一次函数、反比例函数、二次函数的综合题
二次函数综合应用题(有答案)
函数综合应用题题目分析及题目对学生的要求1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。
需要注意的是:(1) 不能忘记写自变量的取值范围(需要用的前提下)(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。
2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。
(一般式化为定点式)最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。
(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。
3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。
推荐思路:画出不等式左右两边的图象,结合函数图象求出x 的取值范围。
备选思路一:先将不等号看做等号,求出x 的取值,再结合图象考虑将等号还原为不等号后x 的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。
这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。
一、求利润的最值1. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890, 当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
二次函数综合练习题(含答案)
二次函数综合练习题一、选择题1.〔2013,6,3分〕二次函数y =x 2-3x +m 〔m 为常数〕的图象与x 轴的一个交点为(1,0),那么关于x 的一元二次方程x 2-3x +m =0的两实数根是〔 〕. A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=3 【答案】B .【解析】∵二次函数y =x 2-3x +m 的图象与x 轴的一个交点为〔1,0〕,∴0=12-3+m ,解得m =2,∴二次函数为y =x 2-3x +2.设y =0,那么x 2-3x +2=0.解得x 2=1,x 2=2,这就是一元二次方程x 2-3x +m =0的两实数根.所以应选B .【方法指导】考察一元二次方程的根、二次函数图象与x 轴交点的关系.当b 2-4ac ≥0时,二次函数y =ax 2+bx+c 的图象与x 轴的两个交点的横坐标是一元二次方程ax 2+bx+c =0的两个根.【易错警示】因审题不严,容易错选;或因解方程出错而错选.2.〔2013,8,3分〕方程0132=-+x x 的根可视为函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,那么方程3210x x +-=的实根0x 所在的围是〔 〕. A .4100<<x B .31410<<x C .21310<<x D .1210<<x 【答案】C .【解析】首先根据题意推断方程x 3+2x -1=0的实根是函数y =x 2+3与xy 1=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x -1=0的实根x 0所在围.解:依题意得方程x 3+2x -1=0的实根是函数y =x 2+2与xy 1=的图象交点的横坐标,这两个函数的图象如下图,它们的交点在第一象限.当x =14时,y =x 2+2=2116,1y x ==4,此时抛物线的图象在反比例函数下方; 当x =13时,y =x 2+2=219,1y x ==3,此时抛物线的图象在反比例函数下方;当x =12时,y =x 2+2=214,1y x==2,此时抛物线的图象在反比例函数上方;当x =1时,y =x 2+2=3,1y x==1,此时抛物线的图象在反比例函数上方.所以方程3210x x +-=的实根0x 所在的围是21310<<x .所以应选C .【方法指导】此题考察了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点〞,还要善于分析各图象的变化趋势.【易错警示】不会得出函数解析式,不会观察图象而出错.3. 〔2013市(A ),12,4分〕一次函数y =ax +b 〔a ≠0〕、二次函数y =ax 2+bx 和反比例函数y =kx(k ≠0)在同一直角坐标系中的图象如下图,A 点的坐标为(-2,0).那么以下结论中,正确的选项是〔〕A .b =2a +kB .a =b +kC .a >b >0D .a >k >0 【答案】D .【解析】∵一次函数与二次函数的图象交点A 的坐标为〔-2,0〕,∴-2a +b =0,∴b =2a . 又∵抛物线开口向上,∴a >0,那么b >0.而反比例函数图象经过第一、三象限,∴k >0. ∴2a +k >2a ,即b <2a +k .故A 选项错误. 假设B 选项正确,那么将b =2a 代入a =b +k ,得a =2a +k ,a =-k .又∵a >0,∴-k >0,即k <0,这与k >0相矛盾,∴a =b +k 不成立.故B 选项错误.再由a >0,b =2a ,知a ,b 两数均是正数,且a <b ,∴b >a >0.故C 选项错误. 这样,就只有D 选项正确.【方法指导】此题考察一次函数、反比例函数、二次函数的图象,属于图象共存型问题.解决这类问题的关键是熟练掌握这三类函数的图象与性质,能根据图象所在象限的位置准确判断出各系数的符号.上面解法运用的是排除法,至于D 为何正确,可由二次函数y =ax 2+bx 与反比例函数y =k x (k ≠0)的图象,知当x =-2b a =-22aa=-1时,y =-k >-24b a =-244a a =-a ,即k <a .又因为a >0,k >0,所以a >k >0.【易错警示】二次函数a 、b 、c 的符号确实定与函数图象的关系混淆不清. 4. 〔2013,7,4分〕抛物线1)3(22+-=x y 的顶点坐标是〔 〕 A .(3,1) B .(3,-1)C .(-3,1)D .(-3,-1)【答案】:A【解析】抛物线2()y a x h k =-+的顶点是〔h ,k 〕【方法指导】求一个抛物线的顶点可以先把二次函数配方,再得到顶点坐标;也可以利用顶点公式24(,)24b ac b a a--求顶点坐标。
函数选填压轴题(含一次函数、二次函数、反比例函数)—2024年中考数学抢分秘籍(通用)(解析版)
函数选填压轴题(含一次函数、二次函数、反比例函数等综合问题)目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)一次函数、二次函数、反比例函数在中考选择题、填空题考场中是热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分.1.从考点频率看,一次函数、二次函数、反比例函数图象和性质是高频考点、必考点,所以必须提高对函数图象和性质理解和掌握的能力.2.从题型角度看,以选择题、填空题最后一题为主,分值3分左右,着实不少!易错点一 反比例函数求K 值未考虑图象所在的象限【例1】(2024·湖南长沙·三模)如图,点M 是反比例函数(0)ky x x=<图像上的一点,过点M 作MN x ⊥轴于点N ,点P 在y 轴上.若MNP △的面积是3,则k = .【答案】6−【分析】本题考查反比例函数k 值的几何意义,连接OM ,根据平行线间的距离处处相等,得到2MONMPNkSS==,结合双曲线过第二象限,求出k 值即可.【详解】解:连接OM ,∵MN x ⊥, ∴MN OP ∥, ∴3MONMPNSS==,∵点M 是反比例函数(0)ky x x =<图像上的一点,∴32k =, ∴6k =,∵双曲线过第二象限, ∴6k =−; 故答案为:6−.【例2】 (2024·安徽合肥·一模)如图,已知反比例函数ky x=(0k <)的图象经过Rt OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若AOC 的面积为9,则k 的值为 .【答案】6−【分析】本题考查的是反比例函数图象与性质,设2,2AB a OB b ==,则()2,2A b a −,()2,C b m −,结合图象经过Rt OAB 斜边OA 的中点D ,得到(),D b a −,根据点D ,点C 都在ky x =图象上,得到2k bm ba =−=−,得到2a m =,继而得到13222AC AB CB a a a =−=−=,结合AOC 的面积为9,得到132922a b ⨯⨯=,计算得6ab =,解答即可.【详解】设2,2AB a OB b ==,则()2,2A b a −,()2,C b m −,∵图象经过Rt OAB 斜边OA 的中点D , ∴(),D b a −,∵点D ,点C 都在ky x =图象上,∴2k bm ba =−=−, ∴2a m =,∴13222AC AB CB a a a=−=−=, ∵AOC 的面积为9, ∴132922a b ⨯⨯=,∴6ab =, ∴6k ba =−=−. 故答案为:6−.【例3】 (2024·辽宁沈阳·模拟预测)如图,Rt ABC △的边AC x ∥轴,90,BAC BC ∠=︒的延长线过原点O ,且2BC OC =,反比例函数()0ky x x=>的图象经过点A ,若Rt ABC △的面积是2,则k 的值为 .【答案】3【分析】本题考查了反比例函数与几何的综合.延长BA 交x 轴于点D ,证明BAC BDO ∽△△,求得相似比为23,利用相似比求得Rt DBO △的面积,利用等高的两个三角形求得Rt DAO △的面积,再利用比例系数k 的几何意义求解即可.【详解】解:延长BA 交x 轴于点D ,连接OA ,∵AC 平行于x 轴,90BAC ∠=︒, ∴BD x ⊥轴,∴BAC BDO ∽△△, ∵2BC OC =, ∴23BC BA BO BD ==, ∵Rt ABC △的面积是2,∴Rt DBO △的面积是229232⎛⎫÷= ⎪⎝⎭,Rt DAO △的面积是193322⨯=, ∴3232k =⨯=,故答案为:3.易错点二 一次函数、反比例函数、二次函数图象共存问题【例1】 (2024·安徽合肥·一模)已知反比例函数ky x=的图象与一次函数y x b =−+的图象如图所示,则函数2y x bx k =++的图象大致为( )A .B .C .D .【答案】A【分析】本题考查了一次函数、反比例函数、二次函数的图象和性质,先根据一次函数、反比例函数的图象得到k b 、的符号,进而由k b 、判断出抛物线与y 轴的交点位置、对称轴位置,又结合10a =>可知抛物线开口向上,据此即可求解,掌握一次函数、反比例函数、二次函数的图象和性质是解题的关键. 【详解】解:由反比例函数的图象可得,0k >,由一次函数图象与y 轴的交点在y 轴的正半轴上可得,0b >, ∵0k >,∴二次函数与y 轴的交点在y 轴的正半轴上, ∵抛物线的对称轴b x 02=−<,∴抛物线的对称轴位于y 轴的左侧, 又∵10a =>, ∴抛物线开口向上, 故选:A .【例2】 (2024·内蒙古呼和浩特·模拟预测)如图,在平面直角坐标系中,经过(0,6)A 的一次函数1y 的图象与经过(0,2)B 的一次函数2y 的图象相交于点C .若点C 的纵坐标为3,则函数12y y y =⋅的大致图象是( )A .B .C .D .【答案】C【分析】本题主要考查了函数图象判别,求一次函数解析式,解题的关键是设点()(),30C c c <,一次函数1y 的解析式为116y k x =+,一次函数2y 的解析式为222y k x =+,求出136y x c =−+,212y x c =+,然后再求出2122312y y x c =−+,最后进行判断即可.【详解】解:设点()(),30C c c <,一次函数1y 的解析式为116y k x =+,一次函数2y 的解析式为222y k x =+,把(),3C c 分别代入两个函数解析式得: 136ck =+,232ck =+,解得:13k c =−,21k c =,∴136y x c =−+,212y x c =+,∴21223136212y y x x x c c c ⎛⎫⎛⎫=−++=−+ ⎪⎪⎝⎭⎝⎭,∵230c −<, ∴2122312y y x c =−+的图象为开口向下,顶点为()0,12的抛物线, 所以C 选项符合题意. 故选:C .【例3】 (2024·安徽芜湖·一模)已知反比例函数()0ky k x=≠在第二象限内的图像与一次函数y ax b =+的图像如图所示,则函数21y ax bx k =−−+的图像可能为( )A .B .C .D .【答案】B【分析】本题考查的是一次函数、反比例函数和二次函数的图象,依据题意,由一次函数y ax b =+的图象经过第一、二、三象限,且与y 轴交于正半轴,则00a b ,,反比例函数()0ky k x =≠的图象经过第二、四象限,则0k <,从而函数21y ax bx k =−−+的图象开口向下,对称轴为直线0102bx k a −=−−+,,从而排除A 、D ,C ,故可得解.【详解】解:∵一次函数y ax b =+的图象经过第一、二、三象限,且与y 轴交于正半轴,则00a b ,,反比例函数()0ky k x =≠的图象经过第二、四象限,则0k <,∴函数21y ax bx k =−−+的图象开口向下,对称轴为直线01022b b x k a a −=−=−+,.∴综上,可得B 正确. 故选:B .易错点三 根据二次函数的图象讨论各系数a ,b ,c 有关式子正误【例1】 (2024·四川达州·模拟预测)二次函数2y ax bx c =++的图象如图所示,其对称轴为直线12x =−,且经过点(2,0)−,下列结论:①0abc <; ②0a b −=; ③点11(,)x y 和22(,)x y 在抛物线上,当1212x x >≥−时,12y y >;④不等式20ax bx c ++≥的解集是2x ≤−或32x ≥;⑤一元二次方程20cx bx a ++=的两根分别为112x =−,21x =.其中错误的个数有( )A .1个B .2个C .3个D .4个 【答案】B【分析】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程及不等式的关系.由抛物线对称轴为直线2bx a =−可判断①,由抛物线与x 轴的交点个数可判断②,由抛物线开口方向,对称轴及抛物线与y 轴交点位置可判断③,由抛物线经过(2,0)及抛物线的对称性可判断④,由根与系数关系可判断⑤.【详解】解:由图可知,抛物线开口向上,0a ∴>,抛物线对称轴为直线122b x a =-=-,0a b ∴=>,0a b ∴−=,故②正确;抛物线和y 轴交点在负半轴,0c ∴<, <0abc ∴,∴①正确;当1212x x >≥−时,两点都在对称石侧.图象部分.y 随x 增大而增大,12y y ∴>,∴③正确;不等式20ax bx c ++≥,抛物线在x 轴上方时,x 取值范围,而抛物线和x 轴交点为(2,0)−和(1,0),∴解集是2x ≤−或1x ≥; ∴④错误.20ax bx c ++=的两个根11x =,22x =−,∴121ba −=−=−,()122ac =⨯−=−,0a b c ++= 12b c ∴−=,2ac =−,20cx bx a ∴++=的两个根1x =,2x =,∴⑤错误.故选:B .【例2】 (2024·湖南永州·一模)如图,抛物线2y ax bx c =++的图像与x 轴相交于()2,0A −、()6,0B 两点,与y 轴相交于点C ,以下结论:①240b ac −>;②0abc >;③当0y >时,26x −<<;④0a b c ++<.正确的个数为( )A .4B .3C .2D .1【答案】B【分析】本题考查二次函数的开口,对称轴,与x 轴交点个数,自变量取值范围等知识.可借用数形结合的方法.【详解】①:图象与x 轴有两个交点∴240b ac −>∴①正确;②:图象开口向上0a ∴>对称轴b x 02a =−>0b ∴<图象与y 轴的交点在y 轴负半轴0c ∴< 0abc ∴>∴②正确;③:由图象可知,当0y <时,26x −<< ∴③不正确;④:由图象知,当1x =时,0y a b c =++< ∴④正确.故选:B .【例3】 (2024·陕西榆林·一模)在平面直角坐标系中,二次函数2(y ax bx c a b c =++、、为常数,且0)a ≠的图象如图所示,其对称轴为直线2x =,有以下结论:①0,0a b >>;②16430a b c ++>;③240ac b −<;④a 2b c 0−+> )A .1个B .2个C .3个D .4个【答案】C【分析】本题考查二次函数的图象和性质,解答关键是根据抛物线的位置确定待定字母的取值范围.根据二次函数的图象的位置,确定a 、b 、c 的符号,通过对称轴,与x 轴交点的位置确定各个选项的正确与错误即可.【详解】解:∵抛物线开口向上, ∴0a >,∵对称轴在y 轴的右侧, ∴a 、b 异号,∴0b <,故①错误, ∵对称轴为对称轴为直线22b x a ==−,,∴4b a =−,∵抛物线与y 轴交于正半轴, ∴0c >,∴16431616330a b c a a c c ++=−+=>, 故②正确;∵抛物线与x 轴交于两点,∴20ax bx c ++=有两个不相等的实数根, ∴240b ac −>, ∴240ac b −<,故③正确; ∵4b a =−,∴289a b c a a c a c −+=++=+ ∵0a >,0c >, ∴90a c +>, ∴a 2b c 0−+>, 故④正确;所以正确的个数有3个, 故答案为:C【例4】 (2024·四川成都·模拟预测)已知抛物线()20y ax bx c a =++≠的对称轴为直线=1x −,部分图象如图所示,给出下面4个结论:①24b ac >;②1230a b c −>;③82a c b +>;④若点()10.5,y −,()22,y −在抛物线()20y ax bx c a =++≠上,则12y y <.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【分析】本题考查了二次函数的图象和性质,利用数形结合的思想解决问题是关键.根据二次函数与一元二次方程的关系,即可判断①结论;根据二次函数系数与图象的关系,即可判断②结论;由抛物线图象可知,当1x =时,0y =,即可判断③结论;根据二次函数的增减性,即可判断④结论. 【详解】解:由图象可知,抛物线()20y ax bx c a =++≠与x 轴有两个交点,240b ac ∴−>,24b ac ∴>,①结论正确;抛物线开口向上,对称轴为直线=1x −,且与y 轴交点在负半轴, 0a ∴>,12ba −=−,0c <,20b a ∴=>,110a a −∴=>,20b >,30<c ,1230a b c −∴<,②结论错误;由函数图象可知,当1x =时,0y a b c =++=,3c a b a ∴=−−=−,828340a c b a a a a ∴+−=−−=>,82a c b ∴+>,③结论正确;∴抛物线()20y ax bx c a =++≠的对称轴为直线=1x −,∴点()10.5,y −离对称轴近,点()22,y −离对称轴远,12y y ∴<,④结论正确,∴正确的结论有3个,故选:C .题型一 反比例函数与特殊四边形【例1】(2024·山西大同·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的两边OA OC 、分别在x 轴、y 轴的正半轴上,反比例函数k y x=的图象与AB 相交于点M ,与BC 相交于点N ,若点B 的坐标为()4,2,MON 的面积是154,则k 的值为 .【答案】2【分析】本题主要考查了反比例函数的k 的值,求出点M 的坐标为44k ⎛⎫ ⎪⎝⎭,,点N 的坐标为,22k ⎛⎫ ⎪⎝⎭,根据154MONOCNOAMBMNOABC SS SSS=−−−=矩形进行计算即可.