人教版八年级下册数学 第19章 一次函数 单元检测卷(含答案)
人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)
![人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)](https://img.taocdn.com/s3/m/1e01317983d049649a665808.png)
一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236B .6C 33D .4B解析:B【分析】 作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值.【详解】解:∵一次函数333=-y x 分别交x 轴、y 轴于A 、B 两点, ∴()3,0A ,(3B , 3,3OA OB ∴== ∴()223323AB =+=,∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ ,∴在Rt ABE △中,30ABE ∠=︒,1123322AE AB ∴==⨯=()()22222333BE AB AE ∴=-=-=又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.2.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43) B .(0,1) C .(0,103) D .(0,2)B解析:B【分析】 作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.3.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km C解析:C【分析】根据题意得A ,B 两城相距300km ,结合图表甲、乙两车消耗的总时间,可计算得甲、乙两车的速度,从而得到乙车追上甲车和在9:00时甲、乙两车的距离,从而得到答案.【详解】根据题意得:A ,B 两城相距300km ,故选项A 结论正确;根据题意得:甲车从A 城出发前往B 城共消耗5小时,乙车从A 城出发前往B 城共消耗3小时; 甲车的速度300==60km/h 5 乙车的速度300==100km/h 3∴行程中甲、乙两车的速度比为603=1005,故答案B 结论正确; 设乙车出发x 小时后,乙车追上甲车 得:()601100x x +=∴32x = ∵乙车于6:00出发∴乙车于7:30追上甲车,故选项C 结论错误;∵9:00时,甲车还有一个小时的到B 城∴9:00时,甲、乙两车相距60160km ⨯=,故选项D 结论正确;故选:C .【点睛】本题考查了函数图像和一元一次方程的知识;解题的关键是熟练掌握函数图像的性质,从而完成求解.4.如图,已知直线1:2l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点C ,过点C 作y 轴的垂线交直线l 于点D ,则点D 的坐标为( )A .()10,5B .()0,10C .()0,5D .()5,10A解析:A【分析】求出B 点的坐标,再求出直线BC 的解析式,从而可得CO 的长度,进一步得出CD 的长度,即可求解.【详解】解:∵A (1,0)∴OA=1当y=1时,112x =,即x=2, ∴B (2,1)∵BC ⊥l ∴设直线BC 的解析式为y=-2x+b ,把B (2,1)代入得,b=5,∴CO=5,当y=5时,152x =,解得,x=10, ∴点D 的坐标为(10,5)故选:A【点睛】 本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,解题时要注意相关知识的综合应用.5.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→D .AE D C →→→D解析:D【分析】 根据图像,以及点的运动变化情况,前两段是y 关于x 的一次函数图像,判断y 随x 的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C 选项.【详解】根据图像,前端段是y 关于x 的一次函数图像,∴应在AC,BD 两段活动,故A ,B 错误,第一段y 随x 的增大而减小,第二段y 随x 增大而增大,第一段的最高值与第二段的最高值不相等,∵AE=EC∴C 错误故选:D【点睛】本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.6.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min,∴16(10080)2880()m⨯+=,∴小张到达终点时,两人相距2880m,∴点C的纵坐标为2880,故④正确,∴错误的是②③,故选:B.【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答.7.在直角坐标系中,点P在直线x+y-4=0上,O为原点,则OP的最小值为()A.22B.2 C.6D.10A解析:A【分析】当OP垂直于直线x+y-4=0时,|OP|取最小值.根据直线方程得到该直线与坐标轴的交点坐标,则易得△AOB为等腰直角三角形,等腰直角三角形斜边上的中线等于斜边的一半,据此求得线段OP的长度.【详解】解:由直线x+y-4=0得到该直线与坐标轴的两交点坐标是A(0,4)、B(4,0),则△AOB是等腰直角三角形,如图,∴22224442OA OB+=+=当OP⊥AB时,线段OP最短.此时OP=12AB=22故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,垂线段最短.解题时,利用了直角三角形斜边上的中线等于斜边的一半求得OP的长度.8.若点(-2,y1),(3,y2)都在函数y=-2x+b的图像上,则y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定A解析:A【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.9.在直角坐标系中,点()2,3A -、()4,3B 、()5,C a 在同一条直线上,则a 的值是( ) A .-6B .6C .6或3D .6或-6B 解析:B【分析】先用待定系数法求出直线AB 的解析式,然后将点C 的坐标代入即可确定a 的值.【详解】解:设点()2,3A -、()4,3B 所在的直线解析式为y=kx+b则3234k b k b -=+⎧⎨=+⎩,解得39k b =⎧⎨=-⎩ 则直线y=3x-9将点C 的坐标代入得:a=3×5-9=6.故选:B .【点睛】本题主要考查了一次函数的应用,确定直线AB 的解析式是解答本题的关键.10.关于函数(3)y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A .①②③B .①③④C .②③④D .①②③④D解析:D【分析】①根据一次函数定义即可求解;②根据(3)(1)3y k x k k x x =-+=+-即可求解;③图象经过二、三、四象限,则30k -<,0k <,即可求解;④函数图象与x 轴的交点始终在正半轴,则03k x k=>-,即可求解; 【详解】 ①根据一次函数定义:0k ≠函数为一次函数,故正确;②(3)(1)3y k x k k x x =-+=+-,故函数过(-1,3),故正确;③图象经过二、三、四象限,则30k -<,0k <,解得:0k <,故正确;④函数图象与x 轴的交点始终在正半轴,则03k x k=>-,解得:03k <<,故正确. 故选:D .【点睛】本题考查了一次函数图象上的点的坐标特征,解答此题的关键是熟知一次函数图象上点的坐标特点,确定函数与系数之间的关系,进而求解; 二、填空题11.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.【分析】由图像可知C 点时正好甲车出现故障可求出甲车所走的路程为及时间为可求出甲车的速度进而可求出甲车返回A 地时的速度D 点为乙车遇到甲车并把货物搬运到乙车上可得乙车的行驶的总路程为和时间进而可求出乙车解析:()5.1,150【分析】由图像可知,C 点时正好甲车出现故障,可求出甲车所走的路程为20012080km km km -=及时间为1.6h ,可求出甲车的速度,进而可求出甲车返回A 地时的速度,D 点为乙车遇到甲车并把货物搬运到乙车上,可得乙车的行驶的总路程为120km 和时间3.6 1.60.5 1.5h --=,进而可求出乙车的速度,根据甲乙两车返回A 地,B 地的时间为甲车大于乙车,故乙车先到B 地,点E 是乙车先到达B 地时甲乙两车相距的距离和对应的时间,进而可求出E 点坐标.【详解】由题可知;点C(1.6,120)时正好甲车出现故障停车,∴甲车走的路程为:20012080km km km -=,所用时间为:1.6h ,∴甲车的速度为:8050/1.6km v km h h==, ∴甲车返回A 地的速度为:250/20/5km h km h ⨯=, ∴甲车返回A 地的时间为:80420/km h km h=, 点D(3.6,0)为乙车遇到甲车并把货物搬运到乙车上,∴乙车走的路程为:20080120km km km -=,所用时间为:3.6 1.60.5 1.5h --=, ∴乙车的速度为:12080/1.5km v km h h==, 乙车返回B 地按原速度返回,∴乙车返回B 地时间为:1.5h ,可得乙车先返回到B 地点E 是乙车先到达B 地时甲乙两车相距的距离和对应的时间,设点E 的坐标为(,x y ),则 3.6 1.5 5.1x h =+=,甲乙两车各自返回1.5h 时相距的距离为:()20/80/ 1.5150y km h km h h km =+⨯=, 故答案为:(5.1,150 )【点睛】本题考查了一次函数的实际应用,读懂图像准确理解题意是解题关键12.如图1,在△ABC 中,AB >AC,D 是边BC 上一动点,设B,D 两点之间的距离为x,A,D 两点之间的距离为y ,表示y 与x 的函数关系的图象如图2所示.则线段AC 的长为_____,线段AB 的长为______.1325【分析】从图2的函数图象得知BD=x 的最大值为7即BC=7同时AC=y=13再由图2中(113)知BD=1时AD=13作AE ⊥BC 于E 利用等腰三角形的性质以及勾股定理即可求解【详解】由图2的解析:√132√5从图2的函数图象得知,BD=x的最大值为7,即BC=7,同时AC=y=√13,再由图2中(1,√13)知,BD=1时,AD=√13,作AE⊥BC于E,利用等腰三角形的性质以及勾股定理即可求解.【详解】由图2的函数图象可知,BD=x的最大值为7,∴BC=7,此时点C、D重合,对应AC=y=√13,再由图2中(1,√13)知,BD=1时,AD=√13,如图:作AE⊥BC于E,∵AC=AD=√13,BD=1,BC=7,∴DE=CE=12DC=12(BC- BD)=3,∴AE=√AD2−DE2=√(√13)2−92=2,在Rt△ABE中,∠AEB=90°,AE=2,BE= BD + DE =4,∴AB=√AE2+BE2=√22+42=2√5.故答案为:√13,2√5.【点睛】本题主要考查了动点问题的函数图象,等腰三角形的性质,勾股定理的应用等知识,正确理解D点运动到何处时BD长最大以及点(1,√13)的意义是关键,同时也考察了学生对函数图象的观察能力.13.如图,直线y=kx+1经过点A(-2,0)交y轴于点B,以线段AB为一边,向上作等腰Rt ABC,将ABC向右平移,当点C落在直线y=kx+1上的点F处时,则平移的距离是_________.5【分析】先把A坐标代入y=kx+1求得k=则直线AB的解析式为y=x+1再确定B点坐标(01)作CH⊥x轴于H如图根据等腰直角三角形的性质得AC=AB∠BAC=90°接着证明△ABO≌△CAH得到解析:5先把A坐标代入y=kx+1求得k=12,则直线AB的解析式为y=12x+1,再确定B点坐标(0,1),作CH⊥x轴于H,如图,根据等腰直角三角形的性质得AC=AB,∠BAC=90°,接着证明△ABO≌△CAH,得到OB=AH=1,OA=CH=2,于是可确定C点坐标(-3,2),然后根据平移的性质得点F的纵坐标与C点的纵坐标相等,则可把y=2代入y=12x+1得12x+1=2,解得x=2,所以F点的坐标为(2,2),点F与点C的横坐标之差就是平移的距离.【详解】解:把A(-2,0)代入y=kx+1得-2k+1=0,解得k=12,则直线AB的解析式为y=12x+1,当x=0时,y=12x=1=1,则B点坐标为(0,1),如图,作CH⊥x轴于H∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,AOB CHAABO CAHAB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABO≌△CAH,∴OB=AH=1,OA=CH=2,∴OH=OA+AH=3,∴C点坐标为(-3,2),∵△ABC向右平移,∴F 的纵坐标与C 点的纵坐标相等,把y =2代入y =12x +1得12x +1=2, 解得x =2,∴F 点的坐标为(2,2),∴点C 向右平移了2-(-3)=5个单位.故答案为5.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y =kx +b ,(k ≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(-bk ,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y =kx +b .也考查了等腰直角三角形的性质和平移的性质.14.已知y 是x 的一次函数,下表中列出了部分对应值,则m 的值是________.(m-5)求出m 的值即可【详解】解:设一次函数的解析式为y=kx+b (k≠0)将(-11)(0-2)代入y=kx+b 得:解得:∴一次解析:1【分析】根据给定点的坐标,利用待定系数法可求出一次函数解析式,再代入(m ,-5)求出m 的值即可.【详解】解:设一次函数的解析式为y=kx+b (k≠0),将(-1,1),(0,-2)代入y=kx+b ,得:12k b b -+⎧⎨-⎩==, 解得:32k b -⎧⎨-⎩==, ∴一次函数的解析式为y=-3x-2.当x=m 时,y=-3×m-2=-5,∴m=1.故答案为:1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据给定点的坐标,利用待定系数法求出一次函数解析式是解题的关键.15.若函数y =kx+b(k≠0)的图像平行于直线y =3x+2,且与直线y =-x -1交x 轴于同一点,则其函数表达式是_____.y=3x+3【分析】根据平行直线的解析式求出k 值再把点的坐标代入解析式求出b 值即可【详解】y=-x-1当y=0时x=-1∴线y =-x -1交x 轴于点(-10)∵y=kx+b 的图象平行于直线y=3x+2解析:y=3x+3【分析】根据平行直线的解析式求出k 值,再把点的坐标代入解析式求出b 值即可.【详解】y=-x-1,当y=0时,x=-1,∴线y =-x -1交x 轴于点(-1,0),∵y=kx+b 的图象平行于直线y=3x+2,∴k=3,又∵函数y =kx+b(k≠0)的与直线y =-x -1交x 轴于同一点,∴函数y =kx+b(k≠0)经过点(-1,0),∴-3+b=0,∴b=3,∴函数的表达式是y=3x+3,故答案为:y=3x+3.