初中数学竞赛辅导不等式的应用
七年级数学尖子生培优竞赛专题辅导第十一讲不等式(组)的应用
第十一讲不等式(组)的应用趣题引路】(2002年江苏省常州市中考题)某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们•如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本•设该校买了加本课外读物,有x需学生获奖,请解答下列问题:(1)用含x的代数式表示加;(2)求出该校的获奖人数及所买的课外读物的本数.解析:(1) m=3x+8;(2)依题意得严F-ipo, ®3x + 8-5(x-l)<3・(2)•由①得点6丄;2由②得x>5・•••原不等式组的解集为5<xW6丄.2•・• x是正整数,・・.x = 6.把;v = 6彳弋入〃? = 3x+8 ,得加=26.答:该校的获奖人数为6人,所买的课外读物的本数为26.点评:在一些实际问题中,往往含有“不足” “不超过”“不低于”等关键词,将这些关键词转换成不等符号,就可以建立不等式,从而使问题得以解决.知识延伸】一、不等关系与相等关系的综合在实际问题中,往往既存在相等关系又存在不等关系,我们充分利用这些关系建立方程和不等式,可以把问题解决.例1:(黑龙江省中考题)为了迎接2002年的世界杯足球赛,某足球协会举办了一次足球赛,其记分规则和奖励方案如下:当比赛进行到第12轮结束时(每队需要比赛12场),A队共积19分.(1)请通过计算,判断A队胜.平.负各几场?(2)若每赛一场,每个参赛队员得出场费500元,设A队其中一需参赛队员所得的奖金和出场费的和为W (元人试求W的最大值.解析:(1)设A队胜x场,平y场,负z场,则有(兀 + y + z = 12,(3x+y = 19 ・2 = 19-3上iz = 2x — 7.解得:由题意可知4^0,且X、八z均为整数,19-3x^0,心0・解得:3丄WrWl, ••• x=4, 5, 6.2 3•••A队胜4场,平7场,负1场;或胜5场,平4场,负3场:或胜6场,平1场,负5场.(2) VV = (1500 + 500)x + (700 + 500)y + 500z = -600x +19300观察代数式-6OO.r+19300,发现x越小,W越大.•••当x = 4时,比叭=16900元.点评:题中有两个明显的相等关系•可以列出两个方程,但问题中迫切需要求出三个未知量,利用题中隐含的不等关系“三个未知量都是非负整数”建立不等式组,确泄未知量的取值范国•这实际上也是利用不等式求不定方程组的整数解的一种重要方法.二、不等式与商品定价在商品销售问题中往往牵涉到价格、商品数目“至多…至少…盈利”等词语,将这些词语转化为不等符号,即可建立不等式,解决实际问题.例2:商业大厦购进某种商品1000件,销售价左为购进价的125%.现计划节日期间按原左销售价让利10%,售出至多100件商品,而在销售淡季按原立销售价的60%大甩卖,为使全部商品售完后盈利,在节日和淡季外要按原定价销售至少多少件商品?解析:设购进价为“元,按原立价销售x件,节日让利销售y件,则淡季销售(1000-x-y )件•依题意有:125%心 + 125%(1-10%)© + 125%x60%“(100-x-y) > 1000u 即4x + 3y > 2000 ,V 応100 ,•••4x>2000-3yM1700,又x是整数,•••x±425・所以,在节日和淡季外要按原定价销售至少435件商品才能盈利.点评:充分利用“盈利”这一不等关系,盈利即销售金额大于成本•题目中并没有包含儿y的等量关系,但利用)0100和不等式的传递性建立关于x的不等式,从而求岀;v的取值范耐三.不等式与决策方案现实生活中职能部门政策的制左,公司生产方案的决策等都蕴含着大量的数学知识,不等式在其中时常会有所体现.例3:某市政府为了进一步改善投资环境和居民生活环境,并吸引更多的人来观光旅游,决左对古运河城区段实施二期开发工程,现需要A. B两种花砖50万块,全部由某砖瓦厂完成此项生产任务•该厂现有甲种原料180万千克,乙种原料145万千克.已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1・5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有的原料,该厂是否能按要求完成任务?若能,按A、B两种花砖生产的块数,有哪几种生产方案?请你设计出来.(以1万块为一个单位且取整数)(2)试分析你设计的哪种方案总造价最低?最低造价是多少?