08MCS-51单片机扩展存储器的设计报告
第4章MCS-51单片机系统功能扩展
![第4章MCS-51单片机系统功能扩展](https://img.taocdn.com/s3/m/028b0b28e2bd960590c67769.png)
74LS373结构示意图
74LS373的引脚
引脚说明如下: D7~D0: 8位数据输入端。 Q7~Q0: 8位数据输出端。 G:数据输入锁存控制端:当G为“1” 时,锁存器 输出端与输入端数据相同;当G由“1” 变“0” 时,数据输入锁存器中。 OE#: 输出允许端。
P0口与地址锁存器74LS373的连接
4.1 系统扩展概述
4.1.1 最小应用系统
图4.1 MCS–51单片机最小化系统 (a) 8051/8751最小系统结构图;(b) 8031最小系统结构图
4.1.2 单片机系统扩展的内容与方法
1.单片机的三总线结构
图4.2 MCS–51单片机的三总线结构形式
(1)以P0口作为低8位地址/数据总线。 (2)以P2口的口线作高位地址线。 (3)控制信号线。 *使用ALE信号作为低8位地址的锁存控制信号。 *以PSEN#信号作为扩展程序存储器的读选通信号。 *以EA#信号作为内外程序存储器的选择控制信号。 *由RD#和WR#信号作为扩展数据存储器和I/O口的 读选通、写选通信号。 尽管MCS-51有4个并行I/O口,共32条口线,但由于系 统扩展需要,真正作为数据I/O使用的,就剩下P1 口和P3口的部分口线。
锁存器8282 功能及内部结构与74LS373完全一样,只是其引脚的排 列与74LS373不同 ,8282的引脚如下图。
4.2.2 74LS244和74LS245芯片
在单片机应用系统中, 扩展的三总线上挂接
很多负载, 如存储器、并行接口、A/D接口、显
示接口等, 但总线接口的负载能力有限, 因此常
3) 采用地址译码器的多片程序存储器的扩展
例3 要求用2764芯片扩展8031的片外程序存储器,分配的 地址范围为0000H~3FFFH。
项目 一 汽车单片机原理应用(任务五 MCS-51单片机系统扩展)
![项目 一 汽车单片机原理应用(任务五 MCS-51单片机系统扩展)](https://img.taocdn.com/s3/m/5f3c7cda03d276a20029bd64783e0912a2167c3b.png)
(3) MCS-51单片机系统地址空间的分配 系统空间分配:通过适当的地址线产生各外部扩展器件的片 选/使能等信号就是系统空间分配。
编址:编址就是利用系统提供的地址总线,通过适当的连接, 实现一个编址惟一地对应系统中的一个外围芯片的过程。编 址就是研究系统地址空间的分配问题。
片内寻址:若某芯片内部还有多个可寻址单元,则称为片内 寻址。
2)全地址译码法
利用译码器对系统地址总线中未被外扩芯片用到的高位 地址线进行译码,以译码器的输出作为外围芯片的片选信 号。常用的译码器有:74LS139,74LS138,74LS154等。 优点是存储器的每个存储单元只有惟一的一个系统空间地 址,不存在地址重叠现象;对存储空间的使用是连续的, 能有效地利用系统的存储空间。缺点是所需地址译码电路 较多,。全地址译码法是单片机应用系统设计中经常采用 的方法。
1。程序和数据之和不大于 存储器总容量。 2。程序必须存放在低地址,
数据存放在高地址。
三、并行I/O口扩展 MCS-51单片机具有四个并行8位I/O口原理均可用做双向并行 I/O接口,但在实际应用中,可提供给用户使用的I/O口只有P1 口和部分P3口线及作为数据总线用的P0口。在单片机的I/O口 线不够用的情况下,可以借助外部器件对I/O口进行扩展 (1)概述 1)单片机I/O口扩展方法 并行I/O口扩展的目的:为外围设备提供一个输入输出通道。 ①并行总线扩展的方法 ②串行口扩展方法(只介绍总线扩展方式下I/O接口扩展方法) ③I/O端口模拟串行方法
二、存储器的扩展 存储器是计算机系统中的记忆装置,用来存放要运行的程 序和程序运行所需要的数据。单片机系统扩展的存储器可分为 程序存储器和数据存储器两种类型。
(1)MCS-51单片机对外部存储器的扩展应考虑的问题
第7章MCS-51单片机的常用外设扩展
![第7章MCS-51单片机的常用外设扩展](https://img.taocdn.com/s3/m/6059d01b2af90242a895e58b.png)
(2)数据线
2732的8位数据线直接与单片机的P0口相连。P0口作 为地址/数据线分时复用。
(3)控制线
CPU执行2732中存放的程序指令时,取指阶段就是对 2732进行读操作。注意,CPU对EPROM只能进行读操作, 不能进行写操作。CPU对2732的读操作控制都是通过控制线 实现的。2732控制线的连接有以下几条:
2.硬件电路 单片机与6116的硬件连接如图7-4所示。
3.连线说明
• 地址线:A0~A10连接单片机地址总线P0.0~P0.7、P2.0、P2.1、P2.2 共11根;
• 数据线:I/O0~I/O7连接单片机的数据线,即P0.0~P0.7;
• 控制线:片选端连接单片机的P2.7,即单片机地址总线的最高位A15; 读允许线连接单片机的读数据存储器控制线;
