计算机算法设计与分析实验1
算法实验报告
算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
武汉理工大学算法分析实验报告
学生实验报告书实验课程名称算法设计与分析开课学院计算机科学与技术学院指导教师姓名李晓红学生姓名学生专业班级软件工程zy1302班2015-- 2016学年第一学期实验课程名称:算法设计与分析同组者实验日期2015年10月20日第一部分:实验分析与设计一.实验内容描述(问题域描述)1、利用分治法,写一个快速排序的递归算法,并利用任何一种语言,在计算机上实现,同时进行时间复杂性分析;2、要求用递归的方法实现。
二.实验基本原理与设计(包括实验方案设计,实验手段的确定,试验步骤等,用硬件逻辑或者算法描述)本次的解法使用的是“三向切分的快速排序”,它是快速排序的一种优化版本。
不仅利用了分治法和递归实现,而且对于存在大量重复元素的数组,它的效率比快速排序基本版高得多。
它从左到右遍历数组一次,维护一个指针lt使得a[lo..lt-1]中的元素都小于v,一个指针gt 使得a[gt+1..hi]中的元素都大于v,一个指针i使得a[lt..i-1]中的元素都等于v,a[i..gt]中的元素都还未确定,如下图所示:public class Quick3way{public static void sort(Comparable[] a, int lo, int hi){if (lo >= hi)return;int lt = lo, i = lo + 1, gt = hi;Comparable pivot = a[lo];第二部分:实验调试与结果分析一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)1、调试方法描述:对程序入口进行断点,随着程序的运行,一步一步的调试,得到运行轨迹;2、实验数据:"R", "B", "W", "W", "R", "W", "B", "R", "R", "W", "B", "R";3、实验现象:4、实验过程中发现的问题:(1)边界问题:在设计快速排序的代码时要非常小心,因为其中包含非常关键的边界问题,例如:什么时候跳出while循环,递归什么时候结束,是对指针的左半部分还是右半部分排序等等;(2)程序的调试跳转:在调试过程中要时刻记住程序是对那一部分进行排序,当完成了这部分的排序后,会跳到哪里又去对另外的那一部分进行排序,这些都是要了然于心的,这样才能准确的定位程序。
算法课设实验报告(3篇)
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法分析与设计实验报告合并排序快速排序
算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
算法与分析实验报告
算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。
本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。
二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。
具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。
实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。
三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。
- 实现顺序搜索和二分搜索算法。
2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。
3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。
4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。
- 多次重复同样的操作,取平均值以减小误差。
5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。
四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。
- 插入排序:执行效率一般,在中等规模数据排序中表现良好。
- 快速排序:执行效率最高,适用于大规模数据排序。
2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。
- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。
实验结果表明,不同算法适用于不同规模和类型的问题。
正确选择和使用算法可以显著提高程序的执行效率和性能。
五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。
算法设计与分析习题与实验题(12.18)
《算法设计与分析》习题第一章引论习题1-1 写一个通用方法用于判定给定数组是否已排好序。