【详解】解:四边形OABC 是矩形,AB OC ∴=,OA BC =,∵B 点的坐标为()4,2,∴2,4AB OC BC AO ====,则点M 的坐标为44k ⎛⎫ ⎪⎝⎭,,点N 的坐标为,22k ⎛⎫ ⎪⎝⎭, ∴MON OCN OAM BMNOABC SS SSS=−−−矩形11115842222244k k k k ⎛⎫⎛⎫=−−−−⨯−=⎪ ⎪⎝⎭⎝⎭解得,2k = 故答案为:2.1.(2024·安徽合肥·一模)如图,菱形ABCD 的顶点B 在y 轴的正半轴上,C 在x 轴的正半轴上,A ,D 在第一象限,BD x ∥轴,反比例函数()0ky k x=≠的图象经过面积为2的菱形ABCD 的中心E ,交AB 于点F .(1)k 的值为 . (2)BFAB的值为 .【答案】 1【分析】本题考查反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,一次函数的性质. (1)由菱形的性质,得到BEC 的面积是12,而矩形BOCE 的面积是1,即可得到k 的值;(2)设点E 的坐标为1a a ⎛⎫ ⎪⎝⎭,,分别求得点A ,B 的坐标,再利用待定系数法求得直线AB 的解析式,联立求得点F 【详解】解:(1)四边形ABCD 是菱形,AC BD ∴⊥,BE DE =,AE CE =,BEC ∴的面积14=⨯菱形ABCD 的面积11242=⨯=,∵BE OC ∥,BO OC ⊥, ∴四边形BOCE 是矩形, ∴矩形BOCE 的面积12212BEC =⨯=⨯=的面积,k ∴的值是1.故答案为:1;(2)由(1)得反比例函数的解析式为1y x =,设点E 的坐标为1a a ⎛⎫ ⎪⎝⎭,,直线AB 的解析式为y mx n =+,则设点B 的坐标为10a ⎛⎫⎪⎝⎭,,设点A 的坐标为2a a ⎛⎫ ⎪⎝⎭,,∴21am n a n a ⎧=+⎪⎪⎨⎪=⎪⎩,解得211m a n a ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为211y x a a=+, 联立2111y x a a y x⎧=+⎪⎪⎨⎪=⎪⎩,解得x =(负值已舍),∴2B ABFa ==,2.(2024·安徽阜阳·一模)如图,在平面直角坐标系中,一次函数44y x =−+的图像分别与x 轴、y 轴交于A ,B 两点.正方形ABCD 的顶点C ,D 在第一象限,且顶点D 在反比例函数()0ky k x=≠的图像上.(1)AOB 的面积为 ;(2)若正方形ABCD 向左平移n 个单位长度后,顶点C 恰好落在反比例函数的图像上,则k n += . 【答案】 2 8【分析】(1)首先求得点AB 、的坐标,可得1OA =,4OB =,然后根据三角形面积公式求解即可; (2)过点C 作CE y ⊥轴于点E ,交反比例函数图像于点F ,过点D 作DG x ⊥轴于点G ,证明OAB EBC △≌△,≌OAB GDA △△,进而确定点C D F 、、的坐标,然后求得k n 、的值,即可获得答案.【详解】解:(1)对于一次函数44y x =−+, 令0y =,则有440x −+=,解得1x =,即(1,0)A , 令0x =,则4y =,即(0,4)B , ∴1OA =,4OB =, ∴1211422AOBSOA OB ⋅=⨯⨯==;(2)如图,过点C 作CE y ⊥轴于点E ,交反比例函数图像于点F ,过点D 作DG x ⊥轴于点G ,∵四边形ABCD 为正方形,∴AB BC CD DA ===,90ABC DAB ∠=∠=︒, ∴90CBE ABO ∠+∠=︒, ∵CE y ⊥轴,OA OB ⊥, ∴90ABO BAO ∠+∠=︒, ∴CBE BAO ∠=∠,在OAB 和EBC 中,90CEB BOA CBE BAO BC AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴(AAS)OAB EBC ≌, ∴1BE OA ==,4CE OB ==, ∴415OE OB BE =+=+=,即(4,5)C , 同理可得(AAS)OAB GDA ≌, ∴4AG OB ==,1DG OA ==, ∴5OG OA AG =+=,即(5,1)D , 将点(5,1)D 代入反比例函数()0ky k x =≠,可得15k=,解得5k =,即该反比例函数解析式为5y x =,∵CE y ⊥轴, ∴点F 的纵坐标为5,∴点F 的横坐标为1,即(1,5)F ,∵将正方形ABCD 向左平移n 个单位长度后,顶点C 恰好落在反比例函数的图像上,即此时点C F 、重合,∴点C 移动了413−=个单位长度,即3n =, ∴538k n +=+=. 故答案为:(1)2;(2)8.【点睛】本题主要考查了一次函数的应用、反比例函数的应用、正方形的性质、全等三角形的判定与性质等知识,熟练掌握相关知识并正确作出辅助线是解题关键.题型二 一次函数与反比例函数【例1】(2024·四川成都·一模)如图,在平面直角坐标系xOy 中,直线22y x =+与双曲线4y x=交于点A 、点B ,将直线AB 向下平移b 个单位后双曲线交于点C 、点D ,M 是第二象限内一点,连接MA 、MB ,若以M 为位似中心的MCD △与MAB △位似,位似比为32,则b 的值为 .【答案】9【分析】本题考查了待定系数法求函数的解析式,反比例函数的性质,勾股定理.由题意可得AB =,设直线DE 的解析式为2y x m =+,点()11,2C x x m +,()22,2D x x m +,根据两点间距离公式求得=92,进而得到()212128144x x x x +−=,由点C D ,恰好都落在反比例函数图象上得到42x m x +=,即2240x mx +−=,由根和系数的关系得()2814224b ⎛⎫−−⨯−= ⎪⎝⎭,求出m 的值,据此即可求解.【详解】解:联立224y x y x =+⎧⎪⎨=⎪⎩,解得22x y =−⎧⎨=−⎩或14x y =⎧⎨=⎩, ∴点()2,2B−−,()1,4A ,∴AB ==∵MCD △与MAB △位似,相似比为32, ∴32CD AB =,∴CD =,∵将直线AB 向下平移b 个单位, ∴设直线CD 的解析式为2y x m =+,点()11,2C x x m +,()22,2D x x m +,=92=,∴()212128144x x x x +−=,∵点C D ,恰好都落在反比例函数图象上, ∴CD 与反比例函数的交点方程为42x m x +=,即2240x mx +−=,由根与系数的关系得,()2814224b ⎛⎫−−⨯−=⎪⎝⎭, 解得7m =−或7(不合,舍去), 令0x =,则2022y =⨯+=,∴直线22y x =+和2y x m =+与y 的交点分别为()02,和()07−,,∴()279b =−−=,故答案为:9.【例2】(2024·安徽池州·一模)如图,已知直线3:34l y x =−+与x 轴、y 轴分别交于点A ,B .请解决下列问题:(1)线段AB 的长为 ;(2)若菱形BCDE 的边BC x ∥轴,另一边BE 在直线l 上,且点B 是AE 的中点,点D 在反比例函数()00ky k x x=≠<,的图象上,则k = .【答案】 5 54−【分析】本题考查了一次函数、反比例函数图象上点的坐标特征,勾股定理,菱形的性质,三角形全等的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)分别求出直线3:34l y x =−+y 轴交于点()0,3B ,与x 轴交于点()4,0A ,从而得出4OA =,3OB =,再由勾股定理计算即可得出答案;(2)延长DE 交y 轴于点F ,由菱形的性质得出5BC CD DE EB ====,证明()AAS BEF BAO ≌,即可得出点D 的坐标,代入反比例函数解析式即可得出答案. 【详解】解:(1)由题意,得当0x =时,3y =, ∴直线3:34l y x =−+与y 轴交于点()0,3B .当0y =时,4x =,∴直线3:34l y x =−+与x 轴交于点()4,0A ,4∴=OA ,3OB =.在Rt AOB △中,5AB ==, 故答案为:5;(2)如图,延长DE 交y 轴于点F .,点B 是AE 的中点,5AB BE ∴==.四边形BCDE 是菱形,5BC CD DE EB ∴====.DE x ∥轴,90EFB AOB ∴∠=∠=︒,EBF ABO ∠=∠,()AAS BEF BAO ∴≌,4EF OA ∴==,3BF OB ==,9DF DE EF ∴=+=,336OF =+=,()9,6D ∴−.点()9,6D −在反比例函数()0ky k x =≠的图象上,9654k ∴=−⨯=−,故答案为:54−.1.(2024·新疆·一模)已知在平面直角坐标系中,点O 是坐标原点,直线y kx b =+与x 轴、y 轴分别交于点A ,B ,与双曲线my x=相交于点C ,D ,且点D 的坐标为()1,6.如图,当点A 落在x 轴负半轴时,过点C 作x 轴的垂线垂足为E ,过点D 作y 轴的垂线,垂足为F ,连接EF .当2CDAB=时,则点C 的坐标为 .【答案】()3,2−−【分析】先证明EFC 的面积和EFD △的面积相等; 证明四边形DFEA 与四边形FBCE 都是平行四边形,故可得出CE BF =,FDB EAC ∠=∠,再由全等三角形的判定定理得出DFB AEC ≌,故AC BD =,设2CD k =,AB k =,12DB AC k ==, 可得12DB AB =,再证明DFB AOB ∽△△,可算出2OA =,4OB =,进一步可得答案.【详解】解:如图,连接CF ,ED ,CO ,∵y kx b =+于my x =相交于点C ,D ,且点D 的坐标为()1,6.∴6m =,即反比例为6y x =,设(),C a b ,则6ab =,∵1632EFCEOCS S ==⨯=,而11632EFDS=⨯⨯=,∴EFCEFDSS=;∵两三角形同底, ∴两三角形的高相同, ∴EF CD ∥,∵DF AE ∥,BF CE ∥,∴四边形DFEA 与四边形FBCE 都是平行四边形, FDB BAO ∠=∠, ∴CE BF =, ∵BAO EAC ∠=∠, ∴FDB EAC ∠=∠, ∵90BFD CEA ∠=∠=︒,∴DFB AEC ≌, ∴AC BD =, ∵2CDAB =,设2CD k =,AB k =,12DB AC k ==,∴12DB AB =, ∵DF AO ∥, ∴DFB AOB ∽△△, ∴12DF DB BF AO AB BO ===, ∵1DF =, ∴2OA =, ∵6OF =, ∴4OB =, ∴()2,0A −,()0,4B ,∴直线AB 的解析式为24y x =+,联立反比例函数解析式和一次函数解析式可得246y x y x ⎧⎪⎨⎪=+⎩= ,解得:32x y =−⎧⎨=−⎩, 16x y ⎧⎨⎩== , ∴()3,2C −−.故答案为:()3,2−−【点睛】本题考查了反比例函数的综合运用,涉及待定系数法求函数解析式,同底等高的三角形的面积、相似三角形的性质,题目综合性较强.题型三 几何图形中动点之函数问题【例1】(2024·河南信阳·一模)如图1,已知ABCD Y 的边长AB为30B ∠=︒,AE BC ⊥于点E .现将ABE 沿BC 方向以每秒1个单位的速度匀速运动,运动的ABE 与ABCD Y 重叠部分的面积S与运动时间t 的函数图象如图2,则当t 为9时,S 的值是( )A B .C D .【答案】C【分析】本题考查的是动点函数图象问题、平行四边形的性质、勾股定理及含30度角的性质,熟练掌握以上知识点,弄清楚不同时段,图象和图形的对应关系,是解题的关键.根据题意得出AE =6BE =,结合函数图象确定12BC =,当运动时间6t >时,为二次函数,且在6t =时达到最大值,对称轴为6t =,二次函数与坐标轴的另一个交点为()0,0,然后确定二次函数解析式,代入求解即可.【详解】解:∵AB 为30B ∠=︒,AE BC ⊥于点E .∴AE =∴6BE ==,由运动的ABE 与ABCD Y 重叠部分的面积S 与运动时间t 的函数图象得: 当运动到6时,重叠部分的面积一直不变, ∴6CE =, ∴12BC =,由函数图象得:当运动时间6t >时,为二次函数,且在6t =时达到最大值,对称轴为直线6t =, ∴二次函数与坐标轴的另一个交点为()0,0,设二次函数的解析式为()12(6)S at t t =−>,将点(代入得:a =,∴()12(6)S t t =−>,当t 为9时,S =.故选:C .【例2】(2024·河南濮阳·一模)如图1,在矩形ABCD 中,2,BC AB M =为AD 的中点,N 是线段BD 上的一动点.设,DN x MN AN y =+=,图2是y 关于x 的函数图象,其中Q 是图象上的最低点,则a 的值为( )A .7B .8CD 【答案】D【分析】由图象右端点的横坐标为BD =5AB =,10AD =,5AM MD ==,作点M 关于BD 的对称点E ,连接AE 交BD 于N ,连接ME 交BD 于O ,连接DE ,得y AN MN AE =+=,根据两点之间,线段最短,得到此时y 最小,最小值为AE 的长度,通过证明MOD BAD ∽,求出OM =2ME OM ==E 作EF AD ⊥于F ,利用勾股定理求出2MF =,4EF =,7AF AM MF =+=,从而求得AE 的长度,即可求解.【详解】解:∵图象右端点的横坐标为 ∴BD =∵矩形ABCD 中, ∴90BAD ∠=︒,AD BC =∴222AB AD BD +=∵2BC AB = ∴()(2222AB AB +=∴5AB = ∴10AD =∵M 为AD 的中点, ∴5AM MD ==作点M 关于BD 的对称点E ,连接AE 交BD 于N ,连接ME 交BD 于O ,连接DE ,如图,∴MN NE =,5DE DM ==, ∴y AN MN AE =+=,根据两点之间,线段最短,得此时y 最小, ∵点M 关于BD 的对称点E , ∴BD 垂直平分ME ,∵MDO ADB ∠=∠,90BAD MOD ∠=∠=︒, ∴MOD BAD ∽,∴OM MD AB BD =,即5OM =∴OM∴2ME OM == 过点E 作EF AD ⊥于F ,由勾股定理,得22222ME MF EF DE DF −==−,∵DF DM MF =−,∴(()222255MF MF −=−−,解得:2MF =,∴4EF =,527AF AM MF =+=+=,∴AE∵Q 是图象上的最低点, ∴a 是y 的最小值,∴a 故选:D .【点睛】本题考查几何动点函数图象问题,矩形的性质,相似三角形的判定与性质,勾股定理,熟练掌握利用轴对称求最短距离问题是解题的关键.1.(2024·河南周口·一模)如图1,矩形ABCD 中,点E 为AB 的中点,动点P 从点A 出发,沿折线AD DC −匀速运动,到达点C 时停止运动,连接AP 、PE ,设AP 为x ,PE 为y ,且y 关于x 的函数图象如图2所示,则AP 的最大值为( )AB .5C D .【答案】B【分析】本题考查动点问题与函数图象,矩形的性质,勾股定理,利用数形结合的思想是解题关键.在函数图象中找到当0x =时,2y =,得出2y PE AE ===,进而得到4AB =,再利用图象的拐点得出3AD =,由图象知P 到达C 时得最长,由勾股定理即可求出其值.【详解】解:由图知,当0x =时,2y =,即当P 在A 点时2y PE AE ===, 点E 为AB 的中点,, ∴24AB AE ==,当P 在AD 上运动时,PE 慢慢增大,P 到D 点时,从图中的拐点可知,此时y PE DE ===∴3AD =,当P 在DC 上运动时,PE 先减小再增大,直到P 到达C 点时,此时AP AC =4DC AB ==,∴5AP =,故选:B .2.(2024·安徽合肥·一模)如图,在ABC 中,90C ∠=︒,AC BC =.AB 与矩形DEFG 的一边EF 都在直线l 上,其中4AB =、1DE =、3EF =,且点B 位于点E 处.将ABC 沿直线,向右平移,直到点A 与点E 重合为止.记点B 平移的距离为x ,ABC 与矩形DEFG 重叠区域面积为y ,则y 关于x 的函数图象大致为( )A .B .C .D .【答案】D【分析】先根据CB 经过点D 和CA 经过点D 时计算出1x =和3x =,再分01x ≤≤,13x <≤和34x <≤三种情况讨论,画出图形,利用面积公式解答即可. 【详解】解:当BC 经过点D 时,如图所示:ABC 为等腰直角三角形, 45DBE ∴∠=︒,1DE =,90DEB ∠=︒,11tan 451DE EB ∴===︒;当AC 经过点D 时,如图所示:45A ∠=︒,1DE =,1AE ∴=,413EB AB AE ∴=−=−=;①当01x ≤≤时,如图所示:此时EB x =,45HBE ∠=︒,tan 45HE EB x ∴=︒⋅=,2111222y EB HE x x x ∴=⋅=⋅=;②当13x <≤时,如图所示:过M 作MN AB ⊥于N , 此时,1MN =,45MBN ∠=︒,1BN ∴=,EB x =,1EN EB NB x ∴=−=−,四边形DENM 是矩形,1DM EN x ∴==−,111()(1)1222y DM EB DE x x x ∴=+⋅=−+⨯=−;③当34x <≤时,如图所示:此时1IR =,45IBR ∠=︒ 1BR ∴=,EB x =,1ER DI x ∴==−,4AE AB EB x =−=−,45B ∠=︒,tan454TE AE x ∴=⋅︒=−,1DE =,1(4)3DT DE TE x x ∴=−=−−=−, DG AB ∥,45DKT ∴∠=︒,33tan 451DT x DK x −∴===−︒,()22ΔΔ1111111(3)45222IRB DTK DERI y S S S x x x x ∴=+−=⨯−+⨯⨯−⨯−=−+−四边形.故选:D . 【点睛】本题考查了动点问题的函数图象,等腰直角三角形的性质,矩形的性质,解三角形等知识,关键是画出图形,利用数形结合和分类讨论的思想进行运算.3.(2024·河南平顶山·一模)如图1,在ABC 中,60ABC ∠=︒.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线DE 的最低点,则ABC 的面积为( )A .BC .D 【答案】C【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作AD BC ⊥,当动点P 运动到点D 时,线段AP 的长度最短,此时AB BD +P 运动到点C 时,运动结束,此时3AC =,根据直角三角形的性质结合勾股定理求解即可. 【详解】解:作AD BC ⊥,垂足为D ,当动点P 运动到点D 时,线段AP 的长度最短,此时点P 运动的路程为AB BD +=当动点P 运动到点C 时,运动结束,线段AP 的长度就是AC 的长度,此时AC =,∵60ABC ∠=︒, ∴30BAD ∠=︒,∴2AB BD =,∴3AB BD BD +==∴BD =,AB =,∴2AD ==,在Rt △ABD 中,AC =,∴CD =,∴BC BD CD =+=∴ABC 的面积为11222BC AD ⨯=⨯=故选:C .题型四 二次函数与其他函数综合问题【例1】(2024·安徽宿州·一模)如图,已知抛物线242y ax ax =−+−(a 是常数且0a >)和线段MN ,点M 和点N 的坐标分别为()()0,4,5,4.(1)抛物线的对称轴为直线x = ;(2)当1a =时,将抛物线向上平移()0k k >个单位长度后与线段MN 仅有一个交点,则k 的取值范围是 . 【答案】 2 2k =或611k <≤【分析】本题考查二次函数的性质及图象的平移,利用数形结合的数学思想作出图形,根据图形进行求解是解决问题的关键.(1)由题意可知抛物线的对称轴为直线()422ax a =−=⨯−,即可求解;(2)由题意可知,当1a =时,将抛物线向上平移()0k k >个单位长度后抛物线为()224222y x x x k=−+−=−−++,结合图形,找到临界点:当抛物线顶点恰好平移到线段MN 上,当抛物线经过点()5,4N 时,求出对应k 的值,结合图形即可求解.