《定义与命题》习题

合集下载

定义与命题练习题1及答案

定义与命题练习题1及答案

定义与命题练习题1及答案一木培训教学资料定义与命题知识盘点】1.能清楚规定某一名称或术语的句子称为该名称或术语的定义。

2.对某一事物作出判断的句子称为命题。

每个命题由条件和结论两部分组成。

3.如果两条直线平行,那么对应角相等。

4.将命题“对顶角相等”改写为“如果两条直线相交,那么对顶角相等”。

5.命题“同角的余角相等”的条件是角的和为180度,结论是这两个角相等。

6.命题“同底等高的两个三角形面积相等”的条件是这两个三角形的底相等,高相等,结论是这两个三角形的面积相等。

基础过关】7.下列描述不属于定义的是(D)含有未知数的等式叫做方程。

8.下列语句不是命题的为(B)作直线AB的垂线。

9.命题“垂直于同一条直线的两条直线互相平行”的题设是(D)两条直线垂直于同一条直线。

10.下列语句中,属于命题的是(D)连结A,B两点。

11.已知下列语句:①天是蓝的;②两点之间线段的长度,叫做这两点间的距离;③是无理数;④对顶角相等,其中是定义的有(A)1个。

12.已知下列语句:①平角都相等;②画两个相等的角;③两直线平行,同位角相等;④等于同一个角的两个角相等吗?⑤邻补角的平分线互相垂直;⑥等腰三角形的两个底角相等。

其中是命题的有(B)3个。

应用拓展】13.将下列命题改写为“如果……那么……”。

1)如果两条直线平行,那么同位角相等。

2)如果在同一个三角形中,那么等角对等边。

3)如果两边一夹角对应相等的话,那么这两个三角形全等。

一木培训教学资料题目:四种改法中正确的个数是?如果a>b>0,则a²>b²;如果a>b且a+b>0,则a²>b²;如果ab²;如果ab²。

正确的改法个数是()A.1个B.2个C.3个D.4个应用拓展13.判断下列命题是真命题还是假命题,并说明理由。

1)如果ab>0,那么a>0,b>0.2)内错角相等。

北师大版八年级数学上学期《7.2 定义与命题》 同步练习

北师大版八年级数学上学期《7.2 定义与命题》 同步练习

7.2 定义与命题一.选择题1.下列命题是真命题的是()A.如果a2=b2,那么a=bB.在同一平面内,平行于同一条直线的两直线平行C.两直线相交,其中相等的两个角是对顶角D.如果两个角是同位角,那么这两个角相等2.下列命题与它的逆命题均为真命题的是()A.内错角相等B.对顶角相等C.如果ab=0,那么a=0D.互为相反数的两个数和为03.下列命题中,假命题是()A.直角三角形的两个锐角互余B.三角形的外角和等于360°C.同位角相等D.三角形的任意两边之差小于第三边4.下列命题:①同旁内角互补,两直线平行;②两个锐角互余的三角形是直角三角形;③如果一个角的两边与另一个角的两边互相平行,那么这两个角相等,其中真命题的序号是()A.①②B.①③C.②③D.①②③5.下列命题中的真命题是()A.在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a∥cB.在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a⊥cC.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥cD.在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a⊥c6.下列命题中,是真命题的是()A.三角形的一条角平分线将三角形的面积平分B.同位角相等C.如果a2=b2,那么a=bD.是完全平方式二.填空题7.下列关于反比例函数y=(k≠0)的命题:①若函数图象经过点(2,1),则k=2;②过函数图象上一点A,作x轴、y轴的垂线,垂足分别为B、C,若△ABC的面积为2,则k=4;③当k>0时,y随x的增大而减小;④函数图象关于原点中心对称.其中所有真命题的序号是.8.用举反例的方法说明命题“若a<b,则ab<b2”是假命题,这个反例可以是a=,b=.9.写出命题“互为倒数的两个数乘积为1”的逆命题:.10.命题“对顶角相等”的逆命题是.11.写出命题“直角三角形的两个锐角互余”的逆命题:.12.命题“对顶角相等”的逆命题是命题(填“真”或“假”).13.用“如果…,那么…”形式,写出“对顶角相等”的逆命题:.14.对于下列命题:①若a>b,则a2>b2;②在锐角三角形中,任意两个内角和一定大于第三个内角;③无论x取什么值,代数式x2﹣2x+2的值都不小于1;④在同一平面内,有两两相交的3条直线,这些相交直线构成的所有角中,至少有一个角小于61°.其中,真命题的是.(填所有真命题的序号)三.解答题15.如图,从①∠1=∠2②∠C=∠D③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论可以组成3个命题.(1)这三个命题中,真命题的个数为;(2)择一个真命题,并且证明,(要求写出每一步的依据)如图,已知,求证:证明:16.如图,B、A、E三点在同一直线上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.请你用其中两个作为条件,另一个作为结论,构造一个真命题,并证明.已知:求证:证明:参考答案一.选择题1.解:A、如果a2=b2,那么a=±b,本选项说法是假命题;B、在同一平面内,平行于同一条直线的两直线平行,本选项说法是真命题;C、两直线相交,其中相等的两个角不一定是对顶角,本选项说法是假命题;D、如果两直线平行,两个角是同位角,那么这两个角相等,本选项说法是假命题;故选:B.2.解:A、内错角相等,是假命题,故本选项不符合题意;B、对顶角相等,是真命题,它的逆命题是:相等的角是对顶角,是假命题,故本选项不符合题意;C、如果ab=0,那么a=0,是假命题,故本选项不符合题意;D、互为相反数的两个数和为0,是真命题,它的逆命题是:和为0的两个数化为相反数,是真命题,故本选项符合题意.故选:D.3.解:A、直角三角形的两个锐角互余,所以A选项为真命题;B、三角形的外角和等于360°,所以B选项为真命题;C、两直线平行,同位角相等,所以C选项为假命题;D、三角形的任意两边之差小于第三边,所以D选项为真命题.故选:C.4.解:①同旁内角互补,两直线平行,是真命题;②两个锐角互余的三角形是直角三角形,是真命题;③如果一个角的两边与另一个角的两边互相平行,那么这两个角相等或互补,原命题是假命题,故选:A.5.解:A、在同一平面内,a、b、c是直线,如果a∥b,b⊥c,则a⊥c,原命题是假命题;B、在同一平面内,a、b、c是直线,如果a⊥b,b⊥c,则a∥c,原命题是假命题;C、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,是真命题;D、在同一平面内,a、b、c是直线,如果a∥b,b∥c,则a∥c,原命题是假命题;故选:C.6.解:A、三角形的一条角中线将三角形的面积平分,故错误,是假命题;B、两直线平行,同位角相等,故错误,是假命题;C、如果a2=b2,那么a=±b,故错误,是假命题;D,正确,是真命题,故选:D.二.填空题7.解:①若函数图象经过点(2,1),则k=1×2=2,①说法是真命题;②过函数图象上一点A,作x轴、y轴的垂线,垂足分别为B、C,设点A的坐标为(x,y),∵△ABC的面积为2,∴xy=2,则k=xy=4,②说法是真命题;③当k>0时,在每个象限,y随x的增大而减小,③说法是假命题;④函数图象关于原点中心对称,④说法是真命题;故答案为:①②④.8.解:当a=﹣1,b=0时,﹣1<0,而ab=0,b2=0,ab=b2,∴“若a<b,则ab<b2”是假命题,故答案为:﹣1;0(答案不唯一).9.解:命题“互为倒数的两个数乘积为1”的逆命题为:如果两个数的乘积为1,那么这两个数互为倒数,故答案为:如果两个数的乘积为1,那么这两个数互为倒数.10.解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.11.解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”.故答案为:两个锐角互余的三角形是直角三角形.12.解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.13.解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶角”.故答案为:如果两个角相等,那么它们是对顶角.14.解:①若a>b,当a=﹣1,b=﹣2时,则a2<b2;原命题是假命题;②在锐角三角形中,任意两个内角和一定大于第三个内角,是真命题;③无论x取什么值,代数式x2﹣2x+2=(x﹣1)2+1≥1,所以其值都不小于1,是真命题;④在同一平面内,有两两相交的3条直线,这些相交直线构成的所有角中,至少有一个角小于61°,是真命题.故答案为:②③④.三.解答题15.解:(1)由①②,得③;由①③,得②;由②③,得①;均正确,故答案为3(2)如图所示:∵∠1=∠2,∠1=∠3(已知),∴∠3=∠2(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠D=∠4(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠4=∠C(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:①∠1=∠2,②∠C=∠D;∠A=∠F;16.解:命题:已知:AD∥BC,∠B=∠C,求证:AD平分∠EAC.证明:∵AD∥BC,∴∠B=∠EAD,∠C=∠DAC.又∵∠B=∠C,∴∠EAD=∠DAC.即AD平分∠EAC.故是真命题.故答案为:AD∥BC,∠B=∠C,AD平分∠EAC.。

北师大版 八年级 上册 7.2 定义与命题 练习(带答案)

北师大版  八年级 上册 7.2 定义与命题 练习(带答案)