• 对于没有内部ROM的单片机或者程序较长、片内ROM容 量不够时,用户必须在单片机外部扩展程序存储器。 MCS-51单片机片外有16条地址线,即P0口和P2口,因此 最大寻址范围为64K字节(0000H—FFFFH)。
• 这里要注意的是,MCS-51单片机有一个管脚 EA跟程序存 储器的扩展有关。如果接高电平,那么片内存储器地址范 围是0000H—0FFFH(4K字节),片外程序存储器地址范 围是1000H—FFFFH(60K字节)。如果接低电平,不使 用片内程序存储器,片外程序存储器地址范围为0000H— FFFFH(64K字节)。
1. 芯片选择
单片机扩展数据存储器常用的静态RAM芯片有6116(2K×8 位)、6264(8K×8位)、62256(32K×8位)等。
根据题目容量的要求我们选用SRAM6116,采 用单一+5V供电,输入输出电平均于TTL兼容,具有 低功耗操作方式,管脚如图7-3所示。
MCS-51单片机存储器的扩展
![MCS-51单片机存储器的扩展](https://img.taocdn.com/s3/m/57f09f9bdd3383c4bb4cd2cd.png)
第八章MCS-51单片机存储器的扩展第一节MCS-51单片机存储器的概述(一)学习要求1、熟悉MCS-51 单片机的系统总线及系统总线扩展结构2、掌握常用的片选方法:线选法和全地址译码法。
(二)内容提要1、三总线的扩展方法单片机内资源少,容量小,在进行较复杂过程的控制时,它自身的功能远远不能满足需要。
为此,应扩展其功能。
MCS-51单片机的扩展性能较强,根据需要,可扩展。
三总线是指地址总线、数据总线、控制总线。
1)地址总线MCS-51 单片机地址总线宽度为16 位,寻址范围为64K。
地址信号:P0 作为地址线低8 位,P2 口作为地址线高8 位。
2)数据总线MCS-51 单片机的数据总线宽度为8 位。
数据信号:P0 口作为8 位数据口,P0 口在系统进行外部扩展时与低8 位地址总线分时复用。
3)控制总线主要的控制信号有/WR 、/RD 、ALE 、/PSEN 、/EA 等。
2、系统的扩展能力MCS-51 单片机地址总线宽度为16 位,因此它可扩展的程序存储器和数据存储器的最大容量是64K(216)。
1)线选法线选法就是将多余的地址总线(即除去存储容量所占用的地址总线外)中的某一根地址线作为选择某一片存储或某一个功能部件接口芯片的片选信号线。
一定会有一些这样的地址线,否则就不存在所谓的“选片”的问题了。
每一块芯片均需占用一根地址线,这种方法适用于存储容量较小,外扩芯片较少的小系统,其优点是不需地址译码器,硬件节省,成本低。
缺点是外扩器件的数量有限,而且地址空间是不连续的。
2)全地址译码法由于线选法中一根高位地址线只能选通一个部件,每个部件占用了很多重复的地址空间,从而限制了外部扩展部件的数量。
采用译码法的目的是减少各部件所占用的地址空间,以增加扩展部件的数量。
3)译码器级连当组成存储器的芯片较多,不能用线选法片选,又没有大位数译码器时,可采用多个小位数译码器级连的方式进行译码片选.4)译码法与线选法的混合使用译码法与线选法的混合使用时,凡用于译码的地址线就不应再用于线选,反之,已用于线选的地址线就不应再用于译码器的译码输入信号.(三)习题与思考题1. 简要说明MCS-51 单片机的扩展原理。
MCS-51单片机大容量数据存储器扩展板设计
![MCS-51单片机大容量数据存储器扩展板设计](https://img.taocdn.com/s3/m/3a6999c1da38376baf1fae13.png)
Ke y wor d s: MCS一51 , da t a memOr V, F 2 9C51 00 4, ex pa ns i on bo ar d
F 2 9 C5 1 0 0 4作 为 扩展 存 储 体 。将 数 据 线 和 地 址 线 合 并使 用 , 对 F 2 9 C 5 1 0 0 4进 行 分 页访 问 , 解 决 了单 片 机 存储 单 元 及 端 口
不 足 的 问题 , 释放 了 I / 0 口。 文 中 以扩 展 8 MB的 数 据 存储 器 为例 , 给 出 了单 片机 扩展 板 的硬 件 电路 和软 件 程 序 。 关键词 : M C S 一 5 1 , 数据存储器 , F 2 9 C 5 1 0 0 4 , 扩 展 板
Байду номын сангаас
MC S 一 5 1单 片 机 对 数 据存 储 器 的 扩 展通 常采 用 数 据 总线 和 地址 总线 , 即P 0口和 P 2 口来 完 成 , 最大寻址空间可达 6 4 K B。 随 着单片机应用领域的推广和不断扩大 , 特 别 是 在 GP S数 据 采集
输 出 并 存 放 在 锁 存 器 中备 用 。 A 1 8 将 锁 存 器 直 接挂 在 数 据 总 线 上 ,并 为其 安 排 一 个 l / O 口地 A 1 6 A 1 5
《 工 业 控 制 计算 机 》 2 0 1 3年 第 2 6卷 第 1 期
MC S 一 5 1 单片机大容量数据存储器扩展板设计
De s i gn o f L a r ge — c a p a c i t y Da t a Me mo r y E x p a n s i o n B o a r d Ba s e d o n MCS- 5 1 MCU
