流体力学概念总结(涉及所有重点)

合集下载

流体力学知识点大全

流体力学知识点大全

流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。

以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。

液体和气体都具有易于流动的特点。

2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。

3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。

速度矢量的大小和方向决定了流体中每一点的速度和运动方向。

4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。

压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。

5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。

流体动力学包括流体的运动方程、速度场描述和流动量的计算等。

6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。

而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。

7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。

而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。

8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。

流体的黏度越大,流体粘性越大,流动越缓慢。

黏性对于流体的层流和湍流特性有重要影响。

9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。

当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。

10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。

流体力学概念梳理

流体力学概念梳理

1.表面里:通过直接接触,作用在所取流体表面上的力。

2.质量力:作用在所取流体体积内每个质点上的力(因为与质量成比例故称为质量力)。

3.惯性:物体保持原有运动状态的性质,改变物体的运动状态,都必须克服惯性的作用。

4.粘性:流体固有的物理性质,是流体在运动过程中出现阻力,产生机械能损失的根源。

5.压缩性:流体受压,分子间距减小,体积缩小的性质。

6.膨胀性:是流体受热,分子间距增大,体积膨胀的性质。

1.等压面:流体中压强相等的空间点构成的面(平面或曲面)。

2.绝对压强:以没有气体分子存在的完全真空为基准起算的压强。

P abs3.相对压强:是以当地大气压为基准算起的压强。

P4.真空度:指绝对压强不足当地大气压的差值,即相对压强的负值。

5.测压管水头:是单位重量液体具有的总势能。

(g p z ρ+) 6.压力体:gV hdA g dP P Ax Z x Xρρ===⎰⎰中,积分V hdA Ax Z =⎰表示的几何体积。

1.恒定流:以时间为标准,若各空间点上的运动参数(速度、压强、密度等)都不随时间变 化,这样的流动是恒定流,反之为非恒定流。

2.三元流动:以空间为标准,若各空间点上的运动参数(主要是速度)是三个空间坐标和时间变量的函数u=u (x ,y ,z ,t )该流动是三元流动。

3.流线:是表示某时刻流动方向的曲线,曲线上各质点的速度矢量都与该曲线相切。

4.迹线:流体质点在一段时间内的运动轨迹。

5.流管:某时刻在流场内任意作一封闭曲线,过曲线上各点做流线,所构成的管状曲线。

6.流束:充满流体的流管。

7.过流断面:在流束作出的与所有流线正交的横断面。

8.元流:是过流断面无限小的流束,其几何特征与流线相同。

9.总流:是过流断面为有限大小的流束,是由无数的元流构成,断面上各点的运动参数不相同。

10.流量:单位时间通过流束某一过流断面的流体量称为该断面的流量。

11.均匀流:凡流线是平行线是平行直线的流动为均匀流,否则为非均匀流。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

工程流体力学复习重点概念

工程流体力学复习重点概念

三、简答题1、 稳定流动及不稳定流动。

---在流场中流体质点通过空间点时所有的运动要素都不随时间改变,这种流动称为稳定流;反之,通过空间点处得流体质点运动要素的全部或局部要素随时间改变,这种流动叫不稳定流。

2、 产生流动阻力的原因。

---外因:水力半径的大小;管路长度的大小;管壁粗糙度的大小。

内因:流体流动中永远存在质点的摩擦和撞击现象,质点摩擦所表现的粘性,以及质点发生撞击引起运动速度变化表现的惯性,才是流动阻力产生的根本原因。

3、 串联管路的水力特性。

---串联管路无中途分流和合流时,流量相等,阻力叠加。

串联管路总水头损失等于串联各管段的水头损失之和,后一管段的流量等于前一管段流量减去前管段末端泄出的流量。

4、 如何区分水力光滑管和水力粗糙管,两者是否固定不变?---不是固定不变的。

通过层流边层厚度及管壁粗糙度值的大小进展比拟。

水力粗糙管。

水力光滑管;∆<∆>δδ5、 静压强的两个特性。

---1.静压强的方向是垂直受压面,并指向受压面。

2.任一点静压强的大小和受压面方向无关,或者说任一点各方向的静压强均相等。

6、 连续介质假设的内容。

---即认为真实的流体和固体可以近似看作连续的,充满全空间的介质组成,物质的宏观性质依然受牛顿力学的支配。

这一假设忽略物质的具体微观构造,而用一组偏微分方程来表达宏观物理量〔如质量,数度,压力等〕。

这些方程包括描述介质性质的方程和根本的物理定律,如质量守恒定律,动量守恒定律等。

7、 实际流体总流的伯诺利方程表达式为〔22222212111122z g v a p h g v a p z +++=++-γγ〕,其适用条件是稳定流,不可压缩流体,作用于流体上的质量力只有重力,所取断面为缓变流动。

