理论力学-刚体的基本运动

合集下载

理论力学6—刚体的基本运动

理论力学6—刚体的基本运动
34.8
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
1、角速度矢量和角加速度矢量
角速度矢量
dj
ww
dt

大小
角速度矢沿轴线,弯向表示刚体转动的方向。
指向用右手螺旋法则。
w wk
角加速度矢量

dw dw

k k
dt
dt
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
2

例6-6
某定轴转动刚体通过点M0(2,1,3),其角速度矢w 的方向
余弦为0.6,0.48,0.64,角速度 的大小ω=25rad/s 。求:刚体上点
M(10,7,11)的速度矢。
解:角速度矢量
w wn
其中 n (0.6,0.48,0.64)
M点相对于转轴上一点M0的矢径
r rM rM0 10,7,11 2,1,3 8,6,8
Z2=60,Z3=12,Z4=70。(a)求减速箱的总减速比i13 ;(b)如
果n1=3000r/min,求n3.
1
n1
2
n2
3
n3
4
解:求传动比:
n1 n1 n2 Z 2 Z 4
i13
34.8
n3 n2 n3 Z1 Z 3
则有:
n1 3000
n3

86r / min
i13
4 rad
dw dw d
dw



w
dt
d dt
d
dw
w
0.2
d
解:
w
w wdw
0

理论力学第三章刚体力学

理论力学第三章刚体力学
d dt
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )

r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件

(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1

理论力学课件—刚体的简单运动

理论力学课件—刚体的简单运动

解: 建立坐标系,
BCD平移,考察m点:
0
x r cos r cost
v d x r sin t
flash
dt
a d v r2 cost
dt
例:已知绳等长l,=0sinkt, 0,k为常数。
求任意时刻M点的速度和加速度。 O1
O2
解:AB平移,研究A点即可。
φ
A圆弧运动,以最低点处为弧坐标原点,A 向右为正,A的运动方程:
z2 z1
+ 为转向一致(内啮合) - 为转向相反(外啮合)
2.带轮传动
r11 vA vA vB vB r22
主要内容:
1.刚体的平移及其运动特征(尤其是作曲线平移的刚体)。
2.作定轴转动的刚体的转动方程、角速度、角加速度。
3.转动刚体内各点的速度、加速度。
难点:
1.曲线平移刚体上任一点的速度和加速度的确定。 2.作定轴转动的刚体内任一点的速度和加速度的矢积表示法 (初步了解)。
第六章 刚体的简单运动
刚体是由无数点组成的,在点的运动学
基础上可研究刚体的运动,研究刚体整体的
运动与其上各点运动之间的关系。 本章主要研究刚体的两种简单运动:
➢平移 ➢定轴转动
学习本章内容是为研究复杂运动(平面运动) 打基础。
§6-1 刚体的平行移动
1.平行移动 刚体内任一直线在运动过程中始终平行于
初始位置。简称平移(平动)。
flash
flash
2.运动方程
k
角速度方程
d
dt
0 ch
kt
角加速度方程 d
dt
k0 sh
kt
例:边长为b的正方形绕定轴转动,
A aA