定义与命题练习一、选择题1.以下四个命题: ①如果一个数的相反数等于它本身,则这个数是0; ②一个数的倒数等于它本身,则这个数是1; ③一个数的算术平方根等于它本身,则这个数是1或0; ④如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有()A. 1个B. 2个C. 3个D. 4个2.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=33.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线4.下列正确的选项是()A. 命题“同旁内角互补”是真命题B. “作线段AC”这句话是命题C. “对顶角相等”是定义D. 说明命题“若x>y,则a2x>a2y”是假命题,只能举反例a=05.下列语句不是命题的是()A. 两直线平行,同位角相等B. 面积相等的两个三角形全等C. 同旁内角互补D. 作线段AB=CD6.下列命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②内错角相等;③在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;④相等的角是对顶角.其中,真命题有()A. 1个B. 2个C. 3个D. 4个7.下列命题是真命题的是()A. 两直线平行,同位角相等B. 面积相等的两个三角形全等C. 同旁内角互补D. 相等的两个角是对顶角8.对假命题“若a>b,则a2>b2”举反例,正确的反例是()A. a=−1,b=0B. a=−1,b=−1C. a=2,b=1D. a=−1,b=−29.下列命题正确的是()A. 有一个角是直角的平行四边形是矩形B. 四条边相等的四边形是矩形C. 有一组邻边相等的平行四边形是矩形D. 对角线相等的四边形是矩形10.要说明命题“两个无理数的和是无理数”,可选择的反例是()A. 2,−3B. √2,√3C. √2,−√2D. √2,√211.下列说法:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个12.下列判断正确的是()A. 北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B. 一组数据6,5,8,7,9的中位数是8C. 甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D. 命题“既是矩形又是菱形的四边形是正方形”是真命题13.下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A. x=−2B. x=−1C. x=1D. x=214.若命题“有两边分别相等,且_________的两个三角形全等”是假命题,则以下选项填入横线正确的是()A. 两边的夹角相等B. 周长相等C. 其中相等的一边上的中线也相等D. 面积相等二、填空题15.命题“全等三角形的面积相等”的逆命题是:______,它是______(填入“真”或“假”)命题.16.命题“如果a=b,那么|a|=|b|”的逆命题是______(填“真命题“或“假命题”).17.命题“若a=b,则−a=−b”的逆命题是______.18.用一组a,b的值说明命题“若ab>1,则a>b”是错误的,这组值可以是a=______,b=______.三、解答题19.(1)完成下面的推理说明:已知:如图,BE//CF,BE、CF分别平分∠ABC和∠BCD.求证:AB//CD.证明:∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=12∠______,∠2=12∠______(______ ).∵BE//CF(______ ),∴∠1=∠2(______).∴12∠ABC=12∠BCD(______).∴∠ABC=∠BCD(等式的性质).∴AB//CD(______ ).(2)说出(1)的推理中运用了哪两个互逆的真命题.20.在△ABC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,如有三个关系式①AE//DF②AB=CD③CE=BF(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确性.21.把下列命题改成“如果……那么……”的形式.(1)三角形内角和是180°.(2)同角的补角相等.(3)两个相反数的和为0.答案和解析1.【答案】B【解答】解:如果一个数的相反数等于它本身,则这个数是0,所以①正确;一个数的倒数等于它本身,则这个数是1或−1,所以②错误;一个数的算术平方根等于它本身,则这个数是1或0,所以③正确;如果一个数的绝对值等于它本身,则这个数是正数或0,所以④错误.故选B.2.【答案】B【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且−3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>−1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且−1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.3.【答案】D【解答】解:命题“垂直于同一条直线的两条直线互相平行”的条件是两条直线垂直于同一条直线;故选D.4.【答案】D【解答】解:A、因为只有两条线平行时形成的同旁内角才互补,所以“同旁内角互补”是假命题,故A错误;B.“作线段AC”这句话不是命题,故B错误;C.“对顶角相等”不是定义,是命题,故C错误;D.说明命题“若x>y,则a2x>a2y”是假命题,只能举反例a=0,正确,故D正确,故选D.5.【答案】D【解答】解:ABC都是命题,D.作线段AB=CD,是作图,没有对一件事情做出判断,所以不是命题.故选D.6.【答案】B【解析】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以①为真命题;两直线平行,内错角相等,所以②为假命题;在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,所以③为真命题;相等的角不一定为对顶角,所以④为假命题.7.【答案】A【解析】解:A、两直线平行,同位角相等,所以A选项为真命题;B、面积相等的两个三角形不一定全等,所以B选项为假命题;C、两直线平行,同旁内角互补,所以C选项为假命题;D、相等的两个角不一定为对顶角,所以D选项为假命题.8.【答案】D【解析】解:用来证明命题“若a>b,则a2>b2是假命题的反例可以是:a=−1,b=−2,因为−1>−2,但是(−1)2<(−2)2,所以D符合题意;9.【答案】A【解析】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;10.【答案】C【解析】解:两个无理数的和是无理数是假命题,例如互为相反数的两个无理数和为0,0是有理数,11.【答案】A【解答】解:①负数有立方根,错误;②一个实数的立方根不是正数就是负数或0,错误;③一个正数或负数的立方根与这个数的符号一致,正确;④如果一个数的立方根等于它本身,那么它一定是±1或0,错误;其中正确的是③,有1个;故选A.12.【答案】D【解析】解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.13.【答案】A【解答】解:因为x=−2满足|x|>1,但不满足x>1,所以x=−2可作为说明命题“若|x|>1,则x>1”是假命题的反例.故选:A.14.【答案】D【解析】【试题解析】解;A.若命题“有两边分别相等,且两边的夹角相等的两个三角形全等”是真命题,B.若命题“有两边分别相等,且周长相等的两个三角形全等”是真命题,C.若命题“有两边分别相等,且其中相等的一边上的中线也相等的两个三角形全等”是真命题,D.若命题“有两边分别相等,且面积相等的两个三角形全等”是假命题.故选:D.15.【答案】面积相等的三角形是全等三角形;假【解答】解:“全等三角形的面积相等”的逆命题是:面积相等的三角形是全等三角形,它是假命题.故答案为面积相等的三角形是全等三角形;假.16.【答案】假命题【解析】【试题解析】解:如果a=b,那么|a|=|b|的逆命题是:如果|a|=|b|,则a=b是假命题.17.【答案】若−a=−b,则a=b【解析】解:命题“若a=b,则−a=−b”的逆命题是若−a=−b,则a=b,18.【答案】−2−1【解析】案不唯一,如解:当a=−2,b=−1时,满足ab>1,但a<b.19.【答案】ABC BCD角平分线的定义已知两直线平行,内错角相等等量代换内错角相等,两直线平行【解析】解:(1)∵BE、CF分别平分∠ABC和∠BCD(已知)∴∠1=12∠ABC,∠2=12∠BCD(角平分线的定义)∵BE//CF(已知)∴∠1=∠2(两直线平行,内错角相等)∴12∠ABC=12∠BCD(等量代换)∴∠ABC=∠BCD(等式的性质)∴AB//CD(内错角相等,两直线平行)故答案为:ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC=∠BCD,再根据平行线的判定,即可得出AB//CD;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.20.【答案】解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE//DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,{∠E=∠F ∠A=∠D AC=DB,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE//DF,∴∠A=∠D,在△ACE和△DBF中,{∠E=∠F ∠A=∠D EC=FB,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC−BC=DB−BC,即AB=CD.21.【答案】解:(1)如果一个图形是三角形,那么这个图形的内角和是180°;(2)如果两个角是同一个角的补角,那么这两个角相等;(3)如果两个数互为相反数,那么它们的和为0.。

八年级上册定义与命题

八年级上册定义与命题

八年级上册定义与命题一、选择题。

1. 下列语句中,属于定义的是()A. 两点确定一条直线。

B. 同角的余角相等。

C. 两直线平行,内错角相等。

D. 三角形三条中线的交点叫做三角形的重心。

解析:定义是对于一个概念的特征性质的描述。

A选项是一个基本事实;B和C选项是定理。

而D选项是对三角形重心这个概念的定义,所以答案是D。

2. 下列命题中,是真命题的是()A. 相等的角是对顶角。

B. 若a > b,则-2a>-2bC. 两直线平行,同位角相等。

D. 若a^2 = b^2,则a = b解析:A选项,相等的角不一定是对顶角,所以A是假命题;B选项,若a > b,则-2a<-2b,所以B是假命题;C选项,两直线平行,同位角相等,这是定理,是真命题;D选项,若a^2 = b^2,则a=± b,所以D是假命题。