【点睛】本题考查了求一次函数解析式,涉及了两直线平行的问题,熟知两直线平行时,k 值相等是解题的关键.16.下列函数:①3x y =,②y =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.17.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160800153÷=; 25分~35分的速度:(800500)1030-÷=; 45分~50分的速度:5005100÷=;∵160301003<<, ∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.18.如图,直线y ax b =+与x 轴交于A 点(4,0),与直线y mx =交于B 点(2,)n ,则关于x 的一元一次方程ax b mx -=的解为___________.参考答案【分析】首先根据两直线交于点B 可联立方程组求出x 的值在通过求得x 即可得解;【详解】∵∴解得:∵直线与直线交于点∴由得:∴∴关于x 的一元一次方程的解为:故答案是:【点睛】本题主要考查了一次函数的图像性 解析:2x =-【分析】首先根据两直线交于点B ,可联立方程组求出x 的值,在通过ax b mx -=求得x ,即可得解;【详解】 ∵y ax b y mx =+⎧⎨=⎩, ∴ax b mx +=, 解得:b x m a =-, ∵直线y ax b =+与直线y mx =交于B 点(2,)n , ∴2bm a =-,由ax b mx -=,得:b x m a =--, ∴2bx m a =-=--, ∴关于x 的一元一次方程ax b mx -=的解为:2x =-.故答案是:2x =-.【点睛】 本题主要考查了一次函数的图像性质,准确分析计算是解题的关键.19.如图,一次函数483y x =-+的图象与,x y 轴交于点,A B ,点B 关于x 轴的对称点为C ,动点,P Q 分别在线段,BC AB 上(P 不与,B C 重合),且APQ ABO ∠=∠,当APQ 是以AQ 为底边的等腰三角形时,点P 的坐标是________.【分析】由一次函数的图象与轴交于点可得A (60)B (08)由勾股定理AB=由点B 与点C 关于x 轴对称可求C (0-8)AB=AC=10可证△BPQ ≌△CAP(AAS)由性质可得PB=CA=10由线段和差解析:(0,2)-【分析】由一次函数483y x =-+的图象与,x y 轴交于点,A B ,可得A (6,0),B (0,8),由勾股定理AB=2222OA +OB =6+8=10,由点B 与点C 关于x 轴对称,可求C (0,-8),AB=AC=10,可证△BPQ ≌△CAP(AAS),由性质可得PB=CA=10,由线段和差OP=BP-OB=2即可.【详解】解:∵一次函数483y x =-+的图象与,x y 轴交于点,A B , ∴x=0,y=8;y=0,48=03x -+,解得x=6, ∴A (6,0),B (0,8),∴AB=2222OA +OB =6+8=10,∵点B 与点C 关于x 轴对称,∴C (0,-8),AB=AC=10,∵∠QPA=∠ABC=∠ACB ,∴∠BPQ+∠APC=108°-∠QPA ,∵∠PAC+∠APC=180°-∠BCA=180°-∠QPA ,∴∠BPQ=∠CAP ,∵PQ=PA ,∴△BPQ ≌△CAP(AAS),∴PB=CA=10,∴OP=BP-OB=10-8=2,P(0,-2),故答案为:(0,-2).【点睛】本题考查一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,掌握一次函数的性质,勾股定理的应用,轴对称性质,等腰三角形的性质,三角形全等的判定与性质,解题关键发现并会利用一线三等角构造全等.20.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______.或【分析】先确定正比例函数的解析式利用分类思想用点M 的坐标表示△ABM 的面积求解即可【详解】∵正比例函数的图像经过点∴k=∴y=x ∵=<10∴点M 不可能在线段AO 上∴当点M 在点A 的左上时设M (-2a 解析:25,33⎛⎫-⎪ ⎭⎝或1435,33⎛⎫-⎪ ⎭⎝. 【分析】先确定正比例函数的解析式,利用分类思想,用点M 的坐标表示△ABM 的面积求解即可.【详解】∵正比例函数y kx =的图像经过点)(2,5A -,∴k= 52-, ∴y=52-x ,∵12AOB A S OB y =⋅=152<10, ∴点M 不可能在线段AO 上,∴当点M 在点A 的左上时,设M (-2a,5a ), ∵ABM MOB AOB S S S =-,∴10=152a -152, ∴a=73, ∴M (143-,353); ∴当点M 在点O 的右下时,设M (2a,-5a ),∵ABM MOB AOB S S S =+,∴10=152a +152, ∴a=13, ∴M (23,53-); 综上所述,符合题意的M 的坐标为(23,53-)或(143-,353). 故填(23,53-)或(143-,353). 【点睛】本题考查了正比例函数的解析式和性质,三角形面积的表示法,数学的分类思想,合理设点M 的坐标,并用点M 的坐标表示已知三角形的面积是解题的关键.三、解答题21.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.解析:解:(1)k=13,b=1;(2)5;(3)(-5,2)或(-3,4)或(-3,2). 【分析】(1)利用待定系数法即可求出k 和b 的值;(2)根据题意得到点A 、B 、E 、C 的坐标,再利用S 四边形AOBE =S △ACE +S 四边形OBEC 即可表示出结果;(3)分点A 为直角顶点,点E 为直角顶点,点P 为直角顶点三种情况分别求出点P 的坐标即可.【详解】解:(1)∵直线y kx b =+过点A (-3,0),B (0,1), 则031k b b =-+⎧⎨=⎩, 解得:131k b ⎧=⎪⎨⎪=⎩,∴k=13,b=1; (2)∵A (-3,0),B (0,1),E (-1,m ),C (-1,0),∴S 四边形AOBE =S △ACE +S 四边形OBEC =()1121122m m ⨯⨯+⨯+⨯ =3122m +; 当3m =时,S 四边形AOBE =313=522⨯+ (3)∵m=2,∴E (-1,2),∴CE=AC=2,∴△ACE 为等腰直角三角形,当直角顶点为点A 时,AP=AE ,∠PAE=90°,∴∠AEP=∠CAE=45°,∴PE ∥AC ,过P 作PF ⊥x 轴于F∴∠PAF=180º-∠PAE-∠CAE=180°-90°-45=45°∴△PAF ≌△EAC (AAS )∴PF=FA=AC=CE=2∴OF=AF+AC+OC=2+2+1=5∴点P (-5,2);当直角顶点为点E 时,EP=EA ,∠AEP=90°,∠EAP=45°,∴∠PAC=90°,过E 作EG ⊥AP 于G ,PG=AG=GE=AC=CE=2AO=AC+OC=2+1=3,AP=2AG=4∴P (-3,4);当点P 为直角顶点时,PA=PE ,∠APE=90°,可得四边形APEC 为正方形,∴AP=AC=PE=EC ,∴AO=AC+OC=2+1=3,∴P (-3,2),综上:点P 的坐标为(-5,2)或(-3,4)或(-3,2).【点睛】本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,分类考虑以点A 、E 、P 为直角,正确的作出图形是解题的关键.22.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值. (2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.解析:(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】(1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论.【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6),∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2,把点C 坐标代入上式,解得:k=1,故:k=1,b=2,(2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点, 此时PA PC -最大, ()2,0A ',PA PA '=,设A C '的解析式为y ax m =+,将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE ,则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点,则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小,而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值,把点B 、F 点坐标代入一次函数表达式:y=nx+b′,解得:BF 所在的直线表达式为:y=-4x+2,令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】 此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长.(2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 解析:(1)5;(2)1612,55F ⎛⎫-⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合, OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯, 即1153422FG ⨯⨯=⨯⨯,125FG =, 在Rt OFG △中,由勾股定理得:22165OG OF FG =-=, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.在平面直角坐标系中,()1,5C -,()3,1D -,经过原点的直线m 上有一点()3,2,平移线段CD ,对应线段为EF (C 对应E ),若点E 、F 分别恰好在直线m 和x 轴上,则E 点坐标为_______.解析:()6,4--或()6,4【分析】先求出直线m 的解析式为23y x =,由题意得:C ,D ,E ,F 构成以CD 为边的平行四边形,再分以CE 是平行四边形对角线时和以CF 为平行四边形对角线时分别求解即可.【详解】设m 的解析式为:y kx =,把()3,2代入得:23k =, m ∴的解析式为:23y x =, 由题意得:C ,D ,E ,F 构成以CD 为边的平行四边形,设2,3E a a ⎛⎫ ⎪⎝⎭,(),0F b , 则①以1CE 为平行四边形对角线时,由中点坐标公式可得1111C E D F CE DF x x x x y y y y +=+⎧⎪⎨+=+⎪⎩, 即1325103a b a -+=-+⎧⎪⎨+=+⎪⎩,解得:64a b =-⎧⎨=-⎩, 即()16,4E --;②以2CF 为平行四边形对角线时,同理可得1325013b a a -+=-+⎧⎪⎨+=+⎪⎩, 解得64a b =⎧⎨=⎩, 即()26,4E ,综上所述:()16,4E --或()26,4E .故答案为:()6,4--或()6,4.【点睛】本题考查坐标与图形变化−平移,解题的关键是理解题意,利用一次函数与平行四边形的性质进行求解.25.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .解析:(1)420,120,60;(2)5;(3)17.18【分析】 (1)由A 的纵坐标的含义可得甲乙两地相距420km ,由()4420B ,, 可得快车从甲地到乙地所花时间为40.5 3.5-=小时,从而可求快车的速度,结合题意可得慢车所花时间为7小时,从而可得慢车的速度;(2)由题意得:当快车从乙地返回甲地后快、慢两车距各自出发地路程相等,设h x 后两车距各自出发地路程相等,从而列方程:()604201204x x =--,解方程可得答案; (3)分三种情况讨论:相遇之前,甲车到达乙地停留期间,甲车从乙地返回甲地,根据相距250km ,列方程,解方程,并检验可得答案.【详解】解:(1)由图可知甲乙两地相距420km ,由图可知快车3.5h 到达乙地, ∴420120km/h 3.5v ==快, 由图可知慢车用时比快车总用时少0.5h , ∴42060km/h 7v ==慢. 故答案为:420,120,60. (2)由题意得:当快车从乙地返回甲地后快、慢两车距各自出发地路程相等, 设h x 后两车距各自出发地路程相等,∴()604201204x x =--,∴5x =.故答案为:5.(3)当快、慢车相对而行时,设1x h 时相距250km ,∴1112060250420x x ++=, ∴11718x =; 当快车到达乙地停留时,设2x h 时相距250km ,∴260250x =, ∴2256x =. 由256>4, 故不合题意舍去. 当快车返回甲地时,设3x h 时相距250km ,∴()33601204250x x --=, ∴3236x =. 由236<4,故不合题意舍去, 综上:当快慢两车出发1718h ,两车相距250.km 故答案为:17.18h。
人教版八年级数学下册第十九章《一次函数》单元测试附答案卷
![人教版八年级数学下册第十九章《一次函数》单元测试附答案卷](https://img.taocdn.com/s3/m/016951d9f71fb7360b4c2e3f5727a5e9856a278b.png)
第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
【三套打包】广州市人教版初中数学八年级下册第十九章一次函数单元试题含答案
![【三套打包】广州市人教版初中数学八年级下册第十九章一次函数单元试题含答案](https://img.taocdn.com/s3/m/8d0a95670722192e4536f65b.png)
人教版八年级数学下册第十九章一次函数复习测试题(含答案)一、选择题。
1.变量x,y 有如下关系:①x+y=10②y=x5 ③y=|x-3④y 2=8x.其中y 是x 的函数的是 A. ①②②③④B. ①②③C. ①②D. ①2.下列曲线中,不表示y 是x 的函数的是3.下列各点中,在直线y=-4x+1上的点是A.(-4,-17)B. (-,276) C. (,32-132)D. (1,-5)4.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是 A.k >5 B.k <5C.k >-5D.k <-55.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是 A.一象限B. 二象限C. 四象限D.不能确定6.下列说法不正确的是A.正比例函数是一次函数的特殊形式B.一次函数不一定是正比例函数C.y=kx+b 是一次函数D.2x-y=0是正比例函数7.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是8.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±29.直线y=kx+b 交坐标轴于A(-8,0),B(0,13)两点,则不等式kx+b ≥0的解集为 A.x ≥-8B.x ≤-8C.x ≥13D.x ≤1310.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是 A. ①③④ B. ②③ C. ①②③④ D. ①②③ 二、填空题。