理论力学08刚体的基本运动

理论力学08刚体的基本运动

[例5] 图示仪表机构中,已知各齿轮齿数 z1 = 6、z2 = 24、z3 = 8、 z4 = 32,齿轮 5 的啮合圆半径 R = 4 cm。如齿条 AB 下移1 cm,试 求指针 OC 转过的角度。
解: 轮 5 转过的角度
5
1 4
轮 4 转过的角度
4
5
1 4
轮 3 转过的角度
3
4
i43
z4 z3
aMn
a
n A
π202l
16
cos
2
πt 4
aMt 0
aM
aMn
π202l
16
[例3] 如图,鼓轮绕轴 O 转动,已知鼓轮的半径 R = 0.2 m,转动方
程 = -t2+4t (t 以 s 计, 以 rad 计);不可伸长的绳索缠绕在鼓
轮上,绳索的另一端悬挂重物 A。试求当 t = 1 s 时,轮缘上的点 M 和重物 A 的速度和加速度。
[例1] 杆AO 套在套筒 B 中绕轴 O 转动,套筒 B 在竖直滑道中运动。 已知套筒 B 以匀速 v = 1 m/s 向上运动,滑道与轴 O 的水平距离 l =
400 mm,运动初始时 = 0°。试求 = 30°时,杆AO 的角速度和角
加速度。
解: 杆AO 的转动方程
arctan
BB0 OB0
第二节 刚体绕定轴转动
一、绕定轴转动刚体的转动方程
t
说明:1)转角 为代数量,正负号表示
转向,一般可按右手螺旋法则 确定。
2)转角 的单位:rad(弧度)
z
A A0
二、绕定轴转动刚体的角速度
d
dt 说明:1)绕定轴转动刚体的角速度 为代数
量,其正负号表示转向,角速度 的正 负号规定与转角 一致。 2)角速度 的单位:rad/s 3)角速度 与转速 n (r/min) 的换算关系

刚体的简单运动—转动刚体内各点的速度和加速度(理论力学)

刚体的简单运动—转动刚体内各点的速度和加速度(理论力学)
二、角加速度 与an ,at的关系
设角加速度如图所示
A MO
O
切向加速度 at dv d (R) R d R (+)
dt dt
dt
R
an
v
at
即:转动刚体内任一点的切向加速度(又称转动加 速度)的大小,等于刚体的角加速度与该点到轴线
M
B
垂直距离的乘积。
它的方向由角加速度的符号决定,当是正值时,它沿圆周的切线,
[例]半径R=0.2m的圆轮绕定轴O的转动方程 t 2 4t ,单位为弧度。 求t=1s时,轮缘上任一点M的速度和加速度。如在此轮缘上绕一柔软而不
可伸长的绳子并在绳端悬一物体A,求当t=1s时,物体A的速度和加速度。 解:圆轮在任一瞬时的角速度和角加速度为
d 2t 4
dt
d2 2
• ①滑轮3s内的转数; • ②重物B在3s内的行程;
• ③重物B在t=3s时的速度;
• ④滑轮边上C点在初瞬时的加速度;
• ⑤滑轮边上C点在t=3s时的加速度。
解:① 因为绳子不可以伸长,所以有
C aA 1m/s2
aCt 1 2 rad/s2
R 0.5
( )常数
vC
vA
1.5m /s, 0 vC
4.5m /s2
a (at )2 (an )2 12 4.52 4.61 m/s2
C
C
C
tan aCt 1 0.222, 12.5
aCn 4.5
⑤ t=3s 时,
at a
1m/s2,a n
R 2
2
0.5 9
40.5m/s2
a 12 40.52 40.51m/s2,tan 1 0.0247, 1.41 C

理论力学运动学知识点总结

理论力学运动学知识点总结

运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

•刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

•刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

•角速度ω表示刚体转动快慢程度和转向,是代数量,。

角速度也可以用矢量表示,。

•角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示,。

•绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

•传动比。

一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。

•绝对运动:动点相对于定参考系的运动;•相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。

2.点的速度合成定理。

•绝对速度:动点相对于定参考系运动的速度;•相对速度:动点相对于动参考系运动的速度;•牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。

3.点的加速度合成定理。

•绝对加速度:动点相对于定参考系运动的加速度;•相对加速度:动点相对于动参考系运动的加速度;•牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;•科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。