答案是C。

3. 下列命题是假命题的是()A. 对顶角相等。

B. -4是有理数。

C. 两直线平行,同旁内角互补。

D. 若| a|=| b|,则a = b解析:A、B、C选项都是正确的命题。

D选项,若| a|=| b|,则a = b或a=-b,所以D是假命题,答案是D。

4. 命题“垂直于同一条直线的两条直线互相平行”的条件是()A. 垂直。

B. 两条直线。

C. 同一条直线。

D. 两条直线垂直于同一条直线。

解析:命题写成“如果……那么……”的形式为:如果两条直线垂直于同一条直线,那么这两条直线互相平行。

所以条件是“两条直线垂直于同一条直线”,答案是D。

5. 下列语句不是命题的是()A. 两点之间,线段最短。

B. 不平行的两条直线有一个交点。

C. x与y的和等于0吗?D. 对顶角不相等。

解析:命题是可以判断真假的陈述句。

A、B、D都是命题,而C选项是疑问句,不是命题,答案是C。

二、填空题。

6. 把命题“同角的补角相等”改写成“如果……那么……”的形式为:如果______,那么______。

定义与命题练习题

定义与命题练习题

定义与命题练习题1、下列命题中,正确的命题是()A.一组对边平行另一组对边相等的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直且相等的四边形是菱形D.相似图形一定是位似图形2、下列命题正确的是(A.对角线垂直且相等的四边形是菱形B.对角线相等的四边形是矩形C.一组对边平行,一组邻角互补的四边形是平行四边形D.对角线相等的梯形是等腰梯形3、下列命题中,正确的命题是(A.一组对边平行但不相等的四边形是梯形B.对角线相等的平行四边形是正方形C.有一个角相等的两个等腰三角形相似D.一组对边相等,另一组对边平行的四边形是平行四边形4、下列命题,错误的命题是(A.对角线相等的四边形是矩形B.矩形的对角线相等C.平行四边形的两组对边分别相等D.两组对边分别相等的四边形是平行四边形5、下列命题中,不正确的是(A. —组邻边相等的矩形是正方形.等腰梯形的对角线相等C.直角三角形斜边上的高等于斜边的一半.圆既是轴对称图形,又是中心对称图形6、下列命题为真命题的是(A.同位角相等.如果/ A+/B+/C=180,那么/ A,Z B,ZC 互补C .邻补角是互补的角.两个锐角的和是锐角7、 下列命题中,为假命题的是() C.圆周角等于圆心角的一半 .在同圆或等圆中等弧所对的圆周角相等8、下列各命题中,属于假命题的是9、下列命题是假命题的是(对于所有非零的自然数 n , 4n 2+4n+4 不可能是某个自然数的平方 在同一平面内的三条直线两两相交把这个平面分成四部分13、用一个2倍的放大镜照一个△ ABC 下列命题中正确的是(14、 下列命题中,是真命题的是(.平分弦的直径平分弦 A.等腰梯形的对角线相等.一组对边平行,一组对角相等的四边形是平行四边形 C. 一组邻角互补的四边形是平行四边形D .平行四边形的对角线互相平分 A.若 m —n=0,贝Ll m=n=0 B.若 m — n > 0,贝Ll m> n C.若 m —n V 0,贝U mK nD m^nA. 互补的两个角不能都是锐角 .两直线平行,同位角相等 C.若 a//b, a//c,则 b//c .同一平面内,若 a 丄b , a 丄C ,贝U b 丄10、 下列命题 ?? 假命题的是(A.内错角相等.等角的补角相等 C.对顶角相等 .等腰三角形底角相等11、 下列四个命题是真命题的是(A.同位角相等 .如果两个角的和是 180度,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行 两条直线互相垂直 D .在同一平面内,垂直于同一条直线的12、 在下列命题中正确的是(A .有两边及其中一边的对角对应相等的两个钝角三角形全等 B .有一组对边相等且一对对角相等的四边形是平行四边形 C . D . A.A ABC 放大后角是原来的2倍 .△ ABC 放大后周长是原来的 2倍 C.A ABC 放大后面积是原来的 2倍D .以上的命题都不对A.三点确定一个圆15、下列命题是假命题的是( )17、下列命题中,正确命题是(•两条对角线相等的四边形是矩形18、下列命题中真命题的是(19、下列命题中,正确的是(20、下列四个命题中真命题是(21、下列命题是假命题的是(B. 北京是中华人民共和国的首都 22、下列命题中真命题是(A.任意两个等边三角形必相似B. 对角线相等的四边形是矩形C. 以40。

定义与命题练习题1及答案

定义与命题练习题1及答案

界说与命题【常识清点】1.能清晰地划定某一名称或术语的句子叫做该名称或术语的______.2.对某一件工作作出_______断定的句子叫做命题.•每个命题都是由______•和______两部分构成的.3.假如两条直线平行,那么_________角相等.4.把命题“对顶角相等”改写成“假如______________________,那么_________________”.5.命题“同角的余角相等”的前提是___________________,结论是_______________________.6.•命题“同底等高的两个三角形面积相等”的前提是__________________________________,••结论是_____________________________________.【基本过关】7.下列描写不属于界说的是()A.两组对边分离平行的四边形叫做平行四边形;B.正三角形是特别的等腰三角形;C.在统一平面内三条线段首尾按序衔接得到的图形叫做三角形;D.含有未知数的等式叫做方程8.下列语句不是命题的为()A.同角的余角相等 B.作直线AB的垂线C.若a-c=b-c,则a=b D.两条直线订交,只有一个交点9.命题“垂直于统一条直线的两条直线互相平行”的题设是()A.垂直 B.两条直线C.统一条直线 D.两条直线垂直于统一条直线10.下列语句中,属于命题的是()A.直线AB和CD垂直吗 B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不服行 D.贯穿连接A,B两点11.已知下列语句:①天是蓝的;②两点之间线段的长度,叫做这两点间的距离;•③是无理数;④对顶角相等,个中是界说的有()A.1个 B.2个 C.3个 D.4个12.已知下列语句:①平角都相等.②画两个相等的角.③两直线平行,•同位角相等.④等于统一个角的两个角相等吗?⑤邻补角的等分线互相垂直.•⑥等腰三角形的两个底角相等.个中是命题的有()A.2个 B.3个 C.4个 D.5个【运用拓展】13.把下列命题改写成“假如……那么……”.(1)两直线平行,同位角相等.(2)在统一个三角形中,等角对等边.(3)双方一夹角对应相等的两个三角形全等.14.对于统一平面内的三条直线a,b,c,给出下列5个断定:①a∥b②b∥c;•③a⊥b;④a∥c;⑤a⊥c.请以个中两个论断为前提,一个论断为结论,•构成一个你以为准确的命题(至少写两个命题).【分解进步】15.一个农妇要过河,随身携带一只小白兔.一篮萝卜和一只饥饿又爱追兔子的狗.她发明系在河畔的划子一次只能载她本身和兔子.狗.萝卜个中之一过河,她不克不及让狗和兔子呆在一路(狗会吓坏可怜的小兔),也不克不及让小兔和萝卜留在一路(兔子会把萝卜全吃失落),怎么办?请你帮农妇想办法:她如何往返渡河才干把三样器械安然带到对岸?【常识清点】1._________称为真命题;________称为假命题.2.经由长期实践后公以为准确的命题叫做________,__________________________叫做定理.3.“能被3整除的整数,它的末位数是3”是______命题(•填“真”或“假”).4.把“同旁内角互补,两直线平行”写成“假如________,那么________”.5.“两点之间线段最短”是_________(填“界说”或“正义”或“定理”).6.“一次函数y=kx-2,当k>0时,y随x的增大而增大”是一个_______命题(填“真”或“假”).【基本过关】7.下列命题中的真命题是()A.锐角大于它的余角 B.锐角大于它的补角C.钝角大于它的补角 D.锐角与钝角之和等于平角8.下列命题中,属于假命题的是()A.若a⊥b,b⊥c,则a⊥c B.若a∥b,b∥c,则a∥cC.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c9.有下列四个命题:(1)对顶角相等;(2)内错角相等;(3)有双方和个中一边的对角对应相等的两个三角形全等;(4)假如两条直线都垂直于第三条直线,•那么这两条直线平行.个中真命题有()A.1个 B.2个 C.3个 D.4个10.已知等腰三角形的一边等于3,一边等于6,则它的周长等于()A.12 B.12或15 C.15 D.15或1811.下列说法准确的是()A.命题必定是准确的 B.不准确的断定就不是命题C.真命题都是正义 D.定理都是真命题12.“a.b是实数,若a>b,则a2>b2”显然是错误的,若结论保持不变,如何转变前提,才干使之成立?以下四种改法:(1)若a>b>0,则a2>b2;(2)若a>b且a+b>0,则a2>b2;(3)•若a<b<0,则a2>b2;(4)若a<b且a+b<0,则a2>b2;个中准确的改法个数是()A.1个 B.2个 C.3个 D.4个【运用拓展】13.断定下列命题是真命题照样假命题,并解释来由.(1)假如ab>0,那么a>0,b>0.(2)内错角相等.14.A,B,C,D,E五逻辑学生介入某次数学单元检测,•在未颁布成绩前他们对本身的数学成绩进行了猜测.A说:“假如我得优,那么B也得优”;B说:“假如我得优,那么C也得优”;C说:“假如我得优,那么D也得优”;D说:“假如我得优,那么E也得优”.成绩揭晓后,发明他们都没说错,但只有三小我得优.请问:得优的是哪三位同窗?【分解进步】15.如图所示,已知AB⊥BD于点B,ED⊥BD于点D,且AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜测,并解释来由.答案:1.界说 2.准确,题设,结论 3.内错角 4.两个角是对顶角,这两个角相等5.两个角是统一个角的余角,这两个角相等6.•两个三角形有公共边且该边上的高线相等,这两个三角形的面积相等7.B 8.B 9.D 10.C 11.A 12.C13.(1)假如两直线平行,那么内位角相等(2)在统一个三角形中,假如两个角相等,那么这两个角所对的两条边也相等(3)假如两个三角形有双方和它们的夹角对应相等,那么这两个三角形全等14.若a∥b,b∥c,则a∥c;若a∥b,a∥c则b∥c;若b∥c,a∥c,•则a∥b;若a⊥b,a⊥c则b∥c;若a⊥b,b∥c则a⊥c;若b∥c,a⊥c则a⊥b15.先把兔子带到对岸,放下兔子本身返回;再把萝卜(狗)带到对岸,放下萝卜(狗),再带上兔子返回;放下兔子,再带上狗(萝卜)到对岸,放下狗(萝卜),独自返回;最后再带上兔子到对答案:1.准确的命题,不准确的命题 2.正义,用推理的办法断定为准确的命题3.•假 4.同旁内角互补,两直线平行 5.正义 6.真7.C 8.A 9.A 10.C 11.D •12.D13.(1)假命题,当ab>0时,a<0,b<0也成立(2)假命题,绘图解释14.C.D.•E三人15.垂直且相等,可经由过程两个三角形全等证实.。