1.关于x 的一次函数)2()73(-+-=a x a y 的图像与y 轴的交点在x 轴的上方,则y 随x的增大而减小,则a 的取值范围是 。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析
![人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析](https://img.taocdn.com/s3/m/300d0ee7fbb069dc5022aaea998fcc22bcd143d1.png)
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)
![第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)](https://img.taocdn.com/s3/m/fe49cccafbb069dc5022aaea998fcc22bcd14306.png)
2022-2023学年新人教版初中八年级数学下册第十九单元基础知识质量检测卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)函数y=x―25中自变量x的取值范围是( )A.x>2B.x<2C.x≥2D.x≤22.(3分)一次函数y=﹣2x+2经过点(a,2),则a的值为( )A.﹣1B.0C.1D.23.(3分)已知一次函数y=kx﹣4(k≠0),y随x的增大而增大,则k的值可以是( )A.﹣2B.1C.0D.﹣34.(3分)下列函数中,是一次函数的是( )A.y=3x﹣5B.y=x2C.y=6xD.y=1x―15.(3分)在正比例函数y=kx中,y的值随着x值的增大而增大,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A.B.C.D.6.(3分)点P1(﹣1,y1),点P2(2,y2)是一次函数y=kx+b(k<0)图象上两点,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定7.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)10203040506070小车下滑的时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59下列说法正确的是( )A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快8.(3分)下列问题中,变量y与x成一次函数关系的是( )A.10m长铁丝折成长为y(m),宽为x(m)的长方形B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.路程一定时,时间y(h)和速度x(km/h)的关系9.(3分)一次函数y=﹣2x+6的图象与y轴的交点坐标是( )A.(0,6)B.(6,0)C.(3,0)D.(0,3)10.(3分)在正比例函数y=kx中,y的值随着x值的增大而减小,则点A(﹣3,k)在( )A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(a,b)在函数y=4x+3的图象上,则代数式12a﹣3b+1的值等于 .12.(3分)一次函数y=(k﹣3)x﹣2的函数值y随自变量x的增大而减小,则k的取值范围是 .13.(3分)小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为 .14.(3分)已知三点A(﹣2,6),B(﹣3,1),C(1,﹣3).若正比例函数y=kx图象经过其中两点,则k的值为 .15.(3分)将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为 .16.(3分)已知函数y=(m﹣2)x|3﹣m|+5是关于x的一次函数,则m= .三.解答题(共9小题,满分72分)17.(6分)求下列函数中自变量的取值范围.(1)y=2x﹣1;(2)y=x―3+5―x;(3)y=14―2x.18.(6分)平面直角坐标系xOy中,经过点(1,2)的直线y=kx+b,与x轴交于点A,与y轴交于点B.(1)当b=3时,求k的值以及点A的坐标;(2)若k=b,P是该直线上一点,当△OPA的面积等于△OAB面积的2倍时,求点P的坐标.19.(6分)已知y﹣1与x﹣1成正比例,且x=3时,y=4.(1)求y与x之间的函数关系式;(2)当y=﹣1时,求x的值.20.(8分)如图,一次函数y=kx+b(k≠0)的图象经过A,B两点.(1)求此一次函数的解析式;(2)结合函数图象,直接写出关于x的不等式kx+b<4的解集.21.(8分)我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了yml水.(1)试写出y与x之间的函数关系式?(2)当滴了1620mL水时,小明离开水龙头几小时?22.(8分)已知一次函数y=―12x+3.(1)作出函数的图象;(2)求图象与两坐标轴所围成的三角形的面积.23.(10分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间有如下关系:(其中0≤x≤30)时间/x257101213141720接受能力/y47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?24.(10分)狗头枣产于陕西省延安市一带,久负盛名,其性味甘平,有润心肺、止咳、补五脏、治虚损的功效,已成为革命圣地延安最为著名的特产.某经销商购进了一批狗头枣,根据以往的销售经验,每天的售价与销售量之间有如下关系:当单价为38元/千克时,每天可以销售50千克,单价每下调1元,销量就会增加2千克,若设单价下调了x 元/千克,销售量为y千克.(1)y与x之间的关系式为 ;(2)当售价为28元/千克,这天的销售量是多少?(3)如果这批狗头枣的进价是20元/千克,某天的售价定为30元/千克,则这天的销售利润是多少元?25.(10分)甲超市在国庆节期间进行苹果优惠促销活动,苹果的标价为5元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.其中x(单位:kg)表示购买苹果的重量,y甲(单位:元)表示付款金额.(1)文文购买3kg苹果需付款 元;购买5kg苹果需付款 元;(2)写出付款金额y甲关于购买苹果的重量x的函数关系式;(3)乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为5元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?参考答案1.C;2.B;3.B;4.A;5.A;6.A;7.D;8.A;9.A;10.C;11.﹣8;12.k<3;13.1.5千米;14.﹣3;15.y=﹣2x﹣4;16.4;17.解:(1)y=2x﹣1中,自变量的取值范围是全体实数;(2)由题意得:x﹣3≥0,5﹣x≥0,解得:3≤x≤5;(3)由题意得:4﹣2x>0,解得:x<2.18.解:(1)∵直线y=kx+b经过点(1,2),∴k+b=2,当b=3时,k=﹣1,∴直线解析式为y=﹣x+3,令y=0,得x=3,∴点A的坐标为(3,0);(2)由(1)知k+b=2,当k=b时,可得k=b=1,∴直线解析式为:y=x+1,令x=0,得y=1,令y=0,得x=﹣1,∴点A的坐标为(﹣1,0),点B坐标为(0,1),∴S△OAB=12×1×1=12,设点P(m,n),∵△OPA的面积等于△OAB面积的2倍,∴12×1×|n|=2×12,∴|n|=2,得n=±2,∴点P坐标为(1,2)或(﹣3,﹣2).19.解:(1)∵y﹣1与x﹣1成正比例,∴设y﹣1=k(x﹣1),∵x=3时y=4,∴4﹣1=k(3﹣1),解得:k=3 2,∴y与x之间的函数关系式为:y﹣1=32(x﹣1),即y=32x―12;(2)当y=﹣1时,﹣1=32x―12,解得:x=―1 3.20.解:(1)将点A(3,4),B(0,﹣2)的坐标分别代入y=kx+b中,得3k+b=4 b=―2,解得k=2b=―2,故一次函数的解析式y=2x﹣2;(2)观察图象可知:关于x的不等式kx+b<4的解集为x<3.21.解:(1)∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开x小时滴的水为3600×2×0.05x,∴y=360x(x≥0).(2)当y=1620mL时,1620=360x,解得x=4.5小时,答:小明离开水龙头4.5小时.22.解:(1)直线一次函数y=―12x+3过(0,3)(6,0)两点,描点连线可以画出其图象,如图:(2)图象与两坐标轴所围成的三角形的面积=12×6×3=9.23.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为13分钟时,学生的接受能力最强;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.24.解:(1)由题意可知y与x之间的关系式为,y=50+2x;(2)当售价为28元/千克,价格下调了x=38﹣28=10,将x=10代入关系试中得y=50+2×10=70,∴当售价为28元/千克,这天的销售量是70千克;(3)当售价为30元/千克,价格下调了x=38﹣30=8,将x=8代入关系试中得y=50+2×8=66,∴当售价为30元/千克时的销售量是66千克,利润=(售价﹣进价)×销售量=(30﹣20)×66=660元,∴这天的销售利润是660元.25.解:(1)由题意可知:文文购买3kg苹果,不优惠,∴文文购买3kg苹果需付款:3×5=15(元),购买5kg苹果,4kg不优惠,1kg优惠,∴购买5kg苹果需付款:4×5+1×5×0.6=23(元),故答案为:15,23;(2)由题意得:当0<x≤4时,y甲=5x,当x>4时,y甲=4×5+(x﹣4)×5×0.6=3x+8,∴付款金额y甲关于购买苹果的重量x的函数解析式为:y甲=5x(0<x≤4) 3x+8(x>4);(3)文文在甲超市购买10kg苹果需付费:3×10+8=38(元),文文在乙超市购买10kg苹果需付费:5×10×0.8=40(元),∵38<40,∴文文应该在甲超市购买更划算.。
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版
![八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版](https://img.taocdn.com/s3/m/6b98c35ca55177232f60ddccda38376baf1fe0b8.png)
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案
![人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案](https://img.taocdn.com/s3/m/369f6d84cf2f0066f5335a8102d276a2002960a8.png)
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。
人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)
![人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)](https://img.taocdn.com/s3/m/25a080cb69dc5022aaea00d0.png)
第十九章《一次函数》测试题一、选择题(每小题只有一个正确答案)1.下列函数中是正比例函数的是( )A .8y x =B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( )A .一次函数是正比例函数B .正比例函数是一次函数C .函数y =|x |+3不是一次函数D .在y =kx +b (k 、b 都是不为零的常数)中, y -b 与x 成正比例4.一次函数y =-x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.函数y =kx -2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )A .322y x =-B .122y x =-C .122y x =+D .322y x =+7.若函数y =kx +b (k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )A .x >1B .x >2C .x <1D .x <28.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题9.正比例函数12y x =-中,y 值随x 的增大而 .10.已知y=(k-1)x+k2-1是正比例函数,则k=11.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .12.直线y=7x+5,过点(,0),(0,).13.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .14.写出经过点(1,2)的一次函数的解析式为(写出一个即可).15.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.16.下表中,y是x三、简答题17.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.18.已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.19、已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.20、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB =x ,梯形APCD 的面积为S .(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象.21、小芳同学在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式.(2)小芳从批发市场共购进多少千克西瓜?(3)小芳这次卖瓜赚了多少钱?参考答案:一、1.D 2.D3.A 4.A 5.D 6.A 7.D 8.B二、9.减小 10.1-11.17 12.57-,5 13.2,1- 14.略(答案不惟一) 15.三条直线互相平行16.22y x =+,表格从左到右依次填2-,0,4三、17.y x =-(答案不惟一)18.(1)2y x =+(2)419.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)420.(1)4S x =-;(2)02x <<;(3)图略21.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。