8、 因次分析方法的根本原理。

---就是因次和谐的原理,根据物理方程式中各个项的因次必须一样,将描述复杂物理现象的各个物理量组合而成无因次数群π,从而使变量减少。

流体力学

流体力学
a´ 1
h1 流体运动示图
在这个过程中,机械能的增量为:
a´ 2 v2
h2
△2
l
△E = E 2 - E 1
状态2的(动能+势能)- 状态1的(动能+势能)
△E = E 2 - E 1
1 1 2 △ E = △m v2+△mgh 2 - △m v12 - △mgh 1 2 2
在这个过程中,流体两端 的压力对流体作的功为:
= 3.6×105 Pa
第四节 伯努利方程的应用
一.文特利管(串接在管道中测量流体流速)
s1 s2
已知条件:粗管和细管的横截面s1、 s2,水银柱的高度差h 原理:设,流体密度为ρ,大小管处的 压强分别为P1、P2,流速分别为v1、v2 由连续性方程和伯努利方程
h
曲管压强计
消去v2,可得
1ρ v 2 + = 1ρ v 2 +P P1 2 2 2 1 2
△F dF =lim △S =d P S 液体内部压强的特点:
△S 0
单位: Pa (帕斯卡)
1.静止液体内部同一点各个方向的压强相等。 2. 静止液体内部随深度的增加,压强也增加。
ρ P= g h
3. 密闭容器内的静止流体受到
也称重力压强
P
e
外界压强时,流体内任一点的 压强是:
ρ P= P + g h
设:入水端和出水端的截面分别为A1和A2
由:
入水端
v A = v A = 常数
1 1 2 2 1 2 1 2 2 2
2
1
(
v =v
π d) ( A 2 = ( 6.4 =v × 4.0 A 2.5 d) π ( 2 = 26 m/s
1
2

