对数函数及其性质(基础)

合集下载

对数函数知识点(一)

对数函数知识点(一)

对数函数知识点(一)对数函数定义对数函数是指满足以下条件的函数: - 底数为正实数且不等于1;- 函数定义域为实数集合中大于0的数; - 函数值域为实数集合。

常见的对数函数1.自然对数函数–底数为常数e(自然对数的底数),记作ln(x)或logₑ(x)。

–特点:以常数e为底的对数函数,在微积分中有广泛的应用。

2.以10为底的常用对数函数–底数为常数10,记作log₁₀(x)或log(x)。

–特点:以10为底的对数函数,在计算中常常用到。

对数函数的性质1.定义域和值域–自然对数函数的定义域为(0,+∞),值域为(-∞,+∞)。

–以10为底的常用对数函数的定义域为(0,+∞),值域为(-∞,+∞)。

2.基本性质–对数函数的图像总是位于一、二象限。

–对数函数的图像与直线y=x关于y=x对称。

3.特殊值–自然对数函数ln(x)当x=1时,ln(1)=0。

–以10为底的常用对数函数log(x)当x=1时,log(1)=0。

4.对数函数的性质–对数函数有唯一的反函数即指数函数。

–对数函数满足对数运算法则,如log(xy)=log(x)+log(y)。

5.对数函数的性质与图像–对数函数的图像有一个特点,就是随着自变量x的增大,函数值增长缓慢,近似于直线y=0。

–对数函数在x>1时,图像急剧上升;在0<x<1时,图像急剧下降。

应用领域•对数函数在科学计算、金融领域、生物学及工程学中有广泛的应用。

•对数函数常常用于解决指数增长与衰减问题、复杂的计算问题、百分比增长问题等。

以上为对数函数的相关知识点和详解。

对数函数作为数学中重要的函数之一,在各个领域中都有广泛的应用。

希望通过本文的介绍,能够对对数函数有更深入的了解。

对数函数的性质和图像对数函数的性质1.指数和对数的关系–对数函数是指数函数的反函数。

对于正实数a和b,有以下关系:logₐ(b) = x if and only if aˣ = b。

–例如,log₂(8) = 3,因为2³ = 8。

《对数函数及其性质》课件

《对数函数及其性质》课件

THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用

《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时

对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。

对数函数及其性质课件ppt

对数函数及其性质课件ppt

统计学
决策理论
在决策理论中,对数函数用于构建效 用函数,以评估不同选项的风险和收 益。
在统计学中,对数函数用于描述概率 分布,如泊松分布和二项分布。
05 练习与思考
基础练习题
01
02
03
04
基础练习题1
请计算以2为底9的对数。
基础练习题2
请计算以3为底8的对数。
基础练习题3
请计算以10为底7的对数奇函数也不是偶 函数。
周期性
• 无周期性:对数函数没有周期性,因为其图像不会重复出 现。
03 对数函数的运算性质
换底公式
总结词
换底公式是用来转换对数的底数的公 式,它对于解决对数问题非常有用。
详细描述
换底公式是log_b(a) = log_c(a) / log_c(b),其中a、b、c是正实数,且b 和c都不等于1。通过换底公式,我们可 以将对数函数转换为任意底数的对数函 数,从而简化计算过程。
图像绘制
对数函数的图像通常在直角坐标系 中绘制,随着底数$a$的取值不同, 图像的形状和位置也会有所变化。
单调性
单调递增
当底数$a > 1$时,对数函数是单调递增的,即随着$x$的增 大,$y$的值也增大。
单调递减
当$0 < a < 1$时,对数函数是单调递减的,即随着$x$的增 大,$y$的值减小。
对数函数的乘法性质
总结词
对数函数的乘法性质是指当两个对数 函数相乘时,其结果的对数等于两个 对数函数分别取对数后的积。
详细描述
对数函数的乘法性质公式为log_b(m) * log_b(n) = log_b(m * n),其中m 和n是正实数。这个性质在对数运算 中也非常有用,因为它可以简化对数 的计算过程。