人教版八年级数学下册第十九章一次函数检测题(附答案)
![人教版八年级数学下册第十九章一次函数检测题(附答案)](https://img.taocdn.com/s3/m/7d31ea2304a1b0717ed5ddbe.png)
第十九章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.函数y =x -1 的自变量x 的取值范围是DA .x >1B .x <1C .x ≤1D .x ≥12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点BA .(2,-1)B .(-12 ,1)C .(-2,1)D .(-1,12) 3. “六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是B4.如图,直线y =x +b 和y =kx +2与x 轴分别交于点A (-2,0),点B (3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0 解集为D A .x <-2 B .x >3 C .x <-2或x >3 D .-2<x <3第4题图 第9题图第10题图5.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是A6.已知一次函数y =(2m -1)x +1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是BA .m <12B .m >12C .m <2D .m >0 7.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为AA .(0,-1)B .(-1,0)C .(0,2)D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是AA .1<m <7B .3<m <4C .m >1D .m <49.在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km/h ,b km/h 匀速骑行,他们骑行的时间t (h)与骑行的路程s (km)之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km.其中正确的说法有CA .1个B .2个C .3个D .4个10.如图,在平面直角坐标系中,点A 1,A 2,A 3…A n 在x 轴上,B 1,B 2,B 3…B n 在直线y =33x 上,若A 1(1,0),且△A 1B 1A 2,△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1,S 2,S 3…S n .则S n 可表示为D A .22n 3 B .22n -13 C .22n -23 D .22n -33 二、填空题(每小题3分,共15分)11.函数y =5x 的图象经过的象限是一、三.12.在函数y =3x 2x -3 中,自变量x 的取值范围是x ≠32. 13.已知一次函数y =kx +b 的图象如图所示,则关于x 的不等式3kx -b >0的解集为x <2.第13题图 第14题图第15题图14.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是(32,4800).15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54倍快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为2080米.三、解答题(共75分)16.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5.(1)求x 与y 之间的函数关系,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 的值.解:(1)y =32x +2,是一次函数 (2)a =017.(9分)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围;(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.解:(1)k =-2时,y 1=-2x +2,根据题意得-2x +2>x -3,解得x <53(2)当x =1时,y =x -3=-2,把(1,-2)代入y 1=kx +2得k +2=-2,解得k =-4,当-4≤k <0时,y 1>y 2;当0<k ≤1时,y 1>y 218.(9分)已知一次函数y =(a +8)x +(6-b ).(1)a ,b 为何值时,y 随x 的增大而增大?(2)a ,b 为何值时,图象过第一、二、四象限?(3)a ,b 为何值时,图象与y 轴的交点在x 轴上方?(4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =619.(9分)有A ,B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发电多少度?(2)A ,B 两个发电厂共焚烧90吨的垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾两倍,求A 厂和B 厂总发电量的最大值.解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,根据题意得:⎩⎪⎨⎪⎧a -b =40,30b -20a =1800, 解得⎩⎪⎨⎪⎧a =300,b =260, 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨垃圾,总发电量为y 度,则y =300x +260(90-x )=40x +23400,∵x ≤2(90-x ),∴x ≤60,∵y 随x 的增大而增大,∴当x =60时,y 有最大值为:40×60+23400=25800(度).答:A 厂和B 厂总发电量的最大值是25800度20.(9分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y (个)与甲加工时间x (h)之间的函数图象为折线OA -AB -BC ,如图所示.(1)这批零件一共有270个,甲机器每小时加工20个零件,乙机器排除故障后每小时加工40个零件;(2)当3≤x ≤6时,求y 与x 之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?解:(1)这批零件一共有270个,甲机器每小时加工零件:(90-50)÷(3-1)=20(个),乙机器排除故障后每小时加工零件:(270-90-20×3)÷3=40(个);故答案为:270;20;40 (2)设当3≤x ≤6时,y 与x 之间的函数关系式为y =kx +b ,把B (3,90),C (6,270)代入解析式,得⎩⎪⎨⎪⎧3k +b =90,6k +b =270, 解得⎩⎪⎨⎪⎧k =60,b =-90, ∴y =60x -90(3≤x ≤6) (3)设甲加工x小时时,甲乙加工的零件个数相等,①20x =30,解得x =1.5;②50-20=30,20x =30+40(x -3),解得x =4.5,答:甲加工1.5 h 或4.5 h 时,甲与乙加工的零件个数相等21.(10分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y =-2|x |的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y =-2|x |+2和y =-2|x +2|的图象如图所示.x… -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 -2 -4 -6 …(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数y =-2|x +2|的对称轴;(2)探索思考:平移函数y =-2|x |的图象可以得到函数y =-2|x |+2和y =-2|x +2|的图象,分别写出平移的方向和距离;(3)拓展应用:在所给的平面直角坐标系内画出函数y =-2|x -3|+1的图象.若点(x 1,y 1)和(x 2,y 2)在该函数图象上,且x 2>x 1>3,比较y 1,y 2的大小.解:(1)A (0,2),B (-2,0),函数y =-2|x +2|的对称轴为x =-2 (2)将函数y =-2|x |的图象向上平移2个单位得到函数y =-2|x |+2的图象;将函数y =-2|x |的图象向左平移2个单位得到函数y =-2|x +2|的图象 (3)将函数y =-2|x |的图象向上平移1个单位,再向右平移3个单位得到函数y =-2|x -3|+1的图象.所画图象如图所示,当x 2>x 1>3时,y 1>y 222.(10分)某商店准备购进A ,B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x -20)元,由题意得:3000x =1800x -20,解得:x =50,经检验,x =50是原方程的解,且符合题意,50-20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元 (2)设购买A 种商品a 件,则购买B 商品(40-a )件,由题意得⎩⎨⎧50a +30(40-a )≤1560,a ≥40-a 2, 解得403 ≤a ≤18,∵a 为正整数,∴a =14,15,16,17,18,∴商店共有5种进货方案 (3)设销售A ,B 两种商品共获利y 元,由题意得:y =(80-50-m )a +(45-30)(40-a )=(15-m )a +600,①当10<m <15时,15-m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品;②当m =15时,15-m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同;③当15<m <20时,15-m <0,y 随a 的增大而减小,∴当a =14时,获利最大,即买14件A 商品,26件B 商品23.(11分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:有机蔬菜种类进价(元/kg) 售价(元/kg) 甲 m16(1) 6 kg 和乙种蔬菜10 kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100 kg 进行销售,其中甲种蔬菜的数量不少于20 kg ,且不大于70 kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60 kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg)之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.解:(1)由题意可得,⎩⎪⎨⎪⎧10m +5n =170,6m +10n =200, 解得⎩⎪⎨⎪⎧m =10,n =14, 答:m 的值是10,n 的值是14 (2)当20≤x ≤60时,y =(16-10)x +(18-14)(100-x )=2x +400,当60<x ≤70时,y =(16-10)×60+(16-10)×0.5×(x -60)+(18-14)(100-x )=-x +580,由上可得,y =⎩⎪⎨⎪⎧2x +400(20≤x ≤60)-x +580(60<x ≤70) (3)当20≤x ≤60时,y =2x +400,则当x =60时,y 取得最大值,此时y =520,当60<x ≤70时,y =-x +580,则y <-60+580=520,由上可得,当x =60时,y 取得最大值,此时y =520,∵在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,且要保证捐款后的盈利率不低于20%,∴520-2a ×60-40a 60×10+40×14≥20%,解得a ≤1.8,即a 的最大值是1.8。
人教版数学八年级下册第19章一次函数单元测试卷4份含答案
![人教版数学八年级下册第19章一次函数单元测试卷4份含答案](https://img.taocdn.com/s3/m/90a22608bdd126fff705cc1755270722192e5906.png)
人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
第十九章 一次函数 单元复习题 (含详解) 人教版八年级数学下册
![第十九章 一次函数 单元复习题 (含详解) 人教版八年级数学下册](https://img.taocdn.com/s3/m/59835fb4e109581b6bd97f19227916888586b972.png)