流体入门知识点总结图解

流体入门知识点总结图解

流体入门知识点总结图解一、流体的基本概念1. 流体概念流体是一种物质的状态,是指在外力作用下能够流动的物质,包括液体和气体。

流体具有流动性、变形性和粘性。

2. 流体性质密度:流体的质量与单位体积的比值。

比重:流体的密度与水的密度的比值。

粘度:流体的内部阻力,决定了流体的黏稠度。

3. 流体静力学基本假设(1)流体是连续的。

(2)流体是不可压缩的。

(3)流体是静止的或者静止状态的流体。

二、流体静力学1. 压力(1)压力的定义:单位面积上的力。

(2)压强:单位面积上的压力。

(3)流体的压力:液体或气体内各点的压力都相等,且在不同深度的液体中,压力与深度成正比。

2. 压力的传递液体传压:液体内各点的压力是平行的,且在各点的压力相等。

气体传压:气体内各点的压力也是平行的,但是气体的密度非常的小,所以气体的传压效应并不显著。

3. 浮力物体在液体中浸没时,液体对物体产生的向上的浮力。

浮力的大小与物体的体积成正比。

三、流体动力学1. 流体的动力学特性流体力学包括了流体的流动、旋转、涡动和湍流等特性。

2. 流体流动的分类(1)按流动程度分类:层流流动和湍流流动。

(2)按流动速度分类:亚临界流动、临界流动和超临界流动。

(3)按流动方向分类:一维流动、二维流动和三维流动。

3. 流速和流量流速:单位时间内流体通过单位横截面积的速度。

流量:单位时间内流体通过横截面的体积。

四、基本流体方程1. 连续性方程连续性方程描述了流体的流动过程中质量的守恒,表现为质量流量的守恒。

\[A_1 v_1 = A_2 v_2\]2. 动量方程动量方程描述了流体在流动过程中的动量守恒。

动量方程可以用来计算流体在流动中所受的压力和阻力。

\[F = \frac{{\Delta p}}{{\Delta t}}\]3. 质能方程质能方程描述了流体在流动过程中的能量守恒。

质能方程可以用来计算流体内能和外力对流体的功率变化。

五、流体流动的控制方程1. 泊松方程泊松方程描述了流体的流动与液体的静力平衡。

流体力学知识点经典总结

流体力学知识点经典总结

流体力学绪论一、流体力学的研究对象流体力学是以流体(包括液体和气体)为对象,研究其平衡和运动基本规律的科学。

主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失等。

二、国际单位与工程单位的换算关系21kg 0.102/kgf s m =•第一章 流体及其物理性质 (主要是概念题,也有计算题的出现)一、流体的概念流体是在任意微小的剪切力作用下能发生连续的剪切变形的物质,流动性是流体的主要特征,流体可分为液体和气体二、连续介质假说流体是由空间上连续分布的流体质点构成的,质点是组成宏观流体的最小基元三、连续介质假说的意义四、常温常压下几种流体的密度水-----998 水银-----13550 空气-----1.205 单位3/kg m五、压缩性和膨胀性流体根据压缩性可分为可压缩流体和不可压缩流体,不可压缩流体的密度为常数,当气体的速度小于70m/s 、且压力和温度变化不大时,也可近似地将气体当做不可压缩流体处理。

六、流体的粘性流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现,粘性的大小用粘度来度量,粘度又分为动力粘度μ和运动粘度ν,它们的关系是μνρ=七、牛顿内摩擦定律du dy τμ=八、温度对流体粘性的影响温度升高时,液体的粘性降低,气体的粘性增加。

这是因为液体的粘性主要是液体分子之间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低;而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大流体静力学一、流体上力的分类作用于流体上的力按作用方式可分为表面力和质量力两类。

清楚哪些力是表面力,哪些力是质量力二、流体静压力及其特性(重点掌握)当流体处于静止或相对静止时,流体单位面积的表面力称为流体静压强。

特性一:静止流体的应力只有法向分量(流体质点之间没有相对运动不存在切应力),且沿内法线方向。

特性二 在静止流体中任意一点静压强的大小与作用的方位无关,其值均相等。

流体力学基本概念和方程汇总

流体力学基本概念和方程汇总

流体力学基本概念和方程汇总流体力学是研究流体运动的力学学科,它涉及到液体和气体在外力作用下的行为和性质。

在流体力学中,有一些基本概念和方程被广泛应用于流体的描述和分析。

下面是流体力学的基本概念和方程的汇总。

一、基本概念1.流体:流体是指可流动的物质,包括液体和气体。

2.运动:流体在空间中的运动,通常包括速度、位置和加速度等因素。

3.静止:流体在空间中不运动的状态。

4.流速:流体在单位时间内通过一些截面的体积。

二、基本方程1.静力学方程:描述在静止状态下的流体行为。

在平衡状态下,流体中各点的压强相等。

2.动力学方程:描述流体在运动状态下的行为。

包括质量守恒、动量守恒和能量守恒等方程。

-质量守恒方程:流体在宏观上的质量守恒,即在闭合系统中,质量的净进出量为零。

-动量守恒方程:描述流体动量的变化。

动量是质量与速度的乘积,动量守恒方程中考虑了流体流动的惯性和外力的作用。

-能量守恒方程:描述流体内部能量的变化。

能量守恒方程中考虑了热能和机械能的转换和损失。

3.伯努利方程:描述无黏流体在不受外力作用下沿流线的稳定流动。

它表明在流速增加的地方压强降低,为流体提供了加速的能源。

4.导体方程:描述流体内部流速分布的关系。

它是基于质量守恒、动量守恒和能量守恒方程来推导的。

三、附加方程1.状态方程:描述流体状态的方程,如理想气体状态方程pV=nRT。

2.粘性方程:描述流体黏性特性的方程。

黏性是流体内部分子间相互作用所产生的阻力,影响流体的粘度和黏性流动等现象。

3.边界条件:描述流体流动过程中与边界接触的物体对流体运动的影响。

边界条件包括无滑移条件、不透过条件和等温条件等。

4.各向同性方程:描述流体的等向性特性。

合理假设流体在各个方向上具有相同的特性,简化流体力学计算。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。