对数函数及其性质

对数函数及其性质

2.2.2 对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数 y= logax(a> 0,且 a≠ 1) 叫做对数函数,其中 x 是自变量,函数的定义域是 (0 ,+∞ ).(2)对数函数的特征:log ax的系数: 1特征 log ax的底数:常数,且是不等于 1的正实数log ax的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数 y= log7x 是对数函数,而函数y=- 3log 4x 和 y= logx2 均不是对数函数,其原因是不符合对数函数解析式的特点.【例 1- 1】函数 f(x)= (a2- a+ 1)log (a+1)x 是对数函数,则实数a= __________ .解析:由 a2- a+ 1= 1,解得 a= 0,1 .又 a+ 1> 0,且 a+ 1≠ 1,∴ a= 1.答案: 1【例 1- 2】下列函数中是对数函数的为__________ .(1)y= log a x (a> 0,且 a≠ 1) ; (2)y= log2x+2;(3)y= 8log 2 (x+ 1) ; (4)y= log x6(x> 0,且 x≠ 1) ;(5)y= log 6x.解析:序号是否理由(1)×真数是x ,不是自变量x(2)×对数式后加 2(3)×真数为 x+1,不是 x,且系数为 8,不是 1(4)×底数是自变量 x,不是常数(5) √底数是 6,真数是 x答案: (5)2.对数函数y= log ax(a> 0,且 a≠ 1)的图象与性质(1)图象与性质a> 1 0< a< 1图象(1)定义域 { x|x>0}(2)值域 { y|y R }性(3)当 x=1 时, y=0,即过定点 (1,0)质(4)当 x>1时, y> 0;当 0< x< 1(4) 当 x>1 时, y<0;当 0时, y<0 <x<1 时, y>0(5) 在 (0,+∞ )上是增函数(5) 在 (0,+∞ ) 上是减函数谈重点对对数函数图象与性质的理解对数函数的图象恒在y 轴右侧,其单调性取决于底数. a> 1 时,函数单调递增;0< a< 1 时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较第 1 页共 10 页解析式y= a x(a>0,且 a≠ 1) y= logax (a> 0,且a≠ 1)定义域R (0,+∞ )值域(0,+∞ ) R 性(0,1) (1,0) 过定点质单调性一致,同为增函数或减函数单调性奇偶性奇偶性一致,都既不是奇函数也不是偶函数(3)底数 a 对对数函数的图象的影响①底数 a 与 1 的大小关系决定了对数函数图象的“升降”:当 a> 1 时,对数函数的图象“上升”;当 0< a< 1 时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a> 1 还是 0< a< 1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,(1,0) 点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线 y= 1 来切,自左到右 a 变大.【例 2】如图所示的曲线是对数函数y= log ax 的图象.已知a 从3 ,4 , 3 , 1 中取值,则相应曲线C1, C2, C3, C4的 a 值依次为 ()3 5 10A.3, 4 ,3 , 13 5 10B. 3 , 4 , 1 , 33 10 5C.4 , 3 ,3 , 13 5 10D.4 , 3 , 1 , 33 10 5解析:由底数对对数函数图象的影响这一性质可知,C4的底数< C3的底数< C2的底数< C1的底数.故相应于曲线C1, C2, C3, C4的底数依次是3 ,4,3,1.答案: A3 5 10点技巧根据图象判断对数函数的底数大小的方法(1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在 x 轴下方“底大图左”; (2)方法y=二:作直线1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数 y= a x (a> 0,且 a≠ 1) 与对数函数y= log ax(a> 0,且 a≠ 1) 互为反函数.(2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y= x 对称.(3)求已知函数的反函数,一般步骤如下:第 2 页共 10 页①由 y= f(x)解出 x,即用y 表示出x;②把 x 替换为 y, y 替换为 x;③根据 y= f(x)的值域,写出其反函数的定义域.【例 3- 1】若函数y= f(x)是函数 y= a x(a> 0,且 a≠ 1)的反函数,且 f(2)= 1,则 f(x)= ( )1A. log 2x B .2xC. log 1 x D.2x- 22解析:因为函数 y=a x(a> 0,且 a≠ 1)的反函数是f(x)= loga x,又f(2)= 1,即 log a2= 1,所以 a= 2.故 f(x)= log 2x.答案: A【例 3- 2】函数 f(x)= 3x(0< x≤ 2)的反函数的定义域为 ( )A. (0 ,+∞ ) B . (1 ,9]C. (0,1) D . [9,+∞ )解析:∵ 0< x≤ 2,∴ 1< 3x≤9,即函数 f(x)的值域为(1,9] .故函数 f(x)的反函数的定义域为(1,9] .答案: B【例 3- 3】若函数 y= f(x)的反函数图象过点(1,5) ,则函数 y= f(x)的图象必过点 () A. (5,1) B. (1,5) C. (1,1) D . (5,5)解析:由于原函数与反函数的图象关于直线y= x 对称,而点 (1,5) 关于直线 y= x 的对称点为(5,1),所以函数 y= f(x)的图象必经过点(5,1).答案: A4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y= log ax(a> 0,且 a≠ 1) 中仅含有一个常数a,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f(m)= n 或图象过点 (m, n)等等.通常利用待定系数法求解,设出对数函数的解析式f(x)= logax(a> 0,且 a≠ 1),利用已知条件列方程求出常数a的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如loga m= n,这时先把对数式 logam= n 化为指数式的形式a n= m,把 m 化为以 n 为指数的指数幂形式m= k n(k> 0,且k≠1) ,1 1则解得 a= k> 0.还可以直接写出a m n,再利用指数幂的运算性质化简m n.例如:解方程-2 1loga 4=- 2,则 a= 4,由于4221 .又 a> 0,所以 a1,所以a.当2 21 1 11然,也可以直接写出a 4 2,再利用指数幂的运算性质,得a 4 2(22) 22 1.【例 4- 1】已知 f(e x) =x,则f(5)= ( )2A . e 5B . 5eC . ln 5D . log 5 e解析: (方法一 )令 t = e x,则 x = ln t ,所以 f(t)= lnt ,即 f(x)= ln x .所以 f(5) = ln5 .(方法二 )令 e x= 5,则 x = ln 5 ,所以 f(5) = ln5 .答案: C【例 4- 2】已知对数函数 f(x)的图象经过点1,2 ,试求 f(3)的值.9分析: 设出函数 f(x)的解析式,利用待定系数法即可求出. 解: 设 f(x)= logax(a > 0,且 a ≠ 1),∵ 对数函数 f(x)的图象经过点 1 , 2 , ∴f 1 log a 1 2. ∴ a 2= 1.99 9 9第 3 页 共 10 页1 2 1 21 21 1x . ∴ a =3.∴ f(x)= log 19 3 31 1 ∴ f(3)=log 1 3 log 1=- 1.33 3【例 4- 3】已知对数函数 f(x)的反函数的图象过点 (2,9) ,且 f(b)= 1,试求 b的值.2解: 设 f(x)= logax(a > 0,且 a ≠ 1),则它的反函数为y = a x (a > 0,且 a ≠ 1),由条件知 a 2= 9 1 1= 32,从而 a = 3.于是 f(x)= log 3 3 ,解得 b= 3 2 3 . x ,则 f(b)= log b =25.对数型函数的定义域的求解(1)对数函数的定义域为 (0 ,+∞ ).(2)在求对数型函数的定义域时,要考虑到真数大于 0,底数大于 0,且不等于 1.若底数和真数中都含有变量,或式子中含有分式、根式等, 在解答问题时需要保证各个方面都有意义. 一般地,判断类似于 y = loga f(x)的定义域时,应首先保证 f(x)>0.(3)求函数的定义域应满足以下原则: ①分式中分母不等于零;②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于 1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集. 【例 5】求下列函数的定义域.(1)y = log 5(1- x); (2) y = log(2x - 1)(5x - 4);(3) y log 0.5 (4 x 3) .分析: 利用对数函数 y = log ax(a > 0,且 a ≠ 1)的定义求解. 解: (1)要使函数有意义,则 1- x > 0,解得 x < 1, 所以函数 y = log5(1 - x)的定义域是 { x|x < 1} .5x 4>0,(2)要使函数有意义,则2x 1>0, 解得 x > 4且 x ≠1,2x 1 1, 5所以函数 y = log(2x - 1)(5x -4) 的定义域是4 ,1 (1,+∞ ). 54x 3 0, 解得 3< x ≤ 1,(3)要使函数有意义,则log 0.5 (4x 3) 0, 4所以函数ylog 0.5 (4x 3)x 3的定义域是<x 1 .46.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y= loga f(x)(a> 0,且 a≠1) 的复合函数,其值域的求解步骤如下:①分解成 y= logau, u= f(x)这两个函数;②求 f(x)的定义域;③求 u 的取值范围;④利用 y= logau 的单调性求解.(3)对于函数 y= f(log ax)(a> 0,且 a≠ 1) ,可利用换元法,设loga x= t,则函数 f(t)(t R )的值域就是函数 f(log ax)(a> 0,且 a≠1) 的值域.注意: (1) 若对数函数的底数是含字母的代数式(或单独一个字母 ),要考查其单调性,就必须对底数进行分类讨论.第 4 页共 10 页(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例 6- 1】求下列函数的值域:(1)y = log 2(x 2+ 4) ; (2) y = log 1 (3+2x - x 2) .2解: (1) ∵ x 2+ 4≥ 4, ∴ log 2(x 2+ 4)≥ log 24=2.∴ 函数 y = log 2(x 2+ 4)的值域为 [2 ,+ ∞ ).(2)设 u = 3+ 2x- x2,则 u =- (x - 1)2 + 4≤4. ∵ u >0, ∴ 0< u ≤ 4. 又 y = log 1 u 在 (0,+∞ )上为减函数,∴ log 1 u ≥-2.2 2∴函数 y = log 1 (3+2x - x 2) 的值域为 [- 2,+∞ ).2 ,求 y = [f(x)] 2 +f(x 2)的最大值及相应的【例 6- 2】已知 f(x)= 2+ log 3x , x [1,3] x 的值.分析: 先确定 y = [f (x)] 2 + f(x 2)的定义域,然后转化成关于 log3 x 的一个一元二次函数,利用一元二次函数求最值.解: ∵ f(x)= 2+ log 3 x , x[1,3] ,∴ y = [f(x)] 2 + f(x 2)= (log 3x)2+ 6log 3 x + 6 且定义域为 [1,3] .令 t = log 3x(x [1,3]) .∵ t = log3 x 在区间 [1,3] 上是增函数, ∴ 0≤t ≤ 1.从而要求 y = [f(x)] 2+ f(x 2)在区间 [1,3] 上的最大值,只需求 y = t 2+ 6t + 6 在区间 [0,1]上的最大值即可. ∵ y = t 2+ 6t + 6 在 [- 3,+ ∞ )上是增函数,∴ 当 t = 1,即 x = 3 时, y max = 1+ 6+ 6= 13.综上可知,当 x = 3 时, y = [ f(x)] 2+ f(x 2)的最大值为 13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数 y = logax(a > 0,且 a ≠ 1)过定点 (1,0) ,即对任意的 a > 0,且 a ≠ 1 都有 loga1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数 y = b + kloga f(x)(k ,b 均为常数,且 k ≠ 0),令f(x)= 1,解方程得 x = m ,则该函数恒过定点 (m , b).方程 f (x) =0 的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题向左 (b>0)或向右 (b<0)①函数 y = logax(a > 0,且 a ≠ 1)――------- -- -------→ 函数 y = log a(x + b)(a > 0,且 a ≠ 1)平移 |b|个单位长度 向上(b>0)或向下 (b<0)②函数 y = logax(a > 0,且 a ≠ 1)――------- -- ------→函数 y = loga x +b(a >0,且 a ≠ 1)平移|b|个单位长度③函数 y = logax(a > 0,且 a ≠ 1) 当 x>0时,两函数图象相同函数 y = loga |x|(a > 0,且 a ≠ 1) ―------ -- --- -- ---―→当x<0时,将 x>0时的图象关于 y 轴对称④函数 y = logax(a > 0,且 a ≠ 1)―― 保留 x 轴上方的图象--- → 函数 y = |logax|(a > 0,---------- -- ------------- --x 轴的对称变换---------- 同时将 x 轴下方的图象作关于且 a ≠ 1)【例 7- 1】若函数 y = log a(x + b)+ c(a > 0,且 a ≠ 1) 的图象恒过定点 (3,2) ,则实数 b ,c的值分别为 __________ .