人教版八年级数学下册第十九章一次函数单元复习题一、选择题1.在圆的面积公式中,变量是( )A .B .S ,rC .D .只有2.下列图象中,不能表示y 是x 的函数的是( )A .B .C .D .3.已知正比例函数,若随的增大而减小,则的取值范围是( )A .B .C .D .4.如图,函数和的图象交于点,则不等式的解集为( )A .B .C .D .5.如图,直线经过点A 和点B ,直线过点A ,则不等式的解集为( )2πS r =πS ,πr ,r()1y k x =-y x k 1k <1k >0k <0k >2y x =4y ax =+()3A m ,24x ax <+32x >32x <3x >3x <1y kx b =+22y x =2x kx b <+A .B .C .D .6.函数x 的取值范围是( )A .x≠0B .x≥且x≠0C .x >D.x≥7.正比例函数y =(k ﹣2)x 的图象经过一、三象限,那么k 的取值范围是( )A .k >0B .k >2C .k <0D .k <28.如图,直线 y =﹣x+2 与 x 轴交于点 A ,与 y 轴交于点 B ,以点 A 为圆心,AB 长为半径画弧,交 x 轴于点 C ,则点 C 的坐标为( )A .(﹣1,0)B .(,0)C .(-2,0)D .(,0)9.在平面直角坐标系中,将函数的图象向下平移2个单位长度,所得函数图象的表达式是( )A .B .C .D .10.如图是甲、乙两家商店销售同一种产品的销售价 (元)关于销售量 (件)的函数图象.给出下列说法,其中说法不正确的是( )A .售2件时,甲、乙两家的售价相同B .买1件时,买乙家的合算C .买3件时,买甲家的合算12-12-21y x =-+y x 2x <-1x <-20x -<<10x -<<y =12-21y x =-+21y x =--23y x =--23y x =-+D .乙家的1件售价约为3元二、填空题11.函数x 的取值范围是 12.已知函数是关于的一次函数,则的值为 .13.已知一次函数的图象经过点,且与直线的图象平行,则一次函数表达式为 .14.市场上一种豆子的单价是2元/千克,豆子总的售价 (元)与所售豆子的重量 (千克)之间的函数关系式为 .(不需要写出自变量取值范围)三、解答题15.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s (千米)与时间t (分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?16.一次函数的自变量x 的取值范围是,相应函数值的取值范围是,求这个函数的解析式.17.已知一次函数y =kx +b 的图象由直线y =﹣2x 平移得到,且过点(﹣2,5).求该一次函数的解析式.18.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x 名学生去旅游,他们应该选择哪家旅行社?四、综合题19.已知矩形 的周长为 , AB 的长为 , 的长为 .(1)写出 关于 的函数解析式( 为自变量);(2)当 时,求 的值.x y x y x y x x y y =||(1)3m y m x =--m y kx b =+()05-,1y x 2=y =y kx b =+42x -≤≤14y ≤≤ABCD 20BC 3x =20.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (﹣2,4),且与正比例函数y=﹣x 的图象交于点B (m ,2).(1)求一次函数y =kx+b 的解析式;(2)若直线AB 与x 轴交于点C ,若连接AO 后,则△OAB 的面积是 .21.综合与探究如图,在平面直角坐标系中,函数的图象分别交轴、轴于两点.点在上,且,作直线.(1)A 点坐标为 ,B 点坐标为 ;(2)求直线的解析式;(3)在直线上找一点,使得,请直接写出点的坐标;(4)在坐标平面内是否存在这样的点,使得以点为顶点的四边形为平行四边形?若存在,请你直接写出点的坐标;若不存在,请说明理由.22.李明驾车以千米小时的速度从甲地匀速开往乙地,行驶到服务区休息了一段时间后以另一速度继续匀速行驶,直至到达乙地.李明与乙地的距离千米与时间小时之间的函数关系图象如图所示.x y AM AM P N )23212y x =+A B 、M OB 12OM MB =::AM P ABP AOB S S =V V N A B M N 、、、100/y()x((1)求的值;(2)求李明从服务区到乙地与之间的函数关系式;(3)求时李明驾车行驶的路程.a y x x 5答案解析部分1.【答案】B【解析】【解答】解:中的变量是、,故答案为:B.【分析】在一个过程中,固定不变的量称为常量,可以取不同数值的量称为变量.2.【答案】B【解析】【解答】解:A 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;B 、不满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故符合题意;C 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;D 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;故答案为:B .【分析】根据函数的定义逐项判断即可。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)
![人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)](https://img.taocdn.com/s3/m/715ee753842458fb770bf78a6529647d272834f6.png)
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <2.下列各曲线中表示y 是x 的函数的是()A .B .C .D .3.一次函数24y x =+的图像与y 轴交点的坐标是()A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)4.已知一次函数y =kx +b ,当0≤x≤2时,对应的函数值y 的取值范围是-2≤y≤4,则k 的值为()A .3B .-3C .3或-3D .不确定5.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A .x=2B .x=0C .x=﹣1D .x=﹣37.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .28.一次函数()224y k x k =++-的图象经过原点,则k 的值为()A .2B .2-C .2或2-D .39.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是().A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <010.一辆汽车从甲地以50km/h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离s(km)与行驶时间t(h)之间的函数解析式是()A .s =150+50t(t≥0)B .s =150-50t(t≤3)C .s =150-50t(0<t <3)D .s =150-50t(0≤t≤3)11.如图,函数=2y x 和=+4y ax 的图象相交于A (m ,3),则不等式2+4x ax <的解集为()A .3x 2>B .x 3>C .3x 2<D .x 3<12.已知:将直线y =x ﹣1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是()A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小二、填空题13.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.14.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.15.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y _______2y .(填”>”,”<”或”=”)17.如图,矩形ABCO 在平面直角坐标系中,且顶点O 为坐标原点,已知点B(3,2),则对角线AC 所在的直线l 对应的解析式为___.三、解答题18.已知函数y =(m +1)x 2-|m |+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?19.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.20.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.21.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.22.如图,直角坐标系xOy中,一次函数y=﹣1x+5的图象l1分别与x,y轴交于A,B2两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B2.D3.B4.C5.C6.D7.B8.A9.C10.D 11.C12.C13.r c14.115.-116.<17.y=23-x+2解:∵四边形ABCO为矩形,BC x\轴,AB y∥轴,∵B(3,2),∴OA=BC=3,AB=OC=2,∴A(3,0),C(0,2),设直线AC解析式为y=kx+b,把A与C坐标代入得:30 {2k bb+==,解得:2 {32 kb=-=,则直线AC解析式为2 2.3y x=-+故答案为2 2.3y x=-+18.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.解:(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.19.(1)y=2x+1;(2)不在;(3)0.25.解:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-,此函数与x 轴、y 轴围成的三角形的面积为:11110.25224´´-==20.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.解:(1)根据题意得:()()70203540203513035063000y x x x x éù=--´´+-´´=-+ëû(2)因为7035(20)x x ³-,解得203x ³,又因为为正整数,且20x £.所以720x ££,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-´+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.21.(1)(1,3)-;(2)9;(3)1³x 解:(1)联立两函数解析式可得方程组24y x y x =--ìí=-î,解得:13x y =ìí=-î,\点A 的坐标为(1,3)-;(2)当10y =时,20x --=,解得:2x =-,,0()2B \-,当20y =时,40x -=,解得:4x =,(4,0)C \,6CB \=,ABC D ∴的面积为:16392´´=;(3)由图象可得:12y y £时x 的取值范围是1³x .22.(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
![【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)](https://img.taocdn.com/s3/m/042d3ca8b8d528ea81c758f5f61fb7360b4c2bc2.png)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
精品解析2022年最新人教版八年级数学下册第十九章-一次函数单元测试试卷(含答案详细解析)
![精品解析2022年最新人教版八年级数学下册第十九章-一次函数单元测试试卷(含答案详细解析)](https://img.taocdn.com/s3/m/9cb73f100a4e767f5acfa1c7aa00b52acec79c51.png)
人教版八年级数学下册第十九章-一次函数单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地,甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示给出下列说法:①A,B港口相距400km;②B,C港口相距300km;③甲船的速度为100km/h;④乙船出发4h时,两船相距220km,其中正确的个数是()A.1 B.2 C.3 D.42、在某火车站托运物品时,不超过3kg的物品需付1.5元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.3、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24、下列函数中,为一次函数的是()A.12yx=B.2y x C.1y=D.1y x=-+5、如果函数y=(2﹣k)x+5是关于x的一次函数,且y随x的值增大而减小,那么k的取值范围是()A.k≠0B.k<2 C.k>2 D.k≠26、下列各图中,不能表示y是x的函数的是()A.B.C.D.7、已知两个一次函数y1=ax+b与y2=bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()A.B.C.D.8、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、如图,图中的函数图象描述了甲乙两人越野登山比赛.(x表示甲从起点出发所行的时间,y甲表示甲的路程,y乙表示乙的路程).下列4个说法:①越野登山比赛的全程为1000米;②甲比乙晚出发40分钟;③甲在途中休息了10分钟;④乙追上甲时,乙跑了750米.其中正确的说法有()个A.1 B.2 C.3 D.410、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B 车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y (千米),则能大致表示y与x之间函数关系的图象是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线23y x =-+,则它与x 轴的交点坐标为________,与坐标轴围成的三角形面积为_______.2、甲、乙两施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务.下表根据每天工程进度绘制而成的.下列结论:①甲队每天修路20米;②乙队第一天修路15米;③乙队技术改进后每天修路35米;④前7天甲、乙两队修路长度相等.其中正确的结论有_______.(填序号).3、一次函数y =kx +b (k ≠0)中两个变量x 、y 的部分对应值如下表所示:那么关于x 的不等式kx +b ≥-1的解集是________.4、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:(1)m =______;(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.5、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;三、解答题(5小题,每小题10分,共计50分)y+4的图象分别与x轴、y轴交于点A、B,点C在线段1、在平面直角坐标系中,一次函数y=−43OB上,将△AOB沿AC翻折,点B恰好落在x轴上的点D处,直线DC交AB于点E.(1)求点C的坐标;(2)若点P在直线DC上,点Q是y轴上一点(不与点B重合),当△CPQ和△CBE全等时,直接写出点P的坐标(不包括这两个三角形重合的情况).2、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.3、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:(1)当通讯时间为500分钟时,①方式收费元,②方式收费元;(2)②收费方式中y与x之间的函数关系式是;(3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是(填①或②).4、已知一次函数y=−2y−6.(1)画出函数图象.(2)不等式−2y−6>0的解集是_______;不等式−2y−6<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.x+4的图象相交于点A.5、如图,函数y=2x和y=-23(1)求点A的坐标;x+4的解集.