流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。

密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。

重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。

比容是密度的倒数,它表示单位质量流体所占有的体积。

流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。

通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。

对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。

膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。

用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。

二、流体静力学流体静力学主要研究静止流体的力学规律。

静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。

2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。

流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。

作用在平面上的静水总压力可以通过压力图法或解析法来计算。

对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。

三、流体动力学流体动力学研究流体的运动规律。

连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。

对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。

伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。

其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。

流体力学水力学知识点总结

流体力学水力学知识点总结

流体力学水力学知识点总结一、流体力学基础知识1. 流体的定义:流体是一种具有流动性的物质,包括液体和气体。

流体的特点是没有固定的形状,能够顺应容器的形状而流动。

2. 流体的性质:流体具有压力、密度、粘性、浮力等基本性质。

这些性质对于流体的流动行为具有重要的影响。

3. 流体静力学:研究流体静止状态下的力学性质,包括压力分布、压力力和浮力等。

流体静力学奠定了流体力学的基础。

4. 流体动力学:研究流体在外力作用下的运动规律,包括速度场、流线、流量、动压、涡量等。

流体动力学研究的是流体的流动行为及其相关问题。

5. 流动方程:流体力学的基本方程包括连续方程、动量方程和能量方程。

这些方程描述了流体的运动规律,是解决流体力学问题的基础。

6. 流体模型:流体力学的研究对象是真实流体,但通常会采用模型来简化问题。

常见的模型包括理想流体模型、不可压缩流体模型等。

二、水力学基础知识1. 水的性质:水是一种重要的流体介质,具有密度大、粘性小、表面张力大等特点。

这些性质对于水力学问题具有重要影响。

2. 水流运动规律:水力学研究水的流动规律,包括静水压力分布、流速分布、流线形状等。

3. 基本水力学定律:包括质量守恒定律、动量守恒定律和能量守恒定律。

这些定律是解决水力学问题的基础。

4. 水流的计算方法:水力学中常用的计算方法包括流速计算、水头损失计算、管道流量计算等,这些方法是解决水力学工程问题的重要手段。

5. 水力学工程应用:水力学在工程中具有广泛的应用,包括水利工程、水电站设计、城市供水排水系统等方面。

6. 液体静力学:水力学中涉及了静水压力、浮力、气压等液体静力学问题。

这些问题对水力工程设计和建设具有重要影响。

三、近年来的流体力学与水力学研究进展1. 流固耦合问题:近年来,液固耦合问题成为流体力学与水力学领域的重点研究方向。

在这个方向上的研究主要涉及流固耦合现象的模拟、流固耦合系统的动力学特性等方面。

2. 多相流动问题:多相流动是指不同相的流体在空间和时间上相互混合流动的现象。

流体力学基础知识汇总

流体力学基础知识汇总

流体力学基础知识汇总流体力学是研究流体静力学和流体动力学的学科。

流体力学是物理学领域中的一个重要分支,广泛应用于工程学、地球科学、生物学等领域。

本文将从流体力学的基础知识出发,概述流体力学的相关内容。

一、流体静力学流体静力学研究的是静止的流体以及受力平衡的流体。

静止的流体不受外力作用时,其内部各点的压力相等。

根据帕斯卡定律,压强在静止的流体中均匀分布。

流体静力学的重要概念包括压强、压力、密度等。

压强是单位面积上受到的力的大小,而压力是单位面积上受到的力的大小和方向。

密度是单位体积内质量的多少,与流体的压力和温度有关。

二、流体动力学流体动力学研究的是流体在受力作用下的运动规律。

流体动力学的重要概念包括流速、流量、雷诺数等。

流速是单位时间内流体通过某一截面的体积。

流速与流量之间存在着直接的关系,流量等于流速乘以截面积。

雷诺数是描述流体流动状态的无量纲参数,用于判断流体流动的稳定性和不稳定性。