解答:Algorithm compare(a,n)BeginJ=1;While (j<n and a[j]<=a[j+1]) do j=j+1;If j=n then return trueElseWhile (j<n and a[j]>=a[j+1]) do j=j+1;If j=n then return true else return false end ifEnd ifend习题1-2 写一个算法交换两个变量的值不使用第三个变量。
解答:x=x+y; y=x-y; x=x-y;习题1-3 已知m,n为自然数,其上限为k(由键盘输入,1<=k<=109),找出满足条件(n2-mn-m2)2=1 且使n2+m2达到最大的m、n。
解答:m:=k; flag:=0;repeatn:=m;repeatl:=n*n-m*n-m*n;if (l*l=1) then flag:=1 else n:=n-1;until (flag=1) or (n=0)if n=0 then m:=m-1until (flag=1) or (m=0);第二章基础知识习题2-1 求下列函数的渐进表达式:3n 2+10n ; n 2/10+2n ; 21+1/n ; log n 3; 10 log3n 。
解答: 3n 2+10n=O (n 2), n 2/10+2n =O (2n ), 21+1/n=O (1), log n 3=O (log n ),10 log3n =O (n )。
习题2-2 说明O (1)和 O (2)的区别。
习题2-3 照渐进阶从低到高的顺序排列以下表达式:!n ,3/22,2,20,3,log ,4n n n n n 。
解答:照渐进阶从低到高的顺序为:!n 、 3n、 24n 、23n 、20n 、log n 、2习题2-4(1) 假设某算法在输入规模为n 时的计算时间为n n T 23)(⨯=。
计算机算法设计与分析(第4版) 王晓东习题解答
第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。
若f=Ο(g),则必然存在常数c1>0和n0,使得∀n≥n0,有f≤c1*g(n)。
由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。
必要性。
同理,若g=Ω(f),则必然存在c2>0和n0,使得∀n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。
2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得∀n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。
由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。
3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。
证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得∀n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。
4)log(n!)= Θ(nlogn)证明:∙由于log(n!)=∑=n i i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。
∙由于对所有的偶数n 有,log(n!)= ∑=n i i 1log ≥∑=n n i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。
当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得∀n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。
《计算机算法设计与分析》课程设计
《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。
通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。
三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。
设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始节点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的或节点,并成为当前扩展结点。
中科院计算机算法设计与分析各章作业+历年习题
5.下面那些规则是正确的?为什么? 1). f (n) O( F (n)), g (n) O(G(n)) f (n) / g (n) O( F (n) / G(n)) ;错 2). f (n) O( F (n)), g (n) O(G(n)) f (n) / g (n) ( F (n) / G(n)) ;错 3). f (n) O( F (n)), g (n) O(G(n)) f (n) / g (n) ( F (n) / G(n)) ;错 4). f (n) ( F (n)), g (n) (G(n)) f (n) / g (n) ( F (n) / G(n)) ;错 5). f (n) ( F (n)), g (n) (G(n)) f (n) / g (n) ( F (n) / G(n)) 。错 6).
7