MCS-51单片机内部资源的应用扩展
![MCS-51单片机内部资源的应用扩展](https://img.taocdn.com/s3/m/03cc0de2998fcc22bcd10df3.png)
个1 6位定时针 数器 。其工作模 式有 三种方式 :捕 获、 自
动重新装 载和波特率 发生器 。 2 O 地址= C H) T C N( 0 8 是用于 控制 优 2的特殊功 能寄存器 , 其格 式定义 如下
T 2 TC F : /2溢 出标志 : E F : / 2外部 标志 ; X 2 TC
T 2 R A 2 = 'c E = C P L0d; x
E S=I ;
EA=I ;‘ -
效时 , 7 L 0 冲后做线与 。 经 4S 7缓 同时, 这些外 中断源信 号经 编码 ( 4 S 4 ) 送 到单 片机 的某 I 7 L 18 后 / O端 口, 样可 达 到 这
既提 供外中断源 识别 信息 ,又 尽量减 少 I / O端 口资源 占用
收稿 日期 :0 10—8 2 1—4 1 十 吉鹤 长春理工大学光 电信息学院讲师 ( 吉林 , 长春 1 0 1 ) 302 。
・ 16 ・ 2
【 2 】张素 卿, 王洁渝 , 张颖. l h 画制作实例教 程. Fa 动 s 北京 : 清华大 学 出版社 , 9 2 , 1, 1.  ̄ y / f 3 】胡明.F s C 3多媒 体专项 设计实例精选.北京 : l h S a 电子工业 出
图 1行 列式键盘与 L D总线复用 C 变量 , 通过对 短定 时中断次数 计数的方 式, 一个 TC实现 用 I 多个定 时, 在多数情况下可 以满足实 这 际应用 的需求 。 应用 系 统 有 串行 通信 时 ,/ 1专用 于 产 生 串行 通 信 的 时 钟 信 TC
号。
P1 - 0 f; I x0
R L 接收 时钟 标志 ; C K: T L 发送时钟标 志 ; C K:
51单片机的扩展
![51单片机的扩展](https://img.taocdn.com/s3/m/69af105af242336c1eb95eb5.png)
(a)程序存储器的扩展
.程序存储器的作用----存放程序代码或常数表格
.扩展时所用芯片----一般用只读型存储器芯片(可以是 EPROM、E2PROM、 FLASH芯片等)。 .扩展电路连接 ---- 用EPROM 2732扩展程序存储器。 .存储器地址分析----究竟单片机输出什么地址值时,可以
一、系统扩展的含义
单片机中虽然已经集成了CPU、I/O口、定时器、 中断系统、存储器等计算机的基本部件(即系统资 源),但是对一些较复杂应用系统来说有时感到以 上资源中的一种或几种不够用,这就需要在单片机 芯片外加相应的芯片、电路,使得有关功能得以扩 充,我们称为系统扩展(即系统资源的扩充)。 需要解决的问题是单片机与相应芯片的接口电 路连接(即地址总线、数据总线、控制总线的连接) 与编程。
指向存储器中的某一单元。
.扩展时所用芯片
2732----4K EPROM
A7 A6 A5 A4 A3 A2 A1 A0 O0 O1 O2 GND Vcc A8 A9 A11 OE/Vpp A10 CE O7 O6 O5 O4 O3
2732引脚功能
A0-A11 CE 地址线 选片 输出允许/ 编程电源 数据线
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7
A8 A9 A10 A11
2732
CE OE
ALE
PSEN 图4.2 扩展电路
8031
2732
数据总线的连接: P0.0-P0.7(数据总线)----------------------------------------O0-O7 地址总线的连接: 经过锁存器373 P0.0-P0.7(地址总线低8位)---------------------------------- A0-A7 P2.0-P2.3(地址总线高8位中的4位)--------------------------- A8-A11 控制总线的连接: PSEN(程序存储器允许,即读指令) -------------------------- OE ALE(地址锁存允许)-------------------------------------接373的使能端 G
四 MCS-51单片机存储器系统扩展
![四 MCS-51单片机存储器系统扩展](https://img.taocdn.com/s3/m/6395ea55bb4cf7ec4bfed03d.png)
74LS373引脚
1、控制位OE: OE=0时,输出导通 2、控制位G: 接ALE 3、Vcc=+5V 4、GND接地
1 74LS373为8D锁存器,其主要特点在于:
控制端G为高电平时,输出Q0~Q7复现输入D0~ D7的状态;G为下跳沿时D0~D7的状态被锁存在Q0 ~Q7上。
MOV DPTR, #0BFFFH ;指向74LS373口地址
MOVX A, @DPTR ;读入
MOV @R0, A
;送数据缓冲区
INC R0
;修改R0指针
RETI
;返回
用74LS273和74LS244扩展输入输出接口
地址允许信号ALE与外部地址锁存信号G相连;
单片机端的EA与单片机的型号有关;