三、伯努利定律伯努利定律是流体力学中的一个重要定律,描述了流体在沿流线方向上的压力、速度和高度之间的关系。

根据伯努利定律,当流体在流动过程中速度增加时,压力会降低;当流体在流动过程中速度减小时,压力会增加。

伯努利定律在飞行、航海、液压等领域有着重要的应用。

四、黏性流体黏性流体是指在流动过程中会发生内部层滑动的流体。

黏性流体的流动过程受到黏性力的影响,黏性力会导致流体的内部发生剪切变形。

黏性流体的流动规律可以通过纳维-斯托克斯方程来描述。

黏性流体在润滑、液体运输、地质勘探等领域有着广泛的应用。

五、边界层边界层是指在流体与固体表面接触的区域,流体的速度在边界层内逐渐从0增加到与远离表面的流体速度相等。

边界层的存在会导致流体的阻力增加。

研究边界层的特性可以帮助理解流体与固体的相互作用,对于设计高效的流体系统具有重要意义。

流体力学是研究流体静力学和流体动力学的学科。

流体力学的基础知识包括流体静力学、流体动力学、伯努利定律、黏性流体和边界层等内容。

流体力学总结

流体力学总结

流体力学总结第一章 流体及其物理性质1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停止作用为止。

流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。

4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。

稀薄空气和激波情况下不适合。

5. 密度0limV m m V V δδρδ→== 重度0lim V G Gg V Vδδγρδ→=== 比体积1v ρ=6. 相对密度:是指某流体的密度与标准大气压下4︒C 时纯水的密度(1000)之比w wS ρρρ=为4︒C 时纯水的密度 13.6Hg S = 7. 混合气体密度1ni ii ρρα==∑8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。

体积压缩系数的倒数为体积模量1P PK β=1p V p V δβδ=-110 1.4p p T Q ppβγβγ→====9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。

1T V T V δβδ=1T p Tβ→=10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。

气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律: du dyτμ= 黏度du dyτμ= 流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加 μυρ= 。

满足牛顿内摩擦定律的流体为牛顿流体。

12. 理想流体:黏度为0,即0μ=。

完全气体:热力学中的理想气体第二章 流体静力学1. 表面力:流体压强p 为法向表面应力,内摩擦τ是切向表面应力(静止时为0)。

2. 质量力(体积力):某种力场对流体的作用力,不需要接触。

流体力学名词解释(知识要点)

流体力学名词解释(知识要点)

流体力学名词解释(知识要点)1.质量力:质量力是作用在流体的每个质点上的力。

1.流体质点:流体中宏观尺寸无穷小、而微观尺寸无穷大的任一物理实体。

2. 表面力:是作用在所考虑流体表面上的力,其大小与被作用的表面积成正比。

3.是毗邻流体或其他物体作用在流体隔离体表面上的直接施加的接触力4.应力:单位面积上的作用力5.法向应力:单位面积上的法向力(正应力)—流体的压强6.切向应力:单位面积上的切向力—切应力τ7.惯性:是物体维持原有运动状态的能力的性质。

8.密度:单位体积流体所具有的质量9.容重:单位体积的流体受到的重力10.流体的黏滞性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质,此内摩擦力称为流体的黏滞力.11.切应力:流层间单位面积上的内摩擦力12.速度梯度:速度沿垂直于速度方向y的变化率13.动力黏度μ的物理意义:单位速度梯度下的切应力14.运动黏度:流体的动力黏度与密度的比值15.牛顿流体:符合牛顿内摩擦定律的流体。

16.非牛顿流体:不符合牛顿内摩擦定律的流体。

17.流体的压缩性:流体受压,体积缩小,密度增大的性质18.流体的热胀性:流体受热,体积膨胀,密度减小的性质19.压缩系数:当温度保持不变时,单位压强增量引起流体密度的相对变化率20.流体的弹性模量:压缩系数的倒数21.热胀系数:表示当压强保持不变时,单位温度增量引起液体密度的相对变化率22.如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降一定高度,这种现象称为毛细管现象,对应的细管称为毛细管23.表面张力系数:单位长度上的表面张力值24.接触角概念: 当液体与固体壁面接触时形成曲面, 在曲面和管壁交接处,曲面的切线与管壁的夹角,称为接触角α25.可压缩流体:流体密度随压强变化不能忽略的流体。

26.理想流体:没有粘性的流体。

27.易流动性:静止时不能承受切向力,运动时抵抗剪切变形的能力。

28.三大模型:连续介质模型、不可压缩模型、理想流体模型。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。