对顶点个数进行归纳。 当顶点数|v(D)|=2 时,因为每个点的入度和出度相等,易得构成有向 Euler 环游。 假设顶点数|v(D)|=k 时结论成立,则 当顶点数|v(D)|=k + 1 时,任取 v∈v(D).设 S={以 v 为终点的边},K={以 v 为始点的边},因为 v 的入度和出度相等,故 S 和 K 中边数相等。记 G=D-v.对 G 做如下操作: 任取 S 和 K 中各一条边 e1、e2 ,设在 D 中 e1 v1v , e2 vv2 ,则对 G 和 S 做如下操作 G G v1v2 , S S {e2} ,重复此步骤直到 S 为空。这个过程最终 得到的 G 有 k 个顶点,且每个顶点的度与在 G 中完全一样。由归纳假设,G 中 存在有向 Euler 环游,设为 C。在 G 中从任一点出发沿 C 的对应边前行,每当遇 到上述添加边 v1v2 时, 都用对应的两条边 e1, e2 代替, 这样可以获得有向 Euler 环游。 3)G 是至少有三个顶点的无向图,则 G 包含 Euler 环游等价于 G 中无奇度顶 点。 (即任意顶点的度为偶数) 。 3. 设 G 是具有 n 个顶点和 m 条边的无向图, 如果 G 是连通的, 而且满足 m = n-1, 证明 G 是树。
北航计算机研究生课程_算法设计与分析__Assignment_1
一、解:设第k月的需求量为Nk(k=1,2,3,4)状态变量Xk:第k月初的库存量,X1=X5=0,0≤Xk≤Nk+…+N4决策变量Uk:第k月的生产量,max{0,Nk-Xk}≤Uk≤min{6,Nk+…+N4 - Xk}状态转移方程:X k+1 = Uk + Xk – Nk第k月的成本Vk = 0.5*(Xk - Nk) Uk=03 + Uk + 0.5*(Uk + Xk - Nk) Uk≠0设F k(Xk)是由第k月初的库存量Xk开始到第4月份结束这段时间的最优成本则F k(Xk) = min{Vk + F k+1(X k+1)} 1≤k≤4= min{ 3 + Uk + 0.5*(Uk + Xk - Nk) + F k+1(Uk + Xk - Nk) } Uk≠0min{ 0.5*(Xk - Nk) + F k+1(Xk - Nk) } Uk=0 F5(X5)=0四个月内的最优成本为F1(X1)=F1(0)详细计算步骤如下:(1)k=4时4(2)k=3时(3)k=2时(4)k=1时由以上计算可得,4个月的总最优成本为F1(0) = 20.5(千元)二、解:1、变量设定阶段k:已遍历过k个结点,k=1,2…6,7。
K=1表示刚从V1出发,k=7表示已回到起点V1状态变量Xk=(i,Sk):已遍历k个结点,当前位于i结点,还未遍历的结点集合为Sk。
则X1=(1,{2,3,4,5,6}),X6=(i,Φ),X7=(1,Φ)决策变量Uk=(i,j):已遍历k个结点,当前位于i结点,下一个结点选择j。
状态转移方程:X k+1 = T(Xk,Uk) = (j,Sk-{j})第k阶段的指标函数Vk = D[i,j]。
最优指标函数Fk(Xk) = Fk(i,Sk):已遍历k个结点,当前从i结点出发,访问Sk中的结点一次且仅一次,最后返回起点V1的最短距离。
则Fk(i,Sk) = min{ D[i,j] + F k+1(j,Sk-{j}) } 1≤k≤6F7(X7) = F7(1,Φ) = 02、分析:(1)k=6时,F6(i,Φ) = min{D[i,1] + F7(X7)} = D[i,1] i=2,3,4,5,63、伪代码和时间复杂度为方便计算,结点编号改为0到5.(1)用一张二维表格F[][]表示F(i,Sk),行数是n,列数是2n-1。
算法设计与分析-线性时间选择
福州大学数学与计算机科学学院《计算机算法设计与分析》上机实验报告(1)(1)将所有的数n个以每5个划分为一组共组,将不足5个的那组忽略,然后用任意一种排序算法,因为只对5个数进行排序,所以任取一种排序法就可以了。
将每组中的元素排好序再分别取每组的中位数,得到个中位数。
(2)取这个中位数的中位数,如果是偶数,就找它的2个中位数中较大的一个作为划分基准。
(3)将全部的数划分为两个部分,小于基准的在左边,大于等于基准的放右边。
在这种情况下找出的基准x至少比个元素大。
因为在每一组中有2个元素小于本组的中位数,有个小于基准,中位数处于,即个中位数中又有个小于基准x。
因此至少有个元素小于基准x。
同理基准x也至少比个元素小。
而当n≥75时≥n/4所以按此基准划分所得的2个子数组的长度都至少缩短1/4。
通过上述说明可以证明将原问题分解为两个子问题进行求解能够更加节省求解时间。
3.查找中位数程序代码1.#include "stdafx.h"2.#include <ctime>3.#include <iostream>ing namespace std;5.6.template <class Type>7.void Swap(Type &x,Type &y);8.9.inline int Random(int x, int y);10.11.template <class Type>12.void BubbleSort(Type a[],int p,int r);13.14.template <class Type>15.int Partition(Type a[],int p,int r,Type x);16.17.template <class Type>18.Type Select(Type a[],int p,int r,int k);19.20.int main()21.