工程热力学.ppt课件
合集下载
第二章——工程热力学课件PPT
100 U1A2 60 Q2B1 U 2B1 40
Q2B1 80
第二章 讨论课
2、一个装有2kg工质的闭口系经历了如下 过程:过程中系统散热25kJ,外界对系统 做功100KJ,比热力学能减小15KJ/kg,并 且整个系统被举高1000m。试确定过程中系 统动能的变化。
Q E W
第二章 讨论课
空
Q
调
Q W
T
第二章 讨论课
➢ 计算题
1、对某种理想气体加热100KJ,使其由状 态1沿途径A可逆变化到状态2,同时对外做 功60KJ。若外界对该气体做功40KJ,迫使 它沿途径B可逆返回状态1。问返回过程中该 气体是吸热还是放热?热量是多少?
Q1A2 U1A2 W1A2 Q2B1 U 2B1 W2B1
V
1b 2
2c1
状态参数 ( Q W ) ( Q W )
1a 2
1b 2
热力学能及闭口系热一律表达式
定义 dU = Q - W 热力学能U 状态函数
Q = dU + W Q=U+W
闭口系热一律表达式
!!!两种特例 绝功系 Q = dU 绝热系 W = - dU
热力学能U 的物理意义
不可能制成的”
§2-2 热一律的推论热力学能
热力学能的导出 闭口系循环
Q W
( Q W ) 0
热力学能的导出
( Q W ) 0 对于循环1a2c1
p1
( Q W ) ( Q W ) 0
b
1a 2
2c1
a
c
对于循环1b2c1
2
( Q W ) ( Q W ) 0
• u : 比参数 [kJ/kg] • 热力学能总以变化量出现,热力学能零点人 为定
(精品)工程热力学(全套467页PPT课件)
从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
工程热力学ppt课件
1906--1912年,
德国物理化学家
能斯特根据低温
下化学反应中大
量的实验事实,
归纳出热力学第
三定律即绝对零
度不能达到,
使热力学理论更
趋完善。
15
1942年,美国的凯
南在热力学的基础
上提出了有效能的
概念,使人们对能
源利用和节能认识
又上了一个台阶。
J. H. Keenan1900—1977
完整编辑ppt
2. 微观方法————统计热力学
从物质的微观结构出发,应用统计方法研究大量
分子乱运动的统计平均性质,导出热力学定理,
可从微观机理解释热现象的本质。 但模型假设
有近似性,且分析计算繁复。
完整编辑ppt
21
工程上要求简单、可靠,故以宏观方
法为主。
工程热力学常采用抽象、概括、理想
化的方法,这种略去次要因素,抓住
3.何雅玲《工程热力学精要分析及典型题精解》西安
交通大学出版社2000
完整编辑ppt
23
煤、 天然气等)的化学能 。
地下燃料资源日益减少,不能满足飞
速发展的生产力对动力的需求。 世界
各国对原子能、太阳能、地热能, 乃
至海洋能、生物能等各种新能源正大
力开展多方面的研究工作,以期找到
新的能源出路。
完整编辑ppt
6
热
能
的
动
力
利
用
举
例
:
内
燃
机
的
工
作
过
程
完整编辑ppt
7
B、蒸汽动力装置工作过程
工程热力学
Engineering Thermodynamics
《工程热力学》课件
理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。
工程热力学ppt课件
{
但 T < T0 ,Q不能传回 T 0 。
结论:温差使过程不可逆。
进一步分析,为使Q能传回 T 0 ,需加热泵,但要消耗一 定的功 W泵 ,也不可逆(比较水泵)。
压力差的影响:压力差使过程不可逆。
F α P f
pA > F cos α + f pA = F cos α + f
非准静态过程—nonequilibrium process 非准静态过程 准静态过程, 准静态过程,不可逆 准静态过程, 准静态过程,可逆
定义:工质从中吸取或向之排放热能的物质系统。
热源
{
温度高低
温度变化
{ {
高温热源(热源 — heat source) 低温热源(冷源—heat sink) 恒温热源(constant heat reservoir)
变温热源(variational heat reservoir)
3.1 热力系统(热力系、系统、体系)和 外界及边界 系统(thermodynamic system or system)
3.6 热力系示例图
刚性绝热喷管
取红线为系统—闭口系 取喷管为系统—开口系绝热系?