(2)根据图象,直接写出不等式2x≥-23---------参考答案-----------一、单选题1、B【解析】【分析】根据图象可知A、B港口相距400km,从而可以判断①;根据甲船从A港口出发,沿海岸线匀速驶向C港,1小时后乙船从B港口出发,沿海岸线匀速驶向A港,两船同时到达目的地.甲船的速度是乙船的1.25倍,可以计算出B、C港口间的距离,从而可以判断②;根据图象可知甲船4个小时行驶了400km,可以求得甲船的速度,从而可以判断③;根据题意和图象可以计算出乙出发4h时两船相距的距离,从而可以判断④.【详解】解:由题意和图象可知,A、B港口相距400km,故①正确;∵甲船的速度是乙船的1.25倍,∴乙船的速度为:100÷1.25=80(km/h),∵乙船的速度为80km/h,S)÷100-1,∴400÷80=(400+BCS=200km,故②错误;解得:BC∵甲船4个小时行驶了400km,∴甲船的速度为:400÷4=100(km/h),故③正确;乙出发4h时两船相距的距离是:4×80+(4+1-4)×100=420(km),故④错误.故选B【点睛】本题考查从函数图象中获取信息,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.2、D【解析】【分析】根据题意分析出托运费y与物品重量x之间的函数关系,画出图像即可.【详解】解:由题意可得,当0<3x≤时, 1.5y=,∵物品重量每增加1kg(不足1kg按1kg计)需增加托运费0.5元,∴托运费y与物品重量x之间的函数图像为:故选:D.【点睛】此题考查了函数的图像,解题的关键是根据题意正确分析出托运费y与物品重量x之间的函数关系.3、A【解析】【分析】先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0∴y随x增大而减小,∵1<3,∴y1>y2.故选:A.本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m 、n 的取值范围成为解答本题的关键.4、D【解析】【分析】根据一次函数的定义即可求解.【详解】 A.12y x=不是一次函数, B.2y x 不是一次函数, C.1y =不是一次函数,D.1y x =-+是一次函数故选D .【点睛】一次函数的定义一般地,形如y=kx+b (k ,b 是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.5、C【解析】【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围.【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,∴>.k2故选C.【点睛】k>,y随x的增大而增本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b=+中,0k<,y随x的增大而减小.大,06、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.7、B【解析】【分析】先由一次函数y1=ax+b图象得到字母系数的符号,再与一次函数y2=bx+a的图象相比较看是否一致.【详解】解:A、∵一次函数y1=ax+b的图象经过一二四象限,∴a>0,b>0;由一次函数y2=bx+a图象可知,b<0,a>0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;C、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a>0,b>0,两结论矛盾,故错误;D、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a<0,b=0,两结论相矛盾,故错误.故选:B.【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+经过一、三、四象限;③当=+经过一、二、三象限;②当k>0,b<0时,函数y kx bk<0,b>0时,函数y kx b=+经过二、三、四象=+经过一、二、四象限;④当k<0,b<0时,函数y kx b限,解题的关键是掌握一次函数图像与系数的关系.8、B【解析】【分析】由一次函数的图象的走势结合一次函数与y 轴交于正半轴,可判断A ,B ,由图象可得:当x >4时,函数图象在x 轴的下方,可判断C ,先求解一次函数的解析式,再利用一次函数图象的平移可判断D ,从而可得答案.【详解】解:一次函数y =kx +b 的图象从左往右下降,所以y 随x 的增大而减小,故A 不符合题意; 一次函数y =kx +b , y 随x 的增大而减小,与y 轴交于正半轴,所以0,0,k b 故B 符合题意; 由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【解析】【分析】根据终点距离起点1000米即可判断①;根据甲、乙图像的起点可以判断②;根据AB 段为甲休息的时间即可判断③;设乙需要t 分钟追上甲,10006001006006040t t -=+-,求出t 即可判断④. 【详解】解:由图像可知,从起点到终点的距离为1000米,故①正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故②错误;在AB 段时,甲的路程没有增加,即此时甲在休息,休息的时间为40-30=10分钟,故③正确; ∵乙从起点到终点的时间为10分钟,∴乙的速度为1000÷10=100米/分钟,设乙需要t 分钟追上甲,10006001006006040t t -=+-, 解得t =7.5,∴乙追上甲时,乙跑了7.5×100=750米,故④正确;故选C .【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.10、C【解析】【分析】分别求出两车相遇、B 车到达甲地、A 车到达乙地时间,分0≤x ≤45、45<x ≤43、43<x ≤2三段求出函数关系式,进而得到当x =43时,y =80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B 车到达甲地时间为120÷90=43小时,A 车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.二、填空题1、3,02⎛⎫⎪⎝⎭94【解析】【分析】先令y=0即可求出直线与x轴的交点坐标,再令x=0及可求出直线与y轴的交点坐标,由三角形的面积公式即可得出结论.【详解】解:∵令x=0,则y=3,令y=0,则x=32,∴直线y=−2x+3与x轴的交点坐标是(32,0);直线与两坐标轴围成的三角形的面积=12×32×3=94.故答案为:3,02⎛⎫⎪⎝⎭;94【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、①②③【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:16014020-=(米),故①正确;乙队第一天修路352015-=(米),故②正确;乙队技术改进之后修路:2151602035--=(米),故③正确;前7天,甲队修路:207140⨯=(米),乙队修路:270140130-=,故④错误;综上所述,正确的有①②③.故答案是:①②③.【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键.3、x≤1【解析】【分析】由表格得到函数的增减性后,再得出1y=-时,对应的x的值即可.【详解】解:当1x =时,1y =-,根据表可以知道函数值y 随x 的增大而减小,∴不等式1kx b +≥-的解集是1x ≤.故答案为:1x ≤.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系,理解一次函数的增减性是解决本题的关键.4、 100 a =32+1.8b【解析】【分析】(1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;(2)由表格数据规律,得到华氏温度=摄氏温度95⨯+32,据此解题.【详解】解:(1)设华氏温度与摄氏温度满足的一次函数关系为:(0)y kx b k =+≠代入(10,50)(20,68)得10502068k b k b +=⎧⎨+=⎩ 9532k b ⎧=⎪⎨⎪=⎩ 9325y x ∴=+ 当212y =时,9322125m +=100m ∴=故答案为:100;(2)由(1)得,华氏温度=摄氏温度95⨯+32,若华氏温度为a ,摄氏温度为b ,则把摄氏温度转化为华氏温度的公式为:a = 95b +32,故答案为:a =32+1.8b .【点睛】本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.5、V =100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V 与h 的关系为V =100h ;故答案为:V =100h .【点睛】本题主要考查了列函数关系式,题目比较简单.三、解答题1、(1)C (0,32);(2)(﹣2,0)或(2,3)或(﹣65,35)【解析】【分析】(1)首先求出A (3,0),B (0,4),得出AB =5,设OC =x ,则BC =4﹣x ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解方程即可;(2)首先可证∠BEC =∠COD =90°,分当点D 与P 重合,当CQ =BC =52时,当PC =BE =2,yy =yy =32,∠yyy =∠yyy =90°时,再分别根据图形性质求出点P 的坐标即可.【详解】解:(1)∵ y =−43y +4,令y =0, 则y =4, 令y =0, 则y =3,∴ A (3,0),B (0,4),∴OA =3,OB =4,∵∠AOB =90°,由勾股定理得,AB =√yy 2+yy 2=5,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴AD =AB =5,∴OD =2,设OC =x ,则yy =yy =4−y ,在Rt △OCD 中,由勾股定理得:x 2+22=(4﹣x )2,解得x =32,∴C (0,32);(2)设yy 为y =yy +y ,∴{−2y +y =0y =32解得:{y =34y =32所以直线CD 的解析式为y =34y +32,∵将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,∴∠ABO =∠CDO ,∵∠BCE =∠DCO ,∴∠BEC =∠COD =90°,①当点D 与P 重合时,OP =2,OC =32,yy =4−32=52, CP =√22+(32)2=52, 而∠yyy =∠yyy ,∠yyy =∠yyy , 则△CPQ ≌△CBE ,此时y ,y 重合,∴P (﹣2,0);yy =yy =yy =2,yy =yy =yy =32,②当CQ =BC =52时,则点Q 的纵坐标为﹣1时,如图,当△CPQ ≌△CEB 时,∴yy =yy =32,yy =yy =2,∠yyy =∠yyy =90°,∴12×(−y y)×52=12×32×2,解得:y y=−65,∴y y=34×(−65)+32=35,∴y(−65,35 );③当PQ=BE=2,yy=yy=32,∠yyy=∠yyy=90°时,如图,△yyy≌△yyy,∴y y=2,y y=34×2+32=3,∴点P(2,3),综上,点P的坐标为(﹣2,0)或(2,3)或(−65,35 ).【点睛】本题考查的是一次函数与坐标轴的交点坐标问题,轴对称的性质,勾股定理的应用,利用待定系数法求解一次函数的解析式,全等三角形的判定与性质,清晰的分类讨论是解(2)的关键.2、(1)PQ=5cm;(2)t=53;(3)S四边形APQB=30﹣5t+t2.【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ=√yy2+yy2=√(5−y)2+(2y)2,∵t=2,∴PQ=√32+42=5cm,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=12yy⋅yy−12yy⋅yy=12×5×12−12×(5−y)×2y=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)80,100;(2)y 2=0.2x ;(3)②【解析】【分析】(1)根据题意由函数图象就可以得出①②收费;(2)根据题意设②中y 与x 的关系式为y 2=k 2x ,由待定系数法求出k 2值即可;(3)根据题意设①中y 与x 的关系式为y 1=k 1x +b ,再讨论当y 1>y 2,y 1=y 2,y 1<y 2时求出x 的取值就可以得出结论.【详解】解:(1)由函数图象,得:①方式收费80元,②方式收费100元,故答案为:80,100;(2)设②中y 与x 的关系式为y 2=k 2x ,由题意,得100=500k 2,∴k =0.2,∴函数解析式为:y 2=0.2x ;(3)设①中y 与x 的关系式为y 1=k 1x +b ,由函数图象,得:{y =30500y 1+y =80, 解得:{y 1=0.1y =30 , ∴y 1=0.1x +30,当y 1>y 2时,0.1x +30>0.2x ,解得:x<300,当y1=y2时,0.1x+30=0.2x,解得:x=300,当y1<y2时,0.1x+30<0.2x,x>300,∵200<300,∴方式②省钱.故答案为:②.【点睛】本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.4、(1)见解析;(2)x<-3;x>-3;(3)BC=3√5.【解析】【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y =-2x -6与x 轴交点B 的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =√yy 2+yy 2=3√5【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.5、 (1) (32,3);(2) x ≥32.【解析】【分析】(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边的部分的x 的取值范围即可.【详解】(1)由题意得{y =2y ,y =−23y +4,解得{y =32,y =3.∴点A 的坐标为(32,3);(2)由图象得不等式2x ≥-23x +4的解集为x ≥32.【点睛】本题考查了一次函数图象交点坐标与二元一次方程组解的关系,以及利用函数图象解一元一次不等式,求不等式解集的关键在于准确识图,确定出两函数图象的对应的函数值的大小.。
八年级下册数学第十九章一次函数单元测试卷及答案
![八年级下册数学第十九章一次函数单元测试卷及答案](https://img.taocdn.com/s3/m/df121b1b647d27284b7351cf.png)