{22.//初始化数组23.int a[200];24.25.//必须放在循环体外面26. srand((unsigned)time(0));27.28.for(int i=0; i<200; i++)29. {30. a[i] = Random(0,500);31. cout<<"a["<<i<<"]:"<<a[i]<<" ";32. }33. cout<<endl;34.35. cout<<"第100小的元素是"<<Select(a,0,199,100)<<endl;36.37.//重新排序,对比结果38. BubbleSort(a,0,199);39.40.for(int i=0; i<200; i++)41. {42. cout<<"a["<<i<<"]:"<<a[i]<<" ";43. }44. cout<<endl;45.}46.47.template <class Type>48.void Swap(Type &x,Type &y)49.{50. Type temp = x;51. x = y;52. y = temp;53.}54.55.inline int Random(int x, int y)56.{57.int ran_num = rand() % (y - x) + x;58.return ran_num;59.}60.61.//冒泡排序62.template <class Type>63.void BubbleSort(Type a[],int p,int r)64.{65.//记录一次遍历中是否有元素的交换66.bool exchange;67.for(int i=p; i<=r-1;i++)68. {69. exchange = false ;70.for(int j=i+1; j<=r; j++)71. {72.if(a[j]<a[j-1])73. {74. Swap(a[j],a[j-1]);75. exchange = true;76. }77. }78.//如果这次遍历没有元素的交换,那么排序结束79.if(false == exchange)80. {81.break ;82. }83. }84.}85.86.template <class Type>87.int Partition(Type a[],int p,int r,Type x)88.{89.int i = p-1,j = r + 1;90.91.while(true)92. {93.while(a[++i]<x && i<r);94.while(a[--j]>x);95.if(i>=j)96. {97.break;98. }99. Swap(a[i],a[j]);100. }101.return j;102.}103.104.105.template <class Type>106.Type Select(Type a[],int p,int r,int k)107.{108.if(r-p<75)109. {110. BubbleSort(a,p,r);111.return a[p+k-1];112. }113.//(r-p-4)/5相当于n-5114.for(int i=0; i<=(r-p-4)/5; i++)115. {116.//将元素每5个分成一组,分别排序,并将该组中位数与a[p+i]交换位置117.//使所有中位数都排列在数组最左侧,以便进一步查找中位数的中位数118. BubbleSort(a,p+5*i,p+5*i+4);119. Swap(a[p+5*i+2],a[p+i]);120. }121.//找中位数的中位数122. Type x = Select(a,p,p+(r-p-4)/5,(r-p-4)/10);123.int i = Partition(a,p,r,x);124.int j = i-p+1;125.if(k<=j)126. {127.return Select(a,p,i,k);128. }129.else130. {1.实验结果说明(找中位数结果截图)实验结果2.实验结果分析通过上面的结果图可以看出程序能够快速生成一个无序数组并找到第K小的元素。
计算机算法设计与分析(第5版)第1章
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n
•
for x > -1,
x ln(1 x) x 1 x
•
for any a > 0,
Hale Waihona Puke log b nlim
算法设计与分析实验报告
算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术.2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
计算机算法设计与分析--第1章 算法概述
③确认算法。算法确认的目的是使人们确信这一算 法能够正确无误地工作,即该算法具有可计算性。 正确的算法用计算机算法语言描述,构成计算机程 序,计算机程序在计算机上运行,得到算法运算的 结果; ④ 分析算法。算法分析是对一个算法需要多少计算 时间和存储空间作定量的分析。分析算法可以预测 这一算法适合在什么样的环境中有效地运行,对解 决同一问题的不同算法的有效性作出比较; ⑤ 验证算法。用计算机语言描述的算法是否可计算、 有效合理,须对程序进行测试,测试程序的工作由 调试和作时空分布图组成。