•当动参考系作平移或= 0 ,或与平行时, = 0 。

该部分知识点常见问题有问题一牵连速度和牵连加速度的意义。

问题二应用速度合成定理时要画速度矢量图。

理论力学6—刚体的基本运动分析

理论力学6—刚体的基本运动分析

6.1 刚体的平行移动
平动的实例
夹 板 锤 的 锤 头
6.1 刚体的平行移动
2. 平动的特点
定理:当刚体作平动时,刚体内所有各点的轨迹形状完 全相同,而且在每一瞬时,刚体各点的速度相等,各点 的加速度也相等。 证明:
rA rB BA
◆速度 刚体平动时,刚体内任一线段AB 的长度和方向都保持不变。 因而 x


a a a R w
2 2 n 2
4
a tan 2 an w
( Rw ) 2 an Rw 2 R v2
即:转动刚体内任一点的法向加速度(又称向心加速度)的 大小,等于刚体角速度的平方与该点到轴线的垂直距离的 乘积,它的方向与速度垂直并指向轴线。
6.3 转动刚体内各点的速度和加速度
如果ω与同号,角速度的绝对 值增加,刚体作加速转动,这 时点的切向加速度 aτ 与速度 v 的指向相同。 如果ω与异号,刚体作减速转 动,aτ与v的指向相反。 点的全加速度为:
6.1 刚体的平行移动
刚体的两种最简单的运动是平行移动和定轴转动。以后可 以看到,刚体的更复杂的运动可以看成由这两种运动的合 成。因此,这两种运动也称为刚体的基本运动。
1. 刚体的平动
在运动过程中,刚 体上任意一条直线 都与其初始位置保 持平行。具有这种 特征的刚体运动, 称为刚体的平行移 动,简称为平动。
6.3 转动刚体内各点的速度和加速度
当刚体绕定轴转动时,刚体内任意一点都作圆周运动,圆心在 轴线上,圆周所在的平面与轴线垂直,圆周的半径 R 等于该点 到轴线的垂直距离。 由于点M绕点O作圆周运动,用自然法表示。点M的弧坐标为
s Rj
动点速度的大小为
ds dj v R Rw dt dt

第八章 刚体的基本运动

第八章 刚体的基本运动
平移刚体在任一瞬时速度、加速度都一样, 平移刚体在任一瞬时速度、加速度都一样,各点的运动轨迹 形状相同。 平移刚体的运动可以简化为一个点的运动。 形状相同。即平移刚体的运动可以简化为一个点的运动。
理论力学电子教程
第八章 刚体的基本运动
荡木用两条等长的钢索平行吊起,如图所示。 例8-1 荡木用两条等长的钢索平行吊起,如图所示。钢索长 为 长 l, 长 度 单 位 为 m。 当 荡 木 摆 动 时 钢 索 的 摆 动 规 律 , 。 π 为时间,单位为s;转角φ 为 ϕ =ϕ0 sin t ,其中 t 为时间,单位为 ;转角 0的单位为 4 rad,试求当 和t=2 s时,荡木的中点 的速度和加速度。 的速度和加速度。 ,试求当t=0和 时 荡木的中点M的速度和加速度
∴aτ =ε × r
∴a n =ω × v
a n =ω × v
理论力学电子教程
第八章 刚体的基本运动
三、定轴轮系的传动比 在实际工程中,不同机器的工作转速往往是不一样的, 在实际工程中,不同机器的工作转速往往是不一样的, 故需要利用轮系的传动来提高或降低机器转速。 故需要利用轮系的传动来提高或降低机器转速。常用的有 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 表示, 用i表示,即 表示 n主 ω主 i= = n从 ω 从 1.带传动 当主动轮Ⅰ转动时, 当主动轮Ⅰ转动时,利用胶带与带轮轮缘间的摩擦带动 从动轮Ⅱ转动。 从动轮Ⅱ转动。 不考虑胶带由于拉力引起的变形及胶带的厚度, 不考虑胶带由于拉力引起的变形及胶带的厚度,为此在 同一瞬时胶带上各点速度大小应相等, 同一瞬时胶带上各点速度大小应相等,即v1 = v = v2。若胶带 与带轮间没有滑动, 与带轮间没有滑动,则