存储器端的CE与地址信号线有关。
P... 2.7 P2.0
ALE 8031
P... 0.7 P0.0
EA
PSEN
外部地址
G
锁存器
I...7
O... 7
I0 O0
A... 15
CE
A8
外部程序
存储器
A... 7 A0
D7. . . D0 OE
6264的扩展电路图
图中CS(CE2)和CE引脚均为6264的片选信号,由于该扩展电路 中只有一片6264,故可以使它们常有效,即CS(CE2)接+5V ,CE接地。6264的一组地址为0000H~1FFFH。
存储器地址编码
SRAM6264:“64”—— 8K×8b = 8KB 6264有13根地址线。 地址空间: A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 最低地址: 0 0 0 0 0 0 0 0 0 0 0 0 0 0000H 最高地址: 1 1 1 1 1 1 1 1 1 1 1 1 1 1FFFH MCS-51单片机寻址范围:64KB 26×210 = 216即16位地址线 地址空间: A15A14A13A12A11A10A9A8A7······A0 单片机
51系列单片机教程(共15章) 第8章
![51系列单片机教程(共15章) 第8章](https://img.taocdn.com/s3/m/69992d0c4a7302768e99396a.png)
在大多数应用的场合,还是并行扩展占主导地位。
8.3 读写控制、地址空间分配和外部地址锁存器 8.3.1 存储器扩展的读写控制 RAM芯片:读写控制引脚,记为OE*和WE* ,与MCS-51 的RD*和WR*相连。 EPROM芯片:只能读出,故只有读出引脚,记为OE* , 该引脚与MCS-51的PSEN*相连。 8.3.2 存储器地址空间分配
口部件的扩展下一章介绍。
系统扩展结构如下图:
MCS-51单片机外部存储器结构:哈佛结构 。 MCS-96单片机的存储器结构:普林斯顿结构。 MCS-51数据存储器和程序存储器的最大扩展空间各为 64KB。 系统扩展首先要构造系统总线。 8.2 系统总线及总线构造 8.2.1 系统总线 按其功能通常把系统总线分为三组: 1.地址总线(Adress Bus,简写AB) 2.数据总线(Data Bus,简写DB) 3.控制总线(Control Bus,简写CB) 8.2.2 构造系统总线
地址锁存器一般采用74LS373,采用74LS373的地址总 线的扩展电路如下图(图8-3)。
1.以P0口作为低8位地址/数据总线。 2.以P2口的口线作高位地址线。 3.控制信号线。 *使用ALE信号作为低8位地址的锁存控制信号。 *以PSEN*信号作为扩展程序存储器的读选通信号。 *以EA*信号作为内外程序存储器的选择控制信号。 *由RD*和WR*信号作为扩展数据存储器和I/O口的 读选通、写选通信号。 尽管MCS-51有4个并行I/O口,共32条口线,但由于系 统扩展需要,真正作为数据I/O使用的,就剩下P1 口和P3口的部分口线。 8.2.3 单片机系统的串行扩展技术
8.3.3 外部地址锁存器
常用的地址锁存器芯片有: 74LS373、8282、74LS573 等。 1. 锁存器74LS373 带有三态门的8D锁存器,其引脚其内部结构如下图。
第8章 单片机存储器扩展
![第8章 单片机存储器扩展](https://img.taocdn.com/s3/m/8126e526bd64783e09122b91.png)
译码法的另一个优点是若译码器输出端留 有剩余端线未用时,便于继续扩展存储器或I/O 口接口电路。
译码法和线选法不仅适用于扩展存储器(包 括外RAM和外ROM),还适用于扩展I/O口(包括各 种外围设备和接口芯片)。
译码有两种方法:部分译码法和全译码法。
部分译码:存储器芯片的地址线与单片机系统的地址线顺 次相接后,剩余的高位地址线仅用一部分参加译码。部分 译码使存储器芯片的地址空间有重叠,造成系统存储器空 间的浪费。 部分译码法的一个特例是线译码。所谓线译码就是 直接用一根剩余的高位地址线与一块存储器芯片的片选 信号CS相连,同时通过非门与另一块存储器芯片的片选 信号CS相连。 全译码:存储器芯片的地址线与单片机系统的地址线顺次 相接后,剩余的高位地址线全部参加译码。这种译码方法 存储器芯片的地址空间是唯一确定的,但译码电路相对复 杂。
2 2764
8031
CE GND
EA Vss
上图为8XX51单片机扩展单片程序存储器2764的电路 图。
其8个重叠的地址范围为如下: 0000000000000000~0001111111111111,即:0000H~1FFFH; 0010000000000000~0011111111111111,即:2000H~3FFFH; 0100000000000000~0101111111111111,即:4000H~5FFFH; 0110000000000000~0111111111111111,即:6000H~7FFFH; 1000000000000000~1001111111111111,即:8000H~9FFFH; 1010000000000000~1011111111111111,即:A000H~BFFFH; 1100000000000000~1101111111111111,即:C000H~DFFFH; 1110000000000000~1111111111111111,即:E000H~FFFFH。