解析: ∵ 函数的图象恒过定点 (3,2) ,∴ 将 (3,2)代入 y = loga (x + b)+ c(a > 0,且 a ≠ 1),得 2= loga(3+ b)+ c . 又 ∵ 当 a > 0,且 a ≠ 1 时,log a 1= 0 恒成立,∴ c = 2. ∴ loga (3+ b)= 0.∴ b =- 2.答案: - 2,2【例 7- 2】作出函数 y = |log 2(x + 1)|+2 的图象.解: (第一步 )作函数 y = log 2x 的图象,如图 ① ;(第二步 )将函数 y = log2x 的图象沿 x 轴向左平移 1 个单位长度, 得函数 y = log 2(x + 1)的图象,如图 ② ;(第三步 )将函数 y = log2(x + 1)在 x 轴下方的图象作关于 x 轴的对称变换, 得函数 y = |log2 (x +1)|的图象,如图 ③ ;(第四步 )将函数 y = |log2 (x + 1)|的图象, 沿 y 轴方向向上平移 2 个单位长度, 便得到所求函数第 5 页 共 10 页的图象,如图④ .8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.比较同底数 (是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与 1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量 0,1 进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“ 1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于 1 进行分类讨论.【例 8- 1】比较下列各组中两个值的大小.(1)log 31.9 , log3 2;(2)log 23, log0.3 2; (3)logaπ, loga3.141 .分析: (1) 构造函数 y= log 3x,利用其单调性比较;(2) 分别比较与的大小; (3) 分类讨论底数的取值范围.解: (1)因为函数 y= log 3x 在 (0 ,+∞ )上是增函数,所以 f(1.9)< f (2).所以 log31.9 < log32.(2)因为 log 23> log21= 0, log0.32< log0.31= 0,所以 log23> log 0.32.(3)当 a> 1 时,函数 y= loga x 在定义域上是增函数,则有 logaπ> log a3.141 ;当 0< a< 1 时,函数 y= log a x 在定义域上是减函数,则有 log aπ< log a3.141 .综上所得,当 a> 1 时, log aπ> loga3.141 ;当 0< a< 1 时, log aπ< log a3.141 .【例 8- 2】若 a2> b> a> 1,试比较 log aa, logb b, logb a, log a b 的大小.b a分析:利用对数函数的单调性或图象进行判断.解:∵ b>a> 1,∴ 0<a< 1.b∴log a a< 0, loga b> log aa= 1, logb1< logb a< log bb,即 0< logba< 1.b第 6 页共 10 页由于 1< b< b , ∴ 0< log b b< 1.由 log b a- logb b= log b a 2, a a ab 2 > b > 1, ∴ a 2∵a > 1.b ∴ log b a 2log b b > 0,即 log b a > a b ∴ logab > logb a >log bb > log a a a b.. 9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当 a > 0,且 a ≠ 1时,有① logaf (x)= loga g(x) f(x)=g(x)(f(x) >0, g(x)>0) ;②当 a > 1 时, logaf(x)>loga g(x) f(x)> g( x)(f(x)> 0, g(x)> 0);③当 0< a < 1 时, log af(x)> log ag(x) f(x)< g(x)(f(x)>0, g(x)> 0) .(2)常见的对数不等式有三种类型:①形如 loga f(x)> log ag(x)的不等式, 借助函数 y = log ax 的单调性求解, 如果 a 的取值不确定,需分 a > 1 与 0< a < 1 两种情况讨论.②形如 loga f(x)> b 的不等式,应将 b 化为以 a 为对数的对数式的形式,再借助函数 y = logax的单调性求解.③形如 loga b g(x)的不等式,基本方法是将不等式两边化为同底的两个对数值,利用f(x)>log 对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如 f(log ax)> 0 的不等式,可用换元法 (令 t = log ax),先解 f( t)> 0,得到 t 的取值范围.然后再解 x 的范围.【例 9- 1】解下列不等式: (1) log1xlog 1 (4 x) ;77(2)log x(2x + 1)> logx (3- x).x>0,解: (1)由已知,得4 x>0, 解得 0< x < 2. x<4x,所以原不等式的解集是 { x|0< x < 2} . (2)当 x > 1 时,有当 0< x < 1 时,有2x 1>3 x,2x 1>0, 解得 1< x <3; 3 x>0,2x 1<3x,2x 1>0, 解得 0< x < 2.3 x>0, 3所以原不等式的解集是2 或.x 0<x<31<x<3【例 9- 2】若log a 23 2< 1,求 a 的取值范围.2 22< 1,即 loga 1 2解:∵log a< 1,∴ - 1<log a log alog aa .3 3 a 3(1)∵当 a > 1 时, y= log ax 为增函数,∴ 1 2 a .∴ a>3,结合 a> 1,可知 a>3.a 3 2 2第 7 页共 10 页1 2 (2)∵ 当 0< a < 1 时, y = loga x 为减函数, ∴ > >a .∴ a < 20< a < 1,知 0< a< 2a 3,结合 .3 3∴ a 的取值范围是a 0<a< 2,或 a> 3. 3 210.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键: 一是看底数是否大于 1,当底数未明确给出时, 则应对底数a 是否大于 1 进行讨论; 二是运用复合法来判断其单调性; 三是注意其定义 域.(2)关于形如 y = loga f(x)一类函数的单调性,有以下结论:函数 y = logaf(x)的单调性与函数 u = f(x)(f(x)> 0)的单调性, 当 a > 1 时相同, 当 0< a < 1 时相反.例如:求函数y = log2 (3 -2x)的单调区间. 分析: 首先确定函数的定义域,函数y = log2(3- 2x)是由对数函数 y = log 2u 和一次函数 u =3 - 2x 复合而成,求其单调区间或值域时,应从函数 u = 3- 2x 的单调性、值域入手,并结合函数y = log2 u 的单调性考虑.解: 由 3- 2x > 0,解得函数 y = log2(3 - 2x)的定义域是- ∞ , 3. 2设 u = 3-2x , x3 - ∞ , 2 , ∵ u = 3- 2x 在 - ∞ , 3上是减函数,且 y = log 2u 在 (0,+ ∞ )上单调递增,2∴ 函数 y = log 2(3 - 2x)在 - ∞ , 3上是减函数.2∴ 函数 y = log2(3 - 2x)的单调减区间是- ∞ ,3.2【例 10- 1】求函数 y = log a (a - a x)的单调区间.t = a - a x递减. 解: (1)若 a > 1,则函数 y = log a t 递增,且函数又 ∵ a - a x > 0,即 a x<a ,∴ x < 1. ∴ 函数 y = log a (a - a x)在 (-∞ , 1)上递减.(2)若 0< a < 1,则函数 y = log at 递减,且函数 t = a- a x递增.又 ∵ a - a x > 0,即 a x< a ,∴x > 1.∴ 函数 y = loga(a - a x)在 (1,+ ∞ )上递减.综上所述,函数y = loga (a - a x)在其定义域上递减.析规律判断函数 y = log af(x)的单调性的方法 函数 y = log af(x)可看成是 y = logau与 u = f(x) 两个简单函数复合而成的,由复合函数单调性 “ 同增异减 ” 的规律即可判断.需特别注意的是, 在求复合函数的单调性时,首先要考虑函数的定义域,即 “ 定义域优先 ”.【例 10- 2】已知 f(x)= log 1 (x 2- ax - a)在 , 1 上是增函数,求 a 的取值范围.22解:, 1 是函数 f(x)的递增区间,说明 , 1是函数 u = x 2- ax - a 的递减区间,2 2 由于是对数函数,还需保证真数大于0.令 u(x)= x 2- ax - a , ∵ f(x)=log 1 u(x) 在, 1 上是增函数, 2 2∴ u(x)在 , 1上是减函数,且u(x)> 0 在, 1 上恒成立.22第 8 页 共 10 页a 1 , a 1, ∴ 22 即 1 a 0. u 14 a 0, 22∴- 1≤ a ≤ 1.2∴满足条件的 a 的取值范围是a 1 a 1 .211. 对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1) 求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数, 当定义域关于原点对称时,判断f(- x)与 f(x)或- f(x)是否相等; (2) 当 f(- x)= f(x)时,此函数是偶函数;当 f(- x)=- f(x)时,此函数是奇函数;(3) 当 f(- x)= f(x)且 f(-x)=- f(x)时,此函数既是奇函数又是偶函数; (4) 当 f(- x)≠ f(x)且 f(-x)≠- f(x)时,此函数既不是奇函数也不是偶函数.例如,判断函数f(x)=log a ( x 2 1+ x) (x R , a > 0,且 a ≠ 1) 的奇偶性. 解: ∵ f(- x)+ f(x)== log a ( x 2 1 x) + log a ( x 21+x) )=log a (x 2 + 1- x 2)= log a 1= 0,∴f(- x)=- f(x). ∴ f(x)为奇函数.【例 11】已知函数 f(x)= 1 x loga 1 (a > 0,且 a ≠1) .x(1) 求函数 f(x)的定义域; (2) 判断函数 f(x)的奇偶性; (3) 求使 f(x)> 0 的 x 的取值范围.分析: 对于第 (2) 问,依据函数奇偶性的定义证明即可.对于第 (3) 问,利用函数的单调性去掉对数符号,解出不等式.解: (1)由 1x> 0,得- 1< x <1,1 x故函数 f(x)的定义域为 (-1,1) .1 x = 1 x=- f(x),(2)∵ f(- x)=log a 1 x loga 1 x又由 (1)知函数 f(x)的定义域关于原点对称,∴ 函数 f(x)是奇函数.(3)当 a> 1 时,由log a1x> 0= loga1,得1x> 1,解得 0< x< 1;当 0< a< 1 时,1x 1 x由 log a1x> 0= loga1,得0< 1x< 1,解得- 1< x<0.1 x 1 x故当 a> 1 时, x 的取值范围是 { x|0< x< 1} ;当 0< a < 1 时, x 的取值范围是 { x|- 1<x< 0} .12.对数型函数模型的实际应用地震震级的变化规律、溶液 pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;第 9 页共 10 页(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论. 由此看, 直接给定参数待定的函数模型时, 利用待定系数法的思想, 代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题. 代入法、 方 程思想、对数运算性质,是解答此类问题的方法精髓.【例 12】我国用长征二号 F 型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历 史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家 (其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱 ).在不考虑空气阻力的条件下,假设火箭的最大速度 y(单位: km/s) 关于燃料重量 x(单位:吨 ) 的函数关系式为y = kln(m + x)-kln( 2m )+4ln 2( k ≠ 0),其中 m 是箭体、 搭载的飞行器、 航天员的重量和. 当燃料重量为 (e - 1)m 吨时, 火箭的最大速度是 4km/s .(1)求 y =f(x);(2)已知长征二号 F 型运载火箭的起飞重量是 479.8 吨 (箭体、搭载的飞行器、 航天员、 燃料 ),火箭的最大速度为 8 km/s ,求装载的燃料重量 (e = 2.7,精确到0.1) .解: (1)由题意得当 x =(e - 1)m 时, y = 4, 则 4= kln[ m + (e - 1)m]- kln( 2m )+ 4ln 2 ,解得 k= 8. 所以 y = 8ln(m + x)- 8ln(2m )+ 4ln 2 ,即 y = 8ln m x. m(2)由于 m + x = 479.8,则 m =479.8 - x ,479.8 ,解得 x ≈302.1. 令8 8ln479.8x 302.1 吨. 故火箭装载的燃料重量约为第 10 页共 10 页。

