x x ®®®¹¹¹Þ=的特点) (2)二阶导(0'()0f x =) 注(1)f 与',"f f 的匹配('f 图形中包含的信息); (2)实例: 由'()()()()f x x f x g x l +=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明不等式证明(()0f x ³) (1)区别: *单变量与双变量单变量与双变量? *[,]x a b Î与[,),(,)x a x Î+¥Î-¥+¥? (2)类型: *'0,()0f f a ³³; *'0,()0f f b £³ (3)注意: 单调性Å端点值Å极值Å凹凸性. (如: max ()()f x M f x M £Û=) 4. 函数的零点个数函数的零点个数: 单调Å介值介值 六. 凹凸与拐点(必求导!): 1. "y Þ表格; (0"()0f x =) 2. 应用应用: (1)泰勒估计泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论结论: ()()'()()0F b F a F f x x =Þ==第 7 7 页页 共 30 30 页页 2. 辅助函数构造实例辅助函数构造实例: (1)()f x Þ()()x a a F x f t dt=ò (2)'()()()'()0()()()f g f g F x f x g x x x x x +=Þ= (3)()'()()()'()0()()f x fg f g F x g x x x x x -=Þ= (4)'()()()0f f x l x x +=Þ()()()x dxF x e f x l ò=; 3. ()()0()n ff x x =Û有1n +个零点(1)()n fx -Û有2个零点个零点 4. 特例特例: 证明()()n f a x =的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定) 5. 注: 含12,x x 时,分家!(柯西定理) 6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b "Î,[,]a b x $Î,使:'()f c x = 八. 拉格朗日中值定理拉格朗日中值定理 1. 结论结论: ()()'()()f b f a f b a x -=-; (()(),'()0a b j j x j x <Þ$'>) 2. 估计估计: '()f f x x =九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x x =+-+-+-; 2. 应用应用: 在已知()f a 或()f b 值时进行积分估计值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学 一. 基本概念: 1. 原函数原函数()F x : (1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+ò第 8 8 页页 共 30 30 页页 注(1)()()x aF x f t dt=ò(连续不一定可导); (2)()()()()xx aax t f t dt f t dt f x -ÞÞòò (()f x 连续) 2. 不定积分性质不定积分性质: (1)(())'()f x dx f x =ò; (())()d f x dx f x dx =ò (2)'()()f x dx f x c =+ò; ()()df x f x c=+ò二. 不定积分常规方法 1. 熟悉基本积分公式熟悉基本积分公式熟悉基本积分公式 2. 基本方法基本方法: 拆(线性性) 3. 凑微法凑微法(基础): 要求巧要求巧,简,活(221sin cos x x =+) 如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2dxd x x = 4. 变量代换变量代换: (1)常用(三角代换,根式代换,倒代换): 1sin ,,,1xx t ax b t t e t x =+==+= (2)作用与引伸(化简): 21x x t ±-= 5. 分部积分分部积分(巧用): (1)含需求导的被积函数(如ln ,arctan ,()xaxxf t dtò); (2)“反对幂三指”: ,ln ,n axnx e dxxxdxòò (3)特别: ()xf x dxò (*已知()f x 的原函数为()F x ; *已知已知'()()f x F x =) 6. 特例特例: (1)11sin cos sin cos a x b x dx a x b x ++ò; (2)(),()sin kx p x e dx p x axdxòò快速法; (3)()()n v x dx u x ò 三. 定积分: 1. 概念性质概念性质: (1)积分和式(可积的必要条件:有界, 充分条件:连续) 第 9 9 页页 共 30 30 页页 (2)几何意义(面积,对称性,周期性,积分中值) (3)附: ()()b a f x dx M b a £-ò, ()()()bba af xg x dx Mg x dx £òò) (4)定积分与变限积分, 反常积分的区别联系与侧重反常积分的区别联系与侧重 2: 变限积分变限积分()()xa x f t dt F =ò的处理(重点) (1)f 可积ÞF 连续, f 连续ÞF 可导可导 (2)(())'xa f t dt ò()f x =; (()())'()xx aax t f t dt f t dt-=òò; ()()()xa f x dt x a f x =-ò (3)由函数()()xaF x f t dt=ò参与的求导, 极限, 极值, 积分(方程)问题问题 3. N L -公式: ()()()ba f x dx Fb F a =-ò(()F x 在[,]a b 上必须连续!) 注: (1)分段积分分段积分, 对称性(奇偶), 周期性周期性 (2)有理式, 三角式, 根式根式 (3)含()ba f t dt ò的方程. 4. 