下面将对流体力学的一些重要知识点进行总结。

一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。

比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。

2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。

膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。

液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。

3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。

粘性的大小用动力粘度μ 或运动粘度ν 来表示。

牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。

4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。

表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。

二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。

2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。

3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。

4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。

真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。

5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。

6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。

流体力学知识点总结

流体力学知识点总结

流体力学11.1 流体的基本性质1)压缩性流体是液体与气体的总称。

从宏观上看,流体也可看成一种连续媒质。

与弹性体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。

如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律描述。

大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。

例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。

同样的条件下,水银的体积减少量不到原体积的百万分之四。

因为液体的压缩量很小,通常可以不计液体的压缩性。

气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。

但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得与改变就已快速地流动并迅速达到密度均匀。

物理上常用马赫数M来判定可流动气体的压缩性,其定义为M=流速/声速,若M2<<1,可视气体为不可压缩的。

由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。

总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。

2)粘滞性为了解流动时流体内部的力学性质,设想如图10.1.1所示的实验。

在两个靠得很近的大平板之间放入流体,下板固定,在上板面施加一个沿流体表面切向的力F 。

此时上板面下的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。

实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。

通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。

若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的一种分布,流体内各层之间形成流速差或速度梯度。

流体力学概念总结

流体力学概念总结

第一章绪论1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。

第二章流体的主要物理性质1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。

2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。

3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是:1)由无数连续分布、彼此无间隙地;2)占有整个流体空间的流体质点所组成的介质。

4.密度:单位体积的流体所具有的质量称为密度,以ρ表示。

5.重度:单位体积的流体所受的重力称为重度,以γ表示。

6.比体积:密度的倒数称为比体积,以υ表示。

它表示单位质量流体所占有的体积。

7.流体的相对密度:是指流体的重度与标准大气压下4℃纯水的重度的比值,用d表示。

8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。

9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。

10.可压缩流体:ρ随T 和p变化量很大,不可视为常量。

11.不可压缩流体:ρ随T 和p变化量很小,可视为常量。

12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。

13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。

这个关系式称为牛顿内摩擦定律。

14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随dυ/d n而变化,否则称为非牛顿流体。

15.动力粘度μ:动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的大小。

16.运动粘度ν:在流体力学中,动力粘度与流体密度的比值称为运动粘度,以ν表示。

流体力学复习资料,亲自整理。

流体力学复习资料,亲自整理。

第一章 绪论1. 重度:指流体单位体积所受的重力,以γ表示。

对于非均质流体:对于均质流体:单位:牛/米3(N/m3)不同流体ρ、γ不同,同一流体ρ、γ随温度和压强而变化。

在1标准大气压下:表1.1(P5)蒸馏水:4ºC ,密度1000kg/m3,重度9800 N/m3 ; 水银:0ºC ,密度13600kg/m3,重度133280 N/m3 ; 空气:20ºC ,密度1.2kg/m3,重度11.76N/m3 ;2. 粘性流体平衡时不能抵抗剪切力,即平衡时流体内部不存在切应力。

流体在运动状态下具有抵抗剪切变形能力的性质,称为粘性。

内摩擦切应力τ=T/A T=F A 为平板与流体的接触面积。

粘性只有在流体运动时才显示出来,处于静止状态的流体,粘性不表现有任何作用。

由牛顿流体的条件可知,若流体速度为线性分布(板距h 、速度u 0不大)板间y 处的流速为:切应力为:系数μ称为流体的动力粘性系数、动力粘度、绝对粘度;lim V G dGV dVγ∆→∆==∆0G mg gV Vγρ===u u y h=0u hτμ=0若流体速度u 为非线性分布流体内摩擦切应力τ:凡是内摩擦力按该定律变化的流体称为牛顿流体,如空气、水、石油等;否则为非牛顿流体。

牛顿流体▪ 切应力与速度梯度是通过原点的线性关系。

非牛顿流体塑性流体:如牙膏、凝胶等▪ 有一初始应力,克服该应力后其切应力才与速度梯度成正比。

假塑性流体:如新拌混凝土、泥石流、泥浆、纸浆▪ 速度梯度较小时,τ对速度梯度变化率较大;▪ 速度梯度较大时,τ对速度梯度的变化率逐渐降低。

胀塑性流体:如乳化液、油漆、油墨等▪ 速度梯度较小时,τ对速度梯度变化率较小; ▪ 速度梯度较大时,τ对速度梯度的变化率渐变大。

3.流体的运动粘度是动力粘性系数μ与其密度ρ之比,用ν表示若两种流体密度相差不多,单从ν值不好判断两者粘性大小。

只适用于判别同一流体(密度近似恒定)温度、压强不同时粘性变化。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。

2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。

3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。

4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。

二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。

2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。

3、流体的流动受力不受力,受力的变化很小。

4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。

三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。

2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。

3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。

4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。

6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。

四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

注意:只要平面面积与形心深度不变:1.面积上的总压力就与平面倾角θ无关;2.压心的位置与受压面倾角θ无直接关系,是通过yc表现的;3.压心总是在形心之下,在受压面位置为水平放置时,压心与形心重合。

作用在曲面壁上的总压力—水平分力作用于曲面上的静水总压力P的水平分力Px等于作用于该曲面的在铅直投影面上的的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。