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质1.对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N=,其中a 叫做底数,N 叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式:log 10a =,log 1a a =,log ba ab =. (3)常用对数与自然对数 常用对数:lg N ,即10log N; 自然对数:ln N ,即log e N(其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 2.对数函数及其性质 定义:函数log (0a y x a =>且1)a ≠叫做对数函数图象:定义域:(0,)+∞ 值域:R 过定点:图象过定点(1,0),即当1x =时,0y =.1 xy O1xyO奇偶性:非奇非偶 单调性:在(0,)+∞上是增函数1a >;在(0,)+∞上是减函数01a <<; 函数值的变化情况:log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<变化对图象的影响:在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. 判断技巧:指数函数令1=x 得到第一象限内底大图上;对数函数令1=y 得到第一象限底大图下。

对数函数及其性质

对数函数及其性质
风险评估
在对金融风险进行评估时,对数函数也起着重要作用。例如 ,在计算投资组合的风险时,可以使用对数函数来简化计算 过程。
利用对数函数解决物理问题
声波传播
在物理学中,声波的传播距离与时间的关系可以使用对数函数来表示。在声 音传播过程中,声波的强度会逐渐减弱,而对数函数可以描述这种衰减现象 。
电路分析
VS
对数公式
loga(xy) = loga(x) + loga(y), loga(x/y) = loga(x) - loga(y),换底公式 :logb(x) = logc(x) / logc(b)
对数函数的基本性质
定义域
x>0
值域
y∈R
函数图像
在直角坐标系中,以直线y = loga(x)为渐近线的双曲线
02
化学领域
物理领域
在物理领域中,对数函数被广泛应 用于声学、光学、电磁学等领域。
在化学中,对数函数被用于描述 化学反应速率与反应物浓度的关 系等。
04 生物学领域
在生物学中,对数函数被用于描述 生物种群增长等。
04
复合对数函数及其性质
复合对数函数的定义和公式
定义
$log_{a}(b\cdot c) = log_{a}(b) + log_{a}(c)$
换底公式的证明
设$x=\log_a(b)$,则$a^x=b$,将等式两边同时取以$c$为底的对数,有 $x\log_c(a)=\log_c(b)$,即$\log_c(b)/\log_c(a)=x=\log_a(b)$。
换底公式的基本应用
1 2
将不同底的对数化为同底的对数
利用换底公式,可以将不同底的对数化为同底 的对数,以便进行计算和比较。

对数函数及其性质经典练习题之基础训练

对数函数及其性质经典练习题之基础训练

对数函数及其性质1.函数<x)=lg(χ-l)+∙√H的定义域为( )A.(1,4]B.(1,4)C.[1,4]D.[1,4)2.函数y=亩log2∣x∣的大致图象是()3.若log∙2<1.则实数。

的取值范围是()A.(1,2)B.(0,1)U(2,+∞)C.(0,DU(1.2)D.(0,1)4.设α=log32,b=Iog6-,C=IogS6,贝∣J( )2A.a<c<bB.h<c<a C∙a<b<c D.b<a<c5.已知0>0且αWl,则函数y=0t与y=log rt(一χ)的图象可能是()6.函数y=log2x在[1,2]上的值域是()A.RB.[0,+∞)C.(一8,1]D.[0,1]7.函数卜=[10号(;1—1)的定义域是.8.若函数yω=logd(0<4<l)在区间[α,2α]上的最大值是最小值的3倍,则a的值为14A.O<α<b<1B.O<b<a<1C.a>b>∖D.b>a>∖15己知函数Ar)=21ogU的值域为则函数Ar)的定义域是()2A.咨,√2]B.[-1,1]C.[1,2]D.(-8,^]U[√2,+∞)5.若函数∕tr)="+log”(x+l)在[0,1]上的最大值和最小值之和为m则。

的值为()A.;B.∣C.2D.46.函数y=log√x+2)+3(α>0且α≠l)的图象过定点.7.函数丁=1。

8乂-%2+以+12)的单调递减区间是.38.将函数y=Iog?X的图象向左平移3个单位,得到图象C一再将C1向上平移2个单位得到图象C2,则C2的解析式为.9.若函数y=l0g2(左,+4人工+3)的定义域为比则4的取值范围是._ 1-X10.已知函^5f(x)=Iog a -------- (a>0且a≠1)1+X⑴求“W的定义域;i)判断f(χ的奇偶性并证明⑶当a>l时,求传(x)>0的X的取值范围。