【详解】解:(1)∵242y ax ax =−+−,∴抛物线的对称轴为直线()422ax a =−=⨯−,故答案为:2; (2)当1a =时,()224222y x x x =−+−=−−+,将抛物线向上平移()0k k >个单位长度后抛物线为()222y x k=−−++,当抛物线顶点恰好平移到线段MN 上,此时,24k +=,可得2k =; 当抛物线经过点()0,4M 时,此时()20224k −−++=,可得6k =,此时()0,4M 关于对称轴2x =对称的点()4,4M ',在线段MN 上,不符合题意;当抛物线经过点()5,4N 时,此时()25224k −−++=,可得11k =,此时()5,4N 关于对称轴2x =对称的点()1,4N '−,不在线段MN 上,符合题意;结合图形可知,平移后的抛物线与线段MN 仅有一个交点时,2k =或611k <≤; 故答案为:2k =或611k <≤.1.(2024·安徽合肥·一模)我们定义:如果一个函数图象上存在纵坐标是横坐标6倍的点,则把该函数称为“行知函数”,该点称为“行知点”,例如:“行知函数”20y x =+,其“行知点”为()424,. (1)直接写出函数24y x=图象上的“行知点”是 ; (2)若二次函数()()21332y a x a x a =−+++的图象上只有一个“行知点”,则a 的值为 . 【答案】 ()212,或()212−−, 3−【分析】本题考查二次函数的综合应用,理解新定义,将新定义与所学二次函数,一元二次方程的知识相结合,熟练掌握跟与系数关系是解题关键.(1)根据题目所给“行知点”的定义,列出方程求解即可;(2)根据题目所给“行知点”的定义,列出方程,根据只有一个“行知点”得出该方程只有一个实数根,再根据一元二次方程根的判别式,即可解答.【详解】解:(1)根据题意可得:246x x =,整理得:24x =, 解得:122,2x x ==−,经检验,122,2x x ==−是原分式方程的解;∴函数24y x =图象上的“行知点”是)212,或()212−−,; 故答案为:()212,或()212−−,.(2)∵二次函数()()21332y a x a x a =−+++的图象上只有一个“行知点”, ∴方程()()216332x a x a x a =−+++有两个相等的实数根,且30a −≠,整理得:()()213302a x a x a −+−+=,∴()()2134302a a a −−⨯⨯−=,解得:123,3x x ==−, 综上:a 的值为3−.故答案为:3−.2.(2024·辽宁沈阳·模拟预测)如图,在平面直角坐标系中,抛物线234y x x =−−与x 轴交于A ,B 两点,与y 轴交于点C ,点D 在抛物线上,且与点C 关于抛物线对称轴对称,则点D 坐标为 ,连接OD ,DB ,点P 在抛物线第四象限内不与B ,C 两点重合.过点P 作y 轴的垂线与线段BC 交于点E ,以PE 为边作Rt PEF △,使90PEF ∠=︒,点F 在点E 的下方,且274EF =,点F 恰好落在射线BD 上,再将PEF !绕点E 旋转得到P EF ''△ (点P 的对应点为点P ',点F 的对应点为点F '),当P E '与OD 垂直时,点P '的横坐标为 .【答案】()3,4− 6320或720 【分析】(1)由234y x x =−−得(0,4)C −,对称轴为直线32x =,由D 与C 关于对称轴对称,得(3,4)D −.(2)延长EP '交x 轴于R ,延长FE 交x 轴于N ,过D 作DM x ⊥轴,过P '作P K x '⊥轴.先求直线BC 解析式为4y x =−,再求直线BD 解析式为416y x =−.设(,4)E t t −,(,416)F t t −,由274EF =计算得7(4E ,9)4−,7(4F ,9).证明OMD ENR △∽△,得3RN =,154ER =.由平行相似得EP NK ER NR '=,75NK =,再计算即可.【详解】解:(1)由234y x x =−−得(0,4)C −,(4,0)B ,∴对称轴为直线32x =, D 与C 关于对称轴对称,(3,4)D ∴−,故答案为:()3,4−.(2)延长EP '交x 轴于R ,延长FE 交x 轴于N ,过D 作DM x ⊥轴,过P '作P K x '⊥轴.如图:设直线BC 解析式为y mx n =+,∴404m n n +=⎧⎨=−⎩,1m ∴=,n =−4,4y x ∴=−,设直线BD 解析式为y ax b =+,∴4034a b a b +=⎧⎨+=−⎩,4a ∴=,16b =−,416y x ∴=−. E 在直线BC 上,∴设(,4)E t t −,(,416)F t t ∴−,27(4)(416)1234EF t t t ∴=−−−=−=, 74t ∴=. 7(4E ∴,9)4−,7(4F ,9)−.29344x x −−=−, 71(22x x ∴==−不在第四象限,舍去).7(2P ∴,4)−.设直线OD 解析式为y hx =,(3,4)D −,43h ∴−=,43h ∴=−,43y x ∴=−. 94EN ∴=,4DM =,3OM =,EP OD '⊥,90MOD NRE ∴∠+∠=︒,90MOD MDO ∠+∠=︒,NRE MDO ∴∠=∠,90ENR DMO ∠=∠=︒,OMD ENR ∴△∽△, ∴EN RN ER OM DM OD ==, ∴94345RN ER==, 3RN ∴=,154ER =.P K EN '∥, ∴EP NK ER NR '=,75NK ∴=, 7(4N ,0),77(45K ∴−,0)或77(45+,0),7(20K ∴,0)或63(20,0), P '∴的横坐标为:720或6320.故答案为:(3,4)−,720或6320.【点睛】本题考查了二次函数综合,相似三角形的性质与判定,一次函数与几何综合等等,掌握抛物线解析式的求法,以及相似的运用,是解题关键.。
2020中考数学专题六,一次函数与反比例函数+无刻度直尺作图+二次函数
专题六 一次函数与 反比例函数综合题
考情分析 2017年第20题、2015年第21题是 一次函数与反比例函数的综合题,分值为8分; 2016年第15题是一次函数的简单综合题,分值为 6分;2012~2014年第19题均为反比例函数与几 何图形的综合题,分值为8分.
类型 一次函数简单综合题
(3)根据(1)(2)的结果,直接写出 b,y1,y2 之 间的关系(不必证明).
解:(1)把点12,8代入 y=kx,得 k=12×8=4, ∴反比例函数解析式为 y=x4.把 Q(8,y2)代入 y= 4x,得 y2=21,∴点 Q 的坐标是8,12.
设 直 线 AB 的 解 析 式 为 y = kx + b , 则
例1 如图1,在平面直角
坐标系中,直线AC与x轴交于
点C,与y轴交于点A,直线
AB 与 x 轴 交 于 点 B , 与 y 轴 交
于 点 A , 已 知 A(0,4) , B(2 ,
0).
图1
(1)求直线AB的解析式;
(2)若S△ABC=7,求点C的坐标.
解:(1)设直线 AB 的解析式为 y=kx+b,∵ 直线 AB 经过 A(0,4),B(2,0),∴b2= k+4,b=0, 解 得kb= =- 4. 2, ∴直线 AB 的解析式为 y=-2x+4.
∵B点的纵坐标为3,∴C点的纵坐标为2.
∵点C在直线y=x+3上,∴2=x+3.∴x=-
1. ∴点C的坐标为(-1,2). ∵直线l经过原点,∴设直线l的解析式为y=
kx, 把点C(-1,2)代入得k=-2. ∴直线l的函数解析式为y=-2x.
类型 反比例函数与一次函数综合题
例 2 如图 3,已知反比例
(3)将 Rt△BDC 沿直线 AD 平移,使点 D 落
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)1.(2023•攀枝花模拟)如图,已知直线y=mx与双曲线的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是()A.(1,3)B.(3,1)C.(1,﹣3)D.(﹣1,3)【分析】反比例函数的图像是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(﹣1,3),另一个交点的坐标为(1,﹣3).故选:C.2.(2023•滨湖区一模)在平面直角坐标系xOy中,反比例函数与一次函数y =ax+b(a>0)的图像相交于A(﹣8,m)、B(﹣2,n)两点,若△AOB面积为15,则k的值为()A.﹣8B.﹣7.5C.﹣6D.﹣4【分析】过点A、B分别作y轴的垂线,垂足分别为C、D,根据点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,推出n=4m,根据S梯形ACDB=S△OAB=15,求得n﹣m=3,进一步计算即可求解.【解答】解:∵反比例函数与一次函数y=ax+b(a>0)的图像相交于A (﹣8,m)、B(﹣2,n)两点,∴A(﹣8,m)、B(﹣2,n)两点在第二象限,过点A、B分别作y轴的垂线,垂足分别为C、D,则AC=8,BD=2,OC=m,OD=n,∴CD=n﹣m,∵点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,∴S△AOC=S△BOD,﹣8m=﹣2n,即n=4m,∵S△AOC+S梯形ACDB=S△BOD+S△OAB,∴S梯形ACDB=S△OAB=15,即,∴n﹣m=3,∴4m﹣m=3,解得m=1,∴A(﹣8,1),∴k=﹣8×1=﹣8.故选:A.3.(2023•宁波模拟)如图,一次函数y1=x﹣1的图像与反比例函数的图像交于点A (2,m),B(n,﹣2),当y1>y2时,x的取值范围是()A.x<﹣1或x>2B.x<﹣1或0<x<2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2【分析】先把B(n,﹣2)代入y1=x﹣1,求出n值,再根据图像直接求解即可.【解答】解:把B(n,﹣2)代入y1=x﹣1,得﹣2=n﹣1,解得:n=﹣1,∴B(﹣1,﹣2),∵图像交于A(2,m)、B(﹣1,﹣2)两点,∴当y1>y2时,﹣1<x<0或x>2.故选:D.4.(2023•宁德模拟)如图,已知直线l与x,y轴分别交于A,B两点,与反比例函数的图像交于C,D两点,连接OC,OD.若△AOC和△COD的面积都为3,则k的值是()A.﹣2B.﹣3C.﹣4D.﹣6【分析】由S△AOC=S△COD得,AC=CD,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),代入解析式得到n=m,过点作CH⊥y轴于H,利用S△AOC=3,可求出k.【解答】解:如图,∵S△AOC=S△COD,以AC,CD作底,高相同∴AC=CD,即C为AD的中点,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),∵D(,2m﹣n)在反比例函数y=的图像上,∴,∴n=m过点作CH⊥y轴于H,则CH=﹣,OA=n=m,∵S△AOC=3,∴OA•CH=3,∴×m×(﹣)=3,∴k=﹣4.故选:C.5.(2023•宿迁模拟)如图,在平面直角坐标系中,直线l与函数的图像交于A、B两点,与x轴交于C点,若OA=AB,且∠OAB=90°,则tan∠AOC的值为()A.B.C.D.【分析】作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,通过证得△AOE≌△BAD(AAS),求得B(),代入,即可得到(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解得y=,即可求得tan∠AOC ====.【解答】解:作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,∵∠OAB=90°,∴∠OAE+∠DAB=90°,∵∠OAE+∠AOE=90°,∴∠DAB=∠AOE,∵OA=AB,∠AEO=∠ADB=90°,∴△AOE≌△BAD(AAS),∴AD=OE=m,BD=AE=,∴B(),∵函数的图像过B点,∴(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除以k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解这个方程得y=,∴k>0,∴>0,∴=,∴tan∠AOC====.故选:A.6.(2023•呼和浩特一模)如图,在平面直角坐标系中,直线y=﹣3x+3交x轴于A点,交y轴于B点,以AB为边在第一象限作正方形ABCD,其中顶点D恰好落在双曲线上,现将正方形ABCD沿y轴向下平移a个单位,可以使得顶点C落在双曲线上,则a的值为()A.B.C.2D.【分析】作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G,由函数解析式确定B的坐标是(0,3),A的坐标是(1,0),根据全等三角形的判定和性质得出△OAB≌△FDA≌△BEC,AF=OB=EC=3,DF=OA=BE=1,结合图形求解即可.【解答】解:作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3),令y=0,解得:x=1,即A的坐标是(1,0),则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△EBC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4),代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把x=3代入y=得:y=.即G的坐标是,∴CG=4﹣=,∴a=,故选:A.7.(2023•徐州模拟)如图,一次函数的图像与反比例函数的图像交于点A,与y轴交于点C,AD⊥x轴于点D,点D坐标为(4,0),则△ADC的面积为()A.3B.6C.8D.12【分析】根据AD⊥x轴,D(4,0)求出点A的横坐标,代入一次函数表达式中求出点A纵坐标,再利用三角形面积公式计算.【解答】解:∵AD⊥x轴,D(4,0),∴x A=4,代入中,∴,即A(4,3),∴△ADC的面积为,故选:B.8.(2023•茅箭区一模)如图已知反比例函数C1:的图像如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是由曲线C2上一点,点M在直线y=﹣x 上,连接MN、ON,若MN=ON,△MON的面积为,则k的值为()A.B.C.﹣2D.﹣1【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:∵将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P⊥x轴于点P,连接ON',M'N',∵MN=ON,∴M'N'=ON',M'P=OP,∴S△MON=2S△PN'O=2×=|k|=,∵k<0,∴k=﹣.故选:B.9.(2023•西安二模)如图,在平面直角坐标系中,直线y=﹣x+1与x轴,y轴分别交于点A,B,与反比例函数的图像在第二象限交于点C,若AB=BC,则k的值为﹣2.【分析】过点C作CH⊥x轴于点H.求出点C的坐标,可得结论.【解答】解:过点C作CH⊥x轴于点H.∵直线y=﹣x+1与x轴,y轴分别交于点A,B,∴A(1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴△AOB∽△AHC,∴,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(﹣1,2),∵点C在y=的图像上,∴k=﹣2,故答案为:﹣2.10.(2023•双流区模拟)如图,已知一次函数的图像与反比例函数图像交于A,B两点.若AC∥x轴,且AC=BC,则△ABC面积的最小值为4.【分析】由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),即可推出m+n=﹣,mn=﹣3,利用勾股定理求得AB2=4b2+16,进而推出S△ABC =AB•CT=AB2=b2+4,利用二次函数的性质即可求得△ABC的面积有最小值为4.【解答】解:由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),联立,得x2+3bx﹣9=0,∴m+n=﹣,mn=﹣3,∴AB2=(m﹣n)2+(m+b﹣n﹣b)2=(m﹣n)2=[(m+n)2﹣4mn]=4b2+16,如图,过点C作CT⊥AB于点T,∵AC=BC,∴AT=BT=AB,由一次函数可知,∠CAB=30°,∴CT=AT=AB,∴S△ABC=AB•CT=AB2=b2+4,∴当b=0时,△ABC的面积有最小值为4,故答案为:4.11.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y=3x与反比例函数的图像交于A,B两点,C是反比例函数位于第一象限内的图像上的一点,作射线CA交y轴于点D,连接BC,BD,若,△BCD的面积为30,则k=6.【分析】作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C (a,),可证明tan∠CAE=tan∠CBF=,则∠CAE=∠CBF,即可推导出∠CDM =∠CMD,则CD=CM,所以===,则CI=4FI,所以a=4m,C(4m,),由=tan∠CMD=tan∠CBF=,得DI=MI=3m,则DM=6m,于是得×6m ×m+×6m×4m=30,则m2=2,所以k=3m2=6.【解答】解:作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,∵直线y=3x经过原点,且与双曲线y=交于A,B两点,∴点A与点B关于原点对称,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C(a,),F(﹣m,),∵tan∠CAE===,tan∠CBF===,∴tan∠CAE=tan∠CBF,∴∠CAE=∠CBF,∵AE∥BF∥DM,∠CAE=∠CDM,∠CBF=∠CMD,∴∠CDM=∠CMD,∴CD=CM,∵===,∴CI=4FI,∴a=4m,∴C(4m,),∵=tan∠CMD=tan∠CBF===,∴DI=MI=CI=×4m=3m,∴DM=DI+MI=6m,∵DM•FI+DM•CI=S△BCD=30,∴×6m×m+×6m×4m=30,∴m2=2,∴k=3m2=3×2=6,故答案为:6.12.(2023•余姚市校级模拟)如图,点A在y=(x>0)的图像上,点B,C在y=(x <0)的图像上(C在B左边),直线AB经过原点O,直线AC交y轴于点M,直线BC 交x轴于点N.则=;=m,=n,则=.【分析】作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x轴于F,CG⊥y 轴交y轴于G,再设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),从而可以表示出AD=a,OE=﹣bCG=﹣c,CF=﹣,BE=﹣,再根据三角形相似的判定定理得出△BEO∽△ODA,△CGM∽△ADM,△NCF∽△NBE,可分别表示出OA:OB,MC:MA,NB:NC,再由直线AB经过原点O,可以表示出及的值,最后代入即可得到答案.