16
算法描述
1. 从第一个元素开始,该元素可以认为已 经被排序 2. 取出下一个元素,在已经排序的元 素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素, 将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素 小于或者等于新元素的位置 5. 将新元素插入到该位置中 6. 重复步骤2
15
1.3 算法示例—插入排序算法
算法的思想:扑克牌游戏
a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1
= = = = = = =
5,2,4,6,1,3 5,2,4,6,1,3 2,5,4,6,1,3 2,4,5,6,1,3 2,4,5,6,1,3 1,2,4,5,6,3 1,2,3,4,5,6
8
算法≠程序
算法描述:自然语言,流程图,程序设计
语言,伪代码 用各种算法描述方法所描述的同一算法, 该算法的功用是一样的,允许在算法的描述 和实现方法上有所不同。
本书中采用类C++伪代码语言描述算法
9
人们的生产活动和日常生活离不开算法, 都在自觉不自觉地使用算法,例如人们到 商店购买物品,会首先确定购买哪些物品, 准备好所需的钱,然后确定到哪些商场选 购、怎样去商场、行走的路线,若物品的 质量好如何处理,对物品不满意又怎样处 理,购买物品后做什么等。以上购物的算 法是用自然语言描述的,也可以用其他描 述方法描述该算法。
计算机算法设计与分析-期末考试复习资料
一、算法设计实例1、快速排序(分治法)int partition(float a[],int p,int r) {int i=p,j=r+1;float x=a[p];while(1){while(a[++i]<x);while(a[--j]<x);if(i>=j)break;swap(a[i],a[j]);}a[p]=a[j];a[j]=x;return j;}void Quicksort(float a[],int p,int r){//快速排序if(p<r){int q=partition(a,p,r);Quicksort(a,p,q-1);Quicksort(a,p+1,r);}}2、归并排序(分治法)void mergesort(Type a[],int left,int right) {if(left<rigth){int mid=(left+right)/2;//取中点mergesort(a,left,mid);mergesort(a,mid+1,right);mergesort(a,b,left,right);//合并到数组bmergesort(a,b,left,right);//复制到数组a}}3、背包问题(贪心算法)void knapsack(int n,float m,float v[],float w[],float x[]) {sort(n,v,w)//非递增排序int i;for(i=1;i<=n;i++)x[i]=0;float c=m;for(i=1;i<=n;i++){if(w[i]>c)break;x[i]=1;c-=w[i];}if(i<=n)x[i]=c/w[i];}4、活动安排问题(贪心算法)void Greadyselector(int n,Type s[],Type f[],bool A[]) {//s[i]为活动结束时间,f[j]为j活动开始时间A[i]=true;int j=1;for(i=2;i<=n;i++){if(s[i]>=f[j]){A[i]=true;j=i;}elseA[i]=false;}}5、喷水装置问题(贪心算法)void knansack(int w,int d,float r[],int n){//w为草坪长度d为草坪宽度r[]为喷水装置的喷水半径,//n为n种喷水装置,喷水装置的喷水半径>=d/2sort(r[],n);//降序排序count=0;//记录装置数for(i=1;i<=n;i++)x[i]=0;//初始时,所有喷水装置没有安装x[i]=0for(i=1;w>=0;i++){x[i]=1;count++;w=w-2*sqart(r[i]*r[i]-1);}count<<装置数:<<count<<end1;for(i=1;i<=n;i++)count<<喷水装置半径:<<r[i]<<end1;}6、最优服务问题(贪心算法)double greedy(rector<int>x,int s){rector<int>st(s+1,0);rector<int>su(s+1,0);int n=x.size();//st[]是服务数组,st[j]为第j个队列上的某一个顾客的等待时间//su[]是求和数组,su[j]为第j个队列上所有顾客的等待时间sort(x.begin(),x.end());//每个顾客所需要的服务时间升序排列int i=0,j=0;while(i<n){st[j]+=x[i];//x[i]=x.begin-x.endsu[j]+=st[j];i++;j++;if(j==s)j=0;}double t=0;for(i=0;i<s;i++)t+=su[i];t/=n;return t;}7、石子合并问题(贪心算法)float bebig(int A[],int