变量代换变量代换: ()(())'()ba f x dxf u t u t dt ba=òò (1)00()()()aaf x dx f a x dx x a t =-=-òòòò, (2)0()()()[()()]a a aa af x dx f x dx x t f x f x dx--=-=-=+-òòò (如:4411sin dx xpp -+ò) (3)2201sin nn n n I xdx I n p--==ò, (4)2200(sin )(cos )f x dxf x dx pp=òò; 200(sin )2(sin )f x dxf x dx pp=òò, (5)00(sin )(sin )2xf x dx f x dx p pp =òò, 5. 分部积分分部积分分部积分 (1)准备时“凑常数” (2)已知'()f x 或()xaf x =ò时, 求()baf x dx ò 6. 附: 三角函数系的正交性: 第 10 10 页页 共 30 30 页页四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +¥+¥-¥-¥òòò (()f x 连续) (2)()ba f x dx ò: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断) 2. 敛散; 3. 计算: 积分法积分法ÅN L -公式Å极限(可换元与分部) 4. 特例: (1)11p dx x +¥ò; (2)101pdx xò 五. 应用: (柱体侧面积除外柱体侧面积除外) 1. 面积面积, (1)[()()];b a S f x g x dx=-ò (2)1()dcS f y dy -=ò; (3)21()2S r d b aq q =ò; (4)侧面积:22()1'()b aS f x f x dx p =+ò 2. 体积体积: (1)22[()()]b x a V f x g x dx p =-ò; (2)12[()]2()dby caV f y dyxf x dx p p-==òò (3)0x x V =与0y y V = 3. 弧长弧长: 22()()ds dx dy =+ (1)(),[,]y f x x a b =Î 21'()bas fx dx =+ò (2)12(),[,]()x x t t t t y y t =ìÎí=î 2122'()'()t t s x t y t dt =+ò (3)(),[,]r r q q a b =Î: 22()'()s r r d baq q q=+ò 4. 物理物理(数一,二)功,引力,水压力,质心, 5. 平均值平均值(中值定理): (1)1[,]()ba f ab f x dx b a =-ò; (2)0()[0)lim xx f t dt f x®+¥+¥=ò, (f 以T 为周期:0()Tf t dt f T=ò) 第 11 11 页页 共 30 30 页页 第四讲: 微分方程一. 基本概念基本概念 1. 常识常识: 通解, 初值问题与特解(注: 应用题中的隐含条件) 2. 变换方程变换方程: (1)令()'""x x t y Dy =Þ=(如欧拉方程) (2)令(,)(,)'u u x y y y x u y =Þ=Þ(如伯努利方程) 3. 建立方程建立方程(应用题)的能力的能力 二. 一阶方程: 1. 形式形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b = 2. 变量分离型变量分离型: '()()y f x g y = (1)解法: ()()()()dyf x dx G y F x Cg y =Þ=+òò (2)“偏”微分方程: (,)zf x y x ¶=¶; 3. 一阶线性一阶线性(重点): '()()y p x y q x += (1)解法(积分因子法): 0()01()[()()]()xx p x dxxx M x ey M x q x dx y M x ò=Þ=+ò (2)变化: '()()x p y x q y +=; (3)推广: 伯努利(数一) '()()y p x y q x y a+= 4. 齐次方程齐次方程: '()yy x=F (1)解法: '(),()y du dx u u xu ux u u x =Þ+=F =F -òò (2)特例: 111222a xb yc dy dx a x b y c ++=++第 12 12 页页 共 30 30 页页 5. 全微分方程全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y¶¶=¶¶ 6. 一阶差分方程一阶差分方程(数三): 1*0()()xx x x xn x xy ca y ay b p x y x Q x b+=ì-=Þí=î 三. 二阶降阶方程二阶降阶方程 1. "()y f x =: 12()y F x c x c =++ 2. "(,')y f x y =: 令'()"(,)dp y p x y f x p dx=Þ== 3. "(,')y f y y =: 令'()"(,)dp y p y y pf y p dy=Þ==四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构通解结构: (1)齐次解: 01122()()()y x c y x c y x =+ (2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c l l ++= (2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程. 3. 欧拉方程欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =Þ=-=五. 应用(注意初始条件): 1. 几何应用几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距切线和法线的截距 2. 