MCS-51单片机存储器的综合扩展及软件设计
![MCS-51单片机存储器的综合扩展及软件设计](https://img.taocdn.com/s3/m/f197416c1ed9ad51f01df2a9.png)
3 数 据 存 储 器 的 扩展 2 程序 存 储 器 的 扩 展
MC 一 1 外 数 据 存 储 器 最 大 寻 址 空 间 也 为 6K S5 片 4。
程 序存储 器 与数 据存储 器 6 K的地 址重 叠 ;数 据存 4
储 器 和片 内最低 的 18个 字 节地 址重 叠 ,但 由 于它们 采 2
测试 数据存 储器 为外 部扩 展 R M,占用 片外 数据存 A
储 器 空 间 ,芯 片采 用 6 C 5 ,插 在 D 1 1 E嵌入 式锂 226 S26 电池智 能 时 钟/ AM 芯 片插 座 上 ,构成 非 易 失性 R R AM。 其 芯 片 及 其 接 口 如 图 2所 示 ( 5 0 A1 - ,选 中 D 1 1E S2 6 / 6C 5 ) ( 2 2 6 地址 空间 :0 0 H- F F 。 0 0 7 F H) 片 外数 据存 储 器 和 片外 数 据 区和 扩 展 I0口统 一 编 / 址 ,所 有 外 围 接 口的地 址 均 占用 RA 地 址 单元 , 因此 M 测 试数 据存储 区设 计为 3 K,由 6 C 5 2 2 2 6芯 片扩展 而成 。 另 外 8 C 1 内数 据存储 空 间 1 8个字节 。 03 片 2
温室 内空气温度
温室 内土壤水分古量
8. H 5 %R 5 4. H 9 %R 5
数值 型 数值 型
数值 型 数值 型
2 字节 ( 高位在前 ) 2 字节 ( 高位在前 )
温室内土壤温度
温室内 C 2 O 浓度 温室 内关照强度
2.2MCS—51单片机的存储器
![2.2MCS—51单片机的存储器](https://img.taocdn.com/s3/m/862c2ad97f1922791688e83d.png)
2.2 MCS—51单片机的存储器MCS-51的存储器结构与常见的微型计算机的配置方式不同,它把程序存储器和数据存储器分开,各有自己的寻址系统、控制信号和功能。
程序存储器用来存放程序和始终要保留的常数,数据存储器通常用来存放程序运行中所需要的常数或变量。
MCS-51的存储器结构如图2.4所示。
在本节中我们将对单片机的内部数据存储器、内部程序存储器和外部存储器分别作一介绍。
图2.4 MCS-51存储器配置2.2.1 内部数据存储器对于8051单片机,其内部共有256个数据存储器单元,其中低128字节(00H~7FH)为真正的用户RAM区,其空间分配如图2.5所示;高128字节(80H~FFH)为特殊功能寄存器区。
1. 内部数据存储器低128单元在低128字节存储单元中,前32个单元(00H~1FH)作为工作寄存器使用,这32个寄存器分作4组,每组由8个通用寄存器(R0~R7)组成,组号依次为0、1、2和3。
通过对程序状态字中RS1和RS0的设置,可以决定选用哪一组工作寄存器,通常没有选中的单元也可作为一般的数据缓存使用。
系统上电复位时,默认选中第0组寄存器。
在表2-1中给出了工作寄存器地址表。
表2-1 工作寄存器地址表工作寄存器中R0和R1可以进行直接寻址或间接寻址,而R2~R7只可以进行直接寻址。
通用寄存器为CPU提供了数据就近存取的便利,大大提高了单片机的处理速度。
在工作寄存器后的16个数据单元(20H~2FH),它们既可以作为一般的数据单元使用,由可以按位对每个单元进行操作,因此这16个数据单元又称作位寻址区。
位寻址区共计128位,其位地址为00H~0FH,位地址表如表2-2。
表2-2 内部RAM位寻址区的位地址。
第05讲 MCS-51单片机存储器的扩展
![第05讲 MCS-51单片机存储器的扩展](https://img.taocdn.com/s3/m/a1c56fc24028915f814dc205.png)
0000 0000 0000)
最高地址07FFH(A15 A14 A13 A12 A11 A10…A0 = 0000 0111 1111 1111)
6.2.1 扩展EPROM型程序存储器
由于P2.3~P2.6的状态与该芯片2716的寻址无关,所以 P2.3~P2.6可为任意状态,从0000至1111共有16种组合,因 此实际上该2716芯片可有16个地址范围。这种多地址范围的 重叠现象是线选法本身造成的,因此地址范围的非惟一性是 线选法的一大缺点。
第05讲 MCS-51单片机存储器的扩展
本讲要解决的问题? 单片机作为一个芯片级的微型计算机,是工业测控领域 里广泛使用的一种机型,可谓“麻雀虽小,五脏俱全”,它 具备运行应用程序的基本条件,所提供的资源能够满足一般
应用系统的需求,然而对于一些特殊的情况,其内部资源也 显得不够用(比如,程序存储器的容量太小,不能容纳更大 的应用程序),且必须通过在单片机芯片外围的扩展才能达 到应用系统的要求。那么,如何对单片机的资源进行扩展, 进行资源扩展过程中要注意哪些问题呢?