解析:(1)设应生产A种花砖x万块,则应生产B种花砖(50-天)万块.j4・5x + 2(50-x)W180,①依题意得il.5x + 5(50-x)W145・②由①、②可得30WxW32・V 兀是整数,••• x=30, 31, 32:对应的50-x=20, 19, 18.所以有以下三种方案可供选择:方案一:生产A种花砖30万块,B种花砖20块;方案二:生产A种花砖31万块,B种花砖19块;方案三:生产A种花砖32万块,B种花砖18块.(2)三种方案的造价分别为:方案一:30x1.2+20x1.8 = 72 (万元):方案二:31x1.2 + 19x1.8 = 71.4 (万元);方案三:32x1.2+18x1.8=70.8 (万元).显然,方案三造价最低,最低造价为70.8万元.点评:利用“所需原料不能超过现有原科”这一隐含的不等关系建立不等式,求岀未知量的取值范围. 得到可行方案.好题妙解】佳题好题品味例:某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租一俩,且余30个座位.(1)求该校参加春游的人数:(2)已知45座客车的租金为每辆250元,60座客车的租金为每俩300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租一辆,所用租金比单独租用一种客车要节省,按照这种方案需租金多少元?解析:设参加春游的有X人.依题意得丄=出2+1・45 60解得x=270 (人)・(2)单独粗用45座客车时需车6俩,所需租金为1500元:单独租用60座客车时需车5辆,所需租金也为1500元.设租用45座客车y俩,则租用60座客车y+1辆,依题意得250y + 3OO(y + l)<15OO ・解之得y<晋,(y是正整数),•: y = 1 ♦或y = 2 ・当y = l 时,45xl+60x2=165<270 (不合题意,舍去);当y = 2时,45 x 2 + 60 x 3 = 270符合题意.选择这种方案需要租金:2 x 250 + 3 x 300 = 1400 (元).点评:利用“所用租金比单独租用一种客车要巧省”这一隐含的限制条件来构建不等式,求出未知量的取值范围,得到符合题意的方案.中考真题欣赏例:(2003年哈尔滨市中考题)建网校就等于建一所学校,哈尔滨市慧明中学为了加强现代信息技术课教学,拟投资建一个初级讣算机机房和一个髙级计算机机房,每个计算机房只配一台教师用机,若T•台学生用机,其中初级机房教师用机每台8000元,学生用机每台3500元:高级机房教师用机每台11500元, 学生用机每台7000元•已知两机房购买计算机的总钱数相同,且每个机房购买汁算机的总钱数不少于20 万,也不超过21万,则该学校拟建的初级机房、高级机房各有多少台计算机?解析:设初级机房有X台计算机,髙级机房有y台讣算机.8000 + 35OO(x-1) = 11500+ 7000(y-1),①根据题意有200000^8000 + 35OO(A- 1)^210000, ⑥200000W11500 + 7000($-1)0210000. ③由①得x = 2y,由②得55-^A<58-,7 71 Q 气由③得27 —W)W29—,14 - 14•••八y是正整数,•: y = 28 > 人‘ =56 ; y = 29 ♦x = 58 ・答:初级机房有56台计算机,高级机房有28台计算机;或初级机房有58台计算机,髙级机房有29 台计算机.点评:先将两个机房所需的总钱数用代数式表示出来,再利用不等关系“不少于20万,也不超过21 万”建立不等式,利用相等关系“两机房购买计算机的总钱数相同”建立方程.竞赛样题展示例:(江苏省竞赛试题)货轮上卸下若干只箱子,其总重量为10(,每只箱子的重量不超过山为保证能把这些箱子一次运走,问至少需要多少俩载重3t的汽车?解析:设共需"辆汽车,它们运走的重量依次为…,©•则2WqW3 ( / = 1 ♦ 2, •••♦“),q+G+••• + ©= 10,/. 2 + 2 +・・・+ 2念]+ ① + … + “S3 + 3t…+ 3,”个IT个即解得—^n^:5 ・3•・•车子数”应为整数,•“ 4或5,但4辆车子不够.例如有13只箱子,每只重量为挣,而3X寻V3, 4X 吕>3,即每辆车子只能运走3只箱子,4辆车子只能运走12只箱子,还剩一只箱子,故需5辆汽车.点评:每只箱子不超过M意味着每辆车的载重虽大于或等于2/且小于等于引.利用“总重量等于各车的实际载重量之和”,建立关于车辆数”的I不等式,使问题得以解决.过关检测】A级1.