2.2.2 对数函数及其性质

2.2.2   对数函数及其性质

3 y x ( x R) 的反函数,并且画出原来的函数和它 例13:求函数
的反函数的图象。
解:由y x 3,得 x 3 y ∴函数 y x 的反函数是: y 3 x ( x R)
3 3 y x ( x R)和它的反函数 y 3 x ( x R) 的图象如图所示: 函数
(2)在定义域上是增函数
注:函数 y log a x(a 0且a 1) 的图象与 y log 1 x(a 0且a 1) 的 a 图象关于 x轴对称。 练习: 1. 函数 y log 4.3 x 的值域是( D )
A.(0,) C义:
一般地,我们把函数 y log a x(a 0, 且a 1) 叫做对数函数, 其中 x 是自变量,函数的定义域是(0,) 。
注:
x y a 1.由于指数函数 中的底数a满足a 0且a 1 ,则对数函数 y log a x 中的底数 a 也必须满足 a 0且a 1。
二、对数函数的图象和性质:
例2:函数 y log2 x 和 y log1 x 的图象。
2
一般地,对数函数y log a x(a 0,且a 1)的图象和性质 如下表所示:
0 a 1
图象
a 1
定义域 值域 性质 (2)在定义域上是减函数
(0,)
R
(1)过定点(1,0),即x=1时,y=0
x f 1 ( y)
y 注:在函数 x f 1 ( y)中,表示自变量,表示函数。但在习惯上, x 我们一般用 x 表示自变量,用 y表示函数,为此我们常常对调函数 x f 1 ( y)中的字母 x, y,把它改写为 y f 1 ( x)。
2.如果函数 y f ( x)有反函数 f 1 ( x) ,那么函数 y f 1 ( x) 的反函 数就是y f ( x) 。

对数函数的图像与性质

对数函数的图像与性质

你能口答吗?
变一变还能口答吗?
log10 6 < log10 8 log10 m< log10 n 则 m < n
log0.5 6 > log0.5 8 log0.5 m> log0.5 n 则 m < n
log2 0.6 > log2
0.8
log2 m > log2 n 则
3
3
m < n
你知道指数与对数的关系吗?
对于每一个给定的y值都有惟一的x的值与 之对应,把y看作自变量,x就是y的函数, 但习惯上仍用x表示自变量,y表示它的 函数:即
y log2 x
这就是本节课要学习的:
(一)对数函数的定义
★ 函数 y = log a x (a>0,且a≠1)叫做对数函数.
其中x是自变量,定义域是(0,+∞)
对称性:y loga x 和 y log1 x 的图像关于y轴对称. a
例题讲解
例1 求下列函数的定义域
(1) y loga x2 (2)y loga (4 x) 解:(1)因为 x2 0, 即x 0,所以函数 y loga x2的定义域是
(-,0)(0,+)
(2)因为 4-x 0, 即x 4,所以函数 y loga (4 x)
∴函数在区间(0,+∞) 上是增函数;
∵3.4<8.5
∴ log23.4< log28.5
∴ log23.4< log28.5
• 例8:比较下列各组中,两个值的大小: • (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7
解2:考察函数y=log 0.3 x , ∵a=0.3< 1, ∴函数在区间(0,+∞)上是减函数; ∵1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7

对数函数(基础知识+基本题型)(含解析)

对数函数(基础知识+基本题型)(含解析)

4.4对数函数(基础知识+基本题型)知识点一 对数函数的概念一般地,我们把函数log (0,a y x a =>且1)a ≠叫做对数函数,其中x 是自变量,函数的定义域是()0,.+∞辨析 (1)对数函数的特征:①log a x 的系数是1;②log a x 的底数是不等于1的正数; ③log a x 的真数仅含自变量.x(2)求对数函数的定义域时,应注意:①对数的真数大于0,底数大于0且不等于1;②对含有字母的式子要分类讨论;③使式子符合实际背景.知识点二 对数函数的图象和性质1.对数函数log (0,a y x a =>且1)a ≠的图象和性质()0,+∞.R 2.对数函数的图象与性质的对应关系①这些图象都位于y 轴右方 ①x 可取任意正数,函数值.y R ∈ ②这些图象都经过点(1,0)②无论a 为任何正数,总有log 10a =③图象可以分为两类:一类图象在区间(0,1)内纵坐标都小于0,在区间()1,+∞内的纵坐标都大于0;另一类图象正好相反③当1a >时01log 0,1log 0;a a x x x x <<⇒<⎧⎨>⇒>⎩ 当01a <<时01log 0,1log 0a a x x x x <<⇒>⎧⎨>⇒>⎩ ④自左向右看,当1a >时,图象逐渐上升;当01a <<时,图象逐渐下降 ④当1a >时,函数log a y x =是增函数; 当01a <<时,函数log a y x =是减函数3.底数对函数图象的影响(1)函数log (0,a y x a =>且1)a ≠的图象无限地靠近y 轴,但永远不会与y 轴相交;(2)在同一平面直角坐标系中,log (0,a y x a =>且1)a ≠的图象与1log (0,ay x a =>且1)a ≠的图象关于x 轴对称.(3)对数函数单调性的记忆口诀:对数增减有思路,函数图象看底数;底数要求大于0,但等于1却不行; 底数若是大于1,函数从左往右增;底数0到1之间,函数从左往右减; 无论函数增和减,图象都过点(1,0).在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)知识点三 指数函数与对数函数的关系指数函数对数函数解析式()10≠>=a a a y x 且)10(log ≠>=a a x y a 且R ()+∞,0①一般地,函数()y f x a b =±±(a 、b 为正数)的图象可由函数()y f x =的图象变换得到。

对数函数及其性质知识点

对数函数及其性质知识点

对数函数及其性质1.对数函数:一般地,把函数y=log a x(a>0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.为了更全面、更深刻的理解对数函数的概念,还应从以下三个方面理解: (1)定义域:因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)底数:对数函数的底数a >0且a ≠1;(3)形式上的严格性:和指数函数一样,在对数函数的定义表达式y=log a x (a >0且a ≠1)中,log a x前面的系数必须是1,底数为大于0且不等于1的常数.对数的真数仅有自变量x ,否则不是对数函数.例如y=log a(x-1),y=2log a x ,y=log a x+21等函数是由对数函数变化而得到的,但不是对数函数. 指数函数和对数函数对照表名称 指数函数 对数函数一般形式 y=a x(a >0且a ≠1)y=log a x(a >0且a ≠1)定义域 R (0,+∞)值域(0,+∞)R函数值 变化 情况当1a >时,1010010x xx a x a x a x ⎧>>⎪==⎨⎪<<<⎩,,,,, 当01a <<时,0101010x xx a x a x a x ⎧<<>⎪==⎨⎪><⎩,,,, 当1a >时,log 01log 01log 001a a a x x x x x x >>⎧⎪==⎨⎪<<<⎩,,,,,;当01a <<时,log 01log 01log 00 1.a a ax x x x x x <>⎧⎪==⎨⎪><<⎩,,,,,单调性当a >1时,y=a x是增函数;当0<a <1时,y=a x是减函数.当a >1时,y=log a x是增函数;当0<a <1时,y=log a x是减函数.图象y=a x(a >0且a ≠1)的图象与y=log a x(a >0且a ≠1)的图象关于直线y=x 对称.当a >1时, 当0<a <1时,补充 性质 当a >1时,图象向上越靠近y 轴,底数越大;0<a <1时,图象向上越靠近y 轴,底数越小.当a >1时,图象向右越靠近x 轴,底数越大; 当0<a <1时,图象向右越靠近x 轴,底数越小.3.反函数:一般地,式子y=f(x)表示y是自变量x的函数,设它的定义域为A,值域为C. 我们从式子y=f(x)中解出x,得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一确定的值和它对应,那么式子x=φ(y) 就表示x是自变量y的函数。