n) {m=n;sort(A,m);//升序while(m>1){for(i=3;i<=m;i++)if(p<A[i])break;elseA[i-2]=A[i];for(A[i-2]=p;i<=m;i++){A[i-1]=A[i];m--;}}count<<A[1]<<end1}8、石子合并问题(动态规划算法)best[i][j]表示i-j合并化最优值sum[i][j]表示第i个石子到第j个石子的总数量|0f(i,j)=||min{f(i,k)+f(k+1,j)}+sum(i,j)int sum[maxm]int best[maxm][maxn];int n,stme[maxn];int getbest();{//初始化,没有合并for(int i=0;i<n;i++)best[i][j]=0;//还需要进行合并for(int r=1;r<n;r++){for(i=0;i<n-r;i++){int j=i+v;best[i][j]=INT-MAX;int add=sum[j]-(i>0!sum[i-1]:0);//中间断开位置,取最优值for(int k=i;k<j;++k){best[i][j]=min(best[i][j],best[i][k]+best[k+1][j])+add;}}}return best[0][n-1];}9、最小重量机器设计问题(回溯法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void backstack(Qnode*p){if(p->ceng==n+1){if(bestw>p->wei){testw=p->wei;best=p;}}else{for(i=1;i<=m;i++)k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->val=vt;s->wei=wt;s->ceng=k+1;s->no=1;s->parent=p;backstrack(S);}}}10、最小重量机器设计问题(分支限界法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void minloading(){float wt=0;float vt=0;float bestw=Max;//最小重量Qnode*best;s=new Qnode;s->wei=0;s->val=0;s->ceng=1;s->no=0;s->parent=null;Iinit_Queue(Q); EnQueue(Q,S);do{p=OutQueue(Q);//出队if(p->ceng==n+1){if(bestw>p->wei){bestw=p->wei;best=p;}}else{for(i=1;i<=m;i++){k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->ceng=k+1;s->wt=wt;s->val=val;s->no=i;s->parent=p;EnQueue(Q,S);}}}}while(!empty(Q));p=best;while(p->parent){count<<部件:<<p->ceng-1<<end1;count<<供应商:<<p->no<<end1;p=p->parent;}}11、快速排序(随机化算法—舍伍德算法)int partion(int a[],int l,int r){key=a[l];int i=l,j=r;while(1){while(a[++i]<key&&i<=r);while(a[--j]>key&&j>=l);if(i>=j)break;if(a[i]!=a[j])swap(a[i],a[j]);}if((j!=l)&&a[l]!=a[j])swap(a[l],a[j]);return j;}int Ranpartion(int a[],int l,int r) {k=rand()%(r-1+l)+1;swap(a[k],a[l]);int ans=partion(a,l,r);return ans;}int Quick_sort(int a[],int l,int r,int k){int p=Randpartion(a,l,r);if(p==k)return a[k];else if(k<p)return Quick_sort(a,l,p-1,k);else{int j=0;for(int i=p+1;i<=r;i++)b[j++]=a[i]return Quick_sort(b,1,j,k-p);}}12、线性选择(随机化算法—舍伍德算法)二、简答题1.分治法的基本思想分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
实验报告
合肥师范学院实验报告册2016/ 2017 学年第 1 学期系别计算机学院实验课程算法设计与分析专业软件工程班级一班姓名杨文皇学号1310421071指导教师程敏实验一:分治算法一、实验目的1、理解分治策略的基本思想;2、掌握用分治法解决问题的一般技巧。
二、实验内容利用分治算法在含有n个不同元素的数组a[n]中同时找出它的最大的两个元素和最小的两个元素,编写出完整的算法,并分析算法的时间复杂度。
三、实验源程序。
1、算法设计思想利用分治法思想,n个不同元素的数组不断进行划分,化为若干个个子问题,其与原问题形式相;解决子问题规模较小而容易解决则直接解决:即当n的规模为只有一个或两个,三个或四个;否则再继续直至更小的子问题:即当n的规模大于四时。
