线性代数3-6线性方程组习题课课件
合集下载
线性代数第四章线性方程组课件
方程组 AX 0 的两个基础解系, 则由这两个基础解
系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数
系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数
线性方程组习题课总课件
如r( A) r( A B) n,则方程组有唯一解; 如r( A) n,则方程组有无穷多解 。
第16页,共33页。
(四) 线性方程组的解的结构
1、齐次线性方程组解的结构
它的解有如下性质:
1)如果v1 , v2是线性方程组的两个解
则v1
v
也是它的解
2
;
2)如果v1是线性方程组的解
则kv1也是它的解, k R;
成立,
则称向量组
1,,
线性相关;
s
如果(a)当且仅当在k1 ks 0
时成立, 则称向量组 1,, s线性无关.
定义4: 设有两个向量组 :
1,, s ( A);
,
1
,
t
(B)
如果组( A)中每个向量都可由组 (B)线性表示,
则称向量组( A)可由向量组(B)线性表示
第3页,共33页。
定义5:如果向量组(A)可由向量组(B)线性表
程
Step4.写出非齐次线性方程组的同解方程组
组
求
Step5.求出非齐次线性方程组的特解
解
过
Step6.写出齐次线性方程组的同解方程组
程
Step7.求出齐次线性方程组的通解
Step8.写出非齐次线性方程组的通解
怎样求?
第22页,共33页。
第三章主要的问题类型:
1、围绕向量组的线性相关性 (判别相关性或证明相关性)
程
Step6.求出基础解系
怎样求?
Step7.写出通解
第20页,共33页。
2、非齐次线性方程组解的结构
(1)如果 u1 是 Ax b的一个解,v1 是其导出组
性 质
的一个解,则 u1 v1 是 Ax b的一个解; (2)如果 u1,u2 是 Ax b的两个解,
第16页,共33页。
(四) 线性方程组的解的结构
1、齐次线性方程组解的结构
它的解有如下性质:
1)如果v1 , v2是线性方程组的两个解
则v1
v
也是它的解
2
;
2)如果v1是线性方程组的解
则kv1也是它的解, k R;
成立,
则称向量组
1,,
线性相关;
s
如果(a)当且仅当在k1 ks 0
时成立, 则称向量组 1,, s线性无关.
定义4: 设有两个向量组 :
1,, s ( A);
,
1
,
t
(B)
如果组( A)中每个向量都可由组 (B)线性表示,
则称向量组( A)可由向量组(B)线性表示
第3页,共33页。
定义5:如果向量组(A)可由向量组(B)线性表
程
Step4.写出非齐次线性方程组的同解方程组
组
求
Step5.求出非齐次线性方程组的特解
解
过
Step6.写出齐次线性方程组的同解方程组
程
Step7.求出齐次线性方程组的通解
Step8.写出非齐次线性方程组的通解
怎样求?
第22页,共33页。
第三章主要的问题类型:
1、围绕向量组的线性相关性 (判别相关性或证明相关性)
程
Step6.求出基础解系
怎样求?
Step7.写出通解
第20页,共33页。
2、非齐次线性方程组解的结构
(1)如果 u1 是 Ax b的一个解,v1 是其导出组
性 质
的一个解,则 u1 v1 是 Ax b的一个解; (2)如果 u1,u2 是 Ax b的两个解,
线性代数第三章第三节线性方程组的解课件
B1 1 ~1 1
1
1 2
1
1
1
1 1
2
~ 0 - 1 1 - - 2
0
1-
1 - 2
1
-
2
1 1
~ 0 -1 1-
2
- 2
0
0
2 - - 2
1
-
2
-
3
1 1
0 -1
1-
2
1 -
0
0
1 - 2
1
-
1
2
1 当 1时,
1 1 1 1 B ~ 0 0 0 0
例3 求解非齐次方程组的通解
x1 x1
-
x2 x2
x3 x3
-
x4 0 3x4 1
.
x1 - x2 - 2x3 3x4 -1 2
解 对增广矩阵B进行初等变换
1 - 1 - 1 1 0 1 - 1 - 1 1 0 B 1 -1 1 - 3 1 ~ 0 0 2 - 4 1
1 - 1 - 2 3 - 1 2 0 0 - 1 2 - 1 2
所以方程组的通解为
x1 1 0 1 2
x2 x3 x4
x2
1 0
0
x4
0 2 1
102 .
