通信原理之调制与解调

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W
y (t) = x(t) h(t, τ ) + n(t) h(t, τ ) n ( t) • M m ˆ m ˆ =m y ( t)
UjXRV
m
P (C ) := P (m ˆ = m)
UjXkV
P (E ) := P (m ˆ = m)
q:L
UjXjV
y ( t) = x ( t) + n ( t)
y = ( y 0 , y1 , . . . , y N − 1 )
3e
x i = (xi,0 , xi,1 , . . . , xi,N −1 ) n = ( n 0 , n1 , . . . , n N − 1 ) n fN (n ) =
N −1 j =0
.j
fN ( nj ) =
1 exp − (π N0 )N/2
yi,0 ψ 0 ( t) y (t) n ( t) ψ 1 ( t)
X X X X X X
xi,1
yi,1
xi,N −1 ψ N − 1 ( t) xi xj x i ( t) x j ( t) ψ N − 1 ( t)
yi,N −1
yi
yj
j@3
q:L
UjXRkV
y = xi + n
UjXR8V
N −1 j =0
n2 j
UjXR8V
N0
UjXReV
{ψj (t)}
{ xi ( t ) }
{ψj (t)}
{ xi ( t ) }
{ψj (t)}
n ( t)
n⊥ (t) = n(t) − n⊥ (t)
E n ( t) n j = E

N −1 j =0
nj ψj (t)
UjXRdV
nj , j = 0 , . . . , N − 1
ReZJ
• J@SaE 8@SaE
39
M M {xi } 360◦
j@d J@SaE
Es
{x}
.j

Es
{x}
j@d
8@SaE
jXj
{x i } xi ( t ) j 0 j N −1 yj = =
∞ −∞ ∞ −∞
{xi (t)}
j@3
y (t)ψj (t) dt xi (t)ψj (t) dt +
UjXRdV
n ⊥ ( t) n ⊥ ( t)
UjXR3V UjXkNV
Y2 m
UjXR8V
y
Y1
UjXkNV
Y2
Y1
jXk j@RR
n1 y2
n2
m
x n1 n2
j@RR f
y 1 = x + n1 m ˆ y 2 = n1 + n2
Nk
jXjXj
_2p2`bB#BHBiv h?2Q`2K
.j
jXe
∆ − 72
∆ − 52
∆ − 32
−∆ 2
+∆ 2
k@SJ
∆ + 32
∆ + 52
∆ + 72
j@9 3@SJ
M =2
j@8 "SaE
"SaE
Eb √ ψ0 (t)
− Eb