八年级下册数学第十九章一次函数单元测试卷一、选择题1.函数y =x -1x -2中,自变量x 的取值范围是( ) A .x ≥1 B .x >1 C .x ≥1且x ≠2 D .x ≠2 2.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.A ,B 两地相距20千米,甲、乙两人都从A 地去B 地,图中l 1和l 2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是( )A .4B .3C .2D .14.对于一次函数y =kx +k -1(k≠0),下列叙述正确的是( ) A .当0<k <1时,函数图象经过第一、二、三象限 B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)5.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-32,0) B .(-6,0)C .(-3,0)D .(-52,0)6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题7.已知函数y=2x2a+b+a+2b是正比例函数,则a=____,b=____.8.若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为____.9.已知(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1____y2.(填“>”“=”或“<”)10.将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第____象限.11.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是____________.12.正方形A1B1C1O和A2B2C2C1按如图方式放置,点A1,A2在直线y=x+1上,点C 1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为__________.13. 甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是____米.三、解答题14.一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k,b的值;(2)若一次函数y=kx+b的图象与x轴的交点为A(a,0),求a的值.15.若直线y=12x+2分别交x轴、y轴于A,C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,且S△ABC=6.(1)求点B和点P的坐标;(2)过点B作直线BQ∥AP,交y轴于点Q,求点Q的坐标和四边形BPCQ的面积.16.如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A,交y轴于点B,线段AB的中点E的坐标为(2,1).(1)求k,b的值;(2)P为直线AB上一点,PC⊥x轴于点C,PD⊥y轴于点D,若四边形PCOD为正方形,求点P的坐标.17.1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).位于什么高度?如果不能,请说明理由;(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?18.如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图②为列车离乙地路程y(千米)与行驶时间x(小时)的函数关系图象.(1)填空:甲、丙两地距离_______千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.19.如图,A(0,1),M(3,2),N(4,4),动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.20. A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D 两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其他费用不变,如何调运,使总费用最少?答案:一、1---6 CCBCAC二、7. 23 -138. 3 9. < 10. 四 11. x <-2 12. (3,2) 13. 175 三、14. 解:(1)由题意得⎩⎨⎧b =2,k +b =3,解得⎩⎨⎧k =1b =2(2)在函数解析式y =x +2中,令y =0,则x =-2,∴a =-2 15. 解:(1)B(2,0),P(2,3)(2)Q(0,-1),S 四边形BPCQ =616. 解:(1)k =-12,b =2(2)点P 的坐标为(43,43)或(-4,4)17. (1) 35 x +5 20 0.5x +15(2) (2)两个气球能位于同一高度.根据题意得x +5=0.5x +15,解得x =20,∴x+5=25,则此时,气球上升了20 min ,都位于海拔25 m 的高度(3)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在的位置的海拔相差y m ,则y =(x +5)-(0.5x +15)=0.5x -10,∵0.5>0,∴y 随x 的增大而增大,∴当x =50时,y 取得最大值15,即两个气球所在的位置海拔最多相差15 m 18. (1) 1050(2)当0≤x ≤3时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 1x +b 1,把(0,900),(3,0)代入得⎩⎨⎧b 1=900,3k 1+b 1=0,解得⎩⎨⎧k 1=-300,b 1=900,∴y=-300x +900,高速列车的速度为900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时),则点A 的坐标为(3.5,150);当3<x ≤3.5时,设高速列车离乙地的路程y 与行驶时间x 之间的函数关系式为y =k 2x +b 2,把(3,0),(3.5,150)代入得⎩⎨⎧3k 2+b 2=0,3.5k 2+b 2=150,解得⎩⎨⎧k 2=300,b 2=-900,∴y =300x -900,∴y =⎩⎨⎧-300x +900(0≤x ≤3)300x -900(3<x ≤3.5)19. (1)直线y =-x +b 交y 轴于点P(0,b),b =1+t ,当t =3时,b =4,∴y =-x +4(2)当直线y =-x +b 过M(3,2)时,2=-3+b ,解得b =5,∴5=1+t ,∴t =4;当直线y =-x +b 过N(4,4)时,4=-4+b ,解得b =8,∴8=1+t ,∴t=7,∴4<t<7(3)t=1时,落在y轴上;t=2时,落在x轴上20. (1)W=250x+200(30-x)+150(34-x)+240(6+x),即W=140x+12540(0≤x≤30)(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案:从A城至C乡运28台,A城至D乡运2台,从B城至C乡运6台,B城至D乡运34台;从A城至C乡运29台,A城至D乡运1台,从B 城至C乡运5台,B城至D乡运35台;从A城至C乡运30台,A城至D乡运0台,从B城至C乡运4台,B城至D乡运36台(3)W=(250-a)x+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12540,当0<a<140时,140-a>0,x=0时,W最小,此时从A城至C乡运0台,A城至D乡运30台,从B城至C乡运34台,B城至D乡运6台;当a=140时,W=12540,各种方案费用一样多;当140<a<200时,140-a<0,x=30时,W最小,此时从A城至C乡运30台,A城至D乡运0台,从B城至C乡运4台,B 城至D乡运36台。
人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)
![人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)](https://img.taocdn.com/s3/m/8aa742f776c66137ef061949.png)
一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。
人教版数学八年级下《第19章一次函数》单元检测题(含答案)
![人教版数学八年级下《第19章一次函数》单元检测题(含答案)](https://img.taocdn.com/s3/m/35cab8a93186bceb19e8bb8b.png)
人教版数学八年级下《第19章一次函数》单元检测题(含答案)一、选择题(每小题只有一个正确答案)1.若函数y=(k+1)x+k 2-1是正比例函数,则k 的值为( )A. 0B. ﹣1C. ±1D. 12.直角三角形中一个锐角的度数y 与另一个锐角的度数x 的函数解析式为( )A. y =180°-x(0°<x<90°)B. y=90°-x(0°<x<90°)C. y =180°-x(0°≤x ≤90°)D. y=90°-x(0°≤x ≤90°)3.甲、乙两人进行慢跑练习,慢跑路程y (单位:m)与所用时间t (单位:min)之间的关系如图所示,下列说法错误的是( )A. 前2 min,乙的平均速度比甲快B. 甲、乙两人8 min 各跑了800 mC. 5 min 时两人都跑了500 mD. 甲跑完800 m 的平均速度为100 m/min4.一次函数y =ax +b 交x 轴于点(-5,0),则关于x 的方程ax +b =0的解是( )A. x =5B. x =-5C. x =0D. 无法求解5.要得到函数23y x =+的图象,只需将函数2y x =的图象( )A. 向左平移3个单位B. 向右平移3个单位C. 向上平移3个单位D. 向下平移3个单位6.如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )A. B. C. D.7.某班进行乒乓球比赛,班主任老师为鼓励同学们积极参与,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则该老师购买笔记本的方案共有( )A.3种B.4种C.5种D.6种8.已知一次函数y=(m+2)x+(1-m ),若y 随x 的增大而减小,且此函数图像与y 轴的交点在x 轴上方,则m 的取值范围是( )A. m>-2B. m<1C. m<-2D. m>19.如图,直线y=﹣x+c 与直线y=ax+b 的交点坐标为(3,﹣1),关于x 的不等式﹣x+c≥ax+b 的解集为( )A. x≥﹣1B. x≤﹣1C. x≥3D. x≤310.在矩形ABCD 中, 1AB =, 2AD =, M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM V 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )A. B.C.D.二、填空题11.函数y =x 的取值范围是__________. 12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中,_____随____变化而变化,其中自变量是___,因变量是___.13.已知点P 的坐标是()23,,则点P 到x 轴的距离是______. 14.若点P (a ,b )在一次函数y = -2x +1的图像上,则2a +b +1= .15.设直线1:1l y kx k =+-和直线()2:1l y k x k =++(k 为正整数)及x 轴围成的三角形面积为k S ,则122017S S S +++L 的值为__________.三、解答题16.已知一次函数y=(2m+2)x+2+m ,y 随x 增大而减小,且其图像与y 轴交点在x 轴上方,求m 的取值范围。
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析
![人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析](https://img.taocdn.com/s3/m/5b151f83700abb68a982fb93.png)
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25004.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7 5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.16.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+17.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是.12.当m=时,函数y=(m﹣1)x+m是常值函数.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为.14.已知函数,则自变量x的取值范围.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.16.若函数y=(m﹣2)是正比例函数,则m的值是.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb0(填“>”、“=”或“<”).18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为cm;当AC=2AD时,AB的长度约为cm.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x时,y>2.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.参考答案与试题解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y【分析】根据函数的定义进行解答即可.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、一天的气温和时间的关系是函数关系,故本选项不合题意;B、y2=x中的y与x的关系不是函数关系,故本选项符合题意;C、在银行中利息与时间是函数关系,故本选项不合题意;D、正方形的周长与面积是函数关系,故本选项不合题意;故选:B.3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+2500【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.4.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.1【分析】把x的值代入函数关系式计算,得到答案.【解答】解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.6.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+1【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.根据一次函数的定义条件进行逐一分析即可.【解答】解:A、y=不是一次函数,是反比例函数,不合题意;B、y=3x+1是一次函数,符合题意;C、y=不是一次函数,不合题意;D、y=3x2+1不是一次函数,是二次函数,不合题意.