初二数学定义与命题试题

初二数学定义与命题试题

初二数学定义与命题试题1.已知下列命题:①若a>0,b>0,则a+b>0;②若a2≠b2,则a≠b;③对角线互相垂直的平行四边形是菱形;④直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的序号是.【答案】③④【解析】分别判断其原命题及逆命题的正确性,然后进行选择即可.解:①原命题正确,逆命题错误;②原命题正确,逆命题错误;③原命题和逆命题分别是菱形的判定定理和菱形的性质定理,均正确,是真命题;④原命题与逆命题均正确.故答案为:③④.点评:本题考查命题与定理,解题的关键是写出其逆命题并判断其真假.2.“若xy<0,则P(x,y)是第二象限内的点”是假命题,我们可以举出反例:.【答案】当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点【解析】利用两数之积小于0得到两数异号,可以举出x为正数,y为负数的情况均可.解:∵xy<0,∴x、y异号,∴当x=1,y=﹣2时,则P(x,y)是第四象限内的点,故答案为:当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点.点评:本题考查了命题与定理的知识,判断一个命题是假命题,可以举出反例.3.同旁内角互补是(填“真”或“假”)命题.【答案】假【解析】利用平行线的性质定理进行判断即可.解:只有两条平行线形成的同旁内角才互补,故这个命题是假命题.故答案为:假.点评:本题考查了命题与定理的知识,解题的关键是了解平行线的性质.4.“若m2=4,则m=2”是命题(填“真”或“假”).【答案】假【解析】据此反例即可判断该命题是假命题.解:若m2=4,则m=±2,故原命题是假命题,故答案为:假.点评:本题考查了命题与定理,判断一个命题是假命题时可以举出反例.5.“两直线被第三条直线所截,同位角相等”是命题(填真或假)【答案】假【解析】判定此命题的正误即可得到答案.解:∵当两条平行线被第三条直线所截,同位角相等,∴原命题错误,是假命题,故答案为:假.点评:本题考查了判断命题的真假的知识,解题的关键是根据命题作出正确的判断,必要时可以举出反例.6.“等腰梯形同一底上的两个角相等”这个命题的逆命题是,它是命题(填“真”或“假”).【答案】同一底上的两个角相等的梯形是等腰梯形,真【解析】将原命题的假设与结论反下就可得到其逆命题.解:“等腰梯形在同一底上的两个角相等”的条件是:有一梯形为等腰梯形,结论是:同一底上的两个角相等;则它的逆命题是:同一底上的两个角相等的梯形是等腰梯形,是真命题,故答案为:同一底上的两个角相等的梯形是等腰梯形,真.点评:考查了命题与定理,正确的写出一个命题的逆命题的关键是搞清楚原命题的条件和结论.7.举反例说明下列命题是假命题.(1)如果a+b>0,那么a>0,b>0;(2)无限小数是无理数;(3)两直线被第三条直线所截,同位角相等.【答案】见解析【解析】根据命题举出使得命题不成立的命题即可.解:(1)当a=3,b=﹣1时,满足a+b>0,但a>0,b>0不成立;(2)如为无限循环小数,但分数是有理数;(3)两条平行线被第三条直线所截,同位角才相等.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理、论证得到的真命题称为定理.8.将下列命题改写成“如果…那么…”的形式.(1)同位角相等,两直线平行;(2)在同一平面内,垂直于同一直线的两直线平行.【答案】见解析【解析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.解:(1)可改写为:如果同位角相等,那么两直线平行;(2)可改写为:如果在同一平面内两条直线垂直于同一条直线,那么这两条直线平行.点评:本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.9.下列四个命题是真命题的是()A.同位角相等B.如果两个角的和是180度,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直【答案】C【解析】利用学习过的有关的性质、定义及定理进行判断后即可得到正确的结论.解:A、只有两直线平行,同位角才相等,故选项错误;B、两个角的和是180度,只能是互补,不一定是邻补角,故选项错误;C、在同一平面内,平行于同一直线的两条直线互相平行,故选项正确;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故选项错误;故选C.点评:本题考查了命题与定理的知识,解题的关键是熟悉有关的性质、定理及定义.10.下列语句是命题的是()A.同旁内角互补B.在线段AB上取点CC.作直线AB的垂线D.垂线段最短吗?【答案】A【解析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解:A是用语言可以判断真假的陈述句,是命题;B、C、D均不是可以判断真假的陈述句,都不是命题.故选A.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.。

浙教版八年级数学上1.2《定义与命题》同步练习题含答案

浙教版八年级数学上1.2《定义与命题》同步练习题含答案

浙教版八年级数学上册第一章三角形初步认识1.2《定义与命题》同步练习题一选择题1.下列说法错误的是(D)A. 错误的判定也是命题B. 命题有真命题和假命题两种C. 定理是命题D. 命题是定理2.下列语句中,不是命题的是(C)A.若两角之和为90°,则这两个角互补B.同角的余角相等C.作线段的垂直平分线D.相等的角是对顶角3.有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的个数是(D)A.1 B.2C.3 D.44.下列命题中,是真命题的是(A)A.若互补的两角相等,则这两个角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角5.下列命题中,正确的命题是(A)A.3是9的算术平方根B.9的平方根是3C.16的算术平方根是4D.内错角相等6.下列命题中,是假命题的为(C)A.邻补角的平分线互相垂直B .平行于同一直线的两条直线互相平行C .如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等D .平行线的一组内错角的平分线互相平行二填空题7.基本事实是真命题,定理是真命题,定义是真命题.(填“真”或“假”.)8.已知∠1+∠2=90°,∠3+∠4=90°,当∠1=∠3时,∠2=∠4成立.9.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Exc el 将按指定行的值和指定的‘升序’或‘降序’排列次序重新设定行.”这段话是对名称按行排序进行定义.10.把命题“三角形的内角和等于180°”改写成“如果……那么……”的形式:如果三个角是三角形的内角,那么它们的和等于180°.三解答题11.判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)若a >b ,则1a <1b; (2)如果一个数是偶数,那么这个数是4的倍数;(3)两个负数的差一定是负数.【解】 (1)假命题.如:+1>-2,1+1>1-2,故是假命题. (2)假命题.如:6是偶数,但6不是4的倍数,故是假命题.(3)假命题.如:(-5)-(-8)=+3,故是假命题.12.甲,乙,丙三位老师,他们分别来自北京,上海,广州三个城市,在中学教不同的课程:语文,数学,外语.已知:(1)甲不是北京人,乙不是上海人;(2)北京人不教外语,上海人教语文;(3)乙不教数学.你知道这三位老师各自的籍贯和所教的课程吗?【解】 甲是上海人,教语文;乙是广州人,教外语;丙是北京人,教数学.13.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.(第13题解)【解】假命题.如解图所示,AB⊥BD于点B,CD⊥BD于点D,AB=CD,但AC与BD相交.14.如图,已知BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,∠1+∠2=90°,则:(1)AB∥CD;(2)BE∥DG;(3)ED⊥GD.用推理的方法说明以上命题是真命题.(第14题)【解】(1)∵BE平分∠ABD,DE平分∠BDC,∴∠2=∠ABE,∠1=∠CDE.又∵∠1+∠2=90°,∴∠1+∠2+∠CDE+∠ABE=180°,即∠ABD+∠CDB=180°.∴AB∥CD.(2)∵AB∥CD,∴∠ABD=∠CDF.∵BE平分∠ABD,DG平分∠CDF,∴∠2=12∠ABD=12∠CDF=∠GDF.∴BE∥DG.(3)∵∠2=∠GD F,∠1+∠2=90°,∴∠1+∠GDF=90°,∴∠EDG=∠CDE+∠CDG=180°-(∠1+∠GDF)=90°.∴ED⊥DG.15.材料:把一个命题的条件和结论交换,并且同时否定,那么所得命题是原命题的逆否命题.判断下列命题的真假,并写出它的逆否命题,同时也判断逆否命题的真假,并观察(1)(2)(3)的结论,总结出原命题的真假与它的逆否命题的真假关系.(1)若a2>b2,则a>b;(2)若x,y为实数,且x2+y2=0,则x=0,y=0;(3)若m≥0或n≥0,则m+n≥0.【解】(1)假命题.它的逆否命题是:若a≤b,则a2≤b2,它是假命题.(2)真命题.它的逆否命题是:若x,y为实数,且x,y不全为0,则x2+y2≠0,它是真命题.(3)假命题.它的逆否命题是:若m+n<0,则m<0且n<0,它是假命题.观察(1)(2)(3)可知:原命题与它的逆否命题的真假是一致的,即原命题为真,则其逆否命题为真;原命题为假,它的逆否命题为假.16.把下列命题按要求进行改写:命题①:若x,y为实数,且x2+y2=0,则x,y全为0;命题②:两直线平行,同位角相等.(1)交换命题的条件和结论;(2)同时否定命题的条件和结论;(3)交换命题的条件和结论后,再同时否定新命题的条件和结论.【解】命题①:(1)若x,y为实数,且x,y全为0,则x2+y2=0;(2)若x,y为实数,且x2+y2≠0,则x,y不全为0;(3)若x,y为实数,且x,y不全为0,则x2+y2≠0.命题②:(1)同位角相等,两直线平行;(2)两直线不平行,同位角不相等;(3)同位角不相等,两直线不平行.。

《1.2 定义与命题》(同步训练)初中数学八年级上册_浙教版_2024-2025学年

《1.2 定义与命题》(同步训练)初中数学八年级上册_浙教版_2024-2025学年

《1.2 定义与命题》同步训练(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知:在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 120°C. 30°D. 105°2、下列命题中,属于真命题的是()A. 如果x > 0,则x² > 0B. 如果x = 0,则x² = 0C. 如果x < 0,则x² < 0D. 如果x > 0,则x² < 03、在下列命题中,正确的是()A. 若(a>b),则(a+c>b+c)(其中(c)为任意实数)B. 若(a=b),则(a−c=b−c)(其中(c)为任意实数)C. 若(a<b),则(a+c<b+c)(其中(c)为任意实数)D. 若(a=b),则(ac=bc)(其中(c)为任意实数)4、下列命题中,属于假命题的是()A. 若(a=b),则(a2=b2)B. 若(a≠b),则(a2≠b2)C. 若(a=b),则(a⋅a=b⋅b)D. 若(a=b),则(a−b=0)5、下列命题中,是正确命题的是()A. 若a=2,则a>1B. 如果x=0,则x²=0C. 对于所有的正整数n,n²-n总是偶数D. 存在一个实数x,使得x²+1=06、下列关于命题“如果x>1,则x²>1”的逆命题、否命题和逆否命题中,正确的是()A. 逆命题:“如果x²>1,则x>1”B. 否命题:“如果x≤1,则x²≤1”C. 逆否命题:“如果x²≤1,则x≤1”D. 原命题:“如果x>1,则x²>1”7、下列哪个选项是命题?A. 今天的天气真好,可以去公园玩。

B. 圆的面积是半径的平方乘以π。

定义与命题练习题

定义与命题练习题

定义与命题练习题一、选择题1. 下列哪个选项是命题?()A. 请问今天天气怎么样?B. 2x + 3 = 7C. 同学们,加油学习!D. 这道题目的答案是什么?A. 太阳从东方升起B. 一个等边三角形的三条边相等C. 请你把书递给我D. 1 + 1 = 2二、填空题1. 命题“若a > b,则a b > 0”中,________是题设,________是结论。