积分等式变方程积分等式变方程(含变限积分); 可设可设 ()(),()0xa f x dx F x F a ==ò第 13 13 页页 共 30 30 页页 3. 导数定义立方程导数定义立方程: 含双变量条件()f x y +=的方程的方程 4. 变化率变化率(速度) 5. 22dv d x F ma dt dt=== 6. 路径无关得方程路径无关得方程(数一): Q Px y ¶¶=¶¶ 7. 级数与方程级数与方程: (1)幂级数求和; (2)方程的幂级数解法:21201,(0),'(0)y a a x a x a y a y =+++== 8. 弹性问题弹性问题(数三) 第五讲: 多元微分与二重积分一. 二元微分学概念二元微分学概念 1. 极限极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y D =++D =+D =+ (2)lim ,lim ,limy x x y f f f f f xyD D D ==D D (3)22,lim()()x y f df f x f y df x y D -++ (判别可微性判别可微性) 注: (0,0)点处的偏导数与全微分的极限定义: 2. 特例特例: (1)22(0,0)(,)0,(0,0)xyx y f x y ì¹ï+=íï=î: (0,0)点处可导不连续; 第 14 14 页页 共 30 30 页页 (2)22(0,0)(,)0,(0,0)xy f x y x y ì¹ï=+íï=î: (0,0)点处连续可导不可微; 二. 偏导数与全微分的计算: 1. 显函数一显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)x x y z ; (3)含变限积分含变限积分 2. 复合函数的一复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y = 熟练掌握记号''"""12111222,,,,f f f f f 的准确使用的准确使用 3. 隐函数隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =ìí=î (存在定理) (2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入的及时代入 (4)会变换方程. 三. 二元极值(定义?); 1. 二元极值二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别) 2. 条件极值条件极值(拉格朗日乘数法) (注: 应用) (1)目标函数与约束条件: (,)(,)0z f x y x y j =Å=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y l lj =+, 求驻点即可. 3. 有界闭域上最值有界闭域上最值(重点). (1)(,){(,)(,)0}z f x y M D x y x y j =ÅÎ=£ (2)实例: 距离问题距离问题第 15 15 页页 共 30 30 页页四. 二重积分计算: 1. 概念与性质概念与性质(“积”前工作): (1)Dd s òò, (2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称字母轮换对称; *重心重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶奇偶 2. 计算计算(化二次积分): (1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用极坐标使用(转换): 22()f x y + 附: 222:()()D x a y b R -+-£; 2222:1x yD a b+£; 双纽线222222()()x y a x y +=- :1D x y +£ 4. 特例特例: (1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +òò, 且已知D 的面积D S 与重心(,)x y 5. 无界域上的反常二重积分无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L s WÞW W G S ò): 1. “尺寸”: (1)D Dd S s Ûòò; (2)曲面面积(除柱体侧面); 2. 质量质量, 重心(形心), 转动惯量; 3. 为三重积分为三重积分, 格林公式, 曲面投影作准备. 第六讲: 无穷级数(数一,三) 一. 级数概念级数概念第 16 16 页页 共 30 30 页页 1. 定义定义: (1){}n a , (2)12n n S a a a =+++; (3)l im lim n n S ®¥ (如1(1)!n nn ¥=+å) 注: (1)lim nn a ®¥; (2)nq å(或1n a å); (3)“伸缩”级数:1()n n a a +-å收敛{}n a Û收敛. 2. 性质性质: (1)收敛的必要条件: lim 0n n a ®¥=; (2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +®®Þ®Þ®; 二. 正项级数正项级数 1. 正项级数正项级数: (1)定义: 0n a ³; (2)特征: n S ; (3)收敛n S M Û£(有界) 2. 标准级数标准级数: (1)1p n å, (2)ln kn n a å, (3)1ln kn n å 3. 审敛方法审敛方法: (注:222ab a b £+,ln ln baa b=) (1)比较法(原理):np ka n(估计), 如1()nf x dx ò; ()()P n Q n å (2)比值与根值: *1lim n n n u u+®¥ *lim nn n u ®¥ (应用: 幂级数收敛半径计算) 三. 