【解答】解:如图所示,作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x 轴于F,CG⊥y轴交y轴于G,设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),则AD=a,OE=﹣b,CG=﹣c,CF=﹣,BE=﹣,∵BE⊥x轴,∴BE∥y轴,∴∠EBO=∠BOG,∵∠BOG=∠DOA,∴∠EBO=∠DOA,∵AD⊥y轴,∴∠BEO=∠ODA=90°,∴△BEO∽△ODA,∴OA:OB=AD:OE=﹣,∵AD⊥y轴,CG⊥y轴,∴△CGM∽△ADM,∴==﹣=m,∵BE⊥x,CF⊥x轴,∴△NCF∽△NBE,∴====n,∴==﹣,∵直线AB经过原点O,∴=,=,∴=,=,由图像可知,a>0,c<b<0,∴=﹣,=﹣,∴=﹣=,=﹣=,故答案为:;.13.(2023•岳阳一模)如图,已知正比例函数y1=x的图像与反比例函数y2=的图像相交于点A(3,n)和点B.(1)求n和k的值;(2)请结合函数图像,直接写出不等式x﹣<0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求△AOE的面积.【分析】(1)先把点A(3,n)代入正比例函数解析式求出n的值,再把求出的点A坐标代入反比例函数解析式即可求出k值;(2)根据正比例函数和反比例函数都是关于原点成中心对称的,可得出点B的坐标,然后根据图像即可写出解集;(3)根据题意作出辅助线,然后求出OA的长,根据菱形的性质求出OC的长,可推出,然后求出菱形的面积即可求出△AOE的面积.【解答】解:(1)把点A(3,n)代入正比例函数可得:n=4,∴点A(3,4),把点A(3,4)代入反比例函数,可得:k=12;(2)∵点A与点B是关于原点对称的,∴点B(﹣3,﹣4),∴根据图像可得,不等式x﹣<0的解集为:x<﹣3或0<x<3;(3)如图所示,过点A作AG⊥x轴,垂足为G,∵A(3,4),∴OG=3,AG=4在Rt△AOG中,AO==5∵四边形AOCD是菱形,∴OC=OA=5,,∴.14.(2023•锦江区模拟)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像与x 轴交于点A(﹣2,0),与反比例函数交于点B(1,m).(1)求反比例函数的表达式;(2)点M为反比例函数在第一象限图像上的一点,过点M作x轴垂线,交一次函数y =2x+b图像于点N,连接BM,若△BMN是以MN为底边的等腰三角形,求△BMN的面积;(3)点P为反比例函数图像上一点,连接PB,若∠PBA=∠BAO,求点P的坐标.【分析】(1)用待定系数法即可求解;(2)若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,进而求解;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,进而求解.【解答】解:(1)将点A的坐标代入一次函数表达式得:0=﹣4+b,解得:b=4,即一次函数的表达式为:y=2x+4,当x=1时,y=2x+4=6,则点B(1,6),将点B的坐标代入反比例函数表达式得:k=1×6=6,即反比例函数表达式为:y=;(2)设点N的坐标为(t,2t+4),则点M(t,),若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,则(2t+4+)=6,解得:t=1(舍去)或3,则点M、N的坐标分别为:(3,10)、(3,2),则△BMN的面积=MN•(x M﹣x B)=(10﹣2)×(3﹣1)=8;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,∵点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,由中点坐标公式得,点M(﹣,3),在Rt△AMH中,由AB的表达式知,tan∠BAO=2,则tan∠MHA=,则直线MH表达式中的k值为﹣,则直线MH的表达式为:y=﹣(x+)+3,令y=﹣(x+)+3=0,则x=,即点H(,0),由点B、H的坐标得,直线BH的表达式为:y=﹣x+,联立y=﹣x+和y=并解得:x=1(舍去)或,则点P的坐标为:(,).。
综合题:一次函数二次函数反比例函数中考综合题复习
第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。
2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。
直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。
2022中考 反比例函数与一次函数、二次函数综合的常见类型
9.在平面直角坐标系 xOy 中,反比例函数 y=kx的图象经过点 A(1,4),B(m,n).
(1)求代数式 mn 的值; 解:∵反比例函数 y=kx的图象经过点 A(1,4),∴k=4. ∴反比例函数的解析式为 y=4x. ∵反比例函数 y=4x的图象经过点 B(m,n),∴mn=4.
(2)若二次函数 y=(x-1)2 的图象经过点 B,求代数式 m3n-2m2n +3mn-4n 的值;
6.(2019·常德)如图,一次函数 y=-x+3 的图象与反比例函数 y=kx(k≠0)在第一象限的图象交于 A(1,a)和 B 两点,与 x 轴 交于点 C.
(1)求反比例函数的解析式;
解:把点 A(1,a)的坐标代入 y=-x+3,得 a=-1+3=2, ∴A(1,2). 把 A(1,2)的坐标代入 y=kx,得 k=1×2=2. ∴反比例函数的解析式为 y=2x.
(2)若点 P 在 x 轴上,且△APC 的面积为 5,求点 P 的坐标. 解:∵一次函数 y=-x+3 的图象与 x 轴交于点 C,∴C(3,0). 设 P(x,0),∴PC=|3-x|. ∴S△APC=12|3-x|×2=5. ∴x=-2 或 x=8. ∴点 P 的坐标为(-2,0)或(8,0).
其部分图象如图所示,以下结论错误的是( C )
A.abc>0
B.4ac-b2<0
C.3a+c>0
D.关于 x 的方程 ax2+bx+c=n+1 无实数根
1.若函数 y=k与 y=ax2+bx+c 的图象如图所示,则函数 y=kx x
+b 的大致图象为( )
C
2.已知函数 y1=x(x≥0),y2=4x(x>0)的图象如图所示,以下结论: ①两函数图象的交点 A 的坐标为(2,2); ②当 x>2 时,y1>y2; ③图中 BC=2; ④一次函数与反比例函数图象构成的图形是轴对称图形;
中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练
中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。
定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。
水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。
两坐标轴的交点为平面直角坐标系的原点。
建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。
2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。
定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。
这种式子叫做函数的解析式。
表示函数的方法:解析式法、列表法和图象法。
解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。
画函数图象的方法——描点法:第1步,列表。
表中给出一些自变量的值及其对应的函数值;第2步,描点。
在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。
按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。
1、结合实例进一步体会用有序数对可以表示物体的位置。
2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
初中数学二次函数综合复习基础题(含答案)
初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。
中考数学综合题专题复习【反比例函数】专题解析附答案
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。
2022北京初三(上)期末数学汇编:二次函数和反比例函数章节综合
2022北京初三(上)期末数学汇编 二次函数和反比例函数章节综合一、单选题 1.(2022·北京海淀·九年级期末)抛物线22()1y x =-+的顶点坐标是( ) A .(2,1)B .(1,2)C .(2,1)-D .(1,2)-2.(2022·北京海淀·九年级期末)在平面直角坐标系xOy 中,下列函数的图象经过点(0,0)的是( ) A .1y x =+B .2yxC .2(4)y x =-D .1y x=3.(2022·北京朝阳·九年级期末)对于二次函数()21y x =--的图象的特征,下列描述正确的是( ) A .开口向上 B .经过原点 C .对称轴是y 轴D .顶点在x 轴上4.(2022·北京东城·九年级期末)如图,线段AB =5,动点P 以每秒1个单位长度的速度从点A 出发,沿线段AB 运动至点B ,以点A 为圆心,线段AP 长为半径作圆.设点P 的运动时间为t ,点P ,B 之间的距离为y ,⊙A 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .一次函数关系, 二次函数关系D .正比例函数关系,二次函数关系5.(2022·北京西城·九年级期末)抛物线2y ax bx c =++的顶点为()2,A m ,且经过点()5,0B ,其部分图象如图所示.对于此抛物线有如下四个结论:⊙0ac <;⊙0a b c -+>;⊙90m a +=;⊙若此抛物线经过点(),C t n ,则4t +一定是方程2ax bx c n ++=的一个根.其中所有正确结论的序号是( )A .⊙⊙B .⊙⊙C .⊙⊙D .⊙⊙第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题6.(2022·北京丰台·九年级期末)中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A 距离水面10m ,运动过程中的最高点B 距池边2.5m ,入水点C 距池边4m ,根据上述信息,可推断出点B 距离水面______m .7.(2022·北京门头沟·九年级期末)若将二次函数y =x 2﹣2x +3配方为y =(x ﹣h )2+k 的形式,则y =___________.8.(2022·北京石景山·九年级期末)如图,在平面直角坐标系xOy 中,P 为函数)(0my x x=>图象上一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为M ,N .若矩形PMON 的面积为3,则m 的值为______.9.(2022·北京平谷·九年级期末)某地的药材批发公司指导农民养植和销售某种药材,经市场调研发现1-8月份这种药材售价(元)与月份之间存在如下表所示的一次函数关系,同时,每千克的成本价(元)与月份之间近似满足如图所示的抛物线,观察两幅图表,试判断_____ 月份出售这种药材获利最大.月份 ... 3 6 ... 每千克售价 ...86...10.(2022·北京密云·九年级期末)点A (2,y 1),B (3,y 2)是反比例函数12y x=-图象上的两点,那么y 1,y 2的大小关系是y 1_________y 2.(填“>”,“<”或“=”)11.(2022·北京海淀·九年级期末)若点1(1,)A y -,2(2,)B y 在抛物线22y x =上,则1y ,2y 的大小关系为:1y ________2y (填“>”,“=”或“<”).12.(2022·北京海淀·九年级期末)已知某函数当0x >时,y 随x 的增大而减小,则这个函数解析式可以为________.13.(2022·北京东城·九年级期末)写出一个开口向上,并且与y 轴交于点(0,2)的抛物线的解析式________________.14.(2022·北京东城·九年级期末)抛物线23(1)2y x =--+的顶点坐标是_________.15.(2022·北京朝阳·九年级期末)某件商品的销售利润y (元)与商品销售单价x (元)之间满足267y x x =-+-,不考虑其他因素,销售一件该商品的最大利润为______元.三、解答题16.(2022·北京房山·九年级期末)对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y ≤M ,那么称这个函数是有上界函数.在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数()232y x =--+是有上界函数,其上确界是2.(1)函数⊙221y x x =++和⊙()232y x x =-≤中是有上界函数的为____________(只填序号即可),其上确界为____________;(2)如果函数()2,y x a x b b a =-+≤≤>的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数()22215y x ax x =-+≤≤是以3为上确界的有上界函数,求实数a 的值.17.(2022·北京大兴·九年级期末)在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过点(0,3-),(3,0).(1)求二次函数的表达式;(2)将二次函数2y x bx c =++的图象向上平移()0n n >个单位后得到的图象记为G ,当502x ≤≤时,图象G 与x 轴只有一个公共点,结合函数的图象,直接写出n 的取值范围.18.(2022·北京石景山·九年级期末)如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2m ,当排球飞行到距离球网3m 时达到最大高度2.5m .小石建立了平面直角坐标系xOy (1个单位长度表示1m ),求得该抛物线的表达式为215722y x =-+.根据以上信息,回答下列问题: (1)画出小石建立的平面直角坐标系; (2)判断排球能否过球网,并说明理由.19.(2022·北京朝阳·九年级期末)在平面直角坐标系xOy 中,点()11,y -,()21,y ,()32,y 在抛物线2y ax bx =+上.(1)若1a =,2b =-,求该抛物线的对称轴并比较1y ,2y ,3y 的大小; (2)已知抛物线的对称轴为x t =,若2310y y y <<<,求t 的取值范围. 20.(2022·北京房山·九年级期末)在平面直角坐标系xOy 中,若反比例函数()0ky k x=≠的图象经过点()2,3A 和点()2,B m -,求m 的值.21.(2022·北京丰台·九年级期末)小朋在学习过程中遇到一个函数()2132y x x =-. 下面是小朋对其探究的过程,请补充完整:(1)观察这个函数的解析式可知,x 的取值范围是全体实数,并且y 有______值(填“最大”或“最小”),这个值是______;(2)进一步研究,当0x ≥时,y 与x 的几组对应值如下表: x 0121322523724 …y 0 2516 2 2716 1 516 0 7162 … 结合上表,画出当0x ≥时,函数()2132y x x =-的图像;(3)结合(1)(2)的分析,解决问题: 若关于x 的方程()21312x x kx -=-有一个实数根为2,则该方程其它的实数根约为______(结果保留小数点后一位).22.(2022·北京顺义·九年级期末)已知抛物线2(1)21y m x mx m =--++. (1)求证:该抛物线与x 轴有两个交点; (2)求出它的交点坐标(用含m 的代数式表示); (3)当两交点之间的距离是4时,求出抛物线的表达式.23.(2022·北京通州·九年级期末)在平面直角坐标系xOy 中,二次函数2y x mx n =++的图象经过点()()0,1,3,4A B .求此二次函数的表达式及顶点的坐标.24.(2022·北京石景山·九年级期末)在平面直角坐标系xOy 中,二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -1 0 1 2 … y …-31…(1)求这个二次函数的表达式; (2)画出这个二次函数的图象;(3)若3y <-,结合函数图象,直接写出x 的取值范围.25.(2022·北京海淀·九年级期末)在平面直角坐标系xOy 中,点(4,3)在抛物线23(0)y ax bx a =++>上. (1)求该抛物线的对称轴;(2)已知0m >,当222+m x m -≤≤时,y 的取值范围是13y -≤≤,求a ,m 的值;(3)在(2)的条件下,是否存在实数n ,当2n x n -<<时,y 的取值范围是3335n y n -<<+,若存在,直接写出n 的值;若不存在,请说明理由.26.(2022·北京海淀·九年级期末)在平面直角坐标系xOy 中,抛物线231()y a x =--经过点(2,1).(1)求该抛物线的表达式;(2)将该抛物线向上平移_______个单位后,所得抛物线与x 轴只有一个公共点.27.(2022·北京大兴·九年级期末)在平面直角坐标系xOy 中 ,抛物线241y x x =--与y 轴交于点A ,其对称轴与x 轴交于点B ,一次函数()0y kx b k =+≠的图象经过点A ,B .(1)求一次函数的表达式;(2)当3x >-时,对于x 的每一个值,函数()0y nx n =≠的值大于一次函数y kx b =+的值,直接写出n 的取值范围.28.(2022·北京东城·九年级期末)在平面直角坐标系xOy 中,点(1,m )和(2,n )在抛物线2y x bx =-+上.(1)若m =0,求该抛物线的对称轴;(2)若mn <0,设抛物线的对称轴为直线x t =, ⊙直接写出t 的取值范围;⊙已知点(-1,y 1),(32,y 2),(3,y 3)在该抛物线上.比较y 1,y 2,y 3的大小,并说明理由.29.(2022·北京东城·九年级期末)为了改善小区环境,某小区决定在一块一边靠墙(墙长25m )的空地上修建一个矩形小花园ABCD ,小花园一边靠墙,另三边用总长40m 的栅栏围住,如下图所示.若设矩形小花园AB 边的长为x m ,面积为ym 2. (1)求y 与x 之间的函数关系式;(2)当x 为何值时,小花园的面积最大?最大面积是多少?30.(2022·北京西城·九年级期末)已知二次函数243y x x =++. (1)求此函数图象的对称轴和顶点坐标; (2)画出此函数的图象;(3)若点()10,A y 和()2,B m y 都在此函数的图象上,且12y y <,结合函数图象,直接写出m 的取值范围.参考答案1.A【分析】根据顶点式2()y a x h k =-+的顶点坐标为(),h k 求解即可 【详解】解:抛物线22()1y x =-+的顶点坐标是(2,1) 故选A【点睛】本题考查了二次函数顶点式2()y a x h k =-+的顶点坐标为(),h k ,掌握顶点式求顶点坐标是解题的关键. 2.B【分析】利用0x =时,求函数值进行一一检验是否为0即可.【详解】A.当0x =时,011y =+=,1y x =+图象过点(0,1),选项A 不合题意; B.当0x =时,200y ==,2yx 图象过点(0,0),选项B 合题意;C.当0x =时,2(04)16y =-=,2(4)y x =-图象过点(0,16),选项C 不合题意;D.当0x =时,1y x=无意义,选项D 不合题意. 故选:B .【点睛】本题考查求函数值,识别函数经过点,掌握求函数值的方法,点在函数图像上点的坐标满足函数解析式是解题关键. 3.D【分析】根据二次函数2()y a x h =-的性质判断即可. 