将已求得的各个子问题的解,逐步合并原问题的解:即将左右两边求得的子问题进行比较,在四个数据中的得到两个最大(最小)值。
为了简化空间,采用了对每一个小规模问题的排序,以及合并原问题时,对四个数据进行排序,获得当前或合并的最大(最小)值2、算法实现#include<iostream>using namespace std;int a[10]={4,5,6,2,3,9,8,13,1};int b[4];int sort(int i,int j){int temp,k;for(;i<j;i++){for(k=i;k<j;k++)if(a[k]>a[k+1]){temp=a[k];a[k]=a[k+1];a[k+1]=temp;}}return 0;}int sort1(int lmin1,int lmin2,int rmin1,int rmin2){int i,j,temp;b[0]=lmin1;b[1]=lmin2;b[2]=rmin1;b[3]=rmin2;for(i=0;i<=1;i++)for(j=i;j<=3;j++){if(b[i]>b[j]){temp=b[i];b[i]=b[j];b[j]=temp;}}return 0;}int maxmin(int i,int j,int &fmin1,int &fmin2,int &fmax1,int &fmax2) {int mid;int lmin1,lmin2,lmax1,lmax2;int rmin1,rmin2,rmax1,rmax2;if(i==j || i==j-1){sort(i,j);fmin1=a[i];fmin2=a[i];fmax1=a[j];fmax2=a[j];}elseif(i==j-2 || i==j-3){sort(i,j);fmin1=a[i];fmin2=a[i+1];fmax1=a[j-1];fmax2=a[j];}else{mid=(i+j)/2;maxmin(i,mid,lmin1,lmin2,lmax1,lmax2);maxmin(mid+1,j,rmin1,rmin2,rmax1,rmax2);sort1(lmin1,lmin2,rmin1,rmin2);fmin1=b[0];fmin2=b[1];sort1(lmax1,lmax2,rmax1,rmax2);fmax1=b[2];fmax2=b[3];}return 0;}int main(){int fmin1,fmin2,fmax1,fmax2;int i;maxmin(0,8,fmin1,fmin2,fmax1,fmax2);cout<<endl;cout<<"该组数据为:";for(i=0;i<=8;i++)cout<<a[i]<<" ";cout<<endl<<endl<<"最小值是:"<<fmin1<<",第二小值是:"<<fmin2<<endl;cout<<endl<<"第二大值是:"<<fmax1<<",最大值是:"<<fmax2<<endl<<endl;return 0;}3、程序结果4、算法分析用T(n)元素表示数,则导出的递推关系式是:在理想的情况下,即每一小规模的子问题中的数据都是递增序列,则:当n<=4时,T(n)=1; 当n>4时,T(n)= T(n/2)+ T(n/2)(均向下取整);在非理想情况下,即每一小规模的子问题中的数据都是递减序列,则:当n=1时,T(n)=1;当n=2时,T(n)=2;当n=3时,T(n)=3;当n=4时,T(n)=6;当n>4时,T(n)= T(n/2)+ T(n/2)(均向下取整)+12。
《计算机算法设计与分析》习题及答案
《计算机算法设计与分析》习题及答案一.选择题1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是( A )。
A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是( C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是( D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是( A )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是( D )。
A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)13.分支限界法解最大团问题时,活结点表的组织形式是( B )。
A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是( A )。
A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是( C )。
A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略( B )A.递归函数 B.剪枝函数 C。
算法设计与分析实验报告
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。
《算法设计与分析》实验目的