交错级数(含一般项): 1(1)n n a +-å(0n a >) 1. “审”前考察: (1)0?n a > (2)0?n a ®; (3)绝对(条件)收敛? 注: 若1lim 1n n n a a r +®¥=>,则nu å发散发散 2. 标准级数标准级数: (1)11(1)n n +-å; (2)11(1)n pn +-å; (3)11(1)ln n pn +-å 3. 莱布尼兹审敛法莱布尼兹审敛法(收敛?) (1)前提: na å发散; (2)条件: ,0nn a a ®; (3)结论: 1(1)n n a +-å条件收敛. 第 17 17 页页 共 30 30 页页 4. 补充方法补充方法: (1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +®®Þ®Þ®. 5. 注意事项注意事项: 对比对比对比 na å; (1)nna -å; na å; 2n a å之间的敛散关系之间的敛散关系四. 幂级数: 1. 常见形式常见形式: (1)nn a x å, (2)0()n n a x x -å, (3)20()nn a x x -å 2. 阿贝尔定理阿贝尔定理: (1)结论: *x x =敛*0R x x Þ³-; *x x =散*0R x x Þ£- (2)注: 当*x x =条件收敛时*R x x Þ=- 3. 收敛半径收敛半径,区间,收敛域(求和前的准备) 注(1),nn n n a na x x n åå与n n a x å同收敛半径同收敛半径 (2)nn a x å与20()nn a x x -å之间的转换之间的转换 4. 幂级数展开法幂级数展开法: (1)前提: 熟记公式(双向,标明敛域) (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx fÞ=+ò (4)考察原函数: 0()()xg xf x dxò()'()f x g x Þ= 5. 幂级数求和法幂级数求和法(注: *先求收敛域, *变量替换变量替换): (1)(),S x =+åå (2)'()S x =,(注意首项变化) (3)()()'S x =å, (4)()"()"S x S x Þ的微分方程的微分方程第 18 18 页页 共 30 30 页页 (5)应用:()(1)n n n n a a x S x a SÞ=Þ=ååå. 6. 方程的幂级数解法方程的幂级数解法方程的幂级数解法 7. 经济应用经济应用(数三): (1)复利: (1)nA p +; (2)现值: (1)nA p -+ 五. 傅里叶级数(数一): (2T p =) 1. 傅氏级数傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ¥==++å 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x Þ(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdxa f x dx nb f x nxdx ppp pp p p pp ---ì=ïï==íï=ïîòòò 4. 题型题型: (注: ()(),?f x S x x =Î) (1)2T p =且(),(,]f x x p p =Î-(分段表示) (2)(,]x p p Î-或[0,2]x p Î (3)[0,]x p Î正弦或余弦正弦或余弦 *(4)[0,]x p Î(T p =) *5. 2T l = 6. 附产品附产品: ()f x Þ01()cos sin 2n n n a S x a nx b nx ¥==++å 第七讲: 向量,偏导应用与方向导(数一) 一. 向量基本运算向量基本运算第 19 19 页页 共 30 30 页页 1. 12k a kb +; (平行b a l Û=) 2. a ; (单位向量(方向余弦) 1(cos ,cos ,cos )aaaa b g =) 3. a b ×; (投影:()a a b b a ×=; 垂直垂直:0a b a b ^Û×=; 夹角夹角:(,)a b ab a b ×=) 4. a b ´; (法向:,n a b a b=´^; 面积面积:S a b =´) 二. 平面与直线平面与直线 1.平面平面P (1)特征(基本量): 0000(,,)(,,)M x y z n A B C Å= (2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D p -+-+-=Þ+++= (3)其它: *截距式截距式1x y za b c++=; *三点式三点式三点式 2.直线直线L (1)特征(基本量): 0000(,,)(,,)M x y z s m n p Å= (2)方程(点向式): 000:x x y y z z L m n p ---== (3)一般方程(交面式): 1111222200A x B y C z D A x B y C z D +++=ìí+++=î (4)其它: *二点式二点式; *参数式参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-ìï=+-Îíï=+-î) 3. 实用方法实用方法: (1)平面束方程: 11112222:()0A x B y C z D A x B y C z D p l +++++++=第 20 20 页页 共 30 30 页页 (2)距离公式: 如点如点0(,)M x y 到平面的距离000222Ax By Cz Dd A B C+++=++ (3)对称问题; (4)投影问题. 三. 曲面与空间曲线(准备) 1. 曲面曲面曲面 (1)形式S : (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F a b g =Þ (或(,1)x y n z z =--) 2. 曲线曲线曲线 (1)形式():()()x x t y y t z z t =ìïG =íï=î, 或(,,)0(,,)0F x y z G x y z =ìí=î; (2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =´) 3. 