§1-3 工质的热力状态及基本状态数
• 热力学状态— state of thermodynamic system
— 某一瞬间系统所呈现的宏观物理状况
• 状态参数— state of properties
— 描述系统所处状态的宏观物理量 a) .状态参数是宏观量,反映了大量粒子运动的宏观平均效果, 只有平衡态才有统一的状态参数。 常用的状参有:p, T,V,U,H,S等, 其中p,T,V称为基本状态参数。 b)状态参数的特性:状态的单值函数 物理上:与过程无关 dx ∫ dx = 0, ∫abc dx = ∫adc 数学上:其微分是全微分
《工程热力学》课件
空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
《工程热力学》PPT课件
n从到0,放热→0 →吸热;等温线右内能增加,左内能减少。 例如压缩机压缩过程:K>n>1
第五节 热力学第二定律
重点掌握:
1、热力学第二定律的表述; 2、热力循环的热效率; 3、卡诺循环的热效率。
一、热力学第二定律的表述
1、热量不可能自发的、不付任何代价的由一个低温物 体传至高温物体。—热量不可能自发地从冷物体转移到
K= cp/cν:绝热指数
3、参数间的关系: 由 Pvk=常数 →P1v1k=P2v2k →P1/P2=(v2/v1)k 又 Pv=RT →P=RT/v →Tvk-1=常数 →T1/T2=(v2/v1)k-1 →T2=T1(v1/v2)k-1 =T1εk-1 4、过程量的计算: 推出: w=-u q=w+ u q=0
一、定容过程
1、定义:过程进行中系统的容积(比容)保持不变
的过程。
2、过程方程式:ν =常数 3、参数间的关系: 由 PV=RT 知,P/T=常数, 所以: P1/P2=T1/T2, P1/T1=P2/T2 4、过程量的计算: 又 q=Δ u+w, 由 W=∫PdV, 且 dV=0
→ w=0
→ q=Δ u
热力系统从一个平衡状 态到另一个平衡状态的变 化历程。
力过程。
二、膨胀功W(J)
气体在热力过程中由于体 积发生变化所做的功(又 称为容积功)
规定:热力系统对外界做功为正,外界对热
力系统做功为负。 由δ W=PdV得: dV>0,膨胀,δ W>0, 系统对外界做功; dV<0,压缩,δ W<0, 外界对系统做功; dV=0,δ W=0, 系统与外界之间无功量 传递。
四、课程的特点、要求、学时分配、考核
特点:本课程理论性较强,无多少实物供参照,课堂上的 讲授以理论分析和推导为主。
工程热力学全部课件pptx
与外界没有物质和能量交 换的系统。
孤立系统
封闭系统
开放系统
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持 不变。
热力学第二定律
热力学循环
由一系列热力学过程组成的闭合路径,如卡诺循环、布雷顿循环 等。
02 热力学第一定律
能量守恒原理
1
能量不能自发地产生或消失,只能从一种形式转 换为另一种形式。
2
在一个孤立系统中,总能量始终保持不变。
3
能量转换过程中,各种形式的能量在数量上保持 平衡。
热力学第一定律表达式
Q = ΔU + W
其中,Δ(mv^2)/2表示系 统动能的变化量;
开口系统能量方程可表示 为:Q = ΔU + Δ(mv^2)/2 + Δ(mgh) + Δ(mΦ)。
Δ(mgh)表示系统势能的 变化量;
03 热力学第二定律
热力学第二定律表述
不可能从单一热源取热,使之完全转 换为有用的功而不产生其他影响。
热力学系统内的不可逆过程总是朝着 熵增加的方向进行。
具有加和性
理想气体基本过程
01
等温过程
温度保持不变的过程,如等温膨胀 和等温压缩
等容过程
体积保持不变的过程,如等容加热 和等容冷却
03
02
等压过程
压力保持不变的过程,如等压加热 和等压冷却
绝热过程
系统与外界没有热量交换的过程, 如绝热膨胀和绝热压缩
04
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1.1 工质及热力系
工 质:实现热能和机械能相互转化的媒介物质
热源(高温热源) :工质从中吸取热能的物系
冷源(低温热源) :接受工质放出热能的物系
为了研究问题方便,热力学中常把分析对象从周围 物体中分割出来,研究它与周围物体之间的能量和物 质的传递。
.
热力系统(热力系):人为分割出来作为热 力学分析对象的有限物质系统。 外 界:热力系统以外的部分。 边 界:系统与外界之间的分界面。
四. 平衡状态
如果在不受外界影响的条件下,系统的状 态能够始终保持不变,则系统的这种状态称为 平衡状态。
.