0
j@8
+ Eb
"SaE
jXk J@ZJ J@SaE
• J@ZJ
J@ZJ

xi M @SJ
3j
.
J@ZJ
X := {xi } =
{xi } + i {xi }
√ √ M −1) ∆( M −1) ∆ ∆ , . . . , − , , . . . , 2 2 2 2
{xi } =
{ xi } = − ∆ (
J@ZJ
Es = M =4
j@e ZSaE f yfR ReZJ
(M − 1)∆2 6
9@ZJ ZSaE Gh1
UjXRyV
KQ/mHiBQM j@9 J@SJ SJ TmHb2 KTHBim/2 SJ
M
−1) −1) X := {xi } = − ∆(M , . . . , −∆ , ∆ , . . . , ∆(M 2 2 2 2
Biblioteka Baidu
J@SJ
Es =
1 M
i
| xi | 2 =
(M 2 − 1)∆2 12 ψ0 (t)
i
1 ∝ arg max exp − (y − x i )T Σ −1 (y − x i ) i 2 T −1 = arg min (y − x i ) Σ (y − x i )
ψ j ( t)
xi (t)ψj (t) dt,
j = 0, . . . , N − 1 mi , i = 0, . . . , M − 1
UjXdV
3R
.
xi,0 ψ 0 ( t) x ( t) ψ 1 ( t)
X X X
xi,0 ψ 0 ( t) x ( t) ψ 1 ( t)
X X X X X X
KQ/2K KQ/mHiBQM f /2KQ/mHiBQM
jXR
j@R f
f
{ P [ mi ] } • m
m { mi }
x ( t) { xi ( t ) }
j@R
y ( t)
m ˆ { mi }
Ts m m M { m0 , . . . , m M − 1 } x( t )
dN
.
fc x ( t) • [fc − W/2, fc + W/2]
xi,1
···
xi,1
xi,N −1 ψN −1 (t)
j@j {xi,j }
xi,N −1 ψN −1 (t)
{xi (t)}
xi ( t )
x i = (xi,0 , xi,1 , . . . , xi,N −1 ) mi ⇐⇒ xi (t) ⇐⇒ x i = (xi,0 , xi,1 , . . . , xi,N −1 )
f JS
UjXk3V
NR
.
f JS UjXkkV
y2 Y1 fY 2 |m,Y Y 1 ( ·) m
fY 2 |m,Y Y 1 (·) = fY 2 |Y 1 (·)
UjXk3V
m
y2
JS
jX8 JS
fY 2 |m,Y Y 1 (·) = fY 2 |Y 1 (·) y2
UjXkNV
n ⊥ ( t)
38
.
=
∞ −∞
∞ −∞
N0 δ ( t − τ ) ψ j ( t) ψ k ( τ ) d t d τ 2
N0 ∞ = ψj (t)ψk (t) dt 2 −∞ N0 = δj,k 2 {nj } xi,0 ψ 0 ( t) x ( t) ψ 1 ( t)
X X X
0 N (0, N ) 2
UjXR9V
xi mi M
j@e
log2 (M )
{x} 10 11 10 01 00 01 00 11 {x} 10 00 11 01 {x} 10 10 10 00 00 00 00 10 11 10 11 00 01 00 01 10 11 11 11 01 01 01 01 11 {x}
j@e Gh1
ZSaE
UjXR3V
jXR UjXR8V y0 xi,0 n = + 0 y1 xi,1 n1
UjXRNV
3d
.
y = xi + n y, xi , n n ∼ CN (0, N0 )
UjXR8V
UjXkyV
n
N (0, N0 /2)
n⊥ (t)
jXjXR
JS
P (C )
N −1 j =0
xi ( t ) = {ψj (t)} 0
xi,j ψj (t),
i = 0, . . . , M − 1
j,
N − 1,
∞ −∞
ψj (t)ψ (t) dt = δj, = xi ( t )
∞ −∞
1, 0,
j= j= .
j@j
UjXeV
UjX8V
xi,j xi,j =
f
xi,j
N
M
Es,i =
∞ −∞
x2 i ( t) d t
=
∞ −∞
N −1 j =0
2
xi,j ψj (t)
dt =
N −1 j =0
x2 i,j = x i
2
UjX3V
∞ −∞
2 (xi (t) − xk (t)) dt = x i − x k
2
UjXNV
3k
jXR
.j
ψ0 (t) x i ( t ) = xi ψ 0 ( t )
U3XkkV
UjX9V
x( t ) x(t) y ( t)
y ( t)
R f
j@R j@k
3y
n m {mi } x {x i }
j@k
.j
y P (y |x )
f
{ P [ mi ] }
m ˆ {mi }
RX kX
P (E )
jXk
m x ( t) M M M x( t ) N M
UjX8V
x(t) = {xi (t), i = 0, . . . , M − 1}
N −1 j =0 2 yj −2 N −1 j =0
(yj − xi,j )2 = i
xi,j yj +
N −1 j =0
x2 i,j
CM(y , x i ) = 2y x i − x i CM
ZSaE +Q``2HiBQM K2i`B+
2
UjXkeV
xi
4
JS JG JS
Ny
JG JS JS JAJP hm`#Q
y
m
x
y2
G
y1
y1
m ˆ
m
x
y2
G
y1
G−1
y2
y2
m ˆ
y1
j@Rk
j@Rk
y2
y 1 = G(y 2 )
(y 1 , y 2 ) = (y 1 , G−1 (y 1 ))
P (mi |y 1 , y 2 ) = P (mi |y 1 )
JS JG jXj q:L UjXk8V UjXkeV
∞ −∞
UjXRRV
n(t)ψj (t) dt
UjXRkV
= xi,j + nj yj {nj }
E [ nj ] = E [ nj nk ] =