6.2.2 扩展EEPROM型程序存储器
EEPROM兼有程序存储器和数据存储器的特点,既可以作 为程序存储器,又可以作为数据存储器使用。 典型的EEPROM芯片有:2816(2K×8位)、2817(2K×8 位)、2864A(8K×8位)等。
6Hale Waihona Puke 2.2 扩展EEPROM型程序存储器
EEPROM对硬件电路无特殊要求,操作简便。早期设计的 EEPROM是依靠片外高电压进行擦写,近期已将高压电源集成 在芯片内,可以直接使用单片机系统的5V电源在线擦除和改 写;在芯片的引脚设计上,8KB的EEPROM 2864A与同容量的 EPROM 2764和静态RAM 6264是兼容的,给用户的硬件设计和 调试带来了极大的方便。 EEPROM具有ROM的非易失性,又具有RAM的随机读/写特 性,每个单元可以重复进行1万次改写,保留信息的时间可
单片机课件8 单片机的存储器的扩展
![单片机课件8 单片机的存储器的扩展](https://img.taocdn.com/s3/m/c2c155d380eb6294dd886cd6.png)
MCS-51单片机的地址总线为16位,它的存储器最大的 扩展容量为216,即64K个单元。
2013-6-27
单片机原理及其应用
20
8.3 程序存储器扩展
8.3.2 外部程序存储器扩展原理及时序
(一) 外部程序存储器扩展使用的控制信号
(1)EA——用于片内、片外程序存储器配置, 输入信号。当EA=0时,单片机的程序存储器全部为扩 展的片外程序存储器;当EA=1 时,单片机的程序存 储器可由片内程序存储器和片外程序存储器构成,当 访问的空间超过片内程序存储器的地址范围时,单片 机的CPU自动从片外程序存储器取指令。 (2)ALE——用于锁存P0口输出的低8位地址。 (3)PSEN ——单片机的输出信号,低电平时, 单片机从片外程序存储器取指令;在单片机访问片内 2013-6-27 单片机原理及其应用 程序存储器时,该引脚输出高电平。
2013-6-27 单片机原理及其应用 11
8.2 半导体存储器
8.2.2 只读存储器 只读存储器(Read Only Memory,ROM),ROM 一般用来存储程序和常数。ROM是采用特殊方式写入 的,一旦写入,在使用过程中不能随机地修改,只能从 其中读出信息。与RAM不同,当电源掉电时,ROM 仍 能保持内容不变。在读取该存储单元内容方面,ROM 和RAM相似。只读存储器有掩膜ROM、PROM、EPROM、 E2PROM(也称EEPROM)、Flash ROM等。它们的区 别在于写入信息和擦除存储信息的方式不同。
51单片机外部存储器的扩展
![51单片机外部存储器的扩展](https://img.taocdn.com/s3/m/3dfe0b350740be1e640e9a33.png)
一、地址线的译码
存储器芯片的选择有两种方法:线选法和译码法。
1、线选法。所谓线选法,就是直接以系统的地址线作为 存储器芯片的片选信号,为此只需把用到的地址线与存储 器芯片的片选端直接相连即可。 2、译码法。所谓译码法,就是使用地址译码器对系统的 片外地址进行译码,以其译码输出作为存储器芯片的片选 信号。译码法又分为完全译码和部分译码两种。
MCS-51系列单片机片内外程序存储器的空 间可达64KB,而片内程序存储器的空间只有 4KB。如果片内的程序存储器不够用时,则需 进行程序存储器的扩展。
MCS-51存储器的扩展
存储器扩展的核心问题是存储器的编址 问题。所谓编址就是给存储单元分配地址。
由于存储器通常由多个芯片组成,为此 存储器的编址分为两个层次:
扩展数据存储器常用静态RAM 芯片: 6264(8K×8位)、62256(32K×8位)、 628128(128K×8位)等。
MCS-51存储器的扩展
P2.7~P2.0
ALE P0.0~P0.7 8031
EA PSEN
A15~A8 高8位地址
CLK Q7~Q0 A7~A0 I0~I7 地址锁存器
D0~D 7
二、以P2口作为高8位的地址总线
P0口的低8位地址加上P2的高8位地址就可以形成16位的 地址总线,达到64KB的寻址能力。
实际应用中,往往不需要扩展那么多地址,扩展多少用 多少口线,剩余的口线仍可作一般I/O口来使用。
三、控制信号线 ALE:地址锁存信号,用以实现对低8位地址的锁存。 PSEN:片外程序存储器读选通信号。 EA:程序存储器选择信号。为低电平时,访问外部程序存储 器;为高电平时,访问内部程序存储器。
MCS51单片机原理及应用 实验报告
![MCS51单片机原理及应用 实验报告](https://img.taocdn.com/s3/m/0c9e5e5a7e21af45b207a809.png)