2. 定义“平行线是在同一平面内,永不相交的两条直线”,其中________是种概念,________是属概念。

三、判断题1. 所有数学题都有唯一的解答。

()2. 定义是由内涵和外延组成的。

()3. “三角形的内角和等于180度”是一个命题。

()四、简答题1. 请简要说明命题与定义的区别。

2. 举例说明一个真命题和一个假命题。

1. 已知命题:“若一个数是偶数,则它是2的倍数”。

请写出该命题的逆命题、否命题和逆否命题。

2. 请给出“矩形”的定义,并说明矩形与正方形的区别。

六、匹配题将下列命题与对应的定义进行匹配:A. 命题:若x是整数,则x是实数。

B. 定义:圆是平面上到一个固定点距离相等的点的集合。

C. 命题:所有的素数除了2都是奇数。

D. 定义:无理数是不能表示为两个整数比的实数。

1. ________ 是命题。

2. ________ 是定义。

3. ________ 是命题。

4. ________ 是定义。

七、改写题1. 若一个整数能被4整除,则它是偶数。

2. 如果一个图形是正方形,那么它的四个角都是直角。

八、分类题将下列句子分为命题、定义和其他三类:1. 春天来了,花儿都开了。

2. 一个正方形的四条边长度相等。

3. 请你把作业做完。

4. 任意两个奇数之和是偶数。

5. 圆的半径是从圆心到圆上任意一点的线段。

1. 所有的猫都喜欢吃鱼。

2. 小白是一只猫。

3. 小黑不喜欢吃鱼。

请问:小黑可能是()。

A. 一只猫B. 一只狗C. 一只鸟D. 无法确定十、综合题1. 设有三个命题:P:所有的学生都勤奋学习。

初二数学定义与命题试题

初二数学定义与命题试题

初二数学定义与命题试题1.同旁内角互补是(填“真”或“假”)命题.【答案】假【解析】利用平行线的性质定理进行判断即可.解:只有两条平行线形成的同旁内角才互补,故这个命题是假命题.故答案为:假.点评:本题考查了命题与定理的知识,解题的关键是了解平行线的性质.2.有六个命题:①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最长的弦;⑥半圆所对的弦是直径.其中真命题有个.【答案】3【解析】能举出反例的就是错误的,不能举出反例的就是正确的,分析后做出判断即可.解:①能够完全重合的两条弧是等弧,故①错误;②直径将圆分成两条相等的弧,故②错误;③长度相等的两条弧不一定能完全重合,故③错误;④只要半径相等的两圆一定是等圆,故④正确;⑤直径是圆内最长的弦,故⑤正确;⑥圆的直径将圆分成两个半圆,所以半圆所对的弦是直径,故⑥正确,∴真命题有④⑤⑥三个,故答案为:3;点评:本题考查了圆中的有关概念,考查的形式大都以选择题的形式出现,属于较容易的题目.3.命题“平行四边形的两组对边相等.”的逆命题是.【答案】两组对边分别相等的四边形是平行四边形【解析】把一个命题的条件和结论互换就得到它的逆命题.解:命题“平行四边形的两组对边相等”的逆命题是“两组对边分别相等的四边形是平行四边形”,故答案为:两组对边分别相等的四边形是平行四边形.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.4.举一个可以用来证明命题“若a•b>0,则a>0,b>0”是假命题的反例是a= ,b= .【答案】﹣1,﹣2【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.解:用来证明命题“若a•b>0,则a>0,b>0”是假命题的反例是a=﹣1,b=﹣2,故答案为﹣1,﹣2.点评:此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.5.在下列空格内填上正确或错误:(1)在同一平面内,到三角形三边距离相等的点只有一个.(2)在同一平面内,到三角形三边所在直线距离相等的点只有一个.(3)三角形三条角平分线交于一点.(4)等腰三角形底边中点到两腰的距离相等.(5)三角形是以它的角平分线为对称轴的轴对称图形.【答案】正确;错误;正确;正确;错误【解析】在同一平面内,到三角形三边距离相等的点是三角形三条角平分线的交点,三条角平分线交于一点,故到三角形三边距离相等的点只有一个;三角形的外角平分线也交于一点,故这一点到三角形三边所在直线的距离也相等;等腰三角形三线合一,中点在角平分线上,故中点到两边的距离相等;三角形不一定是轴对称图形,等腰三角形是以它的角平分线所在的直线为对称轴的轴对称图形.解:三角形三条角平分线交于一点,这一点到三角形三边距离相等的点只有一个,故(1)(3)正确,在同一平面内,到三角形三边所在直线距离相等的点除了内角平分线的交点还有外角平分线的点,故(2)错误,等腰三角形三线合一,中点在角平分线上,故中点到两边的距离相等,故(4)正确,三角形不一定是轴对称图形,等腰三角形是以它的角平分线所在的直线为对称轴的轴对称图形.故(5)错误.故答案为:正确;错误;正确;正确;错误.点评:本题考查同一平面内角平分线的交点,外角平分线的交点以及等腰三角形的性质和三角形的对称情况.6.下列命题是假命题的是()A.互补的两个角不能都是锐角B.两直线平行,同位角相等C.若a∥b,a∥c,则b∥c D.同一平面内,若a⊥b,a⊥c,则b⊥c【答案】D【解析】利用互补的定义、平行线的性质及垂线的性质分别进行判断后即可得到正确的选项.解:A、互补的两个角不能是锐角,正确,是真命题;B、两直线平行,同位角相等,正确,是真命题;C、根据平行线的传递性可以判断该命题为真命题;D、同一平面内,若a⊥b,a⊥c,则b∥c,故原命题为假命题,故选D.点评:本题考查了互补的定义、平行线的性质及垂线的性质,难度不大,属于基础题,解题的关键是牢记有关的定义及性质.7.下列句子中不是命题的是()A.负数都小于零B.所有的素数都是奇数C.过直线l外一点作l的垂线D.直角都相等【答案】C【解析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解:C不是可以判断真假的陈述句,不是命题;A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.故选C.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.8.(2013•河西区一模)下列命题中真命题是()A.任意两个等边三角形必相似B.对角线相等的四边形是矩形C.以40°角为内角的两个等腰三角形必相似D.一组对边平行,另一组对边相等的四边形是平行四边形【答案】A【解析】根据相似三角形的判定、矩形和平行四边形的判定即可作出判断.解:A,正确;B,错误,等腰梯形的对角线相等,但不是矩形;C,错误,没有说明这个40度角是顶角还是底角;D,错误,等腰梯形也满足此条件,但不是平行四边形.故选A.点评:本题考查了特殊四边形的判定和全等三角形的判定和性质.9.下列命题中,是真命题的是()A.三点确定一个圆B.平分弦的直径平分弦C.圆周角等于圆心角的一半D.在同圆或等圆中等弧所对的圆周角相等【答案】D【解析】根据圆的有关性质即可作出判断.解:A、三个不同在一条直线的点确定一个圆,不正确;B、平分弦的直径不能平分弦,不正确;C、在同圆或等圆中,同弧或等弧所对的圆周角等于所对圆心角的一半,不正确;D、正确.故选D.点评:要注意不在同一直线的三点确定一个圆;在同圆或等圆中是圆周角等于圆心角的一半成立的前提条件.10.用一个2倍的放大镜照一个△ABC,下列命题中正确的是()A.△ABC放大后角是原来的2倍B.△ABC放大后周长是原来的2倍C.△ABC放大后面积是原来的2倍D.以上的命题都不对【答案】B【解析】根据放大镜的性质解答.解:A、错误,△ABC放大后角不变;B、正确,△ABC放大后周长是原来的2倍;C、错误,△ABC放大后面积是相似比的平方;D、错误.故选B.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。