理论力学 第二章 刚体的基本运动

理论力学 第二章 刚体的基本运动

0
nπ 式中n为转速 单位:转/ 分(r/min) 。 山东大学 土建与水利学院工程力学系 THEORETICAL MECHANICS 30
§ 2.2 刚体绕定轴的转动
3.角加速度
描述角速度变化的快慢程度
2
d d lim 2 t 0 t dt dt
单位:弧度/秒2 (rad/s2 ) α与同号,刚体加速转动;
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
§2.4 轮系的传动比
1 n1 r2 Z2 i1,2 2 n2 r1 Z1
此结论对于锥齿轮传动和带 轮传动同样适用。 在一些复杂轮系(如变速器) 中包含有几对齿轮。可将每一对 齿轮的传动算出后,将它们连乘 起来,变为可得总的传动比。
392.8 62.5 转 2π
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
例2- 3 轮子绕O点作定轴转动,其加速度方向和轮的半径
成60度角,求轮的转动方程,以及角速度和转角之间的关系。
00, 0.
M

O
a
60
THEORETICAL MECHANICS
解 : AB 杆 为 平 移 , O1A 为 定 轴 转 动 。 根 据 平移的特点,在同一瞬 时,M、A两点具有相同 的速度和加速度。
THEORETICAL MECHANICS
山东大学 土建与水利学院工程力学系
例 题
A点作圆周运动,其运动方程为
s O1 A 3π t
ds dv vA 3π (m/s) a A t 0 dt dt
§ 2.1 刚体的平行移动

理论力学—刚体平面运动

理论力学—刚体平面运动
在图示位置 60 时,曲柄角速度为, OA AB,且AB与槽在B点的法线夹角 30 。
试求:该瞬时滑块B的速度和AB杆的角速度。
B
O
A
R
O1
解:用速度合成法(基点法)求解。
取A 为基点,B 点的速度为
vB v A vBA
式中:vA r 方向与OA相垂直。
vBA方向与AB杆垂直,大小未知
第二章 刚体的平面运动
§2.1. 刚体平面运动的简化 §2.2. 用分析方法研究平面图形的运动 §2.2.1. 运动方程
§2.2.2.平面图形的角位移、角速度 角加速度
§2.2.3. 平面图形上点的运动分析
*§2.3. 用矢量方法研究平面图形的运动 §2.3.1 平面平动 §2.3.2 定轴转动 *§ 2.3.3 平面图形上点的速度关系 *§2.3.4. 平面图形上点的加速度关系
Z
Y A1
S
A
A2
X
简化
Y
S A
X
§2.2 分析法研究平面图形的运动
2.2.1.运动方程
一、确定图形位置
自由的平面图形S,其位置的确定 可由其上任一线段AB 的位置来确定。
AB 位置由下述方法确定:
y
建立与参考空间固连
B
直角坐标Oxy
x A
A
A点坐标:xA, yA
O
y
A
x
方位角(AB与固定线 Ox夹角)
求解B 点的速度、加速度。
§2.3. 矢量法研究平面图形的运动
2.3.1、平面平动
平面平动特征
刚体上任意线段AB在移动
B
B'
过程中方向不变。
平动刚体上点的速度与加速度 rB A

第七章刚体的基本运动_理论力学

第七章刚体的基本运动_理论力学


得: 由于轮子作匀速转动,所以 ,得:
§7-3






1. 齿轮传动 机械中常用齿轮传动机构,以达到传递转动和变速的目的。图 7-6 所示为 一对外接(啮合)齿轮。图 7-7 为一对内接齿轮。 (1)齿轮传动特点 ①两轮接触点的速度大小、方向相同。 ②两轮接触点的切向加速度大小、方向相同。 (2)传动比 由图 7-6,7-7,并考虑式(7-4) ,可得:
2.
定轴转动的特点
观察刚体上任一点
的轨迹,可以看到刚体定轴转动的特点:
不在轴线上的各点均作圆周运动;圆周所在平面垂直转轴;圆心均在轴线上;半径为点 到转轴的距离。
3.
刚体的转动方程
为描述转动刚体在空间的位置随时间的
变化,需建立转动方程。 ★ 定轴转动刚体简化成平面图形 设刚体绕 轴作定轴转动, 如图 7-4 所示在刚体上任取一直线 作平动,可取其上任一点 代表 的运动。 平面上的平面图形绕 点的转动。 平行 轴, 则