【详解】在二次函数()21y x =--中, ⊙10a =-<,⊙图像开口向下,故A 错误; 令0x =,则2(01)10y =--=-≠, ⊙图像不经过原点,故B 错误;二次函数()21y x =--的对称轴为直线1x =,故C 错误; 二次函数()21y x =--的顶点坐标为(1,0), ⊙顶点在x 轴上,故D 正确. 故选:D .【点睛】本题考查二次函数2()y a x h =-的性质,掌握二次函数相关性质是解题的关键. 4.C【分析】根据题意分别列出y 与t ,S 与t 的函数关系,进而进行判断即可. 【详解】解:根据题意得AP t =,5PB AB AP t =-=-, 即5y t =-()05t ≤≤,是一次函数;⊙A 的面积为S =22AP t ππ⨯=,即2S t π=()05t ≤≤,是二次函数故选C【点睛】本题考查了列函数表达式,一次函数与二次函数的识别,根据题意列出函数表达式是解题的关键. 5.B【分析】利由抛物线的开口方向和位置可对⊙进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(-1,0),代入解析式则可对⊙进行判断;由抛物线的顶点坐标以及对称轴可对⊙进行判断;抛物线的对称性得出点(),C t n 的对称点是()4,-C t n ,则可对⊙进行判断. 【详解】解:⊙抛物线开口向下, ⊙a <0,⊙抛物线与y 轴交于正半轴, ⊙c >0,⊙0ac <,故⊙正确;⊙抛物线2y ax bx c =++的顶点为()2,A m ,且经过点()5,0B , ⊙抛物线2y ax bx c =++与x 轴的另一个交点坐标为(-1,0), ⊙0a b c -+=,故⊙错误; ⊙抛物线的对称轴为直线x =2, ⊙22ba-=,即:b =-4a , ⊙0a b c -+=, ⊙c =b -a =-5a , ⊙顶点()2,A m ,⊙244ac b m a -=,即:()()24544a a a m a⋅---=, ⊙m =-9a ,即:90m a +=,故⊙正确;⊙若此抛物线经过点(),C t n ,抛物线的对称轴为直线x =2, ⊙此抛物线经过点()4,-C t n , ⊙()()244-+-+=a t b t c n ,⊙4t -一定是方程2ax bx c n ++=的一个根,故⊙错误. 故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置. 6.454【分析】如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.【详解】解:建立平面直角坐标系如图:根据题意可知,点A 的坐标为(3,10),点C 的坐标为(5,0),抛物线的对称轴为直线x =3.5, 设抛物线的的解析式为y =ax 2+bx +c ,把上面信息代入得,931025503.52a b c a b c b a⎧⎪++=⎪++=⎨⎪⎪=-⎩,解得,53550a b c =-⎧⎪=⎨⎪=-⎩,抛物线解析式为:253550y x x =-+-,把 3.5x =代入得,454y =; 故答案为:454 【点睛】本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.7.2(1)2y x =-+【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】y =x 2﹣2x +3=(x 2﹣2x +1)+2=(x ﹣1)2+2故本题答案为:y =(x ﹣1)2+2.【点睛】本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.8.3 【分析】根据反比例函数的解析式是m y x=,设点(,)P a b ,根据已知得出3ab =,即3xy =,求出即可. 【详解】解:设反比例函数的解析式是m y x =,设点(,)P a b 是反比例函数图象上一点,矩形PMON 的面积为3,3ab ∴=,即3m xy ==,故答案为:3.【点睛】本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.9.5【分析】分别求出售价与月份之间的函数关系式、成本与月份之间的函数关系式以及利润与售价、成本之间的关系,根据二次函数的性质即可得到结论.【详解】解:设每千克的售价是y 元,月份为x ,则可设y kx b =+把(3,8),(6,6)代入得,3866k b k b +=⎧⎨+=⎩解得,2310k b ⎧=-⎪⎨⎪=⎩ ⊙2103y x =-+ 设每千克成本是z 元,根据图象可设2(6)1z a x =-+把(3,4)代入2(6)1z a x =-+,得2(36)1=4a -+ ⊙13a = ⊙214133z x x =-+ ⊙设利润为w ,则有:222111610(413)(5)3333w y z x x x x =-=-+--+=--+ ⊙103-< ⊙2116(5)33w x =--+有最大值, ⊙当x =5时,w 有最大值,⊙5月份出售这种药材获利最大.故答案为:5【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.10.y 1<y 2【分析】先确定反比例函数的增减性,然后根据增减性解答即可.【详解】解:⊙12y x=- ⊙函数图象在每二、四象限内,且y 随x 的增大而增大⊙2<3⊙y 1<y 2.故答案是y 1<y 2. 【点睛】本题主要考查了反比例函数的性质,对于反比例k y x=,当k <0时,函数图象在每二、四象限内,且y 随x 的增大而增大.11.<【分析】利用二次函数图象上点的坐标特征可得出y 1,y 2的值,比较后即可得出结论.【详解】解:∵若点A (−1,y 1),B (2,y 2)在抛物线y =2x 2上,y 1=2×(-1)2=2,y 2=2×4=8,∵2<8,∴y 1﹤y 2.故答案为:﹤.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出y 1,y 2的值是解题的关键.12.y x =-或21y x =-或1y x =(答案不唯一) 【分析】根据题意可得这个函数可能是一次函数或二次函数或反比例函数,再由函数的增减性即可得出函数解析式.【详解】解:某函数当0x >时,y 随x 的增大而减小,∵未明确是一次函数、二次函数还是反比例函数,∴这个函数可能是一次函数或二次函数或反比例函数,根据其性质可得:这个函数为y x =-或21y x =-或1y x =, 故答案为:y x =-或21y x =-或1y x=(答案不唯一). 【点睛】题目主要考查一次函数和二次函数、反比例函数的基本性质,熟练掌握三个函数的基本性质是解题关键.13.22y x =+(答案不唯一)【分析】根据题意,写出一个0,2a c >=的解析式即可【详解】解:根据题意,0,2a c >=故22y x =+符合题意故答案为:22y x =+(答案不唯一)【点睛】本题考查了二次函数各系数与函数图象之间的关系,掌握二次函数的图象的性质是解题的关键.14.(1,2)【分析】直接根据顶点公式的特点求顶点坐标即可得答案.【详解】⊙23(1)2y x =--+是抛物线的顶点式,⊙顶点坐标为(1,2).故答案为:(1,2)【点睛】本题主要考查了求抛物线的顶点坐标、对称轴及最值的方法.解题的关键是熟知顶点式的特点. 15.2【分析】2267(3)2y x x x =-+-=--+知y 的最大值在3x =时取得,值为2.【详解】解:267y x x =-+-2(3)2y x =--+根据函数图像性质可知在3x =时,y 最大且取值为2故答案为:2.【点睛】本题考查了二次函数实际应用中的最值问题.解题的关键将二次函数化成顶点式.16.(1)⊙,1;(2)11a -≤<(3)2.4.【分析】(1)分别求出两个函数的最大值即可求解;(2)由题意可知:22b y a -+≤≤-+,再由2a b -+=,221b a -+≤+,b a >,即可求a 的取值范围; (3)当1a ≤时,27103a -=,可得 2.4a =(舍);当5a ≥时,323a -=,可得0a =(舍);当13a 时,27103a -=,可得 2.4a =;当35a <<时,323a -=,可得0a =.(1)⊙()222110y x x x =++=≥+,⊙⊙无上确界;⊙()232y x x =-≤,⊙1y ≤,⊙⊙有上确界,且上确界为1,故答案为:⊙,1;(2)⊙2y x =-+,y 随x 值的增大而减小,⊙当a x b ≤≤时,22b y a -+≤≤-+,⊙上确界是b ,⊙2a b -+=,⊙函数的最小值不超过21a +,⊙221b a -+≤+,⊙1a ≥-,⊙b a >,⊙2a a -+>,⊙1a <,⊙a 的取值范围为:11a -≤<;(3)222y x ax =-+的对称轴为直线x a =,当1a ≤时,y 的最大值为251022710a a -+=-,⊙3为上确界,⊙27103a -=,⊙ 2.4a =(舍);当5a ≥时,y 的最大值为12232a a -+=-,⊙3为上确界,⊙323a -=,⊙0a =(舍);当13a 时,y 的最大值为251022710a a -+=-,⊙3为上确界,⊙27103a -=,⊙ 2.4a =;当35a <<时,y 的最大值为12232a a -+=-,⊙3为上确界,⊙323a -=,⊙0a =,综上所述:a 的值为2.4.【点睛】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,根据所给范围分类讨论求二次函数的最大值是解题的关键.17.(1)223y x x =--;(2))74≤n <3或n =4 【分析】(1)利用待定系数法即可求解;(2)根据二次函数的平移规律可写出平移后的二次函数解析式,再结合图象即可得出结论,注意避免漏答案.【详解】解:(1)⊙该二次函数的图象经过点(0,-3),( 3,0),⊙ 300093c b c -=++⎧⎨=++⎩, 解得:23b c =-⎧⎨=-⎩⊙二次函数的表达式为223y x x =--.(2)将该二次函数向上平移n (n >0)个单位后得到的二次函数解析式为G :223y x x n =--+,当抛物线G 经过点5(0)2,时,即2550()2322n =-⨯-+, 解得:74n =, ⊙抛物线G 解析式为2524y x x =--,如图1G 即为其图象,此时当0≤x ≤52时,图象G 与x 轴只有一个公共点;当抛物线G 经过点(00),时,即0003n =--+, 解得:3n =,⊙抛物线G 解析式为22y x x =-,如图2G 即为其图象,此时当0≤x ≤52时,图象G 与x 轴刚刚有两个公共点.⊙当734n ≤<时,图象G 与x 轴只有一个公共点. 当抛物线G 经过点(0)1,时,即0123n =--+, 解得:4n =,⊙抛物线G 解析式为221y x x =-+,如图3G 即为其图象,此时当0≤x ≤52时,图象G 与x 轴有一个公共点.综上可知,当74≤n <3或n = 4时满足条件. 【点睛】本题考查利用待定系数法为求二次函数解析式,二次函数的平移.掌握二次函数的平移规律以及利用数形结合的思想是解答本题的关键.18.(1)见解析;(2)排球能过球网,理由见解析【分析】(1)根据该抛物线的表达式为215722y x =-+,可得抛物线的顶点坐标为50,2⎛⎫ ⎪⎝⎭,从而得到小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,即可求解; (2)根据题意得:当3x = 时,2153 2.375 2.24722y =-⨯+=> ,即可求解. 【详解】解:(1)如图,⊙该抛物线的表达式为215722y x =-+, ⊙抛物线的顶点坐标为50,2⎛⎫ ⎪⎝⎭ ,⊙当排球飞行到距离球网3m 时达到最大高度2.5m .根据题意得:点A 的坐标为50,2⎛⎫ ⎪⎝⎭,⊙小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,如下图:(2)排球能过球网,理由如下:根据题意得:点B 的横坐标为3,⊙当3x = 时,2153 2.375 2.24722y =-⨯+=> , ⊙排球能过球网.【点睛】本题主要考查了建立二次函数的图象和性质,建立适当的平面直角坐标系,熟练掌握二次函数的图象和性质是解题的关键.19.(1)对称轴为直线x =1,y 2<y 3<y 1;(2)12<t <1【分析】(1)根据二次函数的图象与性质求解即可;(2)由题意,该抛物线过原点,分a >0和a <0,根据二次函数的对称性和特殊点的函数值求解即可.【详解】解:(1)当1a =,2b =-时,该抛物线的解析式为222(1)1y x x x =-=--,则该抛物线的对称轴为直线x =1,⊙点()11,y -,()21,y ,()32,y 在抛物线上,⊙y 1=3,y 2=-1,y 3=0,⊙y 2<y 3<y 1;(2)由题意,当x =0时,y =0,故该抛物线过原点,当a >0时,⊙抛物线的对称轴为直线x t =,⊙t =1时,y 3=0,t =12时,y 1=y 3, ⊙2310y y y <<<, ⊙12<t <1; 当a <0时,不满足2310y y y <<<,故t 的取值范围为12<t <1.【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的性质是解答的关键.20.-3【分析】由反比例函数的图象及其性质将A 、B 点代入反比例函数()0k y k x =≠即可求得m 的值为-3. 【详解】⊙反比例函数()0k y k x =≠的图象经过点()2,3A , ⊙236k =⨯=.⊙点()2,B m -在反比例函数()0k y k x =≠的图象上, ⊙62k m ==-,解得:3m =-.故m 的轴为-3.【点睛】本题考察了反比例函数值的求法,明确图象上点的坐标和解析式的关系是解题的关键.21.(1)最小;0(2)见解析(3)4.2【分析】(1)根据解析式()2132x x -0≥,即可求解; (2)根据描点法画函数图像;(3)根据图像法求解即可,作经过点()()0,1,2,1-的直线,与()2132y x x =-的另一个交点的横坐标即为方程的解(1)解:⊙()2132x x -0≥, ⊙y 有最小值,这个值是0;故答案为:最小;0(2)根据列表,描点连线,如图,(3) 依题意,()21312x x kx -=-有一个实数根为2, 则过点()2,1()21312x x kx -=-的解即为()2132y x x =-与1y kx =-的交点的横坐标, 且1y kx =-过点()0,1-如图,作过点()()0,1,2,1-的直线,与()2132y x x =-交于点A根据函数图像的交点可知点A 的横坐标约为4.2则该方程其它的实数根约为4.2故答案为:4.2【点睛】本题考查了绝对值与平方的非负性,根据列表描点连线画函数图像,根据函数图像的交点求方程的解,数形结合是解题的关键.22.(1)见解析(2)(1, 0)和(11m m +- , 0) (3)215322y x x =-+ 或21322y x x =--+ 【分析】(1)求出b 2-4ac 的值,根据根与系数的关系求出即可;(2)求出方程2(1)21=0m x mx m --++的解即可;(3)根据距离公式求出m 的值,即可求出抛物线的解析式.(1)证明:根据题意得1m ≠,⊙Δ=b 2-4ac =(-2m )2-4•(m -1)•(m +1)=4>0,⊙该抛物线与x 轴有两个交点.(2)解:令y =0 ,则2(1)21=0m x mx m --++,⊙[(m -1)x -(m +1)](x -1)=0,⊙x 1=1,x 2=11m m +-, ⊙交点坐标为:(1,0)和(11m m +-,0); (3)解:由题意得,|11m m +--1|=4, 解得m =12或m =32, 经检验m =12或m =32符合题意, ⊙215322y x x =-+ 或21322y x x =--+. 【点睛】本题主要考查对二次函数图象与坐标轴的交点,解一元二次方程,数轴上两点间的距离等知识点的理解和掌握,熟练掌握各知识点是解此题的关键.23.221y x x =-+,()1,0【分析】直接把点A 、B 的坐标代入二次函数解析式进行求解,然后求出对称轴,最后问题可求解.【详解】解:⊙二次函数2y x mx n =++的图象经过点()()0,1,3,4A B ;⊙1934n m n =⎧⎨++=⎩, 解得:21m n =-⎧⎨=⎩, ⊙221y x x =-+⊙对称轴为直线2121x -=-=⨯, ⊙21210y =-+=,⊙顶点的坐标为()1,0.【点睛】本题主要考查二次函数的图象与性质,熟练掌握利用待定系数法求解函数解析式是解题的关键. 24.(1)22y x x =-+;(2)图象见解析;(3)1x <-或x >3【分析】(1)设二次函数的表达式为2y ax bx c =++,根据三组横坐标x 和纵坐标y 的值列出方程组求出a ,b ,c 的值即可得到二次函数的表达式;(2)计算并补充出一些横坐标x 和纵坐标y 的对应值,然后在平面直角坐标系中描点,并用平滑曲线连接即可;(3)根据二次函数的图象应用数形结合思想即可得到x 的取值范围.【详解】解:(1)设二次函数的表达式为2y ax bx c =++.将三组横坐标x ,纵坐标y 的值代入可得222000,111,022a b c a b c a b c ⎧=⨯++⎪=⨯++⎨⎪=⨯++⎩. 解得1,2,0a b c =-⎧⎪=⎨⎪=⎩.所以二次函数的表达式为22y x x =-+.(2)横坐标x 与纵坐标y 的对应值如下表: x-2 -1 0 1 2 3 4 y-8 -3 0 1 0 -3 -8建立平面直角坐标系,描点并用平滑曲线连接即可得到该二次函数的图象.(3)3y <-,即223x x -+<-.根据(2)中二次函数图象可以看出当1x <-或x >3时,3y <-.所以x 的取值范围是1x <-或x >3.【点睛】本题考查二次函数的解析式,二次函数的图象和性质,熟练掌握这些知识点是解题关键. 25.(1)2x =;(2)1a =,1m =;(3)存在,1n =.【分析】(1)利用对称点与对称轴的关系:对称点的横坐标之和等于对称轴的2倍,即可求出该抛物线的对称轴.(2)分别讨论222+m x m -≤≤的取值范围与对称轴的位置,分别求出不同情况下y 取最大值与最小值时,对应的x 的取值,进而求出求a ,m 的值.(3)由于y 的取值范围是3335n y n -<<+,取不到最大值和最小值,故2n x n -<<不包含对称轴,分别讨论2n x n -<<在对称轴的左右两侧即可.【详解】(1)解:依题意,⊙ 抛物线23y ax bx =++过点(0,3),(4,3),⊙ 该抛物线的对称轴为直线2x =.(2)解:⊙ 抛物线23y ax bx =++对称轴为直线2x =, ⊙ 22b a-=,即4b a =- ⊙. ⊙ 0m >,⊙ 2222m m -<<+.⊙ 0a >,抛物线开口向上,⊙ 当2x =时,函数值在222m x m -≤≤+上取得最小值1-.即 4231a b ++=- ⊙.联立⊙⊙,解得1a =,4b =-.⊙ 抛物线的表达式为243y x x =-+,即()221y x =--. ⊙0m >,⊙ 当22m x -≤≤时,y 随x 的增大而减小,当2x m =-时取得最大值,当222x m ≤≤+时,y 随x 的增大而增大,当22x m =+时取得最大值,⊙对称轴为2x =,⊙2x m =-与2x m =+时的函数值相等.⊙2222m m <+<+,⊙ 当22x m =+时的函数值大于当2x m =+时的函数值,即2x m =-时的函数值.⊙ 当22x m =+时,函数值在222m x m -≤≤+上取得最大值3.代入有2413m -=,舍去负解,得1m =.(3)解:存在,1n =.