定义与命题练习题

定义与命题练习题

定义与命题练习题定义与命题一、选择题:1.以下句子中,不是命题的就是()a.三角形的内角和等于180度;b.对顶角相等;c.过一点并作未知直线的平行线;d.两点确认一条直线.2.以下句子中,就是命题的就是()a.今天的天气好吗b.作线段ab∥cd;c.连接a、b两点d.正数大于负数3.下列命题是真命题的是()a.如果两个角不成正比,那么这两个角不是对顶角;b.两互补的角一定是邻补角c.如果a2=b2,那么a=b;d.如果两角是同位角,那么这两角一定相等4.下列命题是假命题的是()a.如果a∥b,b∥c,那么a∥c;b.锐角三角形为最小的角一定大于或等于60°c.两条直线被第三条直线所封盖,内错角成正比;d.矩形的对角线成正比且互相平分5.以下描述错误的就是()a.所有的命题都有条件和结论;b.所有的命题都是定理;c.所有的定理都是命题;d.所有的公理都是真命题.6.下列命题中,真命题有()①如果△a1b1c1∽△a2b2c2,△a2b2c2∽△a3b3c3那么△a1b1c1∽△a3b3c3;②直线外一点至这条直线的垂线段,叫作这个的边这条直线的距离;③如果x2-4=0,那么x=±2;④如果a=?b,那么a3=b3a.1个b.2个c.3个d.4个二、计算题:1.写出下列命题的条件和结论:(1)两条直线被第三条直线所封盖,同旁内角优势互补;(2)如果两个三角形全等,那么它们对应边上的高也相等.2.推论以下命题的真假:(1)一个三角形如果有两个角互余,那么这个三角形是直角三角形;(2)如果│a│=│b│,那么a3=b3.三、指出下列命题的条件和结论,并判断命题的真假,如果是假命题,?请举出反例.如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.四、在探讨“对顶角不成正比”是不是命题的问题时,甲指出:这不是命题,?因为这句话就是错误的.乙指出:这就是命题,因为它做出了推论,只不过这一推论就是错误的,?所以它就是骗人命题,你指出谁的观点就是恰当的?五、把下列命题改写成“如果??,那么??”的形式.同角或等角的余角相等.基础稳固一、训练平台1.下列命题中是真命题的是()a.平行于同一条直线的两条直线平行;b.两直线平行,同旁内角成正比c.两个角相等,这两个角一定是对顶角;d.相等的两个角是平行线所得的内错角2.下列语句中不是命题的是()a.延长线段ab;b.自然数也就是整数c.两个锐角的和一定就是直角;d.同角的余角成正比3.以下语句中就是命题的就是()a.这个问题b.这只笔是黑色的c.一定相等d.画一条线段4.下列命题是假命题的是()a.优势互补的两个角无法都就是锐角;b.若a⊥b,a⊥c,则b⊥cc.乘积就是1的两个数互为倒数;d.全系列等三角形的对应角成正比二、提升训练1.下列命题中正确的是()a.有限小数就是有理数;b.无限小数就是无理数c.数轴上的点与有理数一一对应;d.数轴上的点与整数一一对应2.现有下列命题,其中真命题的个数是()①(-5)2的平方根就是-5;②对数数3.14×103存有3个有效数字;③单项式3x2y与单项式-2xy2就是同类项;④正方形既就是轴对称图形,又就是中心对称图形.a.1b.2c.3d.43.以下命题中,真命题就是()a.有两边相等的平行四边形是菱形;b.有一个角是直角的四边形是矩形c.四个角相等的菱形是正方形;d.两条对角线互相垂直且相等的四边形是正方形三、探索发现在四边形abcd中,得出以下论点:①ab∥dc;②ad=bc;③∠a=∠c.?以其中两个做为条件,另外一个做为结论,用“如果??那么??”的形式,?写下一个你指出恰当的命题.中考演练以下命题恰当的就是()a.对角线互相平分的四边形是菱形;b.对角线互相平分且相等的四边形是菱形c.对角线互相垂直的四边形是菱形;d.对角线互相垂直平分的四边形是菱形篇二:定义与命题习题1.下列命题中,属于定义的是()a.两点确认一条直线b.同角或等角的余角相等c.两直线平行,内错角成正比d.点到直线的距离是该点到这条直线的垂线段的长度2.以下语句不是命题的就是()a.鲸鱼是哺乳动物b.植物都须要水c.你必须完成作业d.实数不包含零3.下列说法中,正确的是()a.经过证明为恰当的真命题叫做公理b.假命题不是命题c.必须证明一个命题就是骗人命题,只要握一个反例,即举一个具有命题的条件,而不具备命题结论的命题即可d.要证明一个命题是真命题,只要举一个例子,说明它正确即可.4.以下选项中,真命题就是().a.a>b,a>c,则b=cb.成正比的角为对顶角c.过直线l外一点,有且只有一条直线与直线l平行d.三角形中至少存有一个钝角5.下列命题中,是假命题的是()a优势互补的两个角无法都就是锐角b如果两个角相等,那么这两个角是对顶角c.乘积为1的两个数互为倒数d.全等三角形的对应角相等,对应边相等.6.以下命题中,真命题就是()a.任何数的绝对值都是正数b.任何数的零次幂都等同于1c.互为倒数的两个数的和为零d.在数轴上则表示的两个数,右边的数比左边的数大7.命题“对顶角相等”是()a.角的定义b.假命题c.公理d.定理8.把下列命题改写成“如果??,那么??”的形式.(1)在同一平面内,旋转轴同一条直线的两条直线平行.(2)等边对等角.(3)绝对值成正比的两个数一定成正比.(4)每一个有理数都对应数轴上的一个点.(5)直角三角形的两锐角互余.9.写出下列命题的题设和结论.(1)对顶角成正比.(2)如果a2=b2,那么a=b.(3)同角或等角的补角成正比.(4)过两点有且只有一条直线.篇三:定义与命题练习题2及答案一、选择题:1.以下句子中,不是命题的就是()a.三角形的内角和等于180度;b.对顶角相等;c.过一点并作未知直线的平行线;d.两点确认一条直线.2.以下句子中,就是命题的就是()a.今天的天气好吗b.作线段ab∥cd;c.连接a、b两点d.正数大于负数3.下列命题是真命题的是()a.如果两个角不成正比,那么这两个角不是对顶角;b.两优势互补的角一定就是西南边补角c.如果a2=b2,那么a=b;d.如果两角就是同位角,那么这两角一定成正比4.以下命题就是骗人命题的就是()a.如果a∥b,b∥c,那么a∥c;b.锐角三角形中最大的角一定大于或等于60°c.两条直线被第三条直线所截,内错角相等;d.矩形的对角线相等且互相平分5.下列叙述错误的是()a.所有的命题都有条件和结论;b.所有的命题都就是定理;c.所有的定理都就是命题;d.所有的公理都就是真命题.6.以下命题中,真命题存有()①如果△a1b1c1∽△a2b2c2,△a2b2c2∽△a3b3c3那么△a1b1c1∽△a3b3c3;②直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离;③如果x2-4=0,那么x=±2;④如果a=?b,那么a3=b3a.1个b.2个c.3个d.4个二、计算题:1.写下以下命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全系列等,那么它们对应边上的低也成正比.2.判断下列命题的真假:(1)一个三角形如果存有两个角互余,那么这个三角形就是直角三角形;(2)如果│a│=│b│,那么a3=b3.3.举出反例说明“如果ac=bc,那么点c是ab的中点”是个假命题.三、表示以下命题的条件和结论,并推论命题的真假,如果就是骗人命题,?恳请列举反例.如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.四、在探讨“对顶角不成正比”是不是命题的问题时,甲指出:这不是命题,?因为这句话就是错误的.乙指出:这就是命题,因为它做出了推论,只不过这一推论就是错误的,?所以它就是骗人命题,你指出谁的观点就是恰当的?五、把下列命题改写成“如果??,那么??”的形式.同角或等角的余角相等.六、我们晓得任何一个命题都由条件和结论两部分共同组成,?如果我们把一个命题的条件变小结论,结论变小条件,那么税金的是不是一个命题?先行举例说明.基础巩固一、训练平台1.以下命题中就是真命题的就是()a.平行于同一条直线的两条直线平行;b.两直线平行,同旁内角相等c.两个角成正比,这两个角一定就是对顶角;d.成正比的两个角是平行线税金的内错角2.以下语句中不是命题的就是()a.延长线段ab;b.自然数也是整数c.两个锐角的和一定是直角;d.同角的余角相等3.下列语句中是命题的是()a.这个问题b.这只笔就是黑色的c.一定成正比d.画一条线段4.以下命题就是骗人命题的就是()a.互补的两个角不能都是锐角;b.若a⊥b,a⊥c,则b⊥cc.乘积是1的两个数互为倒数;d.全等三角形的对应角相等二、提高训练1.以下命题中恰当的就是()a.有限小数是有理数;b.无限小数是无理数c.数轴上的点与有理数一一对应;d.数轴上的点与整数一一对应2.现有以下命题,其中真命题的个数就是()①(-5)2的平方根是-5;②近似数3.14×103有3个有效数字;③单项式3x2y与单项式-2xy2就是同类项;④正方形既就是轴对称图形,又就是中心对称图形.a.1b.2c.3d.43.以下命题中,真命题就是()a.有两边相等的平行四边形是菱形;b.有一个角是直角的四边形是矩形c.四个角相等的菱形是正方形;d.两条对角线互相横向且成正比的四边形就是正方形4.某工程队,在修建兰定高速公路时,有时需将弯曲的道路改直,?根据什么公理可以说明这样做能缩短路程()a.直线的公理;b.直线的公理或线段最长公理c.线段最长公理;d.平行公理5.证明:两条平行线被第三条直线所截,则它们的一对同位角的平分线互相平行.(要求画图,写出已知、求证、证明)6.在一次数学竞赛中,a,b,c,d,e五位同学分别获得了有五名(?没同列同一名次的).关于各人的名次大家做出了下面的猜测:a说道:“第二名就是d,第三名就是b”.b说道:“第二名就是c,第四名就是e.”c说道:“第一名就是e,第五名就是a.”d说道:“第三名就是c,第四名就是a.”e说道:“第二名就是b,第五名就是d.”结果每人都只猜对了一半,请判断他们的名次如何.答案:一、1.c2.d3.a4.c5.b6.c二、1.(1)条件:两条直线被第三条直线所封盖结论:同旁内角优势互补(2)条件:两个三角形全系列等结论:对应边上的高成正比2.(1)真命题(2)假命题3.当a、b、c三点不在同一条直线上时三、条件:等腰三角形的两条边长为5和7结论:等腰三角形的周长为17就是骗人命题;反例:当腰短为7,底边短为5时,周长为19四、乙的观点恰当五、如果两个角是同一个角或相等角的余角,那么这两个角相等.六、就是一个命题,?比如“对顶角成正比”条件结论交换就变成“成正比的角是对顶角”.答案:随堂测评一、1.a2.a3.b4.b二、1.ad2.b3.c4.c5.如图所示,已知a∥b,ab,cd分别是∠eac和∠fcg的平分线,求证ab∥cd.证明略.6.e,c,b,a,d.。

北师大版数学八年级上册 7 2定义与命题同步练习 (含答案)

北师大版数学八年级上册 7 2定义与命题同步练习 (含答案)