(2001年河北省中考题)在一次“人与自然“知识竞赛中,竞赛试题共有25道,每道题都给岀4个答案,苴中只有一个正确答案,要求学生把正确答案写出来,每逍题选对得4分,不选或选错倒扣2分.如果某学生在本次竞赛中的得分不低于60分,那么他至少选对了________________ 道题.2.一种含药率为15%的火虫药粉30怨,现要用含药率较髙的同种火虫药粉50炖和它混合,使混合后的含药率大于20%,而小于35%,则所用药粉的含药率x的范围是()A. 15%<x<25%B. 15%<JT<35%C. 23%<x<47%D. 23%<x<50%3.(南京市中考题)一个长方形足球场的长为宽为70,如果它的周长大于350m而积小于7560胪, 求x的取值范伟I,并判断这个球场是否可以用作国际足球比赛.(注:国际足球比赛的足球场的长在100加到110加之间,宽在64/w到75加之间)4.在双休日,某公司决泄组织48名员工到附近一水上公园坐船游玩,船只租赁情况如下表:怎样设汁租船方案才能使所支岀的租金最少?(严禁超载)5.(浙江宁波市中考题)为了能有效地使用电力资源,宁波市电业局从2001年1月起进行居民“峰谷“ 用电试点,每天8 : 00到22 : 00用电的电价为0.56元/千瓦时(“峰电"价),22 : 00至次日8 : 00用电的价为0.28元/千瓦时(“谷电"价),而目前不使用“峰谷“电的居民用电的电价为0.53元/千瓦时.(D-居民家庭在某月使用“峰谷“电后,付电费95.2元,经测算比不使用“峰谷“电节约10.8元.问该家庭当月使用峰电和谷电各多少千瓦时?(2)“邮电"用量不超过每月总电疑的百分之几时,使用“il金谷"电合算?(精确到1%)6.现在计划把甲种货物1240r和乙种货物880/用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用6000元,使用B型车厢每节费用为8000元.(1)设运送货物的总运费为y万元,这列货车挂A型车厢x肖,试写出y与x的函数关系式(即用含x 的代数式表示y):(2)如果每节A型车厢最多可以装甲种货物35r和乙种货物15/,每节B型车厢最多可以装甲种货物25/ 和乙种货物35/,装货时按此要求安排A、B两种车厢的节数,那么共有几种安排方案?(3)在上述方案中哪个方案运费最少?最少运费为多少?B级1.(第14届江苏省赛题)小林拟将1, 2,…,"这“个数输入电脑求平均数,当他认为输入完毕时,电脑显示只输入了 "一1个数,平均数为35专,假设这“一1个数输入无误,则漏输入的一个数为()A. 10B. 53C. 56D. 672.(1999年全国初中赛题)江堤边一洼地发生管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40加“可抽完:如果用4台抽水机抽水,16”曲可以抽完.如果要在10加“内抽完水,那么至少需要抽水机______________ 台.3.(北京市赛题)今有浓度为5%、8%、9%的甲、乙、丙三种盐水分别为60g、60g、47g,现要配制7%的盐水100g,问甲种盐水最多可用多少克?最少可用多少克?4.有一片牧场,草每天都在均匀生长(即每天草增长的量都相等),如果每天放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天可以吃完牧草.设每头牛每天的吃草量相等,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远都吃不完,至多放牧多少头牛?5.据有关部门统汁:20世纪初全世界共有哺乳类和鸟类动物约13000种,由于环境等因素影响,到20世纪末这两类动物种数共灭绝1.9%,其中哺乳类火绝约3.0%,鸟类灭绝约1.5%.(1)问20世纪初期哺乳类和鸟类动物各有多少种?(2)现在人们越来越意识到保护动物就是保护自己,到本世纪末,如果要把哺乳类和鸟类动物的火绝种数控制在0.9%以内,英中哺乳类动物的火绝种数与乌类动物的火绝种数之比约为6:7,为实现这个目标, 鸟类灭绝不能超过多少种?6.六人共订六种报纸,其中每人至少订一种报纸.已知前五人分別订了2、2、4. 3. 5种报纸,而前五种报纸分别有1、4、2、2、2人订,问第六个人订几种报纸?第六种报纸有几人订?第十一讲不等式(组)的应用A级亠•二1.19.2. C.3.105<x<108,可以4-租大船9只,小船1只时支付租金址少,租金为29元5-(1)该家庭当月使用峰电HO千瓦时,谷电60千瓦时;⑵不超过89%6.厂-0.加十32;(2)24WK26,故有三种方案(略);(3)最佳方案是A型车厢26节』型车厢14节最少运费是26 8万元B级1. c.