0
其中x2 , x4任意.
x1 - x2 a1
例4
证明方
程组
x2 x3
-
x3 x4
a2 a3
x4
-
x5
a4
x5 - x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
0
0 1
-2 2
《线性代数》教学课件—03线性方程组
1 1 0 2 ((11))rr32 0 1 1 0
0 0 1 3
阶梯形矩阵所对应的线性方程组为
x1 x2 2
x2
x3
0
x3 3
第三步 运用逐步回代求出阶梯形矩阵所对应的线性方程组的解
x1 1
x2
3
x3 3
上述解即为原方程组的解. 由于此方程组中未知数的个数n和方程m的个 数相同,故方程组的解是惟一的.
rr1223rr33 0 1 0 20 5 0 r1(3)r2 0 1 0 20 5 0
0 0 1 7 2 0
0 0 1 7 2 0
0 0 0 0 0 0
0 0 0 0 0 0
第三步 增广矩阵的秩 R(AB) 3,基本未知量的个数是3,未知量的个数是5, 所以自由未知量个数为2个.
第四步 写出行最简形阶梯矩阵所对应的线性方程组
x1 x3,
x2
x3
1,
x4
x3
1.
(3.1.4)
表示式(3.1.4)也是方程组(3.1.1)的一般解. 虽然两个一般解的 表达形式上不一样,但它们本质上是一样的,都表示了方程组(3.1.1) 的所有解.式(3.1.4)的矩阵形式为:
x1 1 0
x2
k
1
1.
x3 x4
3 7 1 1 3 0
1
4
5
1
0
0
第二步用初等行变换将( A B)化为行最简形阶梯矩阵
(3.1.9)
1 3 2 2 1 0
1 3 2 2 1 0
( A B) 2 5 1 5 3 0 rrr342(2r1r13)r10 1 3 1 1 0
3 7 1 1 3 0
0 2 5 5 0 0
第三章线性代数方程组ppt课件
0
1
00 0.5 50 0.5 5
0
1.25 0.5
10
1.252.5
0
0
10
T2
* A1 =
A2 记 u
例:设
2 2 1
A
2
6
1
4 8 0
浙江大学研究生
《实用数值计算方法》
20
学位课程
3.2.1
则,它的LU分解为:
A 左乘T1 A1 左乘T2 A 2 u
1
2 2 1 2 2 1
31
aM1x1 aM2x2 aMNxN bM
用矩阵形式表示:
Ax b
3 2
a11 a12 a1n x1 b1
Aa21
a22
a2n,xx2,bb2 33
am1 am2 amn xn bm
系数矩阵
未知向量
右顶端
浙江大学研究生
《实用数值计算方法》
2
学位课程
当M=N时,如果A非奇异,则方程组(3-1) 存在唯一解。
A1
T1
A
1
1
2
6
1
0
4
0
2 0 1 4 8 0 0 4 2
1
2 2 1 2 2 1
A2
T2
A1
0
1
0
4
0
0
4
0
0 1 1 0 4 2 0 0 2
1 0 01 0 0 1 0 0
L
T11
T
1 2
1
1
0
0
1
0
1
1
0
2 0 1 0 1 1 2 1 1
定理:设
线性代数课件3 3
? ? ???
?
?5?
? ?
?
1 ??
方程组可简化为 AX = b .
x1
? ? ?
3 1
? ? ?
?
x2
? ? ?
4? ? 1 ??
?
x3
? ? ?
?1?
2
? ?
?
?5?
? ?
?
1??
二、线性方程组的解的判定
设有 n 个未知数 m 个方程的线性方程组
m、n 不一 定相等!
? a11 x1 ? a12 x2 ?
前 r列
后 n - r列
第一步:往证 R(A) < R(A, b) ? 无解.
若 R(A) < R(A, b) ,即 R(A, b) = R(A)+1,则 dr+1 = 1 . 于是 第 r +1 行对应矛盾方程 0 = 1,故原线性方程组无解.
?1 0
? ?
0
1
?
B
?
? ? ? ?
0 0
0 0
?0 0
?? ?
a21 x1 ?
a22 x2
?
?
??am1 x1 ? am2 x2 ?
? a1n xn ? b1 , ? a2n xn ? b2 ,
? amn xn ? bm .
定义:线性方程组如果有解,就称它是相容的;如果无解, 就称它是不相容的.
问题1:方程组是否有解? 问题2:若方程组有解,则解是否唯一? 问题3:若方程组有解且不唯一,则如何掌握解的全体?