7.2 定义与命题一、单选题1.用反证法证明“若⊙O 的半径为r ,点P 到圆心O 的距离d<r ,则点P 在⊙O 的内部”,第一步应假设( )A .d r ≥B .点P 在⊙O 的内部C .点P 在⊙O 上D .点P 在⊙O 上或⊙O 外部2.下列命题正确的是( )A .三角形的三条边上的高交于三角形内部一点,到三个顶点的距离相等B .三角形的三条中线交于三角形内部一点,到三个顶点距离相等C .三角形的三条角平分线交于三角形内部一点,到三边的距离相等D .三角形的三边中垂线交于三角形内部一点,到三边的距离相等3.下列命题是假命题的是( )A .全等三角形的周长相等B .是同类二次根式C .若实数a 0<,b 0<,则ab 0>D .如果x y 0+=0= 4.下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等5.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等6.下列语句中:①同角的补角相等;②雪是白的;③画1AOB ∠=∠;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( )A .1个B .2个C .3个D .4个7.下列命题是假命题的是()A.平方根等于本身的实数只有0;B.两直线平行,内错角相等;C.点P(2,-5)到x轴的距离为5;D.数轴上没有点表示π这个无理数.8.下列命题中,属于真命题的是()A.三角形的一个外角大于内角B.两条直线被第三条直线所截,同位角相等C.无理数与数轴上的点是一一对应的D.对顶角相等9.下列语句中不是命题的是()A.作直线AB垂直于直线CDB.两直线平行,同位角相等C.若|a|=|b|,则a2=b2D.同角的补角相等10.在下列命题中,假命题是()A.绝对值最小的实数是0B.如果一个数的立方根等于这个数本身,那么这个数是0或±1C.已知a≥b,则ac2≥bc2D.有两边和其中一边的对角分别相等的两个三角形全等11.下列说法正确的是()A.命题一定是正确的B.定理都是真命题C.不正确的判断就不是命题D.基本事实不一定是真命题12.对于命题“若a<b,则a2<b2”,小明想举一个反例说明它是假命题,则下列符合要求的反例是()A.a=0,b=1 B.a=﹣2,b=﹣1 C.a=,b=D.a=1,b=213.对于命题“|a|=a(a为实数)”,能说明它是假命题的反例是()A.a=﹣2 B.a=0 C.a=D.a=214.下列命题中,是假命题的是()A.三个角对应相等的两个三角形全等B.﹣3a3b的系数是﹣3C.两点之间,线段最短D.若|a|=|b|,则a=±b15.下列命题正确的是()A.若a>b,则a﹣1<b﹣1 B.若a>b,则ac>bcC.若a>b,则ac2>bc2 D.若ac2>bc2,则a>b二、填空题16.命题“对顶角相等”的条件是_______,结论是__________,它是___命题(填“真”或“假”).17.把命题“全等三角形对应角相等”改写成“如果…….,那么……”的形式,得______________;这个命题是_______命题(填“真”或“假”)一定表示一个负数”是______命题.(填“真”或“假”)18.命题“a19.直角三角形斜边上的中线等于斜边的一半逆命题________________20.命题“如果∠1=∠2,∠2=∠3,那么∠1=∠3”的题设是,结论是,它是命题.21.“倒数等于本身的数有±1,0”是命题(填“真”或“假”).22.“锐角与钝角是互为补角”是命题.(填写“真”或“假”)23.给出下列命题:①若a>b,则a+5>b+5;②若a>b,则﹣5a<﹣5b;③若a>b,则ac2>bc2;④若a>b,则a2>b2;⑤若a>b,则5﹣a<5﹣b.其中是真命题的序号为.(填写正确的序号即可)24.用一组a,b,c的值说明命题“若<,则<”是错误的,这组值可以是a= ,b= ,c= .三、解答题25.命题“两个连续整数的平方差必是奇数”是真命题还是假命题?若是真命题请证明,若是假命题请举反例.26.判断下列命题的真假,如果是假命题,请举一个反例,真命题不需要举例.(1)钝角的补角是锐角;(2)一个角的余角小于这个角;(3)如果a b =,那么a b =.27.判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例.(1)若a >b ,则<;(2)如果一个数是偶数,那么这个数是4的倍数;(3)两个负数的差一定是负数.28.“a 2>a ”是真命题还是假命题?请说明理由29.下列各语句中,哪些是命题?是命题的,请你先将它改写为:“如果…那么…”的形式,再找出命题的条件和结论.(1)画一个角等于已知角.(2)互为相反数的两个数的和为0.(3)当a =b 时,有a 2=b 2.(4)当a 2=b 2时,有a =b .30.(1)已知:如图,直线AB 、CD 、EF 被直线BF 所截,1180B ∠+∠=︒,23∠=∠.求证:180B F ∠+∠=︒; (2)你在(1)的证明过程中应用了哪两个互逆的真命题.答案一、单选题D .C .D .D .A .C .D .D .A .D .B .B .A .A .D .二、填空题16.两个角是对顶角,这两个角相等,真.17.如果两个三角形全等,那么它们的对应角相等;真.18.假19.如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.20.∠1=∠2,∠2=∠3;∠1=∠3;真.21.假.22.假.23.①②⑤.24.3;2;﹣1.三、解答题25.设两个连续整式为n 、n+1∴()()()2211121n n n n n n n +-=+++-=+∵21n 是奇数∴两个连续整数的平方差必是奇数∴命题“两个连续整数的平方差必是奇数”是真命题.26.(1)钝角的补角是锐角,该命题是真命题.(2)一个角的余角小于这个角,该命题是假命题.反例:45°的余角是45°,与本身相等.(3)如果a b =,那么a b =,该命题是假命题. 反例:22-=,但是22-≠.27.解:(1)命题是假命题,例如:a =1,b =﹣1,则a >b ,而>;(2)命题是假命题,例如:2是偶数,但2不是4的倍数;(3)命题是假命题,例如:﹣2﹣(﹣4)=﹣2+4=2,2是正数.28.解:“a2>a”是假命题,当a=时,a2=()2=,而<,∴“a2>a”是假命题.29.解:(1)画一个角等于已知角,不是命题;(2)互为相反数的两个数的和为0,是命题,改写为如果两个数是互为相反数,那么这两个数的和为0,命题的条件是两个数是互为相反数,结论是这两个数的和为0;(3)当a=b时,有a2=b2,是命题,改写为如果a=b,那么a2=b2,命题的条件是a=b,结论是a2=b2;(4)当a2=b2时,有a=b,是命题,改写为如果a2=b2,那么a=b,命题的条件是a2=b2,结论是a=b.30.(1)证明:∵∠B+∠1=180°,∴AB∥CD,∵∠2=∠3,∴CD∥EF,∴AB∥EF,∴∠B+∠F=180°;(2)解:在(1)的证明过程中应用的两个互逆的真命题为:同旁内角互补,两直线平行;两直线平行,同旁内角互补.。

北师大版八年级(上)数学《定义与命题》综合练习(含答案)

北师大版八年级(上)数学《定义与命题》综合练习(含答案)

定义与命题综合练习一、七彩题:1.(一题多解)把命题“平行四边形的对角线互相平分”改为“如果……那么……”的形式,并指出这个命题的条件和结论.2.(多变题)用“如果……那么……”的形式,•改写命题“过一点有且只有一条直线与已知直线垂直”可改写为_____________________________.(1)一变:判断下列命题的真假,是假命题的举出反例.①负数与负数的差是负数;②线段垂直平分线上的点到线段两个端点的距离相等.(2)二变:如图,给出下列论断:①AB∥CD;②AD∥BC;③∠B=∠D.•以其中两个作为题设,另一个作为结论,用“如果……那么……”的形式,写出一个你认为正确的命题.D AC B二、知识交叉题:3.(当堂交叉题)下列命题中,正确的是()A.任何数的平方都是正数B.相等的角是对顶角C.内错角相等D.直角都相等4.(科内交叉题)命题“当n是整数时,两个连续整数的平方差(n+1)2-n2等于这两个连续整数的和”正确吗?试着用你学过的知识说明理由.三、实际应用题:5.甲、乙、丙三位老师,分别来自北京、上海、广州三个城市,•在中学教不同的课程:语文、数学、外语,已知:(1)甲不是北京人,乙不是上海人;(2)北京人不教外语,上海人教语文;(3)乙不教数学.试问:这三位教师各自的籍贯和所教的课程.四、经典中考题:6.(厦门,3分)有下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60°,那么这个等腰三角形一定是等边三角形.其中正确的是()A.只有命题①正确B.只有命题②正确C.命题①,②都正确D.命题①,②都不正确五、探究学习:1.(条件开放题)如图所示,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所以添条件为_________.你得到的一对全等三角形△____≌△______.2.(条件开放题)举出一个真命题的例子,使它的条件和结论交换位置,所得命题仍是真命题.EACB3.(新定义型题)我们用“”,“”定义一种新运算,对于任意实数a,b都有a b=a和a b=b,例如53=5,53=3,求(20062007)(20052004)的值.4.有A,B,C,D,E,F六人坐在一张圆桌周围打牌,已知B和A相隔一人,并在A的右面,D坐在E的对面;C和F相隔一人并坐在F的右面,F与E不相邻,你能从A开始按顺时针方向排出六人的位置吗?参考答案一、1.解法一:如果一个四边形是平行四边形,那么这个四边形的对角线互相平分.条件是:一个四边形是平行四边形;结论是:这个四边形的对角线互相平分.解法二:如果两条线段是平行四边形的两条对角线,那么这两条线段互相平分.条件是:两条线段是平行四边形的两条对角线;结论是:这两条线段互相平分.2.解:如果过一点作已知直线的垂线,那么能且只能作出一条(1)①假命题.反例:-1-(-5)=4;②真命题.(2)如果AB∥CD,且AD∥BC,那么∠B=∠D.点拨:本题利用一题多变,考查了命题的概念,分类,组成等知识.(2)题还有如下答案:如果AB∥CD,∠B=∠D.那么AD∥BC;如果AD∥BC,∠B=∠D,那么AB∥CD.二、3.D 点拨:要判断一个命题是假命题,只需举出一个反例即可,所以对于命题A,当这个数是0时,02=0,但0不是正数,所以A是假命题;对于命题B,当两个角是等腰三角形的两底角时,满足两角相等,但不是对顶角,故B也是假命题;对于命题C,如果两条直线不平行,则内错角不相等,故C也是假命题,正确的命题只有D.4.解:正确,因为(n+1)2-n2=n2+2n+1-n2=2n+1=(n+1)+n.点拨:要想说明一个命题正确,是真命题,必须经过推理证明,要想说明一个命题不正确,是假命题,只要举出一个反例即可.三、5.解:甲是上海人,教语文;乙是广州人,教外语;丙是北京人,教数学.点拨:由(1)(2)知乙不教语文,又由(3)知乙不教数学,故乙教外语;由(1)(2)•知乙不是北京人,故乙是广州人;由(1)知甲是上海人,教语文;•由以上可知丙是北京人,教数学.四、6.C五、探究学习1.解:可选择CE=DE,∠CAB=∠DAB,BC=BD等条件中的一个可得到△ACE≌△ADE或△ACB≌△ADB,证明过程略.点拨:此题为条件开放题,所添加的条件灵活多样,•主要考查三角形全等的判定定理.2.解:a,b,c均为实数,若a>b,则a-c>b-c.3.解:(20062007((20052004)=20072004=2007.点拨:此类题目是近几年中考题目考查的一个重点,解答此类题目关键是弄清新运算的运算法则.4.解:从A开始,六人位置按顺时针排列为A,C,D,F,B,E.点拨:可以用图来表示(如答图6-2-1所示),已知B与A相隔一人并坐在A的右面,便可定出A,B间的位置.D坐在E的对面,则D或E必须夹在A,B两人之间.如果D夹在A,B之间,E坐在D的对面,而F的位置只能在E 的左边或右边,即F与E相邻,与题设矛盾,所以D不能夹在A,B之间.如果E夹在A,B之间,D坐在对面,C与F相隔一人并在F的右边,那么C在A,D之间,F在B的右边.。