xi,j
nj
q:L
−∞ ∞ −∞
E [n(t)] ψj (t) dt = 0
∞ −∞
UjXRjV
E [n(t)n(τ )] ψj (t)ψk (τ ) dt dτ
UjXk8V
3N
.
N −1 j =0 (yj
y − xi
2
UjXk8V
− xi,j )2
m
j@N
mi , i = 0 , . . . , M − 1
y − xi
2
ψ 1 ( t) y = x1 + n x1
x0 ψ 0 ( t)
j@N
mi
N −1 j =0 (yj N −1 j =0
− xi,j )2
jXj JS
P (E )
m
0
1
P (m = 0) = 0.9, P (m = 1) = 0.1 m ˆ =0 90%
Y =y Y =y m = m1
R RXR
m = m0 P ( mi | Y = y )
m ˆ MAP = arg max P (mi |Y = y )
i
UjXkRV
33
.j
JS JS
f UjXkdV
m ˆ MAP = arg max P (mi |Y 1 = y 1 , Y 2 = y 2 )
i
f
JS
UjXkRV
UjXkdV
y1 y2 P (mi |Y 1 = y 1 , Y 2 = y 2 ) ∝ P (mi ) fY 1 ,Y Y 2 |m (y 1 , y 2 |mi ) = P (mi ) fY 1 |m (y 1 |mi ) ·fY 2 |m,Y Y 1 (y 2 |mi , y 1 )
N −1 k=0 N −1 k=0
n ( t) −

nk ψk (t) nj
E [nk nj ] ψk (t)
= =
−∞
E [n(t)n(τ )] ψj (τ ) dτ −
N0 N0 ψj (t) − ψ j ( t) 2 2 =0 n ⊥ ( t) nj , j = 0 , . . . , N − 1
P (C )
P (mi |Y = y ) =
JS
fY |m (y |mi )P (mi ) ∝ fY |m (y |mi )P (mi ) fY (y ) {P (mi )}
UjXkkV
P ( mi ) =
JS jX9
1 , M
i = 0, . . . , M − 1 fY |m (y |mi )
0 n ∼ N (0, N I) 2
y 1 = G(y 2 )
y2
JG
Nj
.
j@Rj
m
y = x +n
0 n ∼ N (0, N I) 2
m ˆ
j@Rj q:L
q:L
Σ y = x + n,
UjXjyV RX
{ni }
UjXjyV
n ∼ N (0, Σ )
Σ
JG
m ˆ ML = arg max f (y |mi )
N −1 j =0
fy|mi (yj |xi,j ) =
1 exp − (π N0 )N/2
N −1 j =0 (yi
N0
− xi,j )2
UjXk9V
log fY |m (y |mi )
log fY |m (y |mi ) =
−N 1 log(π N ) − 2 N0
N −1 j =0
(yj − xi,j )2
q:L
.j
jXjXk
jXjXR
A``2H2pM+2 h?2Q`2K
f aAaP j@Ry bBM;H2@BMTmi bBM;H2@QmiTmi f
x
y
y1 x ( t) m {mi } x {x i } P (y 1 , y 2 |x )
j@Ry f
y2
{P [mi ]}
m ˆ {mi }
f
JS
P (mi |Y = y )
KtBKmK HBF2HB?QQ/
KmK HBF2HB?QQ/ 7mM+iBQM
fY |m (y |mi )
JG JS
KtB@
m ˆ ML = arg max fY |m (y |mi )
i
UjXkjV
UjXR8V
UjXReV
fY |m (y |mi ) = log(·)
相关文档
最新文档