实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡
势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
.
热力平衡状态满足:
热平衡:组成热力系统的各部分之间没有热量的 传递。
由于压力计的测压元件处于某种环境压力 的作用下,因此压力计所测得的压力是工质的真 实压力 p (或称绝对压力)与环境压力 p b 之差,叫做表压力 p e斯卡(简称帕) 符
号: p a ,
1pa 1N/m2
工程单位:
标准大气压(atm , 也称物理大气压) 巴 (bar) 工程大气压(at) 毫米汞柱(mmHg) 毫米水柱(mmH2O)
压
气 燃机
燃 气 轮
料
机
空
气
.
压缩制冷装置系统简图
.
地源热泵
.
本课程的主要内容
基本概念 热力学第一定律 理想气体的性质 理想气体的热力过程 热力学第二定律 水蒸汽 湿空气 制冷循环
.
第一章 热力学基本概念 1.1 工质及热力系 1.2 热力系的宏观描述 1.3 基本状态参数 1.4 热力过程及热力循环
传热: ✓ 借传热来传递能量不需要物体的宏观移动。 ✓ 传热是相互接触的物体间存在温差时发生的 能量传递过程。
.
二、容积功
气缸
热 源
左止点
p
1
可逆过程的容积功在p—v图中的表示
飞轮 续41
右止点
2
2
w 1 pdv v .
p 1
2
2
w 1 pdv
v
*强调:1. p v 图上曲线下面的面积代表容积功
.
正向循环:
把热能转化为机械能的循环叫正向循环,也叫 动力循环,它使外界得到功。
正向循环的经济性-热效率:
.
热源
Q1
热机
Q2
WQ1 Q2
冷源
t
w net q1
逆向循环:
把热量从低温热源传给高温热源的循环叫逆 向循环,也叫制冷循环或热泵循环,它消耗外 界的功。 制冷循环的经济性-制冷系数: q 2
力平衡:组成热力系统的各部分之间没有相对位 移。
自然界的物质实际上都处于非平衡状态, 平衡只是一种极限的理想状态。
工程热力学通常只研究平衡状态。
.
1-3 基本状态参数
一. 温标
定义:温标是指温度的数值表示法 温标三要素:
测温物质及其测温属性
基准点
分度方法
.
经验温标与绝对温标:
任选一种物质的某一测温属性,采用以 上温标的规定所得到的温标称为经验温标, 经验温标依赖于测温物质的物理性质。热力 学理论指出可以建立一种不依赖于测温物质 的性质的温标,即热力学绝对温标。
Ek
1 2
mc2
Ep mgz
.
系统的总储存能(简称总能)系统的储存能
热力学能 U
宏观动能
Ek
宏观位能
EP
系统的储存能 E
即 EUEkEP
1kg工质的总能为比总能:
e u 1 c. 2 gz 2
二. 闭口系统的热力学第一定律表达式
能量平衡关系式: 输入系统的能量-输出系统的能量=系统总储存能
转换为功的
气缸
活塞
飞轮
热 源
工质、机器和热源组成的 系统
假设过程是可逆的。
问题:过程可逆的条件是什么?
.
气缸
可逆过程模拟
活塞
飞轮
热 源
左止点
p
1
v
.
气缸
热 源
左止点
活塞
飞轮 续41
p
1
2
v
.
气缸
热 源
左止点
p
1
飞轮 续41
2
v
.
气缸
热 源
左止点
p
1
飞轮 续41
2
v
.
气缸
热 源
左止点
p
1
飞轮 续41
.
二、 过程量-功和热量
只要存在不平衡势差的推动作用,系统和外 界就会发生能量的交换-作功或传热
功的力学定义:功是力和力方向上位移的乘积。
W Fdx
2
W 1 2
Fdx
1
功的热力学定义:
在力差推动下,热力系统通过边界而传递的能 量,且其全部效果可表现为举起重物。
.
观察下面的过程,看热能是如何
热能的利用
1.热 利 用—将热能直接用于加热物体,以满足 烘干、采暖、熔炼等需要。
2.动力利用—通过各种热能动力装置将热能转换 成机械能或者转换成电能加以利用, 为人类的日常生活、工农业生产及 交通运输提供动力。
.
能量的转换和传递过程
一 次 能 源
风 水 化核地太
力学
热阳
能 能 能能能能
燃 烧
裂变
闭口系:系统与外界没有物质交 换,传递能量只有热量和功量两 种形式。
在热力过程中(如图)系统 从外界热源取得热量Q;对外界 做膨胀功W。
量的变化
QWE2E1
.