前前nr 列
后 n - r列
第二步:往证 R(A) = R(A, b) = n ? 唯一解. 若 R(A) = R(A, b) = n, 则 dr+1 = 0 且 r = n,从而 bij 都不出现. 故原线性方程组有唯一解.
线性代数(第六版)课件:线性方程组
《线性代数》
(第六版)
1
线性方程组
2
本章讨论关于线性方程组的两个问题: 一、探讨 n 个未知数 m 个方程的线性方程组的解法 (即下面介绍的高斯消元法)。 二、从理论上探讨线性方程组解的情况:何时有解, 何时无解。若有解,则有多少组解;若有无穷多解, 如何表示。
运用 n 维向量的理论可全面地解决第二个方面的 问题。
3
第一节 线性方程组的消元解法
例 用高斯消元法解线性方程组
2 x1 x2 x3 x4 2
1
4x1x1x62
2x3 x2 2
x3
x4
4 2 x4
4
2 3
(1)
3x1 6 x2 9 x3 7 x4 9 4
解
x1 x2 2 x3 x4 4
1
(1)
12 3 2
2 2
x1 x1
a11 x1 a12 x2 a1n xn 0 ,
a21
x1
a22 x2
a2n xn
0,
am1 x1 am2 x2 amn xn 0 .
显然零向量必为它的解,称为零解。
定理 若 r( A) n ,则齐次线性方程组只有零解;
若 r(A) n ,则齐次线性方程组有非零解. 推论 若 m n ,则齐次线性方程组必有非零解。
0
b
1 0
1
,
ba2 x1 a 1 ,
x2
a
2b a1
3
,
b1 x3 a 1 ,
x4 0 ;
当 a 1 , b 1 时, r( A) 2 r( A) 3 ,方程组无解;
当 a 1 , b 1 时, r( A) r( A) 2 4 ,方程组有无穷多组解,
(第六版)
1
线性方程组
2
本章讨论关于线性方程组的两个问题: 一、探讨 n 个未知数 m 个方程的线性方程组的解法 (即下面介绍的高斯消元法)。 二、从理论上探讨线性方程组解的情况:何时有解, 何时无解。若有解,则有多少组解;若有无穷多解, 如何表示。
运用 n 维向量的理论可全面地解决第二个方面的 问题。
3
第一节 线性方程组的消元解法
例 用高斯消元法解线性方程组
2 x1 x2 x3 x4 2
1
4x1x1x62
2x3 x2 2
x3
x4
4 2 x4
4
2 3
(1)
3x1 6 x2 9 x3 7 x4 9 4
解
x1 x2 2 x3 x4 4
1
(1)
12 3 2
2 2
x1 x1
a11 x1 a12 x2 a1n xn 0 ,
a21
x1
a22 x2
a2n xn
0,
am1 x1 am2 x2 amn xn 0 .
显然零向量必为它的解,称为零解。
定理 若 r( A) n ,则齐次线性方程组只有零解;
若 r(A) n ,则齐次线性方程组有非零解. 推论 若 m n ,则齐次线性方程组必有非零解。
0
b
1 0
1
,
ba2 x1 a 1 ,
x2
a
2b a1
3
,
b1 x3 a 1 ,
x4 0 ;
当 a 1 , b 1 时, r( A) 2 r( A) 3 ,方程组无解;
当 a 1 , b 1 时, r( A) r( A) 2 4 ,方程组有无穷多组解,
数学线性代数方程组PPT课件
a(k ik
1)
) /a a(k)
ij
(k) kk
(i lik
k a(k)
kj
(i
1,...,n) k 1,...,n;
j
k
1,...,n, n
1)
该Gauss消去法为顺序高斯消去法
第7页/共87页
Gauss
for k 1, 2, , n 1
for i k 1, k 2, , n
Cramer法则:
xi
Di D
i 1, 2,
,n
所需乘除法的运算量大约为(n+1)!+n
n=20时,每秒1亿次运算速度的计算机要算30多万年!
直接法
在没有舍入误差的情况下,经过有限次 运算可以得到方程组的精确解的方法。
第2页/共87页
§3.1 Gauss消去与矩阵LU分解
属于解方程的直接法
一 Gauss消去 1 直接法的关键思想
ln,k
1
第26页/共87页
A L1L2 Ln2 Ln1U LU L为单位下三角
1
l21 1 l31 l32 1
L l41 l42 l43 1
u11 u12 ... u1n
U
u22 ... u2n ...