, 此处 和 分别表示两皮带轮的角速度(rad/s) 。于是得


∴ 即两皮带轮的角速度(或转速)与其半径成反比。 §7-4 速度和加速度的矢量表示法
1.
以矢量表示角速度和角加速度 和角加速度矢量 。如图 7-11 所示。 (7-13) (7-14) 当 当 时,说明两者同向,作加速转动。 时,说明两者反向,作减速转动。
72刚体绕定轴的转动简称定轴转动定义刚体在运动过程中其上有且只有一条直线始终固定不动时称刚体绕定轴转动该固定直定轴转动的特点观察刚体上任一点的轨迹可以看到刚体定轴转动的特点
第七章 刚体的基本运动 知识点 1. 刚体的平动和定轴转动称为刚体的基本运动。 它不可分解, 是刚体运动的最简单形 态,刚体的复杂运动均可分解成若干基本运动的合成。 2.平动刚体上各点的轨迹形状相同。同一瞬时刚体上各点的 和 相同。因此可以用刚体上 任一点的运动代表整体。换言之,若知道平动刚体上某点的运动( 、 等) ,则其它各点 均为已知。

08刚体的基本运动

08刚体的基本运动
vM
[解](1)求鼓轮的角速度和角加速度
M
当 t 1s 时,有:
O α ω


d 2t 4 2 1 4 2 rad/s dt d 2
dt 2 rad/s

(2)求轮缘上点M的速度和加速度
vM R 0.2 2 0.4 m/s
at
at v R R
法向加速度
v
a

R M0

an v 2 / R ( R ) 2 / R R 2
2 a an at2 ( R ) 2 ( R 2 ) 2 R 2 4
tan at / an / 2
理论力学
一、定轴转动刚体内各点的速度
M
s
定轴转动刚体上点的运动方程.
v


R M0
sR
定轴转动刚体内任一点速度的大小等于 该点的转动半径与刚体角速度的乘积
定轴转动刚体上点的速度分布规律
理论力学
第八章
刚体的基本运动
二、定轴转动刚体内各点的加速度
M
s
an
切向加速度
第二节 刚体绕定轴转动
理论力学
第八章
刚体的基本运动
刚体在运动时,其上或扩展部分有一直 线始终保持不动,这种运动称为刚体的 定轴转动。

理论力学
第八章
刚体的基本运动
一、转动方程
f (t )
d dt
d d 2 2 dt dt
z
二、角速度
三、角加速度
四、匀变速转动与匀速转动
2
理论力学
第八章
刚体的基本运动
[解]

理论力学8刚体的基本运动

理论力学8刚体的基本运动

前面都为数量表达式,只有大小,而未标明方向; 矢量表达既有大小,又有方向。
一. 角速度和角加速度的矢量表示
按右手定则规定
w , 的方向。
大小:|w ||ddt |
dw dw k k
dt dt
方向如图 w wk
15
二 刚体内任一点的线速度和线加速度的矢积表示
vRw rsin w |w r|wrsin Rw
小于90o , 在同一瞬间的速度和加速度的分布图为:
各点速度分布图
各点加速度分布图
10
§8-4 绕定轴转动刚体的传动问题
传动比:通常称主动轮与从动轮角速度之比
i12
w1 w2
一.齿轮传动
因为是做纯滚动(即没有相对滑动) 1.内啮合
vF vE vF vE
wF rF wE rE
定义齿轮传动比
iEF
aC n Rw02 0.532 4.5m/s 2
aC (aC )2 (aC n )2 12 4.52 4.61 m/s2
tg
aC aC n
1 4.5
0.222,
12.5
⑤ t=3s 时, aC aA 1m/s2,aCn Rw 2 0.592 40.5m/s2
aC
12 40.52 40.51m/s2,
w 2 w02 2
7
§8-3 转动刚体内各点的速度和加速度
一. 线速度V和角速度w之间的关系(即角量与线量的关系)
w , 对整个刚体而言(各点都一样);
v, a 对刚体中某个点而言(各点不一样)。
v