应用应用应用 (1)交线, 投影柱面与投影曲线; (2)旋转面计算: 参式曲线绕坐标轴旋转参式曲线绕坐标轴旋转; (3)锥面计算. 四. 常用二次曲面常用二次曲面 1. 圆柱面圆柱面: 222x y R += 2. 球面球面: 2222x y z R ++= 变形: 2222x y R z +=-, 222()z R x y =-+, 3. 锥面锥面: 22z x y =+ 变形: 222x y z +=, 22z a x y =-+ 4. 抛物面抛物面: 22z x y =+, 第 21 21 页页 共 30 30 页页 变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面双曲面: 2221x y z +=± 6. 马鞍面马鞍面: 22z x y =-, 或z xy = 五. 偏导几何应用偏导几何应用 1. 曲面曲面曲面 (1)法向: (,,)0(,,)x y z F x y z n F F F =Þ=, 注: (,)(,1)x y z f x y n f f =Þ=- (2)切平面与法线: 2. 曲线曲线曲线 (1)切向: (),(),()(',',')x x t y y t z z t s x y z ===Þ= (2)切线与法平面切线与法平面 3. 综合综合: :G 00F G =ìí=î , 12s n n=´ 六. 方向导与梯度(重点) 1. 方向导方向导(l 方向斜率): (1)定义(条件): (,,)(cos ,cos ,cos )l m n p a b g =Þ (2)计算(充分条件:可微): cos cos cos x y z uu u u la b g ¶=++¶ 附: 0(,),{cos ,sin }z f x y l q q==cos sin x y z f f lq q ¶Þ=+¶ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lq q q q¶=++¶ 2. 梯度梯度(取得最大斜率值的方向) G : (1)计算: (2)结论结论()b 取l G =为最大变化率方向; 第 22 22 页页 共 30 30 页页 ()c 0()G M 为最大方向导数值. 第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Wòòò) 1. W 域的特征(不涉及复杂空间域): (1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心关于重心 (2)投影法: 22212{(,)}(,)(,)xyD x y x y R z x y z z x y =+£Å££ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+£Å££ (4)其它: 长方体长方体, 四面体四面体, 椭球椭球椭球 2. f 的特征: (1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法选择最适合方法: (1)“积”前: *dvWòòò; *利用对称性(重点) (2)截面法(旋转体): ()baD z I dzfdxdy=òòò(细腰或中空, ()f z , 22()f x y +) (3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdyfdz=òòò (4)球坐标(球或锥体): 220sin ()RI ddf d paqj jr r=×××òòò, (5)重心法(f ax by cz d =+++): ()I ax by cz d V W =+++ 4. 应用问题应用问题: (1)同第一类积分: 质量质量, 质心, 转动惯量, 引力引力 (2)Gauss 公式公式 二. 第一类线积分(Lfds ò) 1. “积”前准备: 第 23 23 页页 共 30 30 页页 (1)Lds L =ò; (2)对称性; (3)代入“L ”表达式表达式 2. 计算公式计算公式: 22()[,]((),())'()'()()b a L x x t t a b fds f x t y t x t y t dt y y t =ìÎÞ=+í=îòò 3. 补充说明补充说明: (1)重心法: ()()Lax by c ds ax by c L ++=++ò; (2)与第二类互换: LLA ds A drt ×=×òò 4. 应用范围应用范围应用范围 (1)第一类积分第一类积分 (2)柱体侧面积柱体侧面积 (),Lz x y ds ò三. 第一类面积分(fdS åòò) 1. “积”前工作(重点): (1)dS S=S òò; (代入代入:(,,)0F x y z S =) (2)对称性(如: 字母轮换, 重心) (3)分片分片 2. 计算公式计算公式: (1)22(,),(,)(,,(,))1xyxy x yD z z x y x y D I f x y z x y z z dxdy =ÎÞ=++òò (2)与第二类互换: A ndSA d S S S×=×òòòò四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +ò (其中其中L 有向) 1. 直接计算直接计算: ()()x x t y y t =ìí=î,2112:['()'()]t t t t t I Px t Qy t dt®Þ=+ò 常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: 第 24 24 页页 共 30 30 页页 (1)()LDQ P Pdx Qdy dxdy xy¶¶+=-¶¶òòò; (2)()L A B ®ò: *P Q y y ¶¶=Þ¶¶换路径; *P Q y y ¶¶¹Þ¶¶围路径围路径 (3)Lò(x y Q P =但D 内有奇点) *LL =òò(变形) 3. 