2.3 开口系统的热力学第一定律表达式 (稳定流动能量方程式)
实际热力设备中实施的能量转换往往是工质在热力装置中 循环不断地流经各相互衔接的热力设备,完成不同的热力过 程后才能实现能量转。因此,分析这类热力设备时,常采用 开口系即控制容积的分析方法。
热可以变为功,功也可以变为热,在相互转变时 能的总量是不变的。
根据热力学第一定律,为了获得机械能,则必须 花费热能或其他形式能量,第一类永动机是不可能实 现的。
.
热力学第一定律的能量方程式:
就是系统变化过程中的能量平衡方程式,任何 系统、任何过程均可根据以下原则建立能量方程式:
进入系统 的能量
-
离开系统 的能量
.
热力学绝对温标(热力学温度或绝对温度) 开尔文在热力学第二定律的基础上,从理论
上引入的与测温物质性质无关的温标。它可作为 标准温标,一切经验温标均可以用此温标来校正。
符号为T,单位为K(称“开尔文”)
规定水的三相点为基准点,并规定此点的温 度为273.16K
.
二. 压力
定义:单位面积上所受的垂直作用力称为压力 (即压强) 压力计:测量工质压力的仪器。常见的压力计有 压力表和U型管。
.
热量的定义
热力系统与外界之间仅仅由于温度差则通过
边界传递的能量,用Q表示(比热量为q)
热量的正负 热力学中约定:系统吸热为正,放热为负 热量的单位
国际单位:J(焦耳),工程单位:kJ(千焦)
.
可逆过程中热量的计算:
定义:热力系和外界之间仅仅由于温度不同而
通过边界传递的能量.
T
计算公式:
2
1
q Tds
工质流动而作的功称为推动功,进出系统的推动功之差 称为流动功(也是系统为维持工质流动所需的功)。
如图所示,当质量为m的工质在外力的推 动下克服压力p移动距离h,进入截面积为 A的气缸时,则外界所作的推动功为
孤立系统:系统与外界既无能量交换,也无物质交换
.
1-2 热力系的宏观描述
一. 热力学状态:
工质在某一瞬间呈现出来的宏观物理状 况,简称状态。
二. 状态参数:
描述工质所处状态的宏观物理量。如温度、 压力等。
.
三. 状态参数的特性:
状态参数都是宏观的物理量。
状态参数是热力系统的单值函数,其值只取 决于初终态,与过程无关。
2
q12 1 Tds
热量单位:J,kJ
ds
s
0
1
s2 s
.
五. 热力循环
热力循环定义 工质由某一初态出,经历一系列热力状态变化
后,又回到原来初态的封闭热力过程称为热力循环, 简称循环。
显然循环的目的是为了实现预期连续的能量转 换,而不可能是为了获得工质状态的变化。
.
循环的经济性 经 济 性 指 标 = 得 到 的 收 获 花 费 的 代 价
.
一. 稳定流动与流动功
工程上实施的能量转换过程一般都是在工质不 断流过热工设备时进行的。常用的热工设备除了起 动、停止或者加减负荷外,大部分时间是在外界影 响不变的条件下稳定运行的。这种流动状况称为稳 定流动,即开口系统内各点流体的热力状态和流动 情况都不随时间变化。
.
推动功 工质在流过热工设备时,必须受外力推动,这种推动
边界可以是实在的,也可以是假想的; 可以是固定的,也可以是移动的。
.
系统与边界:
系统
系统
以空间为系统,进、 出口边界均为假想边 界,系统与外界有物 质交换
以气缸内气体为系统, 活塞表面上的边界是移 动边界,系统与外界没 有物质交换
.
热力系统的分类:
根据系统与外界物质交换、热量交换的情况 闭口系统:系统与外界无物质交换,系统内质量恒 定不变,也称控制质量 开口系统:系统与外界有物质交换,系统被划定在 一定容积范围内,也称控制容积 绝热系统:系统与外界无热量交换
功率:单位时间内完成的功,单位:W(瓦)
1.1 工质及热力系
工 质:实现热能和机械能相互转化的媒介物质
热源(高温热源) :工质从中吸取热能的物系
冷源(低温热源) :接受工质放出热能的物系
为了研究问题方便,热力学中常把分析对象从周围 物体中分割出来,研究它与周围物体之间的能量和物 质的传递。
.