单片机原理与应用实验报告学校:合肥工业大学姓名:吕增威学号:班级:计算机科学与技术08-03班目录前言 ------------------------3 第一章 MC51 单片机原理及应用软件实验实验1:系统认识实验--------------------6实验6:数据排序实验(验证性)---------- 11第二章 MC51 单片机原理及应用硬件实验实验1:广告灯实验----------------------15实验2:P1 口实验(验证性)-------------21实验16:串口转并口实验 ----------------32 实验心得与体会---------------37前言一.单片机原理实验的任务单片机原理实验是单片机原理及应用课程的一部分,它的任务是:1.通过实验进一步了解和掌握单片机原理的基本概念、单片机应用系统的硬件设计及调试方法。
2.学习和掌握单片机应用系统程序设计技术。
3.提高应用计算机的能力及水平,提高逻辑动手能力。
二.实验设备单片机实验所使用的设备由计算机、单片机实验开发系统(,其中计算机是软件开发平台,主要完成程序编辑、编译、下载程序等任务;单片机实验开发系统是硬件开发平台,是基于51/196 单片机的扩展实验系统。
计算机和单片机实验开发系统之间是通过RS232 串行接口进行通信的。
单片机实验开发系统配有开关电源、单片机、晶振、存储器、可编程并行接口芯片、键盘显示控制芯片、24 键键盘、六位LED 数码管显示、A/D 及D/A 转换芯片、简单输出口2个、简单输入口1 个、逻辑电平输入开关、发光二极管显示电路,并配有小直流电机、步进电机、继电器、音响等驱动电路。
在计算机软件的控制下可完成单片机基本实验及综合3设计性实验项目。
所有的MCS51 单片机原理及应用课程实验都是在这套实验系统上完成的。
Keil与Proteus的联合使用: Keil C51 6.02的使用:1.打开Keil,新建一个程序文件(File--New),在上面输入要调试的程序,保存为*.asm格式;2.新建一个工程(project--Newproject),保存,在CPU选项了选择Atmel--AT89C51,点击确定,在弹出的选项框中选择“否”。
第六章MCS-51单片机存储器的扩展
![第六章MCS-51单片机存储器的扩展](https://img.taocdn.com/s3/m/6f6c4e16c5da50e2524d7f47.png)
这些SRAM的引脚功能描述如下: A0~An:地址输入线;对6116,n=10;对6264,n=12;其他的类推。 D0~D7:双向数据线; CE:是片选输入线,低电平有效;6264的CS1为高电平,且CE为 低电平时才选中该芯片。 WE:写允许信号输入线,低电平有效; OE:读选通信号输入线,低电平有效; VCC:工作电源+5V。 GND:电源地。
程 序 存 储 器 E P R O M 的 扩 展
CPU读取的指令有两种情况:一是不访问数据存储器的指令; 二是访问数据存储器的指令。因此,外部程序存储器就有两种操 作时序。
外部程序存储器的操作时序
程 序 存 储 器 E P R O M 的 扩 展
外部程序存储器的操作时序
程 序 存 储 器 E P R O M 的 扩 展
程 序 存 储 器 E P R O M 的 扩 展
3.扩展多片EPROM的扩展电路 与单片EPROM扩展电路相比,多片EPROM的扩展除片选线CE外, 其它均与单片扩展电路相同。图中给出了利用27128扩展64k字节 EPROM程序存储器的方法。片选信号由译码选通法产生。
程 序 存 储 器 E P R O M 的 扩 展
所谓总线,就是连接系统中各扩展部件的一组公共信号线。 按其功能通常把系统总线分为三组:即地址总线、数据总线和控 制总线。
1. 地址总线(Address Bus) 地址总线用于传送单片机送出的地址信号,以便进行存储单 元和I/O端口的选择。地址总线的数目决定着可直接访问的存储 单元的数目。例如n位地址,可产生2n 个连续地址编码,因此可 访问2n个存储单元,即通常所说的寻址范围为2n地址单元。MCS51单片机存储器扩展最多可达64kB,即216地址单元,因此,最多 可需16位地址线。这16根地址线是由P0口和P2口构建的,其中P0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.3.3 外部地址锁存器
常用的地址锁存器芯片有: 74LS373、8282、74LS573 等。 1. 锁存器74LS373 带有三态门的8D锁存器,其引脚其内部结构如下图。
地址锁存器一般采用74LS373,采用74LS373的地址总 线的扩展电路如下图(图8-3)。
1.以P0口作为低8位地址/数据总线。 2.以P2口的口线作高位地址线。 3.控制信号线。 *使用ALE信号作为低8位地址的锁存控制信号。 *以PSEN*信号作为扩展程序存储器的读选通信号。 *以EA*信号作为内外程序存储器的选择控制信号。 *由RD*和WR*信号作为扩展数据存储器和I/O口的 读选通、写选通信号。 尽管MCS-51有4个并行I/O口,共32条口线,但由于系 统扩展需要,真正作为数据I/O使用的,就剩下P1 口和P3口的部分口线。 8.2.3 单片机系统的串行扩展技术
第8章 MCS-51单片机扩展存储器的设计 8.1 概述