定义与命题练习题(打印版)

定义与命题练习题(打印版)

定义与命题练习题(打印版)### 定义与命题练习题#### 一、单项选择题1. 命题“若x > 0,则x² > 0”的逆命题是:A. 若x > 0,则x² > 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x ≤ 02. 命题“若x > 0,则x² > 0”的否命题是:A. 若x ≤ 0,则x² ≤ 0B. 若x > 0,则x² ≤ 0C. 若x ≤ 0,则x² > 0D. 若x² ≤ 0,则x ≤ 03. 命题“若x > 0,则x² > 0”的逆否命题是:A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x > 0#### 二、填空题1. 若命题“若p,则q”为真命题,且命题“若q,则p”也为真命题,则命题“p⇔q”是____命题。

2. 命题“若x > 0,则x² > 0”的逆命题是“若x² > 0,则____”。

3. 命题“若x > 0,则x² > 0”的否命题是“若x ≤ 0,则____”。

4. 命题“若x > 0,则x² > 0”的逆否命题是“若x² ≤ 0,则____”。

#### 三、解答题1. 证明命题“若x > 0,则x² > 0”的逆命题、否命题和逆否命题。

2. 给定命题“若x > 0,则x² > 0”,求出其逆命题、否命题和逆否命题,并判断它们的真假。

#### 四、综合题1. 证明命题“若x > 0,则x² > 0”是真命题,并说明其逆命题、否命题和逆否命题的真假。

定义与命题课件+练习

定义与命题课件+练习

浙教版数学八上1.2定义与命题(1)1.下列语句中,属于定义的是( )A.两点之间,线段最短B.三人行,必有我师焉C.连结三角形两边中点的线段叫做三角形的中位线D.两条直线相交,只有一个交点2.下列语句中,属于命题的是( )A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连结A,B两点3.下列语句不是命题的是( )A.相等的角不是对顶角B.2既是质数又是偶数C.凡能被5整除的数,末位是5D.延长线段AB4.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线5.下列语句中是命题的有( ) ①如果两个角都等于70°,那么这两个角是对顶角;②直角三角形一定不是轴对称图形;③画线段AB=3 cm;④在同一平面内的两条直线不相交就平行;⑤一条直线的垂线只有一条;⑥同角的补角相等;⑦经过一点有且只有一条直线与已知直线平行;⑧内错角相等;⑨延长线段AB至点C,使点B是AC的中点;⑩如果两个角的两边互相平行,那么这两个角相等吗?A.1个B.3个C.6个D.7个6.命题:“线段垂直平分线上的点到线段两端点的距离相等”的条件是()A. 某点在线段的垂直平分线上B. 某点在线段的垂线上C. 某点在线段的平分线上D. 这个点到线段两端点距离相等7.命题:“线段垂直平分线上的点到线段两端点的距离相等”的结论是()A. 某点在线段的垂直平分线上B. 某点在线段的垂线上C. 某点在线段的平分线上D. 这个点到线段两端点距离相等8.下列语句是命题的个数有().(1)内错角相等;(2)对顶角相等;(3)画一个60°的角.A. 0B. 1C. 2D. 39.下列语句是命题的个数有()(1)垂直于同一条直线的两条直线平行;(2)两点确定一条直线;(3)直角都相等.A. 0B. 1C. 2D. 310.下列给出的方程,是一元三次方程的有()A. 1个B. 2个C. 3个D. 4个答案解析:1.C解析:根据定义的含义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义故选:C2.C解析:命题是指判断某一件事情的句子。

苏科版七年级数学下册 定义与命题习题

苏科版七年级数学下册 定义与命题习题

《定义与命题》习题1.下列语句中哪些是命题( )A.三角形的内角和是180度B.画一条直线C.平行四边形的对角线相等D.你喜欢跳舞吗E.5是质数2.下列语句中,是命题的是( )A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连结A.B两点3.已知下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行;⑤邻补角的平分线互相垂直.其中,正确命题的个数为( )A.0B.1个C.2个D.3个4.下列命题不正确的是( )A.一组邻边相等的平行四边形是菱形B.直角三角形斜边上的高等于斜边的一半C.等腰梯形同一底上的两个角相等D.有一个角为60°的等腰三角形是等边三角形5.判断下列句子中哪些是命题:(1)动物都需要水( )(2)猴子是动物的一种( )(3)玫瑰花是动物( )(4)美丽的天空( )(5)三个角对应相等的两个三角形一定全等( )(6)负数都小于零( )(7)你的作业做完了吗( )(8)所有的质数都是奇数( )6.下列各命题的条件是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;条件:结论:(2)如果a>b,b>c,那么a=c;条件:结论:7.指出下列命题的条件.结论:(1)如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等;(2)如果一个三角形中有两个角相等,那么这个三角形是等腰三角形;(3)直角三角形的两锐角互余;(4)两直线平行,同位角相等;(5)对顶角相等.8.有红黄蓝三个箱子,一个苹果放入其中一个箱子内,并且红箱子上写着:“苹果在这个箱子里.”黄箱子上写着:“苹果不在这个箱子里.”蓝箱子上写着:“苹果不在红箱子里.”已知上面三句话中,只有一句是真的,你知道苹果在哪个箱子里?。

初中数学 习题4:定义与命题

初中数学 习题4:定义与命题

定义与命题(2)1.下列命题是假命题的是()A.若a=b,b=c,则a=c B.若a2=b2,则a=bC.若a>b,b>c,则a>c D.相似三角形的对应角相等2.下列命题正确的是()A.所有的等腰三角形都相似 B.所有的直角三角形都相似C.所有等边三角形都相似 D.所有的矩形都相似3.下列命题错误的是()A.平行四边形的对角相等 B.等腰梯形的对角线相等C.对角线相等的平行四边形是矩形 D.对角线互相垂直的四边形是菱形4.下列命题中,真命题是()A.互补两角若相等,则此两角都是直角 B.直线是平角C.不相交的两条直线叫做平行线 D.和为180°的两个角叫做邻补角5.下列命题中,真命题是()A.同位角互补 B.同旁内角互补,两直线平行C.内错角相等 D.两个锐角的补角相等6.“若a>b,则a2>b2”的结论部分是______,此命题是______命题.(填“真”或“假”)7.一个角的余角等于它的对顶角,则这个角的度数_______.8.“邻补角之和是平行”的条件是_________.9.完成下列叙述的结论部分:AB∥CD,直线MN⊥AB,则_______.10.根据题意,写出下列判断中所依据的命题或定理__________________________,如图,若∠1=∠4,•则AB∥CD;若∠2=∠3,则AD∥BC.11.判断下列命题是真命题还是假命题.(真命题打“∨”,假命题打“×”)(1)四条边都相等的四边形是正方形.()(2)互补的两个角,一个是锐角,另一个是钝角.()(3)如果a>b,则a-c>b-c.()(4)如果a>b,则ac>bc.()(5)有三个角都对应相等的两个三角形全等.()12.对下列命题举出一个足以说明它为假命题的反例:(1)若│a│=│b│,则a=b;(2)任何有理数的倒数都不会等于自身;(3)一个正数永远大于它的倒数;(4)一个钝角与一个锐角的差肯定是一个锐角.13.写出下列命题的条件和结论,并判断真假.(1)所有的质数都是奇数;(2)若a∥b,b∥c,则a∥c;(3)两个负数的差一定是负数;(4)同角的补角相等.14.如图所示,已知∠AOC与∠BOC互为邻补角,OF平分∠AOC,OE平分∠BOC.求证:OE⊥OF.参考答案1.B 2.C 3.D 4.A 5.B 6.a2>b2假 7.45° 8.两个角是邻补角9.CD⊥MN 10.内错角相等,两直线平行11.(1)×(2)×(3)∨(4)×(5)×12.(1)如a=-3,b=3,a≠b (2)如有理数1=11(3)如有理数11122=2(4)如∠=150°,∠B=30°,∠-∠=120°是钝角13.略14.证明:∵∠AOC与∠BOC互为邻补角,∴∠AOC+∠BOC=180°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《定义与命题》习题
1.下列语句中哪些是命题( )
A三角形的内角和是180度B画一条直线
C平行四边形的对角线相等D你喜欢跳舞吗E5是质数
2.判断下列句子中哪些是命题:
(1)动物都需要水( )
(2)猴子是动物的一种( )
(3)玫瑰花是动物( )
(4)美丽的天空( )
(5)三个角对应相等的两个三角形一定全等( )
(6)负数都小于零( )
(7)你的作业做完了吗( )
(8)所有的质数都是奇数( )
3.指出下列命题的条件、结论:
(1)如果两个三角形的两边及其夹角分别相等,那么这两个三角形全等;
(2)如果一个三角形中有两个角相等,那么这个三角形是等腰三角形;
(3)直角三角形的两锐角互余;
(4)两直线平行,同位角相等;
(5)对顶角相等.
4.指出下列命题的题设、结论:
(1)如果两条直线相交,那么它们只有一个交点;
(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
5.把下列命题改写成“如果…,那么…”的形式:
(1)平行于同一直线的两条直线平行.
(2)同角的余角相等.
(3)绝对值相等的两个数一定相等.
6.下列命题中,是真命题的打“√”,不是真命题的打“×”:
A、锐角大于它的余角( )
B、锐角大于它的补角( )
C、钝角大于它的补角( )
D、锐角与钝角之和等于平角( )
E、两个直角三角形一定相似( )
F、相似三角形的对应边相等( )
G、两角相等的两个三角形一定相似( )
7.指出下面命题的条件和结论,并判断命题的真假,如果是假命题,请举出反例.如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.。

相关文档
最新文档