当2n x n -<<时,y 的取值范围是3335n y n -<<+,y 无法取到最大值与最小值,∴关于x 的取值范围一定不包含对称轴,⊙当2n ≤时,2n x n -<<在对称轴的左侧,二次函数开口向上,2x n ∴=-时,y 有最大值,x n =时,y 有最小值,由题意可知:22(2)4(2)3354333n n n n n n ⎧---+=+⎨-+=-⎩,解得:1n =, 故1n =,⊙当22n -≥时,2n x n -<<在对称轴的右侧,二次函数开口向上,2x n ∴=-时,y 有最小值,x n =时,y 有最大值,由题意可知:22(2)4(2)3334335n n n n n n ⎧---+=-⎨-+=+⎩,此时n 无解, 故不符合题意,∴1n =.【点睛】本题主要是考查了对称点与对称轴的关系,以及二次函数的最值求解,熟练通过分类讨论,分别讨论对称轴与x 的取值范围的关系,进而确定函数取最值时的x 的取值,是求解该题的关键.26.(1)22(3)1y x =--;(2)1【分析】(1)将(2,1)代入抛物线解析式,即可求出a 的值,进而求出抛物线的表达式.(2)利用顶点坐标的位置,判断抛物线向上平移的单位即可.【详解】(1)解:⊙ 抛物线()231y a x =--经过点(2,1),⊙ 11a -=.解得:2a =.⊙ 该抛物线的表达式为22(3)1y x =--.(2)解:抛物线的顶点为(3,1-),若抛物线与x 轴只有一个公共点,则只需向上平移1个单位,顶点变为(3,0),此时满足题意.【点睛】本题主要是考查了待定系数法求解二次函数表达式以及函数图像的平移,熟练利用待定系数法求解函数表达式,根据顶点坐标的平移确定函数图像整体平移的情况,是解决该题的关键.27.(1)112y x =-;(2)12≤n ≤56 【分析】(1)分别求出点A ,B 的坐标,代入一次函数的解析式()0y kx b k =+≠,求出k ,b 的值即可;(2)分别画出函数图象,根据图象判断n 的取值即可.【详解】解:(1)⊙抛物线241y x x =--与y 轴交于点A ,令x =0,则y =-1⊙A (0,-1).⊙抛物线的对称轴为:4=2.2x -=-⊙B (2,0).⊙y kx =+b 过A (0,-1),B (2,0), ⊙ 102b k b =-⎧⎨=+⎩⊙ 112b k =-⎧⎪⎨=⎪⎩⊙一次函数的表达式为112y x =-. (2)如图,根据题意知,直线y nx =与直线y kx b =+的交点坐标为(-3,52-) 此时,52nx =- 当3x =-时,532n -=- ⊙56n = 从图象可以看出,当3x >-时,且12≤n ≤56,对于x 的每一个值,函数()0y nx n =≠的值大于一次函数y kx b =+的值【点睛】本题考查了函数图象的平移,一次函数的图象,二次函数的性质,熟练掌握函数的图象与性质是解题的关键.28.(1)12x =;(2)⊙112t <<;⊙312y y y <<,见解析 【分析】(1)把点(1,m ),m =0,代入抛物线2y x bx =-+,利用待定系数法求解解析式,再利用公式求解抛物线的对称轴方程;(2)⊙先判断,m n 异号,求解抛物线2y x bx =-+的对称轴为:1,212bx b t 抛物线与x 轴的交点坐标为:0,0,,0,b 根据点(1,m )和(2,n )在抛物线2y x bx =-+上,则0,0,m n 可得12,b 从而可得答案;⊙设点(-1,y 1)关于抛物线的对称轴x t =的对称点为01(,)x y ,再判断023x <<.结合抛物线开口向下,当x t >时,y 随x 的增大而减小,从而可得答案.【详解】解:(1)⊙点(1,m )在抛物线2y x bx =-+上,m =0,⊙10b -+=.⊙1b =.所以抛物线为:2,y x x⊙该抛物线的对称轴为()11212x =-=⨯-. (2)⊙0,mn 则,m n 异号,而抛物线2y x bx =-+的对称轴为:1,212bxb t 令0,y = 则20,x bx解得:120,,x x b 所以抛物线与x 轴的交点坐标为:0,0,,0,b点(1,m )和(2,n )在抛物线2y x bx =-+上,0,0,m n12,b111,22b 即1 1.2t << ⊙312y y y <<.理由如下:由题意可知,抛物线过原点.设抛物线与x 轴另一交点的横坐标为x ´.⊙抛物线经过点(1,m ),(2,n ),mn <0⊙1<x <2.⊙112t <<. 设点(-1,y 1)关于抛物线的对称轴x t =的对称点为01(,)x y .⊙点(-1,y 1)在抛物线上,⊙点01(,)x y 也在抛物线上.由0(1)x t t -=-- 得021x t =+.⊙112t <<, ⊙1<2t <2.⊙2<2t +1<3.⊙023x <<.。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
2023年中考数学 二次函数实际应用问题 函数综合 专项练习(无答案)
【二次函数实际应用题+函数综合】专项练习1.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…日销售量(m件)198194188180…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.2.在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点D为该抛物线的顶点,设点E(m,0)(m>2),如果△BDE和△CDE的面积相等,求E点坐标.3.某花木公司生产的花卉产品年产量为6万件,每年可通过在网上销售和批发部销售全部售完.该花卉产品平均每件产品的利润与销售的关系如表:销售量(万件)平均每件产品的利润(元)网上销售x当0<x≤2时,y1=140当2≤x<6时,y1=﹣5x+150批发部销售n当0<n≤2时,y2=120当2≤n<6时,y2=﹣5n+130(1)①当网上销售量为4.2万件时,y1=;y2=②y2与x的函数关系为:当0<x≤时,y2=;当≤x<6时,y2=120.(2)求每年该公司销售这种花卉产品的总利润w(万元)与网上销售数量x(万件)的函数关系式,并指出x的取值范围;(3)该公司每年网上、批发部的销售量各为多少万件时,可使公司每年的总利润最大?最大值为多少万元?4.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.5.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a (x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?6.如图,直线y=k1x+b1与反比例函数y=的图象及坐标轴依次相交于A、B、C、D四点,且点A坐标为(﹣3,),点B坐标为(1,n).(1)求反比例函数及一次函数的解析式;(2)求证:AC=BD;(3)若将一次函数的图象上下平移若干个单位后得到y=k1x+n,其与反比例函数图象及两坐标轴的交点仍然依次为A、B、C、D.(2)中的结论还成立吗?请写出理由,对于任意k<0的直线y=kx+b.(2)中的结论还成立吗?(请直接写出结论)7.大圩葡萄味美多汁,深受消费者喜爱.某品种的葡萄采摘后常温保存最多只能存放一周,如果立即放在冷库中保存则可适当延长保鲜时间(保鲜期延长最多不超过120天).另外冷藏保鲜时每天仍有一定数量的葡萄变质,保鲜期内的葡萄因水分流失损失的质量可忽略不计.现有一位个体户,按市场价10元/千克收购了这种葡萄2000千克放在冷库室内保鲜,据测算,伺候每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有10千克葡萄变质丢弃.(1)存放x天后将这批葡萄一次性出售,设这批葡萄的销售金额为y元,写出y关于x的函数关系式,并说明销售金额y随存放天数x的变化情况;(2)考虑资金周转因式,该个体户决定在两个月(每月以30天计算)内将这批葡萄一次性出售,问该个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润时多少元?8.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?9.如图,已知抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的函数解析式;(2)连接BC交x轴于点F.试在y轴负半轴上找一点P,使得△POC∽△BOF.10.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?11.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.12.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积;(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.13、某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.14、某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台15、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120130 (180)每天销量y(kg)10095 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,每天销售利润最大?最大利润是多少?16、水库90天内的日捕捞量y(kg)与时间第x(天)满足一次函数的关系,部分数据如表:时间第x(天)13610日捕捞量(kg)198194188180(1)求出y与x之间的函数解析式;(2)水库前50天采用每天降低水位的办法减少捕捞成本,到达最低水位标准后,后40天水库维持最低水位进行捕捞.捕捞成本和时间的关系如下表:时间第x(天)1≤x<5050≤x≤90捕捞成本(元/kg)60﹣x10已知鲜鱼销售单价为每千克70元,假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.设销售该鲜鱼的当天收入w元(当天收入=日销售额﹣日捕捞成本),①请写出w与x之间的函数解析式,并求出90天内哪天收入最大?当天收入是多少?②若当天收入不低于4800元,请直接写出x的取值范围?17、某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:x(万元)00.51 1.52…y1 1.275 1.5 1.675 1.8…(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.18、合肥周谷堆农副产品批发市场某商铺购进一批红薯,通过商店批发和在淘宝网上进行销售,首月进行了销售情况的统计.其中商店日批发量y1(百斤)与时间x(x为整数,单位:天)的部分对应值如下表所示;在淘宝网上的日销售量y2(百斤)与时间x(x为整数,单位:天)的部分对应值如图所示.时间x(天)0510********日批发量y1(百斤)025*********(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与x之间的函数关系式;(2)求y2与x之间的函数关系式;(3)设这个月中,日销售总量为y,求y与x之间的函数关系式;并求出当x为何值时,日销售总量y最大,最大值为多少?19、为满足市场需求,某超市购进一种品牌糕点,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种糕点的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售糕点多少盒?20、农民购买农机设备政府会给予一定额度的补贴,其中购买Ⅰ、Ⅱ型农机设备的金额与政府补贴的金额存在表所示的函数对应关系:型号Ⅰ型设备Ⅱ型设备金额购买金额x(万元)x1x24补贴金额y(万元)y1=kx(k≠0)0.4y2=ax2+bx(a≠0) 2.4 3.2(1)分别求出y1和y2的函数解析式;(2)张大伯打算共用10万元购买Ⅰ、Ⅱ两型农机设备.请你帮助张大伯设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.。
2024年中考数学复习重难点(全国通用版):用一次函数、反比例函数、二次函数解决实际问题(原卷版)
专题19用一次函数、反比例函数、二次函数解决实际问题【中考考向导航】目录【直击中考】 (1)【考向一在一次函数解决实际问题求最值问题】 (1)【考向二用反比例函数解决实际问题】 (3)【考向三在二次函数解决实际问题求最值问题】 (6)【直击中考】【考向一在一次函数解决实际问题求最值问题】例题:(2023·山东济南·山东大学附属中学校考一模)为响应对口扶贫,深圳某单位和西部某乡结对帮扶,采购该乡农副产品助力乡村振兴.已知1件A产品价格比1件B产品价格少20元,300元购买A产品件数与400元购买B产品件数相同.(1)A产品和B产品每件分别是多少元?(2)深圳该对口单位动员职工采购该乡A、B两种农副产品,根据统计:职工响应积极,两种预计共购买150件,A的数量不少于B的2倍,当采购A、B两种农副产品为多少时,购买总费用最大?并求购买总费用的最大值.【变式训练】1.(2023秋·广东河源·八年级校考期末)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710且不超过6810元购进这两种商品共100件.(1)甲、乙两种商品的进价各是多少?(2)设其中甲商品的进货件数为x件,商店有几种进货方案?(3)设销售两种商品的总利润为W元,试写出利润W与x的函数关系式,并利用函数的性质说明哪一种进货方案可获得最大利润,并求出最大利润是多少?设该经销商购进普通包装的柿饼x 斤,总利润为y 元.(1)求y 与x 之间的函数关系式;(2)经过市场调研,该经销商决定购进精品包装的柿饼不大于普通包装的3倍,请问获利最大的进货方案及最大利润.【考向二用反比例函数解决实际问题】例题:(2023秋·湖南永州·九年级校考期末)某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 C y 与时间 h x 之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间 024x x 的函数关系式;(2)若大棚内的温度低于10C 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【变式训练】1.(2023·云南·校考一模)云南某山区冬季经常缺水,政府在山顶修建了一大型蓄水池.据统计,按每天用水0.6立方米计算,蓄水池剩余的水一个月(30天)刚好用完.如果每天的用水量为x 立方米,那么这个蓄水池的水能维持y 天.(1)写出y 与x 之间的函数表达式;(2)如果每天用水0.5立方米,那么蓄水池剩余的水能维持多少天?2.(2023·安徽宿州·统考一模)为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强 kPa p 与气体体积 ml V 满足反比例函数关系,其图像如图所示.(1)求反比例函数的表达式.(2)当气体体积为60ml 时,气体的压强为______kPa .(3)若注射器内气体的压强不能超过500kPa ,则其体积V 要控制在什么范围?3.(2023秋·河北邯郸·九年级校考期末)某校为进一步预防“新型冠状病毒”,对全校所有的教室都进行了“熏药法消毒”处理,已知该药物在燃烧释放过程中,教室内空气中每立方米的含药量y (mg )与燃烧时间x (min )之间的函数关系如图所示,其中当5x 时,y 是x 的正比例函数,当5x ≥时,y 是x 的反比例函数,根据图象提供的信息,解答下列问题:(1)求y 与x 的函数关系式;(2)求点P 的坐标;(3)药物燃烧释放过程中,若空气中每立方米的含药量不小于4mg 的时间超过20分钟,即为有效消毒,请问本题中的消毒是否为有效消毒?一辆汽车行驶在从甲地到乙地的高速公路上,(1)观察上表实验数据,写出表中a的值______.(2)以L的数值为横坐标,F的数值为纵坐标建立如图平面直角坐标系,在坐标系中描出以上表中的数对为坐标的各点,并用平滑的曲线顺次连接这些点;(3)根据所画的图象,求出F与L的函数关系式.【考向三在二次函数解决实际问题求最值问题】例题:(2022秋·山东烟台·九年级统考期末)某文具店以8元/支的进价购进一批签字笔进行销售,经市场调查后发现,日销量y(支)与零售价x(元)之间的关系图象如下图所示,其中816x.(1)求出日销量y(支)与零售价x(元)之间的关系;(2)当零售价定为多少时,该文具店每天销售这种签字笔获得的利润最大?最大利润是多少?【变式训练】1.(2022秋·山西太原·九年级校考期末)某文具商店销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售价为x(40x )元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式:_______.(2)求W与x之间的函数关系式(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?40 y两种产品共7.(2023秋·江苏泰州·九年级校考期末)某书店销售一本畅销的小说,每本进价为25元.根据以往经验,当销售单价是30元时,每天的销售量是300本;销售单价每上涨1元,每天的销售量减少10本,设这本小说每天的销售量为y本,销售单价为x3050()元.x(1)请求出y与x之间的函数关系式;(2)书店决定每销售1本该小说,就捐赠3元给山区贫困儿童,若想每天扣除捐赠后获得最大利润,则该小说每本售价为多少元?每天最大利润是多少元?。
专题13 函数之一次函数、反比例函数和二次函数综合问题(压轴题)
《中考压轴题》专题13:函数之一次函数、反比例函数和二次函数问题一、选择题1.函数y=ax 2+1与a y x =(a≠0)在同一平面直角坐标系中的图象可能是【】A .B .C .D .2.二次函数2y ax b =+(b >0)与反比例函数a y x=在同一坐标系中的图象可能是【】A. B. C. D.3.函数a y x=与y=ax 2(a≠0)在同一平面直角坐标系中的图象可能是【】A. B. C. D.4.已知反比例函数k y x =的图像如图所示,则二次函数22y 2kx 4x k =-+的图像大致为【】A. B. C. D.5.已知反比例函数k y x =的图像如图所示,则二次函数22y 2kx 4x k =-+的图像大致为【】A. B. C. D.6.在平面直角坐标系中,函数y=x 2﹣2x (x≥0)的图象为C 1,C 1关于原点对称的图象为C 2,则直线y=a (a 为常数)与C 1、C 2的交点共有【】A.1个B.1个或2个C.个或2个或3个D.1个或2个或3个或4个7.函数k y x=与y=﹣kx 2+k (k≠0)在同一直角坐标系中的图象可能是【】A. B. C.D.8.已知a ≠0,在同一直角坐标系中,函数y ax =与2y ax =的图象有可能是【】A. B. C. D.9.一次函数()y ax b a 0=+≠、二次函数2y ax bx =+和反比例函数()k y k 0x=≠在同一直角坐标系中图象如图,A 点为(-2,0)。