《算法设计与分析》实验指导书曹严元计算机与信息科学学院2007年5月目录实验一递归算法与非递归算法 (2)实验二分治算法 ................................................... 错误!未定义书签。
实验三贪心算法 (3)实验四动态规划 (2)实验五回溯法 (3)实验六分枝—限界算法 (4)实验七课程设计 (4)实验一递归与分治算法实验目的1.了解并掌握递归的概念,掌握递归算法的基本思想;2.掌握分治法的基本思想方法;3.了解适用于用递归与分治求解的问题类型,并能设计相应递归与分治算法;4.掌握递归与分治算法复杂性分析方法,比较同一个问题的递归算法与循环迭代算法的效率。
实验二动态规划实验目的1.掌握动态规划的基本思想方法;2.了解适用于用动态规划方法求解的问题类型,并能设计相应动态规划算法;3.掌握动态规划算法复杂性分析方法。
实验三贪心算法实验目的1.掌握贪心法的基本思想方法;2.了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3.掌握贪心算法复杂性分析方法分析问题复杂性。
实验五回溯法实验目的1.掌握回溯法的基本思想方法;2.了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法;3.掌握回溯法算法复杂性分析方法,分析问题复杂性。
实验六 分枝—限界算法实验目的1. 掌握分枝—限界的基本思想方法;2. 了解适用于用分枝—限界方法求解的问题类型,并能设计相应动态规划算法;3. 掌握分枝—限界算法复杂性分析方法,分析问题复杂性。
实验七 课程设计实验目的1. 在已学的算法基本设计方法的基础上,理解算法设计的基本思想方法;2. 掌握对写出的算法的复杂性分析的方法,理解算法效率的重要性;3. 能运用所学的基本算法设计方法对问题设计相应算法,分析其效率,并建立对算法进行改进,提高效率的思想意识。
预习与实验要求1. 预习实验指导书及教材的有关内容,回顾所学过的算法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。
算法设计与分析实验指导书(080200050)
算法设计与分析实验指导书东北大学软件学院2014年目录算法设计与分析 (1)实验指导书 (1)前言 (3)实验要求 (4)实验1 分治法的应用(2学时) (5)1.实验目的 (5)2.实验类型 (5)3.预习要求 (5)4.实验基本要求 (5)5.实验基本步骤 (7)实验2动态规划(2学时) (9)1.实验目的 (9)2.实验类型 (9)3.预习要求 (9)4.实验基本要求 (9)5.实验基本步骤 (10)实验3 回溯法(4学时) (12)1.实验目的 (12)2.实验类型 (12)3.预习要求 (12)4.实验基本要求 (12)5.实验基本步骤 (13)前言《算法设计与分析》是一门面向设计,处于计算机科学与技术学科核心地位的教育课程。
通过对计算机算法系统的学习,使学生理解和掌握计算机算法的通用设计方法,培养对算法的计算复杂性正确分析的能力,为独立设计算法和对算法进行复杂性分析奠定基础。
要求掌握算法复杂度分析、分治法、动态规划法、贪心法、回溯法、分支限界法等算法的设计方法及其分析方法。
能将这些方法灵活的应用到相应的问题中,并且能够用C++实现所涉及的算法,并尽量做到低复杂度,高效率。
通过本课程的实验,使学生加深对课程内容的理解,培养学生严密的思维能力,运用所学知识结合具体问题设计适用的算法的能力;培养学生良好的设计风格,激励学生创造新算法和改进旧算法的愿望和热情。
希望同学们能够充分利用实验条件,认真完成实验,从实验中得到应有的锻炼和培养。
希望同学们在使用本实验指导书及进行实验的过程中,能够帮助我们不断地发现问题,并提出建议,使《算法设计与分析》课程成为对大家有益的课程。
实验要求《算法设计与分析》课程实验的目的是为了使学生在课堂学习的同时,通过一系列的实验,使学生加深理解和更好地掌握《算法设计与分析》课程教学大纲要求的内容。
在《算法设计与分析》的课程实验过程中,要求学生做到:(1)仔细观察调试程序过程中出现的各种问题,记录主要问题,做出必要说明和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机算法设计与分析实验指导书
本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。
上机实验一般应包括以下几个步骤:
(1)、准备好上机所需的程序。
手编程序应书写整齐,并经人工检查无误后才能上机。
(2)、上机输入和调试自己所编的程序。
一人一组,独立上机调试,上机时出现的问题,最好独立解决。
(3)、上机结束后,整理出实验报告。
实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析,以及后面的《知识总结》。
本书共分阶段10个实验,其具体要求和步骤如下:
实验一C/C++环境及递归算法(2学时)
一、实验目的与要求
1、熟悉C/C++语言的集成开发环境;
2、通过本实验加深对递归过程的理解
二、实验内容:
掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。
三、实验题
任意输入一个整数,输出结果能够用递归方法实现整数的划分。
四、实验步骤
1.理解算法思想和问题要求;
2.编程实现题目要求;
3.上机输入和调试自己所编的程序;
4.验证分析实验结果;
5.整理出实验报告。