热力系统(热力系):人为分割出来作为热 力学分析对象的有限物质系统。 外 界:热力系统以外的部分。 边 界:系统与外界之间的分界面。
四. 平衡状态
如果在不受外界影响的条件下,系统的状 态能够始终保持不变,则系统的这种状态称为 平衡状态。
.
实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡
势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
.
热力平衡状态满足:
热平衡:组成热力系统的各部分之间没有热量的 传递。
由于压力计的测压元件处于某种环境压力 的作用下,因此压力计所测得的压力是工质的真 实压力 p (或称绝对压力)与环境压力 p b 之差,叫做表压力 p e斯卡(简称帕) 符
号: p a ,
1pa 1N/m2
工程单位:
标准大气压(atm , 也称物理大气压) 巴 (bar) 工程大气压(at) 毫米汞柱(mmHg) 毫米水柱(mmH2O)
压
气 燃机
燃 气 轮
料
机
空
气
.
压缩制冷装置系统简图
.
地源热泵
.
本课程的主要内容
基本概念 热力学第一定律 理想气体的性质 理想气体的热力过程 热力学第二定律 水蒸汽 湿空气 制冷循环
.
第一章 热力学基本概念 1.1 工质及热力系 1.2 热力系的宏观描述 1.3 基本状态参数 1.4 热力过程及热力循环
传热: ✓ 借传热来传递能量不需要物体的宏观移动。 ✓ 传热是相互接触的物体间存在温差时发生的 能量传递过程。
.
二、容积功
气缸
热 源
左止点
p
1
可逆过程的容积功在p—v图中的表示
飞轮 续41
右止点
2
2
w 1 pdv v .
p 1
2
2
w 1 pdv
v
*强调:1. p v 图上曲线下面的面积代表容积功
.
正向循环:
把热能转化为机械能的循环叫正向循环,也叫 动力循环,它使外界得到功。
正向循环的经济性-热效率:
.
热源
Q1
热机
Q2
WQ1 Q2
冷源
t
w net q1
逆向循环:
把热量从低温热源传给高温热源的循环叫逆 向循环,也叫制冷循环或热泵循环,它消耗外 界的功。 制冷循环的经济性-制冷系数: q 2
力平衡:组成热力系统的各部分之间没有相对位 移。
自然界的物质实际上都处于非平衡状态, 平衡只是一种极限的理想状态。
工程热力学通常只研究平衡状态。
.
1-3 基本状态参数
一. 温标
定义:温标是指温度的数值表示法 温标三要素:
测温物质及其测温属性
基准点
分度方法
.
经验温标与绝对温标:
任选一种物质的某一测温属性,采用以 上温标的规定所得到的温标称为经验温标, 经验温标依赖于测温物质的物理性质。热力 学理论指出可以建立一种不依赖于测温物质 的性质的温标,即热力学绝对温标。
Ek
1 2
mc2
Ep mgz
.
系统的总储存能(简称总能)系统的储存能
热力学能 U
宏观动能
Ek
宏观位能
EP
系统的储存能 E
即 EUEkEP
1kg工质的总能为比总能:
e u 1 c. 2 gz 2
二. 闭口系统的热力学第一定律表达式
能量平衡关系式: 输入系统的能量-输出系统的能量=系统总储存能
转换为功的
气缸
活塞
飞轮
热 源
工质、机器和热源组成的 系统
假设过程是可逆的。
问题:过程可逆的条件是什么?
.
气缸
可逆过程模拟
活塞
飞轮
热 源
左止点
p
1
v
.
气缸
热 源
左止点
活塞
飞轮 续41
p
1
2
v
.
气缸
热 源
左止点
p
1
飞轮 续41
2
v
.
气缸
热 源
左止点
p
1
飞轮 续41
2
v
.
气缸
热 源
左止点
p
1
飞轮 续41
.
二、 过程量-功和热量
只要存在不平衡势差的推动作用,系统和外 界就会发生能量的交换-作功或传热
功的力学定义:功是力和力方向上位移的乘积。
W Fdx
2
W 1 2
Fdx
1
功的热力学定义:
在力差推动下,热力系统通过边界而传递的能 量,且其全部效果可表现为举起重物。
.
观察下面的过程,看热能是如何
热能的利用
1.热 利 用—将热能直接用于加热物体,以满足 烘干、采暖、熔炼等需要。
2.动力利用—通过各种热能动力装置将热能转换 成机械能或者转换成电能加以利用, 为人类的日常生活、工农业生产及 交通运输提供动力。
.