则下列结论中,正确的是【】A .b 2a k =+B .a b k =+C .a b 0>>D .a k 0>>10.若正比例函数y=mx (m ≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是【】11.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.下列判断:①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=1.其中正确的有【】A .1个B .2个C .3个D .4个12.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是【】A .B .C .D .13.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数a y x=与y=bx+c 在同一直角坐标系内的大致图象是【】A .B .C .D .二解答题1.如图①,双曲线kyx(k≠0)和抛物线y=ax2+bx(a≠0)交于A、B、C三点,其中B(3,1),C(﹣1,﹣3),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.(1)求双曲线和抛物线的解析式;(2)抛物线在第一象限部分是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;(3)如图②,过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点N,求DNNB的值.2.已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM 为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.3.在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴、y 轴分别相交于A (﹣3,0),B (0,﹣3)两点,二次函数y=x 2+mx+n 的图象经过点A .(1)求一次函数y=kx+b 的解析式;(2)若二次函数y=x 2+mx+n 图象的顶点在直线AB 上,求m ,n 的值;(3)当﹣3≤x≤0时,二次函数y=x 2+mx+n 的最小值为﹣4,求m ,n 的值.4.在平面直角坐标系中,抛物线()2y x k 1x k =+--与直线y kx 1=+交于A,B 两点,点A 在点B 的左侧.(1)如图1,当k 1=时,直接写出....A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线()()2y x k 1x k k >0=+--与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线y kx 1=+上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.5.给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ .6.已知:直线y=ax+b 与抛物线2y ax bx c =-+的一个交点为A (0,2),同时这条直线与x 轴相交于点B ,且相交所成的角β为45°.(1)求点B 的坐标;(2)求抛物线2y ax bx c =-+的解析式;(3)判断抛物线2y ax bx c =-+与x 轴是否有交点,并说明理由.若有交点设为M ,N (点M 在点N 左边),将此抛物线关于y 轴作轴反射得到M 的对应点为E ,轴反射后的像与原像相交于点F ,连接NF ,EF 得△DEF ,在原像上是否存在点P ,使得△NEP 的面积与△NEF 的面积相等?若存在,请求出点P 的坐标;若不存在,请说明理由.7.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为.8.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.9.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:x (天)123...50p (件)118116114 (20)销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x≤50时1125q 40x=+.(1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系.(2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?10.如图,已知直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点,(1)直线AB 总经过一个定点C ,请直接写出点C 坐标;(2)当1k 2=-时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.11.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以13元/千克的价格销售,那么每天可获取利润750元.【利润=(销售价-进价) 销售量】(1)请根据他们的对话填写下表:销售单价x(元/kg)101113销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?12.如图,抛物线y=ax 2+bx+c 关于y 轴对称,它的顶点在坐标原点O ,点B (2,43-)和点C (﹣3,﹣3)两点均在抛物线上,点F (0,34-)在y 轴上,过点(0,34)作直线l 与x 轴平行.(1)求抛物线的解析式和直线BC 的解析式.(2)设点D (x ,y )是线段BC 上的一个动点(点D 不与B ,C 重合),过点D 作x 轴的垂线,与抛物线交于点G .设线段GD 的长度为h ,求h 与x 之间的函数关系式,并求出当x 为何值时,线段GD 的长度h 最大,最大长度h 的值是多少?(3)若点P (m ,n )是抛物线上位于第三象限的一个动点,连接PF 并延长,交抛物线于另一点Q ,过点Q 作QS ⊥l ,垂足为点S ,过点P 作PN ⊥l ,垂足为点N ,试判断△FNS 的形状,并说明理由;(4)若点A (﹣2,t )在线段BC 上,点M 为抛物线上的一个动点,连接AF ,当点M 在何位置时,MF+MA 的值最小,请直接写出此时点M 的坐标与MF+MA 的最小值.13.如图,直线y=﹣3x+3与x 轴、y 轴分别交于点A 、B ,抛物线()2y a x 2k =-+经过点A 、B ,并与x 轴交于另一点C ,其顶点为P .(1)求a ,k 的值;(2)抛物线的对称轴上有一点Q ,使△ABQ 是以AB 为底边的等腰三角形,求Q 点的坐标;(3)在抛物线及其对称轴上分别取点M 、N ,使以A ,C ,M ,N 为顶点的四边形为正方形,求此正方形的边长.14.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t)秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.15.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”,例如点(﹣1,﹣1),(0,0),),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数ny x=(n 为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s ﹣1(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y=ax 2+bx+1(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A (x 1,x 1),B (x 2,x 2),且满足﹣2<x 1<2,|x 1﹣x 2|=2,令t=b 2﹣2b+15748,试求出t 的取值范围.16.已知抛物线()25k 2y x k 2x 4+=-++和直线()()2y k 1x k 1=+++.(1)求证:无论k 取何实数值,抛物线总与x 轴有两个不同的交点;(2)抛物线于x 轴交于点A 、B ,直线与x 轴交于点C ,设A 、B 、C 三点的横坐标分别是x 1、x 2、x 3,求x 1•x 2•x 3的最大值;(3)如果抛物线与x 轴的交点A 、B 在原点的右边,直线与x 轴的交点C 在原点的左边,又抛物线、直线分别交y 轴于点D 、E ,直线AD 交直线CE 于点G (如图),且CA•GE=CG•AB ,求抛物线的解析式.17.如图①,直线l :y=mx+n (m >0,n <0)与x ,y 轴分别相交于A ,B 两点,将△AOB 绕点O 逆时针旋转90°,得到△COD ,过点A ,B ,D 的抛物线P 叫做l 的关联抛物线,而l 叫做P 的关联直线.(1)若l :y=﹣2x+2,则P 表示的函数解析式为;若P :y=﹣x 2﹣3x+4,则l 表示的函数解析式为.(2)求P 的对称轴(用含m ,n 的代数式表示);(3)如图②,若l :y=﹣2x+4,P 的对称轴与CD 相交于点E ,点F 在l 上,点Q 在P 的对称轴上.当以点C ,E ,Q ,F 为顶点的四边形是以CE 为一边的平行四边形时,求点Q 的坐标;(4)如图③,若l :y=mx ﹣4m ,G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若OM=,直接写出l ,P 表示的函数解析式.18.如图,直线y=x ﹣4与x 轴、y 轴分别交于A 、B 两点,抛物线21y x bx c 3=++经过A 、B 两点,与x 轴的另一个交点为C ,连接BC .(1)求抛物线的解析式及点C 的坐标;(2)点M 在抛物线上,连接MB ,当∠MBA+∠CBO=45°时,求点M 的坐标;(3)点P 从点C 出发,沿线段CA 由C 向A 运动,同时点Q 从点B 出发,沿线段BC 由B 向C 运动,P 、Q 的运动速度都是每秒1个单位长度,当Q 点到达C 点时,P 、Q 同时停止运动,试问在坐标平面内是否存在点D ,使P 、Q 运动过程中的某一时刻,以C 、D 、P 、Q 为顶点的四边形为菱形?若存在,直接写出点D 的坐标;若不存在,说明理由.19.如图,抛物线y=-x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C的坐标;(2)如图①,点P(m,0)是线段AO上的一个动点,其中-3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L 与m的函数关系式,并求m为何值时周长L最大;(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.20.如图,已知直线l的解析式为1y x12=-,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D51,4⎛⎫⎪⎝⎭三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.21.今年5月1日起实施《青海省保障性住房准入分配退出和运营管理实施细则》规定:公共租赁住房和廉租住房并轨运行(以下简称并轨房),计划10年内解决低收入人群住房问题.已知第x年(x为正整数)投入使用的并轨房面积为y百万平方米,且y与x的函数关系式为1y x56=-+.由于物价上涨等因素的影响,每年单位面积租金也随之上调.假设每年的并轨房全部出租完,预计第x年投入使用的并轨房的单位面积租金z与时间x满足一次函数关系如下表:时间x(单位:年,x为正整数)12345…单位面积租金z(单位:元/平方米)5052545658…(1)求出z与x的函数关系式;(2)设第x年政府投入使用的并轨房收取的租金为W百万元,请问政府在第几年投入使用的并轨房收取的租金最多,最多为多少百万元?22.如图,抛物线y=14x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD 重叠部分的面积记为S,试求S的最大值.24.如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0)和点B(1,0),直线y=2x﹣1与y轴交于点C,与抛物线交于点C、D.(1)求抛物线的解析式;(2)求点A到直线CD的距离;(3)平移抛物线,使抛物线的顶点P在直线CD上,抛物线与直线CD的另一个交点为Q,点G在y轴正半轴上,当以G、P、Q三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G点的坐标.25.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线1y x12=-+相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.26.如图,在平面直角坐标系中,抛物线2y ax bx 3=++与x 轴交于点A (﹣4,0),B (﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D .①如图(1),若四边形ODAE 是以OA 为对角线的平行四边形,当平行四边形ODAE 的面积为6时,请判断平行四边形ODAE 是否为菱形?说明理由.②如图(2),直线1y x 32=+与抛物线交于点Q 、C 两点,过点D 作直线DF ⊥x 轴于点H ,交QC 于点F .请问是否存在这样的点D ,使点D 到直线CQ 的距离与点C 到直线DF :2?若存在,请求出点D 的坐标;若不存在,请说明理由.27.如图,已知一次函数11y x b 2=+的图象l 与二次函数22y x mx b =-++的图象'C 都经过点B (0,1)和点C ,且图象'C 过点A (52-,0).(1)求二次函数的最大值;(2)设使21y y >成立的x 取值的所有整数和为s ,若s 是关于x 的方程131x 0a 1x 3⎛⎫++= ⎪--⎝⎭的根,求a 的值;(3)若点F 、G 在图象'C 上,长度为5的线段DE 在线段BC 上移动,EF 与DG 始终平行于y 轴,当四边形DEFG 的面积最大时,在x 轴上求点P ,使PD+PE 最小,求出点P 的坐标.28.如图,已知直线y 3x 3=-+与x 轴交于点A ,与y 轴交于点C ,抛物线2y ax bx c =++经过点A 和点C ,对称轴为直线l :x 1=-,该抛物线与x 轴的另一个交点为B .(1)求此抛物线的解析式;(2)点P 在直线l 上,求出使△PAC 的周长最小的点P 的坐标;(3)点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M 的坐标;若不能,请说明理由.29.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;=2S△BPD;(2)当m为何值时,S四边形OBDC(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.30.已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.(3)请你参考(2)中结论解决下列问题:(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.31.如图,已知抛物线23y ax x c 2=-+与x 轴相交于A 、B 两点,并与直线1y x 22=-交于B 、C 两点,其中点C 是直线1y x 22=-与y 轴的交点,连接AC .(1)求抛物线的解析式;(2)证明:△ABC 为直角三角形;(3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.32.对某一个函数给出如下定义:若存在实数M 0>,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数()1y x 0x=>和()y x 14x 2=+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数()y x 1a x b b a =-+≤≤>,的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数()2y x 1x m m 0=-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足3t 14≤≤33.如图,抛物线2y x bx c =-++与x 轴交于A(-1,0),B(5,0)两点,直线3y x 34=-+与y 轴交于点C ,,与x 轴交于点D.点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E.设点P 的横坐标为m.(1)求抛物线的解析式;(2)若PE =5EF ,求m 的值;(3)若点E /是点E 关于直线PC 的对称点、是否存在点P ,使点E /落在y 轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.34.某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表:价格x (元/个)…30405060…销售量y (万个)…5432…同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?35.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.36.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售,B类杨梅深加工再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y (单位∶万元/吨)与销售数量x(x≥2)(单位∶吨)之间的函数关系式如图,B类杨梅深加工总费用s(单位:万元)与加工数量t(单位∶吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x这间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收人-经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问∶用于直销的A类杨梅有多少吨?(3)第二次该公司准备投人132万元资金,请设计-种经营方案,使公司获得最大毛利润,并求出最大毛利润.37.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.38.已知函数23y kx 2x 2=-+(k 是常数)(1)若该函数的图像与x 轴只有一个交点,求k 的值;(2)若点()M 1,k 在某反比例函数的图像上,要使该反比例函数和二次函数23y kx 2x 2=-+都是y 随x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设抛物线23y kx 2x 2=-+与x 轴交于()()12x ,0,B x A ,0两点,且12x x <,2212x x 1+=,在y 轴上,是否存在点P ,使△ABP 是直角三角形?若存在,求出点P 及△ABP 的面积;若不存在,请说明理由。
(完整)一次函数、二次函数与反比例函数的图象综合题
一次函数、反比例函数、二次函数图象综合题1.关于x的函数y=kx+k和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.2.在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.3.反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()A.B.C.D.4.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.5.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )A .B .C .D .7.如图,直线y=ax+b 和双曲线y=交于A 、B 两点,则不等式ax+b >的解集为8.如图,在平面直角坐标系中,反比例函数y 1=的图象与一次函数y 2=kx+b 的图象交于A 、B 两点.若y 1<y 2,则x 的取值范围是9.如图,已知直线y=x 与抛物线y=21x 2交于A 、B 两点.则不等式x >21x 2的解集为 .10。