提示;设漏输的一> 数为匕则有♦ qq丄一L+2十…十n -k一1+2十•・・+•□・1 n +27n n -1 2 '35 y = —冬中十……"=27n・l n-1 2 f3 3解得69〒•又71 (n “ 1),则n =71 •于是代人原式解得k = 56.2. 6 台.3.提示:设甲、乙、丙三种盐水分别取xg.yg.zg,则|x +y + 7 = 100,l5%z+8%y+9%x= 100 x7%ffy =200 -4x t^V=3x-100.(0W60.又有lo<y^6O,lowv47.可解得35 Cx ^49.4. (1) 18天可以吃完$(2)至多放牧12头牛・5•⑴哺乳类和鸟类动物各有3470种和9530种;(2)鸟类灭绝不能超过62种.6.提示:从整体考虑•六个人订报的总效等于六种报纸的总订数・o设第六个人廿了皿种报纸,第六种报纸有,人订,叫%为正整数,并且则有2*2+4+3 + 5 5 = 1 +4+2+2 +2卄,解得"25.由JH+5W6得mWl,但m多1.所以心1声"・。
专题 一次不等式应用题
初中数学竞赛辅导专题讲座一次不等式(组)应用题(待完善)若干学生搬一堆砖,若每人搬k块,则剩下20块未搬;若每人搬9块,则最后一名学生搬砖不到6块,求学生人数和砖的块数.6.(2002年哈尔滨市)建网就等于建一所学校,哈市惠明中学为加强现代信息技术课教学,拟投资建一个初级计算机房和一个高级计算机房。
每个计算机房只配置1台教师用机,若干台学生用机,其中初级机房教师用机每台8000元,学生用机每台3500元;高级机房教师用机每台11500元,学生用机每台700元,已知两机房购买计算机的总钱数相等,且每个机房买计算机的总钱数不少于20万元也不超过21万元。
问该校拟建的初级机房、高级机房各有多少台计算机?10.(2003年扬州市)杨嫂在再就业服务中心的扶持下,创办了“润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息:⑴买进每份0.20元,卖出每份0.30元:⑵一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120的份;⑶一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.10元退回报社。
设每天从报社买进该种晚报x 份,120≤x≤200时,月利润为y 元,试求出y与x间的关系式,并求出月利润的最大值。
11.(2003年临沂市)某学校需要刻录一批教学用的VCD光盘,若电脑公司刻录,每张需9元(包括空白VCD光盘费);若学校自刻,除租用刻录机需120元外,每张需成本4元(包括空白VCD光盘费),问刻录这批VCD光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由。
12.(河北省竞赛题)商业大厦购进某种商品1000件,销售价定为购进价的125%,现计划节日期间按原定售价让利10%,售出至多100件商品,而在销售淡季按原定价的60%大甩卖,为使全部商品售完后盈利,在节日和淡季之外要按原定价销售出至少多少件商品?13.(2004年扬州市)据电力部统计,每天8:00至21:00是用电高峰期,简称“峰时”, 21:00至次日8:00是用电低谷期,简称“谷时”,为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”的新政策。
不等式不等式的实际应用ppt
公共卫生政策通常需要考虑多种因素之间的平衡,例如,疫苗分配和传染病传播之间的不等式关系。利用不等式可以帮助制定更加科学合理的公共卫生政策。
不等式在医学中的应用
认知与情感
在心理学领域,不等式可以用来描述认知和情感之间的关系。例如,不等式可以表示不同个体在记忆、学习或决策过程中的差异,或者不同情感状态之间的不等关系。
行为与心理治疗
在心理治疗中,不等式可以用来描述不同行为和心理治疗方法的效果和适用范围。例如,不等式可以表示药物治疗与心理疗法之间的比较和选择。
不等式在心理学中的应用
在工程领域,不等式可以用来描述工程设计和优化问题。例如,不等式可以表示结构强度与材料之间的关系,或者不同设计方案的成本与性能之间的不等关系。
投资组合选择
在资本预算中,不等式可以用来确定项目的可行性和投资限制。例如,利用不等式可以将投资成本与预期收益进行比较,以确定哪些项目具有更高的投资回报。
资本预算
不等式在金融中的应用
诊断与治疗
在医学领域,不等式可以用来描述疾病的诊断与治疗方法。例如,不等式可以表示药物治疗的效果与药物剂量的关系,或者手术风险与患者年龄的关系等。