对数函数的图象及性质

对数函数的图象及性质
对数函数的图象及性质
• 对数函数的定义与性质 • 对数函数的图象 • 对数函数的实际应用 • 对数函数与其他数学知识的联系 • 练习与思考
01
对数函数的定义与性质
对数函数的定义
1 2
自然对数
以e为底的对数,记作lnx,其定义域为(0, +∞)。
常用对数
以10为底的对数,记作lgx,其定义域为(0, +∞)。
对数函数和幂函数在定义域和值域上 存用
对数函数在数学中的应用
求解方程
对数函数在求解方程中有着广泛的应 用,例如在解对数方程、指数方程等 数学问题时,常常需要利用对数函数 的性质进行转换和求解。
数值计算
在数值计算中,对数函数可以用于加 速某些计算过程,例如在计算复数的 模、向量的点积等运算中,利用对数 函数可以大大简化计算过程。
3
任意对数
以a为底的对数,记作log_ax,其定义域为(0, +∞),其中a>0且a≠1。
对数函数的基本性质
定义域
对数函数的定义域为(0, +∞), 因为对数的底数必须大于0且不
能等于1。
值域
对数函数的值域为R,即所有实 数。
单调性
当底数a>1时,对数函数是增 函数;当0<a<1时,对数函数 是减函数。
基础练习题2
已知函数$f(x) = log_2(x^2 - 1)$,求函数的值域。
基础练习题3
已知函数$f(x) = log_2(x + 3) - 1$,判断函数的 奇偶性。
提升练习题
提升练习题1
求函数$y = log_2(x^2 - 4x + 5)$的单调区 间。
提升练习题2

对数函数的性质与应用

对数函数的性质与应用

对数函数的性质与应用数学中,对数函数作为一种重要的数学工具,具有广泛的性质和应用。

本文将探讨对数函数的性质以及其在实际问题中的应用。

一、对数函数的定义与基本性质对数函数是指满足以下方程的函数:y = logₐ x,其中 a 为正实数且不等于 1,x 和 y 均为正实数。

对数函数以对数的形式表达了指数运算的逆运算。

1.1 对数函数的定义域和值域对数函数的定义域为正实数集合,值域为实数集合。

1.2 对数函数的图像特征以y = logₐ x 为例,当 a>1 时,对数函数图像表现为从左下到右上的增长趋势;当 0<a<1 时,对数函数图像表现为从左上到右下的递减趋势。

对数函数的图像具有光滑连续、单调性等特点。

1.3 对数函数的性质(1)对数函数具有唯一性,即不同的底数 a 决定了不同的对数函数。

(2)对数函数具有对称性,即logₐx 和logₐ(1/x) 关于 y 轴对称。

(3)对数函数具有换底公式,即logₐx = logₐy / logₐa。

二、对数函数的应用对数函数在实际问题中有广泛的应用,涵盖了数学、科学、经济等领域。

下面将介绍对数函数在几个具体应用中的作用。

2.1 对数函数在指数运算的求解中的应用对数函数可以用来解决指数运算中的未知数问题。

例如,求解方程a^x = b,可以通过将其转化为logₐ b = x 的形式,从而利用对数函数求得未知数 x 的值。

2.2 对数函数在复利计算中的应用复利是指在一定时间内,资金按一定利率计算利息后再加入本金中进行下一次利息计算的方式。

对数函数可以用来计算复利的增长速度和时间。

例如,利息年限为 t 年,复利率为 r,本金为 P 元,则最终金额为 P(1+r)^t。

借助对数函数,可以求解出复利率 r 或者时间 t。

2.3 对数函数在数据处理中的应用对数函数在数据处理过程中起到重要的作用。

例如,在统计学中,经常会遇到数据范围过大时难以直观表示的问题。

对数函数性质

对数函数性质

对数函数性质对数函数是高中数学中的一个重要知识点,在许多数学、物理、化学等领域中都有广泛的应用。

在学习对数函数时,我们需要掌握对数函数的性质,在这里,我将为大家详细介绍对数函数的性质,希望能对大家的学习有所帮助。

一、对数函数定义及性质对数函数的公式为:y=loga x ,其中x、y、a都是实数,a>0,且a≠1。

1.定义域和值域(1)定义域:对数函数的定义域为正实数集R+(2)值域:对数函数的值域为实数集R2.奇偶性(1)当a>1时,对数函数是增函数,是奇函数。

(2)当0<a<1时,对数函数是减函数,是偶函数。

(3)对于任意的a,对数函数均不具有周期性。

3.单调性(1)当a>1时,对数函数是单调递增的;(2)当0<a<1时,对数函数是单调递减的;(3)对于任意的a,对数函数均单调。

4.对称轴当a>1时,对数函数的对称轴是y=x;当0<a<1时,对数函数的对称轴是y=-x。

5.渐近线当a>1时,对数函数的x轴渐近线是x轴;当0<a<1时,对数函数的y 轴渐近线是x轴。

二、对数函数在求解实际问题中的应用对数函数是一种用于描述关系紧密的现象的数学工具,它广泛应用于数学、物理、化学、生物等领域。

下面分别介绍对数函数在不同领域的应用。

1.经济学中的应用对数函数在经济学中有广泛的应用,例如在计算经济增长率和物价指数时常常用到对数函数。

(1)经济增长率的计算对数函数可以用来表示数据的增长趋势。

在经济学中,经济增长率是一个重要指标。

假设某国的国内生产总值(GDP)在2010年为100亿美元,在2011年增加到120亿美元,那么这个国家的GDP增长率为:所以,GDP的增长率为20%。

可以使用以下公式来计算增长率:增长率 = log10(120) - log10(100) = 0.0792。

因此,增长率为7.92%。

(2)物价指数的计算物价指数是描述物价水平的一个指标。

对数函数的性质及运算

对数函数的性质及运算

对数函数的性质及运算对数函数是数学中经常使用的一种函数,它在许多领域都有重要的应用。

本文将探讨对数函数的性质及其运算规则。

一、对数函数的定义及性质对数函数的定义:给定一个正数a(a>0且a≠1),那么以a为底的对数函数记作logₐ(x),定义为满足a的x次方等于b的数x,即aˣ=b,其中b>0。

1. 对数函数的定义域和值域:对数函数的定义域是(0, +∞),值域是(-∞, +∞)。

当底数a>1时,对数函数是递增的;当0<a<1时,对数函数是递减的。

2. 对数函数的性质:(1)logₐ(a)=1,即对数函数的基本性质。

(2)logₐ(aˣ)=x,即对数函数的反函数性质。

(3)logₐ(a×b)=logₐ(a)+logₐ(b),即对数函数的乘法公式。

(4)logₐ(a/b)=logₐ(a)-logₐ(b),即对数函数的除法公式。

(5)logₐ(a^k)=k·logₐ(a),即对数函数的幂函数公式。

(6)logₐ1=0,即对数函数的特殊性质。

二、对数函数的运算规则1. 对数运算的基本性质:(1)logₐ(m×n)=logₐ(m)+logₐ(n),即对数乘法法则。

(2)logₐ(m/n)=logₐ(m)-logₐ(n),即对数除法法则。

(3)logₐ(m^k)=k·logₐ(m),即对数幂函数法则。

(4)logₐ(a)=1/logₐ⁡(a),即对数底变换公式。

2. 特殊情况下的对数运算:(1)logₐ(a)=1,其中a是正实数且a>0,即指数和对数的底为同一个数时,结果为1。

(2)logₐ(a)≠0,其中a是正实数且a>0,即指数和对数的底不相等时,结果不为0。

三、对数函数的应用对数函数在科学研究和实际生活中有着广泛的应用,例如:1. 财务与利息计算:对数函数可以用于计算复利、年化利率等问题。

2. 生物学与医学研究:对数函数可以用于研究生物体的生长和代谢等问题。

对数函数的图像与性质

对数函数的图像与性质

对数函数的图像与性质一、基础知识熟练记忆1.对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . 易得:log a NaN =——对数恒等式2.指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0).要能灵活运用这个关系,能随时将二者互化。

3.对数运算性质:①log a (MN )=log a M +log a N . ②log a NM =log a M -log aN .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④换底公式:log b N =bNa a log log (0<a ≠1,0<b ≠1,N >0).4.对数函数:(1)定义:y =log a x (a >0,a ≠1)叫对数函数,x 是自变量,y 是x 的函数。