故选:B.7.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化【分析】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A、S=x2是二次函数,故A错误;B、C=4x是正比例函数,故B正确;C、V=10﹣0.5t,是一次函数,故C错误;D、a=,是反比例函数,故D错误.故选:B.8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】根据一次函数图象的性质加以分析即可,一次项系数决定直线的走向,常数项决定直线与y轴的交点位置.【解答】解:根据一次函数的图象与性质分析如下:A.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a<0,b<0.A错误;B.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a>0,b<0.B正确;C.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a<0,b<0.C错误;D.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a>0,b<0.D错误;故选:B.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb<0,故此选项正确;B、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;故选:A.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限【分析】利用一次函数的性质逐一判断后即可确定正确的选项.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∵y的值随着x增大而减小,∴当x>0时,y<2,∴选项B符合题意;C、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项C不符合题意;D、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项D不符合题意;当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:B.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.12.当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为y=0.25x+6.【分析】根据题意可得等量关系:话费=月租费16元+超出40分钟部分话费,根据等量关系列出函数解析式即可.【解答】解:由题意得:y=16+(x﹣40)×0.25=16+0.25x﹣10=0.25x+6,故答案为:y=0.25x+6.14.已知函数,则自变量x的取值范围x>.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3>0,解得x>.故答案为:x>.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.16.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.【分析】直接利用正比例函数的定义直接得出答案.【解答】解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb<0(填“>”、“=”或“<”).【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴kb<0.故答案为:<18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=60千米代入剩余油量公式,计算即可;(3)计算出35﹣3=32升油能行驶的距离,与200千米比较大小即可得.【解答】解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米),∴行驶路程x(千米)与剩余油量Q(升)的关系式为Q=35﹣0.125x;(2)当x=60时,Q=35﹣0.125×60=27.5(升),答:当x=60(千米)时,剩余油量Q的值为27.5升;(3)他们能在汽车报警前回到家,(35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.【分析】(1)解方程得到y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时当a<0时,根据题意求出结论即可;(2)解方程得到y=(x2﹣4)a+2,根据一次函数的性质解答即可..【解答】解:(1)∵y﹣ax2+2a﹣1=0,∴y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时,﹣3a+2≤y≤5a+2,∴y的最大值是5a+2,对应的x的取值﹣1,最小值是﹣3a+2,对应的x的取值是3,当a<0时,5a+2≤y≤﹣3a+2,∴y的最大值是﹣3a+2,对应的x的取值3,最小值是5a+2,对应的x的取值是﹣1;(2)∵y﹣ax2+2a﹣1=0,∴y=(x2﹣4)a+2,当x2﹣4>0时,y随a的增大而增大,即x<﹣2或x>2时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:当0<x<1时,y随x的增大而减小.【分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是 5.5;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7cm;当AC=2AD时,AB的长度约为 4.2cm.【分析】(1)由位置可知,AB=0时,即AB两点重合,此时AC=BC=8,AD=BD=2.5,再根据当y1=AC时,即A与重合即可求出表格中m=CD.(2)根据表中数据描点连线即可.(3)根据函数图象分别找出y1=y2和y1=2y2时对应的x即可.【解答】解:(1)∵当x=0时,y1=8,y2=2.5,∴BC=8cm,BD=2.5,∴当x=8.0时,即A点与C点重合,∴y2=AB=CD=BC﹣BD=8﹣2.5=5.5(cm),故答案为:5.5(2)(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为5.7cm;当AC=2AD时,AB的长度约为4.2cm.故答案为:5.7;4.2.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数【分析】(1)直接利用一次函数的定义得出答案;(2)直接利用正比例函数的定义得出答案.【解答】解:(1)∵函数y=(m﹣1)x+n,∴当m﹣1≠0时,该函数是一次函数,即m≠1;(2)当m≠1,且n=0时,该函数是正比例函数.24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x<1时,y>2.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象可直接得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).函数图象如图所示.(2)由图象可得,当x<1时,y>2.故答案为:<1.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.【分析】(1)根据一次函数的图象是直线,画出图象即可;(2)根据图象过定点,代入得出k的值即可.【解答】(1)解:如图:共同特点是:此组直线均经过(2,4),∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4;∴验证发现此组直线均经过(2,4);(2)把(2,4)代入y=kx+5得4=2k+5,得k=﹣.。
八年级数学(下)第十九章《一次函数》单元测试卷含答案
![八年级数学(下)第十九章《一次函数》单元测试卷含答案](https://img.taocdn.com/s3/m/0fdcd4f37e192279168884868762caaedd33baa3.png)
八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19章一次函数单元检测卷
姓名:__________ 班级:__________
题号一二三总分
评分
一、选择题(共11题;共33分)
1.下列函数中为一次函数的是()
A. B. C. D. (、是常数)
2.下列函数中,“y是x的一次函数”的是()
A. y=2x﹣1
B. y=x2
C. y=1
D. y=1﹣x
3.一次函数y=kx+b的图象经过第一、三、四象限,则()
A. k>0,b>0
B. k>0,b<0
C. k<0,b>0
D. k<0,b<0
4.下列函数(1)y=πx;(2)y=2x﹣1;(3)y=;(4)y=22﹣x;(5)y=x2﹣1中,一次函数的个数是()
A. 4个
B. 3个
C. 2个
D. 1个
5.如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()
A. 当x=2时,y=5
B. 矩形MNPQ的面积是20
C. 当x=6时,y=10
D. 当y=时,x=10
6.对于函数,下列说法不正确的是()
A. 其图象经过点(0,0)
B. 其图象经过点(﹣1,)
C. 其图象经过第二、四象限
D. y随x的增大而增大
7.如图,把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式是()
A. y=-2x-3
B. y=-2x-6
C. y=-2x+3
D. y=-2x+6
8.结合正比例函数y=4x的图象回答:当x>1时,y的取值范围是()
A. y=1
B. 1≤y<4
C. y=4
D. y>4
9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是()
A. 2小时
B. 2.2小时
C. 2.25小时
D. 2.4小时
10.函数y= 中,自变量x的取值范围是()
A. x>2
B. x≥﹣3
C. x>﹣3
D. x≥2
11.把直线y=﹣x+l沿y轴向上平移一个单位,得到新直线的关系式是()
A. y=﹣x
B. y=﹣x+2
C. y=﹣x﹣2
D. y=﹣2x
二、填空题(共11题;共33分)
12.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y甲(千米),乙与学校相离y乙(千米),甲离开学校的时间为t(分钟).y甲、y乙与x之间的函数图象如图所示,则乙返回到学校时,甲与学校相距________千米.
13.已知正比例函数y=mx的图象经过(3,4),则它一定经过________ 象限.
14.如图,已知一次函数y=kx+b,观察图象回答下列问题:x________ 时,kx+b<0.
15.已知一次函数y=2x+4的图象经过点(m,8),则m=________
16.函数中,自变量x的取值范围是________。
17.如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________ .
18.若正比例函数y=(m﹣2)x m2﹣10的图象在第一、三象限内,则m=________ .
19.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=________
20.若一次函数y=(a+3)x+a﹣3不经过第二象限,则a的取值范围是________.
21.如图,直线y=-x与y=ax+3a(a≠0)的交点的横坐标为-1.5,则关于x的不等式-x>ax+3a>0的整数解为
________。
22.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为________.
三、解答题(共4题;共38分)
23.如图,直线y=﹣2x+8与两坐标轴分别交于P、Q两点,在线段PQ上有一点A,过A点分别作两坐标轴的垂线,垂足分别为B、C.
(1)若矩形ABOC的面积为5,求A点坐标.
(2)若点A在线段PQ上移动,求矩形ABOC面积的最大值.
24.若一次函数y=kx+4的图象经过点(1,2).
(1)求k的值;
(2)在所给直角坐标系中画出此函数的图象;
25.周末,小明和弟弟从家出发,步行去吉林省图书馆学习.出发2分钟后,小明发现弟弟的数学书忘记带了,弟弟继续按原速前往图书馆,小明按原路原速返回家取书,然后骑自行前往图书馆,恰好与弟弟同时到达图书馆.小明和弟弟各自距家的路程y(m)与小明步行的时间x(min)之间的函数图象如图所
示.
(1)求a的值.
(2)求小明取回书后y与x的函数关系式.
(3)直接写出小明取回书后与弟弟相距100m的时间.
26.一根合金棒在不同的温度下,其长度也不同,合金棒的长度和温度之间有如下关系:
温度℃…﹣5 0 5 10 15 …
长度cm … 9.995 10 10.005 10.01 10.015 …
(1)上表反映了温度与长度两个变量之间的关系,其中________是自变量,________是函数.
(2)当温度是10℃时,合金棒的长度是________ cm.
(3)如果合金棒的长度大于10.05cm小于10.15cm,根据表中的数据推测,此时的温度应在________℃~________℃的范围内.
(4)假设温度为x℃时,合金棒的长度为ycm,根据表中数据写出y与x之间的关系式________.(5)当温度为﹣20℃或100℃,合金棒的长度分别为________ cm或________ cm.
参考答案
一、选择题
B D B B D D D D
C A B
二、填空题
12. 20 13.第一、第三14.<2.5 15.2 16.x≠2 17.x>1 18.19.0
20.﹣3<a≤3 21.-2 22.
三、解答题
23.解:(1)设A(x,﹣2x+8),
∵矩形ABOC的面积为5,
∴x(﹣2x+8)=5,
解得:x1=,x2=,
∴y1=4﹣,y2=4+,
即A点的坐标是(,4﹣)或(,4+);(2)设A(x,﹣2x+8),矩形ABOC面积是S,
则S=x(﹣2x+8)=﹣2(x﹣2)2+8,
∵a=﹣2<0,
∴有最大值,
当x=2时,S的最大值是8,
即矩形ABOC的最大值是8.
24.解:(1)依题意,得
2=k+4,
解得,k=﹣2,.
即k的值是﹣2;
(2)由(1)得到该直线方程为y=﹣2x+4.
则当x=0时,y=4;当y=0时,x=2,即该直线经过点(0,4),(2,0),其图象如图所示:
25.(1)解:a=200÷2×8=800
(2)解:设小明取回书后y与x的函数关系式是y=kx+b.由题意,得解得
(4分)
∴小明取回书后y与x的函数关系式是y=200x﹣800.
(3)解:由题意100x﹣(200x﹣800)=100,解得x=7
∴7min后小明与弟弟相距100m.
26.(1)温度;长度
(2)10.01
(3)50;150
(4)y=0.001x+10
(5)9.98;10.1。