片内的资源如不满足需要,需外扩存储器和 I/O功能部 件:系统扩展问题,内容主要有: (1)外部存储器的扩展(外部存储器又分为外部程序存
储器和外部数据存储器)
(2) I/O接口部件的扩展。
本章介绍MCS – 51单片机如何扩展外部存储器,I/O接
MCS-51 发出的地址是用来选择某个存储器单元进行读 写,
要完成这种功能,必须进行两种选择: “片选”和 “单元选择”。
存储器空间分配除考虑地址线连接外,还讨论各存储 器芯片在整个存储空间中所占据的地址范围,
常用的存储器地址分配的方法有两种:线性选择法 (简称线选法)和地址译码法(简称译码法)。 1. 线选法 直接利用系统的高位地址线作为存储器芯片(或I/O接 口芯片)的片选信号。 优点:电路简单,不需要地址译码器硬件,体积小, 成本低。 缺点:可寻址的器件数目受到限制,地址空间不连 续,地址不唯一。 例 某一系统,需要外扩8KB的EPROM(2片2732),4KB 的RAM(2片6116),这些芯片与MCS-51单片机地址 分配有关的地址线连线,电路如下图。
2732:4KB程序存储器,有12根地址线A0~A11,分别与 单片机的P0口及P2.0~P2.3口相连。2732(1)的片 选端接A15(P2.7),2732(2)的片选端接A14 (P2.6)。 当要选中某个芯片时,单片机P2口对应的片选信号引 脚应为低电平,其它引脚一定要为高电平。 6116:2KB数据存储器,需要11根地址线作为单元的选 择,而剩下的P2口线(P2.4~P2.7)作为片选线。 两片程序存储器的地址范围: 2732(1)的地址范围:7000H~7FFFH; 2732(2)的地址范围: B000H~BFFFH; 6116(1)的地址范围:E800H~EFFFH; 6116(2)的地址范围:D800H~DFFFH。
在大多数应用的场合,还是并行扩展占主导地位。
8.3 读写控制、地址空间分配和外部地址锁存器 8.3.1 存储器扩展的读写控制 RAM芯片:读写控制引脚,记为OE*和WE* ,与MCS-51 的RD*和WR*相连。 EPROM芯片:只能读出,故只有读出引脚,记为OE* , 该引脚与MCS-51的PSEN*相连。 8.3.2 存储器地址空间分配
部分译码:仅部分高位地址线参加译码。
(1)74LS138(3~8译码器)
引脚如图 8-5 ,译码功能如表 8-1 ( P167)所示。当译 码器的输入为某一个固定编码时,其输出只有某一 个固定的引脚输出为低电平,其余的为高电平。
74LS138译码器真值表
输
G1 G2A* G2B*
入
C B A
输
出
口部件的扩展下一章介绍。
系统扩展结构如下图:
MCS-51单片机外部存储器结构:哈佛结构 。 MCS-96单片机的存储器结构:普林斯顿结构。 MCS-51数据存储器和程序存储器的最大扩展空间各为 64KB。 系统扩展首先要构造系统总线。 8.2 系统总线及总线构造 8.2.1 系统总线 按其功能通常把系统总线分为三组: 1.地址总线(Adress Bus,简写AB) 2.数据总线(Data Bus,简写DB) 3.控制总线(Control Bus,简写CB) 8.2.2 构造系统总线
系统扩展的首要问题: 构造系统总线,然后再往系统总线上“挂”存储器 芯片或I/O接口芯片,“挂”存储器芯片就是存储器 扩展,“挂”I/O接口芯片就是I/O扩展。 MCS-51由于受引脚数目的限制,数据线和低8位地址线 复用。 为了将它们分离出来,需要外加地址锁存器,从而构 成与一般CPU相类似的片外三总线,见图8-2。
优点:串行接口器件体积小,与单片机接口时需要的
I/O口线很少(仅需3-4根),提高可靠性。 串行扩展可以减少芯片的封装引脚,降低成本,简化 了系统结构,增加了系统扩展的灵活性。为实现串 行扩展,一些公司(例如PHILIPS和ATMEL公司等)
已经推出了非总线型单片机芯片,并且具有SPI
(Serial Periperal Interface)三线总线和I2C 公用双总线的两种串行总线形式。与此相配套,也 推出了相应的串行外围接口芯片。 缺点:串行接口器件速度较慢
线选法特点:简单明了,不需另外增加硬件电路。只 适于外扩芯片不多,规模不大的单片机系统。 2. 译码法
最常用的译码器芯片:74LS138(3-8译码器)74LS139 (双 2-4 译码器) 74LS154(4-16 译码器)。可根据 设计任务的要求,产生片选信号。 全译码:全部高位地址线都参加译码;
Y7* Y6* Y5* Y4* Y3* Y2* Y1* Y0*
( 2) 74LS139(双2-4译码器) 引脚如下图。真值表如表8-2(P168)所示。
下面以74LS138为例, 介绍如何进行地址分配。 例 要扩8片8KB的RAM 6264,如何通过74LS138把64KB 空间分配给各个芯片?
采用的是全地址译码方式,单片机发地址码时,每次 只能中一个存储单元。同类存储器间不会产生地 址重叠的问题。 如果用74LS138把64K空间全部划分为每块4KB,如何 划分呢?见下图。