除此之外,不等式还可以按照其表现形式分为比较式、关系式、不等式组等
严格不等式是指对于任意两个实数a和b,如果a严格小于b,那么可以表示为a<b
不等式的分类
02
常见不等式
a+b≥2√ab,当且仅当a=b时等号成立。
均值不等式
均值不等式的形式
求最值、证明不等式、解决实际问题等。
应用场景
一般采用归纳法、一般化方法等。
代数式中不等式中等号取到的情况。
根据单调性求极值点,判断极值点左右单调性,得出单调区间和极值点,根据极值点和单调区间判断取得最大最小值的条件。
初中数学不等式在解决实际问题中的应用案例
初中数学不等式在解决实际问题中的应用案例初中数学不等式在解决实际问题中的应用案例数学不等式作为初中数学中的一个重要内容,不仅有理论的意义,还有实际的应用。
本文将从实际问题的角度出发,给出一些初中数学不等式在解决实际问题中的应用案例,以展示不等式在实际生活中的重要性。
一、物品购买问题假设小明去商店买口红,他现在有300元的预算,一支口红的价格是x元。
根据经验,我们知道在购买同款口红时,价格越高,质量越好。
但是小明想要在预算范围内选择质量尽可能好的口红。
这个问题可以用不等式进行求解。
首先,我们可以列出不等式:x ≤ 300,其中x为口红的价格。
由于小明希望选择质量尽可能好的口红,根据经验可以假设价格与质量成正比。
因此,价格越高,质量越好。
所以,通过解不等式,我们可以得到小明预算范围内,价格越高的口红质量越好。
通过这个案例,我们可以看到不等式在物品购买问题中的应用。
二、年龄差问题在生活中,经常会遇到解决年龄差不等式的问题。
例如,小明比小红大5岁,小红比小白大3岁,请问小明和小白的年龄差是多少?假设小明的年龄为x岁,则小红的年龄为x-5岁,小白的年龄为x-5-3岁,即x-8岁。
根据题目的条件,我们可以列出不等式:(x-5) - (x-8) ≥ 0简化该不等式,我们可以得到:x - 5 - x + 8 ≥ 0化简后得到:3 ≥ 0这个不等式恒成立,说明小明和小白的年龄差是大于等于0的。
通过这个简单的案例,我们可以看到不等式在解决年龄差问题中的应用。
三、角度问题在几何学中,不等式可以用来描述角度之间的关系。
例如,给定一个三角形ABC,角A的度数是x,角B的度数是2x,角C的度数是3x。
我们需要找出x的取值范围,使得三角形ABC为锐角三角形。
根据角度的性质,我们知道锐角的度数是小于90度的。
因此,我们可以列出不等式:x < 90由于角A、角B、角C是三角形的三个内角,所以它们的和应该等于180度。
根据题目的条件,我们可以列出等式:x + 2x + 3x = 180简化该等式,我们得到:6x = 180解方程得到x = 30。
不等式的解法和应用
不等式的解法和应用不等式的解法和应用是数学中的重要内容,尤其在奥数中更是常见。
以下是关于不等式解法和应用的一些知识点:不等式的解法1.图像法:通过绘制不等式所代表的图形,在数轴上表示出不等式的解集。
这种方法直观易懂,尤其适用于一元一次不等式。
2.代数法:通过代数运算,如移项、合并同类项、因式分解等,将不等式化为标准形式,然后确定解集。
这种方法适用于各种类型的不等式。
不等式的应用1.最值问题:不等式在求最值问题中有广泛应用。
例如,在给定条件下,求某个表达式的最大值或最小值。
这类问题通常涉及到基本不等式的应用,如均值不等式、柯西不等式等。
2.比较大小:不等式可以用于比较两个数或表达式的大小。
例如,在比较分数大小时,可以通过通分、化简等方法将问题转化为不等式求解。
3.实际应用:不等式在日常生活和实际应用中也有广泛的应用。
例如,在经济学中,可以用不等式来描述资源的分配问题;在物理学中,可以用不等式来描述物体的运动规律等。
常见的不等式类型1.一元一次不等式:形如ax + b > 0(或< 0)的不等式,其中a 和b 是常数,a ≠ 0。
2.绝对值不等式:形如|x| < a(或≤ a)的不等式,其中a 是常数。
3.分式不等式:形如(ax + b) / (cx + d) > 0(或< 0)的不等式,其中a、b、c、d 是常数,且c ≠ 0。
总之,不等式的解法和应用涉及的知识点非常广泛,需要系统学习和掌握。
在实际应用中,需要根据具体问题选择合适的解法和方法。
七年级数学培优 不等式(组)的应用