1 ln1 ln2 ln3 lnk lnn1
unn
A LU 矩阵分解为单位下三角 和上三角矩阵的乘积
aii
第13页/共87页
例:在8位制计算机上解方程组
109
x1
x2
1
x1 x2 2
要求用Gauss消去法计算。
解:l21 a21 / a11 109 8个
x1 x2 1
a22 1 l21 1 0.0 ...01109 109 109
线性代数居余马第3章 线性方程组PPT课件
定义3.7 若向量组 1, 2 ,, k 中每个向量均可由向量 组1, 2 ,, s线性表示,则称 1, 2 ,, k可由向量组1,
解 (2)设
3 = x1 1+x2 2
(**)
1 2 1 1 2 1
得 x2=4/5
β1, β2, β3
3 6
2
1 2 1
1行 变换 0 2 0 2 0
5 0 0
4; 0
0 3
x1=–3/5
所以,
5 31 5 42
例5 若 α1,α2,α3线性无关问,:
β 1 2 α 1 2 α 2 ,β 2 2 α 1 2 α 2 α 3 ,β 3 α 2 4 α 3 是否线性无关? 解 设 x 1 β 1 x 2 β 2 x 3 β 3 0 , 则
“否则”是指:不线性相关就是线性无关,
“仅当1, 2,…,m全为零时,才使(*)式成立 ”。这等价于 “如果(*)式成立,则1, 2,…,m必须全为零 ”定。理3.1 向量组 1, 2, … , m(m 2) 线性相关的充要条 件是 1, 2, … , m中至少有一个向量可由其余向量线性表示。
证 必要性:设1, 2, … , m线性相关,则存在不全为零的 数1, 2,…,m, 使得
1, 2, … , n线性相关,由 定理3.3,向量 可由 1, 2, … , n 线性表示,且表示法 唯一。
例4 (1) a 取何值时,1 = (1, 3, 6, 2)T , 2 =(2, 1, 2, 1)T , 3 =(1, 1, a, 2)T 线性无关?
(2) a = 2时,3可否由1, 2 线性表示?若可以,求表示式。
1 1 + 2 2 + … + m m = 0
《线性代数》第四章:线性方程组-PPT课件
三角形线性方程组要求方程组所含方程的个数等于未知量的个数且第个方程第个变量的系数三角形线性方程组是一类特殊的情形解法也简单由克莱姆法则可以判断其解惟一一般只需要从最后一个方程开始求解逐步回代就可求出方程组的全部解11定义416线性方程组中自上而下的各方程所含未知量个数依次减少这种形式的方程组称为n元阶梯形线性方程组
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn
线性代数线性方程组解的结构ppt课件
k1
k2
设
ξ
=
kr kr +1
是方程组的任一解.
kr+2
则
kn
y1 = c1,(r+1) yr+1 + + c1n yn
y2
=
c y 2,(r+1) r+1
+
+ c2n yn
(*)
yr = cr,(r+1) yr+1 + + crn yn
k1 = c k 1,(r+1) r+1 + k2 = c k 2,(r+1) r+1 + kr = c k r,(r+1) r+1 +
定义3 设x1, x2, , xs 都是AX=o的解,并且 (1) x1, x2, , xs线性无关; (2) AX=o的任一个解向量都能由x1, x2, , xs线性表示,
则称x1, x2, , xs为线性方程组AX=o的一个基础解系.
通解(方程组的全部解)可以表示为:k1x1 + k2x2 + + ksxs
0 0
c1nkn
c2
n
kn
+
crn kn 0
0
kn
c1r+1
1 -2 4 3 3 -5 14 12
-1 4 1 5
r2-3r1 —r—3+r1
1 -2 01
4 2
3 3
0258
r3-2r2 1 -2 4 3 —— 0 1 2 3
0012
下页
消元法与矩阵的初等行变换
用消元法解线性方程组的过程,实质上就是对该方程组
线性代数第三章课件:线性方程组
章
有无穷多解 R(A) R(A, b) n
线
(2)无解 R(A) R(A,b)
性
方 由定理1容易得出:
程
组
定理 2 n元齐次线性方程组 Ax 0有非零解
R(A) n 进一步,由定理1还可以推广得到:
定理 3 矩阵方程AX B有解 R(A) R(A,B)
例1 设A是一个 mn 阶矩阵,且 R(A) r, 则 (a)
1. 多元线性方程组
第 一般地,n 个未知数 x1, x2, , xn 的如下形式的方程
三
章
a1x1 a2 x2 an xn b
线
性 称为n元一次方程,也称为n元线性方程,其中
方
程 组
a1, a2 , , an , b是已知常数,a1, a2 , , an是一次项系数,
b是常数项。
具有同样n个未知数 x1, x2, , xn 的若干个一次方程 组成的方程组:
x2
0
0
所有满足x1 x2 的数都是它的解
所以该方程组有无数多解。
程
组
x1 x2 0
③
x1
x2
1
x1 x2 2
显然不存在 x1, x2 , 使 x1 x2 1
和 x1 x2 2同时成立 故该方程组无解。
第
④
x1 x1
x2 x2
0 2
系数行列式 D 1
1 0
11
由Cramer法则知其有唯一解 x1
a21
a22
组
am1
am2
a1n
a2n
,
amn
x1
x
x2
,
xn
b1
b
线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
【2021】线性代数ppt第三章 线性方程组.完整资料PPT
注: 倍乘变换必须用非零的数去乘 非齐次线性方程组的相容性
(space of solutions)
某一个方程(multiplying by a
nonzero scalar).