作用在曲面壁上的总压力—垂直分力作用于曲面上的静水总压力P的铅垂分力Pz等于该曲面上的压力体所包含的液体重,其作用线通过压力体的重心,方向铅垂指向受力面。

压力体压力体体积的组成:(1)受压曲面本身;(2)通过曲面周围边缘所作的铅垂面;(3)自由液面或自由液面的延伸。

压力体的种类:实压力体和虚压力体。

实压力体Pz方向向下;虚压力体Pz方向向上。

帕斯卡原理:静止不可压缩流体内任意一点的压强变化等值传递到流体内的其他各点;重力场中静止流体等压面的特点(1)静止、同一水平面;(2)质量力仅有重力;(3)连通;(4)连通的介质为同一均质流;拉格朗日方法:是以流场中每一流体质点作为描述对象的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点(即质点系)运动来确定整个流体的流动。

----质点系法欧拉法:是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法——流场法。

流体质点的加速度(流速对时间求导)有两部分组成:1)时变加速度(当地加速度)——流动过程中流场由于速度随时间变化而引起的加速度;2)位变加速度(迁移加速度)——流动过程中流场中速度分布不均,因位置变化而引起的加速度。

流线流线的定义:是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

流线的性质:a、同一时刻的不同流线,不能相交。

b、流线不能是折线,而是一条光滑的曲线。

c、流线簇的疏密反映了速度的大小迹线迹线的定义:是指某一质点在某一时段内的运动轨迹线。

层流与紊流层流:亦称片流,是指流体质点不互相混杂,流体质点作有条不紊的有序的直线运动。

层流特点(1)有序性。

(2)水头损失与流速的一次方成正比 Hf=kv 。

(3)在流速较小且雷诺数Re较小时发生。

(4)层流遵循牛顿内摩擦定律,粘性抑制或约束质点作横向运动。

紊流:是指随流速增大,流层逐渐不稳定,质点相互混掺,流体质点沿很不规则无序的路径运动。

紊流特点:①无序性、随机性、有旋性、混合性。

②在圆管流中水头损失与流速的1.75~2次方成正比。

Hf=kv 1.75~2③在流速较大(雷诺数较大)时发生。

4 紊流发生是受粘性和紊动共同作用的结果有压流与无压流(1)有压流:流体充满整个流动空间,在压力作用下的流动。

(2)无压流:流体具有与大气相接触的自由表面(未充满整个流动空间),在重力作用下的流动。

(3)满流:流体充满整个流动空间。

(4)非满流:流体为充满整个流动空间。

有旋流和无旋流有旋流:亦称“涡流”。

流体质点(微团)在运动中不仅发生平动(或形变),而且绕着自身的瞬时轴线作旋转运动。

无旋流:亦称“势流”、“有势流”。

流体在运动中,它的微小单元只有平动或变形,但不发生旋转运动,即流体质点不绕其自身任意轴转动。

恒定流与非恒定流恒定流:是指流场中的流体流动,空间点上各水力运动要素均不随时间而变化。

严格的恒定流只可能发生在层流,在紊流中,由于流动的无序,其实流速或压强总有脉动,但若取时间平均流速(时均流速)非恒定流:是指流场中的流体流动,空间点上各水力运动要素均随时间的变化而变化。

在非恒定流情况下,流线的位置随时间而变;流线与迹线不重合。

在恒定流情况下,流线的位置不随时间而变,且与迹线重合。

均匀流与非均匀流均匀流——迁移加速度为0均匀流中各过水断面上的流速分布图沿程不变,过水断面是平面,沿程各过水断面的形状和大小都保持一样。

例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流都是均匀流。

非均匀流——迁移加速度不等于0的流动非均匀流中流场中相应点的流速大小或方向或同时二者沿程改变,即沿流程方向速度分布不均。

(非均匀流又可分为急变流和渐变流)。

渐变流与急变流渐变流:沿程逐渐改变的流动。

特征:1)流线之间的夹角很小即流线几乎是平行的),同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流;2)过水断面可看作是平面;3)渐变流的加速度很小,所以惯性力很小,可以忽略不计,质量力只考虑重力作用。