推广推广(路径无关性):P Qy y ¶¶=¶¶ (1)Pdx Qdy du +=(微分方程)()BA L AB u ®Û=ò(道路变形原理) (2)(,)(,)LP x y dx Q x y dy +ò与路径无关(f 待定): 微分方程微分方程. 4. 应用应用应用 功(环流量):IF dr G=×ò (G 有向t ,(,,)F P Q R =,(,,)d r ds dx dy dz t ==) 五. 第二类曲面积分: 1. 定义定义: Pdydz Qdzdx RdxdyS ++òò, 或(,,)R x y z dxdySòò (其中其中S 含侧) 2. 计算计算: (1)定向投影(单项): (,,)R x y z dxdySòò, 其中:(,)z z x y S =(特别:水平面); 注: 垂直侧面, 双层分隔双层分隔 (2)合一投影(多项,单层): (,,1)x y n z z =-- (3)化第一类(S 不投影): (cos ,cos ,cos )n a b g = 3. Gauss 公式及其应用: (1)散度计算: P Q R div A x y z¶¶¶=++¶¶¶ (2)Gauss 公式: S 封闭外侧, W 内无奇点内无奇点 (3)注: *补充“盖”平面:0SS +òòòò; *封闭曲面变形Sòò(含奇点) 4. 通量与积分通量与积分: 第 25 25 页页 共 30 30 页页A d S åF =×òò (S 有向n ,(),,A P QR =,(,,)d S ndS dydz dzdx dxdy ==) 六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz G++ò 1. 参数式曲线参数式曲线G : 直接计算(代入) 注(1)当0rot A =时, 可任选路径; (2)功(环流量):IF drG=×ò 2. Stokes 公式: (要求: G 为交面式(有向), 所张曲面所张曲面å含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z¶¶¶=Ñ´=´¶¶¶ (2)交面式(一般含平面)封闭曲线: 00F G =ìÞí=î同侧法向{,,}x y z n F FF =或{,,}x y zG G G ; (3)Stokes 公式(选择): ()A drA ndSG å×=Ñ´×òòò (a )化为Pdydz Qdzdx RdxdyS++òò; (b )化为(,,)R x y z dxdySòò; (c )化为fdS åòò高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xay=),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A ∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。
记作A ∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。
简称为集合A的补集,记作C U A。
即C U A={x|x∈U,且x A}。
集合中元素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。
例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的问题:1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。
学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。
⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。
试判断B是不是A的子集?是否存在实数a使A =B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b (a,b)半开区间a<x≤b或a≤x<b (a,b]或[a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
一般用横坐标表示自变量,纵坐标表示因变量。
例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:3、函数的简单性态⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
⑶、函数的奇偶性如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
⑷、函数的周期性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
4、反函数⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。
⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。
如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。
即是:函数在此要求下严格增(减).⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。
如右图所示:5、复合函数复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使都没有定义。
6、初等函数⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。
令a=m/na):当m为偶数n为奇数时,y是偶函数;b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-∞,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。