能量的转换和传递过程
一 次 能 源
风 水 化核地太
力学
热阳
能 能 能能能能
燃 烧
裂变
闭口系:系统与外界没有物质交 换,传递能量只有热量和功量两 种形式。
在热力过程中(如图)系统 从外界热源取得热量Q;对外界 做膨胀功W。
量的变化
QWE2E1
.
2.3 开口系统的热力学第一定律表达式 (稳定流动能量方程式)
实际热力设备中实施的能量转换往往是工质在热力装置中 循环不断地流经各相互衔接的热力设备,完成不同的热力过 程后才能实现能量转。因此,分析这类热力设备时,常采用 开口系即控制容积的分析方法。
热可以变为功,功也可以变为热,在相互转变时 能的总量是不变的。
根据热力学第一定律,为了获得机械能,则必须 花费热能或其他形式能量,第一类永动机是不可能实 现的。
.
热力学第一定律的能量方程式:
就是系统变化过程中的能量平衡方程式,任何 系统、任何过程均可根据以下原则建立能量方程式:
进入系统 的能量
-
离开系统 的能量
.
热力学绝对温标(热力学温度或绝对温度) 开尔文在热力学第二定律的基础上,从理论
上引入的与测温物质性质无关的温标。它可作为 标准温标,一切经验温标均可以用此温标来校正。
符号为T,单位为K(称“开尔文”)
规定水的三相点为基准点,并规定此点的温 度为273.16K
.
二. 压力
定义:单位面积上所受的垂直作用力称为压力 (即压强) 压力计:测量工质压力的仪器。常见的压力计有 压力表和U型管。
.
热量的定义
热力系统与外界之间仅仅由于温度差则通过
边界传递的能量,用Q表示(比热量为q)
热量的正负 热力学中约定:系统吸热为正,放热为负 热量的单位
国际单位:J(焦耳),工程单位:kJ(千焦)
.
可逆过程中热量的计算:
定义:热力系和外界之间仅仅由于温度不同而
通过边界传递的能量.
T
计算公式:
2
1
q Tds
工质流动而作的功称为推动功,进出系统的推动功之差 称为流动功(也是系统为维持工质流动所需的功)。
如图所示,当质量为m的工质在外力的推 动下克服压力p移动距离h,进入截面积为 A的气缸时,则外界所作的推动功为
孤立系统:系统与外界既无能量交换,也无物质交换
.
1-2 热力系的宏观描述
一. 热力学状态:
工质在某一瞬间呈现出来的宏观物理状 况,简称状态。
二. 状态参数:
描述工质所处状态的宏观物理量。如温度、 压力等。
.
三. 状态参数的特性:
状态参数都是宏观的物理量。
状态参数是热力系统的单值函数,其值只取 决于初终态,与过程无关。
2
q12 1 Tds
热量单位:J,kJ
ds
s
0
1
s2 s
.
五. 热力循环
热力循环定义 工质由某一初态出,经历一系列热力状态变化
后,又回到原来初态的封闭热力过程称为热力循环, 简称循环。
显然循环的目的是为了实现预期连续的能量转 换,而不可能是为了获得工质状态的变化。
.
循环的经济性 经 济 性 指 标 = 得 到 的 收 获 花 费 的 代 价
.
一. 稳定流动与流动功
工程上实施的能量转换过程一般都是在工质不 断流过热工设备时进行的。常用的热工设备除了起 动、停止或者加减负荷外,大部分时间是在外界影 响不变的条件下稳定运行的。这种流动状况称为稳 定流动,即开口系统内各点流体的热力状态和流动 情况都不随时间变化。
.
推动功 工质在流过热工设备时,必须受外力推动,这种推动
边界可以是实在的,也可以是假想的; 可以是固定的,也可以是移动的。
.
系统与边界:
系统
系统
以空间为系统,进、 出口边界均为假想边 界,系统与外界有物 质交换
以气缸内气体为系统, 活塞表面上的边界是移 动边界,系统与外界没 有物质交换
.
热力系统的分类:
根据系统与外界物质交换、热量交换的情况 闭口系统:系统与外界无物质交换,系统内质量恒 定不变,也称控制质量 开口系统:系统与外界有物质交换,系统被划定在 一定容积范围内,也称控制容积 绝热系统:系统与外界无热量交换
功率:单位时间内完成的功,单位:W(瓦)