如图,抛物线y=(x-2)2+m 的与直线y=kx+b 的交于点A (1,0)及点B (4,3).若kx+b≥(x -2)2+m ,则x 的取值范围是 .11.如图,一次函数y=kx+b 与二次函数y=ax 2+bx+c 的图象交于B (3,0),C(0,—3)两点.(1)当自变量x 为何值时,两函数的函数值都随x 的增大而增大? (2)当自变量x 为何值时,两函数的函数值的积小于0.(3)根据图象直接写出不等式kx+b >ax 2+bx+c 的解集. AB C O x y。
初中函数综合试题(卷)(附答案解析解析)
二次函数与其他函数的综合测试题一、选择题:(每小题3分,共45分)1.已知h 关于t 的函数关系式为221gt h,(g 为正常数,t 为时间),则函数图象为()(A )(B )(C )(D )2.在地表以下不太深的地方,温度y (℃)与所处的深度x (k m )之间的关系可以近似用关系式y =35x +20表示,这个关系式符合的数学模型是()(A )正比例函数(B )反比例函数.(C )二次函数(D )一次函数3.若正比例函数y =(1-2m )x 的图像经过点A (1x ,1y )和点B (2x ,2y ),当1x <2x 时1y >2y ,则m 的取值范围是()(A )m <0(B )m >0(C )m <21(D )m >214.函数y = k x + 1与函数xyk 在同一坐标系中的大致图象是()OxyOxyOxyOxy(A )(B )(C )(D )5.下列各图是在同一直角坐标系内,二次函数c xc aax y )(2与一次函数y =a x +c 的大致图像,有且只有一个是正确的,正确的是()(A )(B )(C )(D )6.抛物线1)1(22x y的顶点坐标是()A .(1,1)B .(1,-1)C .(-1,1)D .(-1,-1)7.函数y =a x +b 与y =a x 2+bx +c 的图象如右图所示,则下列选项中正确的是()A . a b >0, c>0 B. a b <0, c>0 C . a b >0, c<0 D . a b <0, c<08.已知a ,b ,c 均为正数,且k=bac cab cba ,在下列四个点中,正比例函数kxy 的图像一定经过的点的坐标是()A .(l ,21) B .(l ,2) C .(l ,-21) D.(1,-1)9.如图,在平行四边形ABCD 中,AC=4,B D=6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四边形的两条边分别交于点E ,F .设BP =x ,EF =y ,则能反映y 与x 之间关系的图象为……………()10.如图4,函数图象①、②、③的表达式应为()(A )x y 25,2x y,xy 4(B )x y 25,2x y ,x y 4(C )x y25,2xy,xy4A BCDEFP(D )x y25,2x y,xy411.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系()12.二次函数y =x 2-2x +2有()A .最大值是 1B .最大值是 2C .最小值是 1 D.最小值是 213.设A (x 1,y 1)、B (x 2,y 2)是反比例函数y =x2图象上的两点,若x 1<x 2<0,则y 1与y 2之间的关系是()A .y 2< y 1<0B .y 1< y 2<0C .y 2> y 1>0D .y 1> y 2>0 14.若抛物线y =x 2-6x +c 的顶点在x 轴上,则c 的值是 ( )A . 9B . 3C .-9D . 015.二次函数2332xxy 的图象与x 轴交点的个数是()A .0个B .1个C .2个D .不能确定二、填空题:(每小题3分,共30分)1.完成下列配方过程:122px x=________________22px x=____________2x;2.写出一个反比例函数的解析式,使它的图像不经过第一、第三象限:_________.3.如图,点P 是反比例函数2y x上的一点,P D ⊥x 轴于点D ,则△P OD 的面积为;4、已知实数m 满足022mm,当m =___________时,函数11m x m xym的图象与x 轴无交点.5.二次函数)1()12(22m x m x y 有最小值,则m =_________;6.抛物线322xxy向左平移5各单位,再向下平移2个单位,所得抛物线的解析式为___________;7.某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件.若商场平均每天要赢利1200元,则每件衬衫应降价__________;8.某学生在体育测试时推铅球,千秋所经过的路线是二次函数图像的一部分,如果这名学生出手处为A (0,2),铅球路线最高处为B (6,5),则该学生将铅球推出的距离是________;9.二次函数)0(2a c bxaxy的图像与x 轴交点横坐标为-2,b ,图像与y 轴交点到圆点距离为3,则该二次函数的解析式为___________;10.如图,直线)0(2k kxy与双曲线xk y在第一象限内的交点R ,与x 轴、y 轴的交点分别为P 、Q .过R 作RM ⊥x 轴,M 为垂足,若△OPQ 与△PRM 的面积相等,则k 的值等于.三、解答题:(1-3题,每题7分,计21分;4-6题每题8分,计24分;本题共45分)1已知二次函数c bx xy 2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值;(2)试判断点P (-1,2)是否在此函数图像上?2.已知一次函数y kx k 的图象与反比例函数8yx的图象交于点P (4,n ).(1)求n 的值.(2)求一次函数的解析式.3.看图,解答下列问题.(1)求经过A 、B 、C 三点的抛物线解析式;x第3题图y P DO(2)通过配方,求该抛物线的顶点坐标和对称轴;(3)用平滑曲线连结各点,画出该函数图象.4.已知函数y=x2+bx-1的图象经过点(3,2)(1)求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x的取值范围.5.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)50 60 70 75 80 85 …每天售出件数300 240 180 150 120 90 …假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)6.如图,一单杠高 2.2米,两立柱之间的距离为 1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.(1)(2)(1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1)7.已知抛物线y=-x2+mx-m+2.(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB=5,试求m的值;(Ⅱ)设C 为抛物线与y 轴的交点,若抛物线上存在关于原点对称的两点M 、N ,并且△MNC的面积等于27,试求m 的值.参考答案:一、选择题: 1.A 2.D 3.D 4.B 5.D 6.A 7.D 8.A9.A 10.C 11.D 12.C 13.C 14.A 15.C 二、填空题:1.2p ,21p ,p ,21p.2y =x2 3. 1 4.2或-1 5.45 6.1082x xy7.10元或20元8.6+52 9.3412xxy或3412x xy 10.22三、解答题:1.2.解:(1)由题意得:84n,2.n (2)由点P (4,2)在ykxk 上,24,kk 25k.一次函数的解析式为2255yx.3.解:(1)由图可知A (-1,-1),B (0,-2),C (1,1)设所求抛物线的解析式为y =ax 2+bx +c依题意,得121ab c c abc,,解得212a b c,,∴y =2x 2+x -2.(2)y =2x 2+x -2=2(x +41)2-817∴顶点坐标为(-41,817),对称轴为x =-41(3)图象略,画出正确图象4.解:(1)函数y =x 2+bx -1的图象经过点(3,2)∴9+3b -1=2,解得b =-2 .∴函数解析式为y =x 2-2x -1(2)y =x 2-2x -1=(x -1)2-2 ,图象略,图象的顶点坐标为(1,-2)(3)当x =3 时,y =2,根据图象知,当x ≥3时,y ≥2∴当x >0时,使y ≥2的x 的取值范围是x ≥3.5.解:(1)由统计数据知,该函数关系为一次函数关系,每天售出件数y 与每件售价x 之间的函数关系为:x y 6600.(2)当168y时,6006168x ,解得:72x;设门市部每天纯利润为z①当72x时,168y52807063406600402xx x z当70x时,5280maxz②当72x 时,168y 53207062406600402x x x z 70x 时,y 随x 的增大而减少72x时,52965320262max z 5280529672x当时,纯利润最大为5296元.6.(1)(2)解:(1)如图,建立直角坐标系,设二次函数解析式为y =ax 2+c∵D (-0.4,0.7),B (0.8,2.2),∴.=+,=+2.264.07.016.0c a c a ∴.=,=2.0528c a ∴绳子最低点到地面的距离为0.2米.(2)分别作EG ⊥AB 于G ,FH ⊥AB 于H ,AG =21(AB -EF )=21(1.6-0.4)=0.6.在Rt △AGE 中,AE =2,EG =22AG AE -=226.02=64.3≈1.9.∴ 2.2-1.9=0.3(米).∴木板到地面的距离约为0.3米.7.解: (I)设点A(x 1,0),B (x 2,0) ,则x 1,x 2是方程x 2-mx +m -2=0的两根.∵x 1 +x 2=m ,x 1·x 2 =m-2 <0 即m <2;又AB =∣x 1 x 2∣=121245x x x x 2(+),∴m 2-4m+3=0 .解得:m =1或m =3(舍去) ,∴m 的值为 1 .(II )设M (a ,b ),则N (-a ,-b ) .∵M 、N 是抛物线上的两点,∴222,2.a ma m b ama m b L L ①②①+②得:-2a 2-2m +4=0 .∴a 2=-m +2.∴当m <2时,才存在满足条件中的两点M 、N .∴2am .这时M 、N 到y 轴的距离均为2m ,又点C 坐标为(0,2-m ),而S △M N C = 27 ,∴2×12×(2-m )×2m =27 .∴解得m =-7 .。
一次函数与反比例函数综合练习二次函数练习题-含答案
一次函数与反比例函数综合练习二次函数练习题学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,在平面直角坐标系中,直线l1:y=﹣12x与反比例函数y=kx的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣12x>kx的解集;(3)将直线l1:y=﹣12x沿y向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.2.如图,直线2y x =-+与反比例函数k y x=的图象相交于点A (a ,3),且与x 轴相交于点B .(1)求该反比例函数的表达式;(2)若P 为y 轴上的点,且△AOP 的面积是△AOB 的面积的23,请求出点P 的坐标. (3)写出直线2y x =-+向下平移2个单位的直线解析式,并求出这条直线与双曲线的交点坐标.3.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<kx的解集.4.如图,一次函数y1=kx+2图象与反比例函数y2=mx图象相交于A,B两点,已知点B的坐标为(3,﹣1).(1)求一次函数和反比例函数的解析式;(2)请直接写出不等式kx﹣mx≤﹣2的解集;(3)点C为x轴上一动点,当S△ABC=3时,求点C的坐标.。
押江苏苏州卷第23-27题(三角函数的应用、反比例函数、圆综合问题、一次函数应用、二次函数综合)解析
押江苏苏州卷第23-27题押题方向一:三角函数的应用3年江苏苏州真题考点命题趋势2023年江苏苏州卷第23题三角函数的应用从近年江苏苏州中考来看,解直角三角形的实际应用是相对很固定的考点,试题以解答题形式呈现,整体难度中等;预计2024年江苏苏州卷还将继续重视对三角函数解决实际问题,大家一定要理解基本的方法,利用辅助线构造直角三角形,是得分的关键。
1.(2023·江苏苏州·中考真题)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,,,BE CD GF 为长度固定的支架,支架在,,A D G 处与立柱AH 连接(AH 垂直于MN ,垂足为H ),在,B C 处与篮板连接(BC 所在直线垂直于MN ),EF 是可以调节长度的伸缩臂(旋转点F 处的螺栓改变EF 的长度,使得支架BE 绕点A 旋转,从而改变四边形ABCD 的形状,以此调节篮板的高度).已知,208cm AD BC DH ==,测得60GAE ∠=︒时,点C 离地面的高度为288cm .调节伸缩臂EF ,将GAE ∠由60︒调节为54︒,判断点C 离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6︒≈︒≈)【答案】点C 离地面的高度升高了,升高了16cm .【分析】如图,延长BC 与底面交于点K ,过D 作DQ CK ^于Q ,则四边形DHKQ 为矩形,可得208QK DH ==,证明四边形ABCD 是平行四边形,可得AB CD ∥,当60GAE ∠=︒时,则60QCD QBA GAE ∠=∠=∠=︒,此时30CDQ ∠=︒,28820880CQ =-=,2160CD CQ ==,当54GAE ∠=︒时,则54QCD QBA GAE ∠=∠=∠=︒,cos541600.696CQ CD =︒≈⨯= ,从而可得答案.【详解】解:如图,延长BC 与底面交于点K ,过D 作DQ CK ^于Q ,则四边形DHKQ 为矩形,∴208QK DH ==,∵AD BC =,AD BC ∥,∴四边形ABCD 是平行四边形,∴AB CD ∥,当60GAE ∠=︒时,则60QCD QBA GAE ∠=∠=∠=︒,此时30CDQ ∠=︒,28820880CQ =-=,∴2160CD CQ ==,当54GAE ∠=︒时,则54QCD QBA GAE ∠=∠=∠=︒,∴cos541600.696CQ CD =︒≈⨯= ,而96>80,968016-=,∴点C 离地面的高度升高了,升高了16cm .【点睛】本题考查的是平行四边形的判定与性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.解直角三角形实际应用的一般步骤:(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O x y 1 -1 B
A 一次函数、反比例函数、二次函数的综合题
【课前热身】
1.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为________. 2.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的
长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则 菜园的面积y (单位:米2)与x (单位:米)的函数关
系式为 .(不要求写出自变量x 的取值范围)
3.当路程s 一定时,速度v 与时间t 之间的函数关系是( ) A .正比例函数 B .反比例函数 C .一次函数 D .二次函数
4.函数2y kx =-与k y x
=
(k ≠0)在同一坐标系内的图象可能是( )
【考点链接】
1.点A ()o y x ,0在函数c bx ax y ++=2的图像上.则有 . 2. 求函数b kx y +=与x 轴的交点横坐标,即令 ,解方程 ;
与y 轴的交点纵坐标,即令 ,求y 值
3. 求一次函数()0≠+=k n kx y 的图像l 与二次函数()02
≠++=a c bx ax y 的图像的交点,解方程组 .
【典例精析】
例1 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.
(1)求抛物线的解析式;
(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.
例2随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计
划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图(1)所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元)
⑴ 分别求出利润1y 与2y 关于投资量x 的函数关系式;
⑵ 如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润他能获取
的最大利润是多少
A B C D
(第3题)
菜园 墙
(1) (2)
【课堂演练】
1. 反比例函数x k y 的图像经过A (-2
3,5)点、B (a ,-3),则k = ,a = . 2.如图是一次函数y 1=kx +b 和反比例函数
y 2==m x
的图象,•观察图象写出y 1>y 2时,x 的取值范 围是_____________________________. 3. 如图,过原点的一条直线与反比例函数y =
k x (k<0) 的图像分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点
的坐标为( )
A .(a ,b )
B .(b ,a )
C .(-b ,-a )
D .(-a ,-b )
4. 二次函数y =x 2+2x -7的函数值是8,那么对应的x 的值是( )
A .3
B .5
C .-3和5
D .3和-5 5.如图是某种蜡烛在燃烧过程中高度与
时间之间关系的图像,由图像解答下列问题:
⑴ 此蜡烛燃烧1小时后,高度为 cm ; 经过 小时燃烧完毕;
⑵ 这个蜡烛在燃烧过程中高度与时间之间关系 的解析式是 .
6. 某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500 个.
根据销售经验,售价每提高1元,销售量相应减少10个.
⑴ 假设销售单价提高x 元,那么销售每个篮球所获得的利润是___________元;这种
篮球每月的销售量是___________个.(用含x 的代数式表示)
⑵ 当篮球的售价应定为 元时,每月销售这种篮球的最大利润,此时最大利润
是 元.
7 1 O y(cm) x(小时) 15
x x B F A C D E x G 三、解答题
1. 如图所示,在直角梯形ABCD 中,∠A =∠D =90°,截取AE =BF =DG =x.已知AB =6,
CD =3,AD =4;求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.
2、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m ,跨度为 10m ,如图所示,把
它的图形放在直角坐标系中。
①求这条抛物线所对应的函数关系式。
②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?。