v
lim
t0
R t
wR
v wR
8
二.角加速度 与an ,a 的关系

《理论力学》第六章 刚体的基本运动习题全解

《理论力学》第六章 刚体的基本运动习题全解

第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。

试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。

即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。

后因刹车,该点以)/(1.02s m t a t =作减速运动。

设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。

解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。

《理论力学》课件 第5章

《理论力学》课件 第5章

因而 dBA/dt 0 ,于是得
vA vB
将上式再求一次导数,则得
aA aB
例5-1
如图5-4所示的曲柄滑道机构,当曲柄 OA 在平面上绕定轴 O 转动 时,通过滑槽连杆中的滑块 A 的带动,可使连杆在水平槽中沿直
线往复滑动。若曲柄 OA 的长为 r ,曲柄与 x 轴的夹角为 t,
其中 是常数,求此连杆在任一瞬时的速度及加速度。
根据上述结论,可作出截面上各点的加速度的分布图,在通过轴心的 直线上,各点的加速度按线性分布,将加速度矢的端点连成直线,此 直线通过轴心,如图5-10(b)所示。
(a)
图5-10
(b)
例5-3
如图5-11所示,一半径 R 0.2 m 的圆轮绕定轴O 的转动方程
为 t2 4t , 单位为rad, t单位为s。求 t 1 s 时,轮
*
t
当 t 趋近于零时,刚体转动的瞬时角加速度为
lim * lim d
t 0
t0 t dt
刚体绕定轴转动的角加速度等于角速度对于时间的一阶导数,
或等于转角对于时间的二阶导数。
角加速度与角速度一样都是代数量,它的单位是 rad/s2
若 与 的符号相同,则角速度的绝对值随时间而增加,这 时称为加速转动;反之,若 与 的符号相反,则角速度

设有平动的刚体,在刚体上任取两点 A 和 B ,并连成一直线如
图5-3所示。运动开始时 AB 线在 A0B0 的位置;经过极短时间间 隔 t 之后,移至 A1B1 ;依次再继续移至 A2B2 , ,AnBn 等。
首先证明这两个任意点的轨迹形状是完全 相同的,根据刚体的定义得知 A,B 两点间 的距离保持不变。 因此 AB A0B0 A1B1 A2B2 AnBn

理论力学第五章 点的运动和刚体的基本运动 [同济大学]

理论力学第五章 点的运动和刚体的基本运动 [同济大学]

dv v2 τ n dt
a
r
O
`
v vτ
r
dv 2 v2 ) ( )2 dt ρ
tan
aτ an
1
例5-2 汽车以匀速度v=10m/s过拱桥,桥面曲线 y=4fx(L–x)/L2, f=1m,求车到桥最高点时的加速度。
解: aτ
例5-3 销钉A由导杆B带动沿固定圆弧槽运动。导杆B沿轴螺旋 立柱以不变的速度v0 =2m/s向上运动。试计算当θ=30° 时,销钉 A的切向和法向加速度。 解: 建立弧坐标s和直角坐标Oxy如图。 因 s=Rθ,
销钉A的加速度为
aτ v sin θ v0 θ cos θ
2 2 sin θ v0 12.32m/s 2 R cos3 θ
an
2 v2 v0 21.33m/s 2 R R cos 2 θ
例5-4
判别下图示曲线中加速度、速度矢量是否正确。
§5-4 刚体的基本运动平动,转动

则vD=vA=2rω
aDn=aAn=2rω2 aDτ=aAτ=2ra
0 dt
0
t
y x

θ θ0 ω0t
t
0 0

t
αdtdt
角加速度为常量:
两个独立方程
0 t,
1 θ θ0 ω0 t t 2 2
1 θ θ0 (ω0 ω)t , 2
t 0
'2 1 1 y " k y