急变流:沿程急剧改变的流动。

特征:1)流线间夹角很大或曲率半径较小或二者兼而有之,流线是曲线。

2)急变流的加速度较大,因而惯性力不可忽略。

元流的伯努利方程元流伯努利方程的物理意义与几何意义z:是元流过流断面上单位重量流体从某一基准面算起所具有的位能,称单位位能。

p/ρg : 是元流过流断面上单位重量流体所具有的压能,称单位压能。

z+p/ρg: 是元流过流断面上单位重量流体从某一基准面算起所具有势能,称单位势能。

u 2/ 2g: 是元流过流断面上单位重量流体所具有的动能(kinetic energy),称单位动能。

(1)物理意义:1)元流各过流断面上单位重量流体所具有的机械能(位能、压能、动能之和)沿流程保持不变;2)也表示了元流在不同过流断面上单位重量流体所具有的位能、压能、动能之间可以相互转化的关系。

z 是位置水头;p/ρg 是压强水头;z+p/ρg 是测压管水头;u 2/ 2g是速度水头(velocity head)(2)几何意义:1)元流各过流断面上总水头H(位置水头、压强水头、速度水头之和)沿流程保持不变。

2)也表示了元流在不同过流断面上位置水头、压强水头、速度水头之间可以相互转化的关系。

皮托管测流速常见的皮托管是由装有一半圆球探头的双层套管组成,并在两管末端联接上压差计。

探头端点A处开一小孔与内套管相连,直通压差计的一肢;外套管侧表面沿圆周均匀地开一排与外管壁相垂直的小孔(静压孔),直通压差计的另一肢。

测速时,将皮托管放置在欲测速度的恒定流中某点A,探头对着来流,使管轴与流体运动的方向相一致。

流体的速度接近探头时逐渐减低,流至探头端点处速度为零。

恒定总流的伯努利方程(1)物理意义位(置势)能 Z:表示过流断面上单位重量流体所具有的重力势能;压(力势)能 p/ρg:表示过流断面上单位重量的流体所具有的压力势能;动能αv2/2g:表示过流断面上单位重量的流体所具有的平均动能;(2)几何意义z:称为断面位置水头;p/ρg:称为断面压强水头;αv2/2g:称为断面速度水头;z+p/ρg:称为断面测压管水头;z+p/ρg+u2/2g=H :称为断面总水头。

这些量都具有长度的量纲[L],将这些具有水位高度的量称为水头。

总水头线:沿流管各总水头值的连线,是流管坐标的函数。

水头线:沿流管各测压管水头值的连线,是流管坐标的函数。

水力坡度:单位长度上的水头损失。

测压管水头线坡度:单位长度上测压管水头的降低或升高。

对均匀流动,则总水头线与测压管水头线平行,即J = JP能量方程(伯努力方程)适用条件1)恒定流动;2)流体不可压缩;3)质量力只有重力作用;4)两过水断面处为均匀流或渐变流;5)流量沿程不变;6)两过水断面间无能量输入输出。

产生流动阻力和能量损失的根源:流体的粘性和紊动。

hw:单位重量流体的平均能量损失称为水头损失。

沿程阻力和沿程水头损失:沿程阻力:当限制流动的固体边界使流体作均匀流动时,流动阻力只有沿程不变的切应力形成的阻力。

沿程水头损失:由沿程阻力作功而引起的水头损失。

沿程水头损失hf:主要由于“摩擦阻力”所引起的,随流程的增加而增加。

局部阻力和局部水头损失局部阻力:液流因固体边界急剧改变而引起速度分布的变化,从而产生的阻力称为局部阻力。

局部水头损失:由局部阻力作功而引起的水头损失称为局部水头损失。

局部阻力水头损失hj :主要是因为固体边界形状突然改变,从而引起水流内部结构遭受破坏,产生漩涡,以及在局部阻力之后,水流还要重新调整结构以适应新的均匀流条件所造成的。

水头线图的绘制方法:1、绘制总水头线。

总水头线总是沿程下降。

在有局部水头损失的地段,有较集中的下降;在有沿程水头损失的地段,则逐渐的下降。

在有外加能量的地点,则有一个集中的上升。

2、绘制测压管水头线。

测压管水头线比总水头线处处低一个流速水头值。

测压管水头线可能沿程下降,也可能会升高。

3、利用已知边界条件作为水头线的起点和终点。

注意:1、理想流动流体的总水头线为水平线;2、实际流动流体的总水头线恒为下降曲线;3、测压管水头线可升、可降、可水平。

4、若是均匀流,则总水头线平行于测压管水头线,即J=JP。

相关文档
最新文档