对数函数与指数函数是互为反函数;(2)对数函数的图象Oxyy = l o g x a > Oxy<a <ay = l o g x a 11110( ( ))(3)对数函数的性质:①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 底数互为倒数的两个对数函数的图象关于x 轴对称. 5.同真数的对数值大小关系如图在第一象限内,图像从左到右相应的底逐渐增大, 即01c d a b <<<<<6.对数式、对数函数的理解① 应重视指数式与对数式的互化关系,它体现了数学的转化思想,也往往是解决“指数、对数”问题的关键。

② 在理解对数函数的概念时,应抓住定义的“形式”,像2log 2,log 2,3ln x y y x y x===等函数均不符合形式log (01)a y x a a =>≠且,因此,它们都不是对数函数 ③ 画对数函数log a y x =的图像,应抓住三个关键点1(,1),(1.0),(,1)a a-7、复合函数的单调性在复合函数[()]y f g x =中,如果()u g x =和()y f x =的增减性相同,则[()]y f g x =为增函数,如果()u g x =和()y f x =的增减性相反,则[()]y f g x =为减函数。

对数函数知识点总结

对数函数知识点总结

对数函数知识点总结一、引言对数函数是数学中的重要概念之一。

无论是在数学基础理论中,还是在实际应用中,对数函数都扮演着重要的角色。

本文将对对数函数的定义、性质以及一些常见的应用进行总结。

二、对数函数的定义对数函数是幂运算的逆运算。

对于任意的正实数a和正实数x,若满足a的x次方等于另一个正实数y(即a^x=y),则可以表示为x=log_a(y)。

其中,a被称为底数,x被称为指数。

三、对数函数的性质1. 对数函数的定义域:对于底数为a的对数函数,定义域为正实数集合。

2. 对数函数的值域:对于底数为a的对数函数,值域为整个实数集合。

3. 对数函数的图像:对数函数在底数大于1时,呈现递增的趋势;在底数小于1且大于0时,呈现递减的趋势。

4. 对数函数的特殊性质:log_a(1) = 0;log_a(a) = 1;log_a(a^x) = x。

四、对数函数与指数函数的关系对数函数与指数函数是互为反函数的关系。

换言之,对于底数为a的指数函数y=a^x与对数函数y=log_a(x)是互为反函数。

两者的函数图像关于直线y=x对称。

五、对数函数的应用对数函数在实际应用中起到了重要的作用,尤其在与数量增长、数据分析和计算机科学等领域密切相关。

1. 对数函数在人口统计方面的应用:由于人口的增长往往呈现指数级的趋势,所以采用对数函数可以更好地描述人口的变化规律。

2. 对数函数在财务管理中的应用:对数函数在计算复利的过程中起到了重要作用,用来计算投资增长或债务下降的速度。

3. 对数函数在信号处理中的应用:对数函数可以用来处理信号强度、音频和图像的动态范围等问题,广泛应用于通讯和音视频技术领域。

4. 对数函数在算法设计中的应用:对数函数被广泛应用于算法设计中,如排序算法、搜索算法和图算法等。

六、对数函数的扩展除了常见的自然对数函数(底数为e)和常用对数函数(底数为10)外,还存在其他底数的对数函数,如二进制对数函数和三角函数的广义对数函数等。

知识讲解_对数函数及其性质_基础

知识讲解_对数函数及其性质_基础

对数函数及其性质【学习目标】1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较; 3.了解反函数的概念,知道指数函数x y a =与对数函数log a y x =互为反函数()0,1a a >≠. 【要点梳理】要点一、对数函数的概念1.函数y=log a x(a>0,a ≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1;(2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释:(1)只有形如y=log a x(a>0,a ≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数。

(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论。

要点二、对数函数的图象与性质要点诠释:关于对数式log a N 的符号问题,既受a 的制约又受N 的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a ,N 同侧时,log a N>0;当a ,N 异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降.如图要点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.2.底数变化与图象变化的规律在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)要点四、反函数 1.反函数的定义设,A B 分别为函数()y f x =的定义域和值域,如果由函数()y f x =所解得的()x y ϕ=也是一个函数(即对任意的一个y B ∈,都有唯一的x A ∈与之对应),那么就称函数()x y ϕ=是函数()y f x =的反函数,记作1()x f y -=,在1()x f y -=中,y 是自变量,x 是y 的函数,习惯上改写成1()y f x -=(,x B y A ∈∈)的形式.函数1()x f y -=(,y B x A ∈∈)与函数1()y f x -=(,x B y A ∈∈)为同一函数,因为自变量的取值范围即定义域都是B ,对应法则都为1f-.由定义可以看出,函数()y f x =的定义域A 正好是它的反函数1()y f x -=的值域;函数()y f x =的值域B 正好是它的反函数1()y f x -=的定义域.要点诠释:并不是每个函数都有反函数,有些函数没有反函数,如2y x =.一般说来,单调函数有反函数. 2.反函数的性质(1)互为反函数的两个函数的图象关于直线y x =对称.(2)若函数()y f x =图象上有一点(),a b ,则(),b a 必在其反函数图象上,反之,若(),b a 在反函数图象上,则(),a b 必在原函数图象上.【典型例题】类型一、对数函数的概念例1.下列函数中,哪些是对数函数?(1)log 0,1)ay a a =>≠;(2)2log 2;y x =+(3)28log (1)y x =+; (4)log 6(0,1)x y x x =>≠; (5)6log y x =.【答案】(5) 【解析】(1)中真数不是自变量x ,不是对数函数. (2)中对数式后加2,所以不是对数函数.(3)中真数为1x +,不是x ,系数不为1,故不是对数函数. (4)中底数是自变量x ,二非常数,所以不是对数函数.(5)中底数是6,真数为x ,符合对数函数的定义,故是对数函数.【总结升华】已知所给函数中有些形似对数函数,解答本题需根据对数函数的定义寻找满足的条件. 类型二、对数函数的定义域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.例2. 求下列函数的定义域:(1)2log a y x =; (2)log (4-)(01)a y x a a =>≠且. 【答案】(1){|0}x x ≠;(2){|4}x x <.【解析】由对数函数的定义知:20x >,40x ->,解出不等式就可求出定义域. (1)因为20x >,即0x ≠,所以函数2log {|0}a y x x x =≠的定义域为; (2)因为40x ->,即4x <,所以函数log (4-){|4}a y x x x =<的定义域为.【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于log ()a y f x =的定义域时,应首先保证()0f x >.举一反三:【变式1】求下列函数的定义域.(1) y = (2)lg 23y x x =+-.【答案】(1)(1,23) (23,2);(2)(()[),115,32,-∞----+∞.【解析】(1)因为⎪⎪⎪⎩⎪⎪⎪⎨⎧≠->->-1)1(log 0)1(log 012121x x x , 所以101132x x x ⎧⎪>⎪<-<⎨⎪⎪≠⎩,所以函数的定义域为(1,23) (23,2).(2)由22240,230,lg(23)0,x x x x x ⎧-≥⎪+->⎨⎪+-≠⎩得22,31,1x x x x x ⎧≤-≥⎪<->⎨⎪≠-⎩或或故所求定义域为(()[),115,32,-∞-----+∞.类型三、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.例3. 比较下列各组数中的两个值大小: (1)33log 3.6,log 8.9;(2)0.20.2log 1.9,log 3.5; (3)2log 5与7log 5; (4) 3log 5与6log 4.(5)log 4.2,log 4.8a a (01a a >≠且).【思路点拨】利用函数的单调性比较函数值大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数及其性质 A一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;3.了解反函数的概念,知道指数函数xy a=与对数函数logay x=互为反函数()0,1a a>≠.学习策略:在理解对数函数定义的基础上,掌握对数函数的图象和性质,在学习过程中,要处处与指数函数相对照.二、学习与应用指数函数图象及性质:y=a x0<a<1时图象a>1时图象图象性质(1)定义域,值域(,)“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?(2)a0= ,即x=0时,y= ,图象都经过(,)点(3)a x=a,即x=1时,y等于底数(4)在定义域上是单调函数(4)在定义域上是单调函数(5)x<0时,a x>x>0时, <a x<(5)x<0时, <a x<x>0时,a x>(6)既不是奇函数,也不是偶函数要点一:对数函数的概念1.函数叫做对数函数.其中x是自变量,函数的定义域是()0,+∞.2.判断一个函数是对数函数是形如log(0,1)ay x a a=>≠且的形式,即必须满足以下条件:(1)系数为;(2)底数为的常数;(3)对数的真数仅有.要点诠释:(1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log(1),2log,log3a a ay x y x y x=+==+等函数,它们是由对数函数变化得到的,都不是对数函数.(2)求对数函数的定义域时应注意:①对数函数的真数要求,底数大于零且不等于1;②对含有字母的式子要注意.a>1 0<a<1图象性质定义域:值域:过定点,即x=1时,y=0在(0,+∞)上增函数在(0,+∞)上是减函数当0<x<1时,<0,当x≥1时,≥0当0<x<1时,>0,当x≥1时,≤0要点诠释:关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.要点梳理——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源ID:#12255#392183要点三:底数对对数函数图象的影响1.底数制约着图象的升降.如图要点诠释:由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.2.底数变化与图象变化的规律在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈 轴;当0<a<1时,对数函数的图象随a 的增大而 轴.(见下图)要点四:反函数1.反函数的定义设,A B 分别为函数()y f x =的定义域和值域,如果由函数()y f x =所解得的()x y ϕ=也是一个函数(即对任意的一个y B ∈,都有唯一的x A ∈与之对应),那么就称函数()x y ϕ=是函数()y f x =的 ,记作 ,在1()x f y -=中,y 是自变量,x 是y 的函数,习惯上改写成 (,x B y A ∈∈)的形式.函数1()x f y -=(,y B x A ∈∈)与函数1()y f x -=(,x B y A ∈∈)为 ,因为自变量的取值范围即定义域都是B ,对应法则都为 .由定义可以看出,函数()y f x =的定义域A 正好是它的反函数1()y f x -=的 ;函数()y f x =的值域B 正好是它的反函数1()y f x -=的 .要点诠释:并不是每个函数都有反函数,有些函数没有反函数,如2y x =.一般说来,单调函数有反函数.2.反函数的性质(1)互为反函数的两个函数的图象关于 对称.(2)若函数()y f x =图象上有一点(),a b ,则 必在其反函数图象上,反之,若(),b a 在反函数图象上,则 必在原函数图象上.类型一:对数函数的概念例1.下列函数中,哪些是对数函数?(1)log (0,1)a y x a a =>≠;(2)2log 2;y x =+(3)28log (1)y x =+;(4)log 6(0,1)x y x x =>≠;(5)6log y x =.【答案】【解析】(1)(2)(3)(4)(5)【总结升华】类型二:对数函数的定义域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.例2. 求下列函数的定义域:(1)2log a y x =; (2)log (4-)(01)a y x a a =>≠且.【答案】(1) ;(2) .【解析】由对数函数的定义知:20x >,40x ->,解出不等式就可求出定义域.(1)(2)【总结升华】典型例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三.课堂笔记或者其它补充填在右栏.更多精彩内容请学习网校资源ID :#12260#392183举一反三:【变式1】求下列函数的定义域.(1) y=33121log (1)1x x --- (2)()24lg 23x y x x -=+-.【答案】(1) ;(2)【解析】(1)(2)类型三:对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.例3. 比较下列各组数中的两个值大小:(1)33log 3.6,log 8.9;(2)0.20.2log 1.9,log 3.5;(3)2log 5与7log 5;(4) 3log 5与6log 4.(5)log 4.2,log 4.8a a (01a a >≠且).【思路点拨】利用函数的单调性比较函数值大小。