切线
v r S M* + M
dτ s v lim n d t lim t 0 t t 0 s t
an

07 刚体的基本运动

07 刚体的基本运动

a
n M
=0
am = a
τ
M
= π
2
方向垂直于AO1斜向右上方 因为半圆盘作平动,所以其角速度
ωab = 0 。
例7-7 转子启动时的角加速度与时间成正比增大,经过5分钟 转子的转速达到18000r/min,试问转子在这段时间内转了多少 转? 【解】设比例系数为k,则
ε = kt

dω = kt dt
R2 , ω 2 , ε 2 .
v A = v B , a Aτ = a Bτ
又 υ A = R1ω1 , υ B = R2ω2 , a Aτ = R1ε 1 , a Bτ = R2ε 2 R1ω1 = R2ω2 , R1ε 1 = R2ε 2
理论力学电子教程
第七章 刚体的基本运动
传动比
i12 传动比
ω o R v M β A
ε o R

r
ε
A
M β
r
理论力学电子教程
第七章 刚体的基本运动
设刚体上一点M相对于角速度矢量 ω 的起点A的位置用矢径 表示, 与ω 之间的夹角为 β , r 则M点: v = Rω = OM ω = ω r sin β 由此,据线性代数知
υ =ω×r
(转动刚体上点的速度矢积表示法) 又
s2
理论力学电子教程
第七章 刚体的基本运动
§7-3绕定轴转动刚体的问题
机器的运转要求一定的转速,而电动机的转速则是一定的. 这就需要变速,把电动机的转速提高或传递,使它符合要求. 变速常通过一系列相互啮合的齿轮或皮带传动,摩擦轮传 动来完成.几个轮子的组合称为轮系. 以一对啮合轮为例: I轮: R1 , ω 1 , ε 1 . II轮:

第六章 刚体的基本运动

第六章 刚体的基本运动
dω dr dv d = (ω× r ) = × r + ω× a= dt dt dt dt
z R a M
n
a = α × r + ω× v
aτ = α × r
α × r = α ⋅ r sin θ = α ⋅ R
O

v
α ω θ r
ω× r
a
n
= ω × v
ω ⋅ v = ω ⋅ ω ⋅ R = ω
dθ = ωo 其中: dt
所以: bcosθ ⋅ ω o = rcos(θ + ϕ ) ⋅ (ω o + ω )
dϕ =ω dt
*
rcos(θ + ϕ ) ω 解得: ω o = bcosθ − rcos(θ + ϕ )
方程*两边对时间取导数,得:
bcosθ ⋅ ω o = rcos(θ + ϕ ) ⋅ (ω o + ω )
一 、角速度的矢量表示
z
ω
k k
ω
z
ω=ω k
右手螺旋规则:右手的四指代表转动的方向,拇指代表角 速度矢量 ω 的方向。
二、角加速度的矢量表示
角加速度矢量定义:
dω α= dt
角加速度矢
α 为角速度矢 ω 对时间的一阶导数
d dω α = ( ωk) = k dt dt
dω d ϕ = 2 α= dt dt
为描述变速的程度,引入传动比的概念。
ω1 R2 z 2 = = 传动比: i12 = ω 2 R1 z1
ω1 n1 α1 R2 z 2 i12 = = = = = ω 2 n2 α 2 R1 z1
二 、皮带轮传动
n1 R1
vB A vA B R2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〔例〕已知:重物A的
a A 1m/s2 (常数)初瞬时速度 v0 1.5m/s