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
2. 阶梯形线性方程组的有三种基本类型.
例如:
2x1+3x2 x3 = 1 2x2+x3 = 2 0= 1
a11 a12 … a1n
x1
b1
设A =
a21 a22 … a2n …………
,
x=
x2 …
, b=
b2 …
,
am1 am2 … amn
xn
bm
vector of unknowns vector of constants
a11x1+a12x2+…+a1nxn = b1
则
a21x1+a22x2+… a2nxn = b2 …………………
r2 = r1 = n
12112 00143 00000
第三章 线性方程组
§3.2 齐次线性方程组
关于自由未知量的选择还可参见例题3.4 这是一个难点
作业: P105 (A) 一、(1) 预习3.2,3.3节
第三章 线性方程组
Ax = b.
am1x1+am2x2+…+amnxn = bm
通解:线性方程组全部解的表达式
同解方程组(having the same set of solutions);
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
a11 a12 … a1n
称A =
(space of solutions)
某一个方程(multiplying by a
nonzero scalar).
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
2. 阶梯形线性方程组的有三种基本类型.
例如:
2x1+3x2 x3 = 1 2x2+x3 = 2 0= 1
a11 a12 … a1n
x1
b1
设A =
a21 a22 … a2n …………
,
x=
x2 …
, b=
b2 …
,
am1 am2 … amn
xn
bm
vector of unknowns vector of constants
a11x1+a12x2+…+a1nxn = b1
则
a21x1+a22x2+… a2nxn = b2 …………………
r2 = r1 = n
12112 00143 00000
第三章 线性方程组
§3.2 齐次线性方程组
关于自由未知量的选择还可参见例题3.4 这是一个难点
作业: P105 (A) 一、(1) 预习3.2,3.3节
第三章 线性方程组
Ax = b.
am1x1+am2x2+…+amnxn = bm
通解:线性方程组全部解的表达式
同解方程组(having the same set of solutions);
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
a11 a12 … a1n
称A =
线性代数课件PPT 第3章.线性方程组
2) (α β) γ α ( β γ() 加法结合律)
3) 存在任意一个向量α,有α 0n α 4)存在任意一个向量α,存在负向量-α,使α (α) 0n
5) 1α α
6) k(lα) (kl)α(数乘结合律)
7) k(α β) kα kβ(数乘分配律)
m
kiai k1α1 k2α2 L kmαm
i 1
称为向量组α1, α2,L , αm在数域F上的一个线性组合。如果记
m
β kiαi,就说β可由α1, α2,L , αm线性表示。 i 1
10
3.1 n维向量及其线性相关性
线性相关性 定义:如果对m个向量α1, α2, α3, ... , αm∈Fn,有m个不全 为0的数k1,k2,...,km∈F,使
α=(a1 a2 an) 其中ai 称为α的第i个分量。
向量写成行的形式称为行向量,向量写作列的形式称为 列向量(也可记作行向量的转置)。
a1
αT
a2
M
an
3
3.1 n维向量及其线性相关性
向量的定义 数域F上全体n元向量组成的集合,记作Fn。
4
3.1 n维向量及其线性相关性
向量的运算
定义:设α=(a1, a2, ... , an),β=(b1, b2, ... , bn)∈Fn,k∈F,
定义:
1)α=β,当且仅当ai=bi (i=1,...,n); 2)向量加法(或α与β之和)为
α β (a1 b1, a2 b2 , ... , an bn )
k1α1 k2α2 L kmαm 0n
成立,则称α1, α2, α3, ... ,αm线性相关;否则,称α1, α2, α3, ... ,αm线性无关。