【答案】(1) ;(2) ;(3) ;(4) ;(5) .【解析】由数形结合的方法或利用函数的单调性来完成.(1)解法1:解法2:(2)(3)(4)(5)解法1:解法2:【总结升华】例4.利用对数函数的性质比较0.23、3log 2、5log 4的大小.【答案】【解析】【总结升华】举一反三:【变式1】已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则( )A .a b c >>B .b a c >>C .a c b >>D .c a b >>【答案】【解析】例5.求函数212log (21)y x x =-++的值域和单调区间.【思路点拨】先解不等式2210x x -++>,保证原式有意义,然后再在定义域范围内求内函数221t x x =-++的单调区间,然后根据复合函数的单调性就是内函数与外函数的单调性“同增异减”来求解.【答案】【解析】【总结升华】举一反三:【变式1】求函数()22log 4y x =+的值域和单调区间.【答案】【解析】类型四:函数的奇偶性例6. 判断下列函数的奇偶性.(1)2-()ln ;2xf x x =+ (2)2()lg(1-)f x x x =+.【思路点拨】判断函数奇偶性的步骤是:(1)先求函数的定义域,如果定义域关于原点对称,则进行(2),如果定义域不关于原点对称,则函数为非奇非偶函数。

(2)求()f x -,如果()()f x f x -=,则函数是偶函数,如果()()f x f x -=-,则函数是奇函数。

【答案】(1) ;(2) .【解析】首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.(1)【总结升华】(2)【解析】【总结升华】类型五:利用函数图象解不等式例7.若不等式2log 0x a x -<,当10,2x ⎛⎫∈ ⎪⎝⎭时恒成立,求实数a 的取值范围.【思路点拨】画出函数2x y =的图象与函数log a y x =的图象,然后借助图象去求借。

【答案】【解析】【总结升华】举一反三:【变式1】 当x ∈(1,2)时,不等式2(1)log a x x -<恒成立,求a 的取值范围.【答案】【解析】类型六:对数函数性质的综合应用例8.(1)已知函数2lg(2)y x x a =++的定义域为R ,求实数a 的取值范围;(2)已知函数2lg(2)y x x a =++的值域为R ,求实数a 的取值范围;(3)22()log (log )a a f x x x =-+的定义域为1(0,)2,求实数a 的取值范围.【思路点拨】与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.()f x 的定义域为R ,即关于x 的不等式220x x a ++>的解集为R ,这是不等式中的常规问题.()f x 的值域为R 与22x x a ++恒为正值是不等价的,因为这里要求()f x 取遍一切实数,即要求22u x x a =++取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u 能取遍一切正数的条件是0∆≥.【答案】(1) ;(2) ;(3) .【解析】(1)(2)(3)【总结升华】举一反三:【变式1】 已知函数2()lg(21)f x ax x =++.(1)若函数()f x的定义域为R,求实数a的取值范围;(2)若函数()f x的值域为R,求实数a的取值范围.【答案】(1);(2).【解析】(1)(2)三、测评与总结要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们巩固学习效果,弥补知识缺漏,提高学习能力.知识点:对数函数及其性质测评系统分数:模拟考试系统分数:如果你的分数在85分以下,请进入网校资源ID:#12283#392183 进行巩固练习,如果你的分数在85分以上,请进入网校资源ID:#12332#392189 进行能力提升.成果测评现在来检测一下学习的成果吧!请到网校测评系统和模拟考试系统进行相关知识点的测试.自我反馈学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整我的收获习题整理题目或题目出处所属类型或知识点分析及注意问题好题错题注:本表格为建议样式,请同学们单独建立错题本,或者使用四中网校错题本进行记录.○网○校○重○要○资○源知识导学:对数函数及其性质(基础)(#392183)若想知道北京四中的同学们在学什么,请去“四中同步”看看吧!和四中的学生同步学习,同步提高!更多资源,请使用网校的学习引领或搜索功能来查看使用.对本知识的学案导学的使用率:□ 好(基本按照学案导学的资源、例题进行复习、预习和进行课堂笔记等,使用率达到80%以上)□ 中(使用本学案导学提供的资源、例题和笔记,使用率在50%-80%左右)□ 弱(仅作一般参考,使用率在50%以下)学生:_______________ 家长:______________ 指导教师:_________________请联系北京四中网校当地分校以获得更多知识点学案导学.。

相关文档
最新文档