方向如图示。 R 0.5m, r 0.3m
求:
①滑轮3s内的转数;
②重物B在3s内的行程; ③重物B在t=3s时的速度; ④滑轮边上C点在初瞬时的加速度; ⑤滑轮边上C点在t=3s时的加速度。
解:① 因为绳子不可以伸长,所以有 aC a A 1m/s2 , aC 1 )常数 2 rad/s2 ( R 0.5 vC 1.5 vC v A 1.5m/s, w0 3rad/s ( ) R 0.5 1 2 1 2 w0t t 33 23 18rad,n 2.86(转) 2 2 2 ② ③
在 某瞬时测得 aM 40 m/s2 , 30 求: 转动方程;
t=5s时,M点的速度和
向心加速度的大小。 解:
a R asin
M
a asin 40sin30 50 rad/s2 R R 0.4 w0 0, w0t 1t 2 1 50t 2 25t 2
2018/6/3
2.角加速度:
w dw d 2 角加速度 : lim 2 t 0 t dt dt
单位:rad/s2 (代数量)
与w方向一致为加速转动, 与w 方向相反为减速转动
3.匀速转动和匀变速转动 当w =常数,为匀速转动;当 =常数,为匀变速转动。
2018/6/3
2018/6/3
§7-2
刚体的定轴转动
一.刚体定轴转动的特征及其简化 特点:有一条不变的线称为转轴,其余各点都在垂直于转轴的平
面上做圆周运动。
二.转角和转动方程机构运动swf\swf0604.swf
z
定平面
---转角,单位弧度(rad) =f(t)---为转动方程
方向规定: 从z 轴正向看去,
v dS S lim dt t0 t
v lim
R wR t 0 t
v wR
2018/6/3
二.角加速度 与an ,a 的关系
a R,
an v2

Rw 2
|a全 ||an a | an 2 a 2 R 2 w 4
w w 0 t 1 2 与点的运动相类似。 w t t 常用公式 0 2 2 w 2 2 w 0
§7-3
转动刚体内各点的速度和加速度
(即角量与线量的关系)
一.线速度V和角速度w之间的关系
w , 对整个刚体而言(各点都一样);
v, a 对刚体中某个点而言(各点不一样)。
刚体的基本运动
§7–1 刚体的平行移动 §7–2 刚体的定轴转动 §7–3 定轴转动刚体内各点的速题
2018/6/3
§7-1刚体的平行移动(平动)
2018/6/3
二.刚体平动的特点: 1、其上任一直线始终平行于它的初始位置; 2、任一点的轨迹可是直线也可是曲线; 3、 平动时各点轨迹形状相同; 4、在任一瞬时各点的运动轨迹形状,速度,加速度都一样。 即:平动刚体的运动可以简化为一个点的运动。


n
⑤ t=3s 时,
aC a A 1m/s 2 ,aC n R w 2 0.59 2 40.5m/s 2
aC 12 40.52 40.51m/s2 , tg
1 0.0247 , 1.41 40.51
[例] 已知:圆轮O由静止开始作等加速转动,OM=0.4m,
a R t g 2 2 an w R w
2018/6/3
各点速度分布图
各点加速度分布图
2018/6/3
刚体定轴转动 转动方程:
f (t )
w
d dt
角速度:
角加速度: 匀速转动:
dw d 2 2 dt dt
0 wt 匀变速运动: w w 0 t 2 w 2 2 1 2 w 0 0 w 0 t t 2
2 2
转动方程 25t 2

w w0 t 50t, vM Rw 0.450t 20t
当t=5s时,
vM 205100m/s
M
2 v 1002 M n aM 25000 m/s2 R 0.4
x
O
逆时针为正
2018/6/3
顺时针为负
2018/6/3
三.定轴转动的角速度和加速度 1.角速度:
定义:
Δ d w lim Δ t 0 Δ t dt
(代数量)
工程中常用单位:
n = 转/分(r / min)
则n与w的关系为:
2n n n w (rad/s ) 60 30 10

s r 0.3185.4m
w w0 t 3239 rad/s
vB rw 0.392.7m/s


),

t = 0 时,
aC a A 1m/s2 , aC n Rw 0 2 0.532 4.5m/s2
aC (aC ) 2 (aC ) 2 12 4.52 4.61 m/s2 a 1 tg C n 0.222, 12.5 aC 4.5
相关文档
最新文档