专题17 不等式(组)的应用阅读与思考许多数学问题和实际问题所求的未知量往往受到一些条件的限制,可以通过数量关系和分析,列出不等式(组),运用不等式的有关知识予以求解,不等式(组)的应用主要体现在: 1.作差或作商比较有理数的大小. 2.求代数式的取值范围.3.求代数式的最大值或最小值. 4.列不等式(组)解应用题.列不等式(组)解应用题与列方程(组)解应用题的步骤相仿,关键是在理解题意的基础上,将一些词语转化为不等式.如“不大于”“不小于”“正数”“负数”“非正数”“非负数”等对应不等号:“≤”“≥”“>0”“<0”“≤0”“≥0”.例题与求解【例1】如果关于x 的方程210m x x --=只有负根,那么m 的取值范围是_________.(辽宁省大连市“育英杯”竞赛试题)解题思路:由x <0建立关于m 的不等式.【例2】已知A =1998199920002001⨯-⨯,B =1998200019992001⨯-⨯,C =1998200119992000⨯-⨯,则有( ).A .A >B >C B .C >B >A C .B >A >CD .B >C >A (浙江省绍兴市竞赛试题)解题思路:当作差比较困难时,不妨考虑作商比较【例3】已知1a ,2a ,3a ,4a ,5a ,6a ,7a 是彼此不相等的正整数,它们的和等于159,求其中最小数1a 的最大值.(北京市竞赛试题)解题思路:设1a <2a <3a <···<7a ,则1a +2a +3a +···+7a =159,解题的关键是怎样把多元等式转化为只含1a 的不等式.【例4】一玩具厂用于生产的全部劳力为450个工时,原料为400个单位,生产一个小熊玩具要使用15个工时、20个单位的原料,售价为80元;生产一个小猫玩具要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊玩具、小猫玩具的个数,可以使小熊玩具和小猫玩具的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2 200元.(“希望杯”邀请赛试题)解题思路:列不等式的关键是劳力限制在450个工时,原料限制为400个单位.引入字母,把方程和不等式结合起来分析.【例5】某钱币收藏爱好者想把3.50元纸币兑换成1分,2分,5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币多于2分的硬币,请你据此设计兑换方案.(河北省竞赛试题)解题思路:引入字母,列出含等式、不等式的混合组,把解方程组、解不等式组结合起来.【例6】已知n ,k 皆为自然数,且1<k <n .若123101n kn +++⋅⋅⋅+-=-,n k a +=.求a 的值.(香港中学数学竞赛试题)解题思路:此题可理解为在n 个连续自然数中去除其中一个数 k (且1<k <n ,k 是非两头的两个数),使剩余的数的平均数等于10,求n 和k 之和。
初中数学竞赛辅导讲义怎样求最值
初中数学竞赛辅导讲义怎样求最值在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最低、消耗最少、产值最高、获利最大等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题,求最值问题的方法归纳起来有如下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.注:数学中最大值、最小值问题,运用到社会实践、生活实际中所体现出来的就是最优化思 想,所谓最优,就是我们所期望的目标量能达到最大或最小.一次函数、反比例函数并无最值,但当自变量取值范围有条件限制的,最值在图象的端点处取得;定义在全体实数上的二次函数最值在抛物线的顶点处取-得.即: 对于c bx ax y ++=2(0≠a ) (1)若a>0,则当abx 2-=时,ab ac y 442-=最小值; (2)若a<0,则当abx 2-=时,ab ac y 442-=最大值.【例题求解】【例1】 设a 、b 为实数,那么b a b ab a 222--++的最小值是 .思路点拨 将原式整理成关于a 的二次多项式从配方法入手;亦可引入参数设t b a b ab a =--++222,将等式整理成关于a 的二次方程0)2()1(22=--+-+t b b a b a ,利用判别式求最小值.【例2】若32211-=+=-z y x ,则222z y x ++可取得的最小值为( )A .3B .1459C .29 D .6 思路点拨 设k z y x =-=+=-32211,则222z y x ++可用只含k 的代数式表示,通过配方求最小值.【例3】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实根,当m 为何值时,2221x x +有最小值,并求这个最小值. 思路点拨 由韦达定理知2221x x +是关于m 的二次函数,是否是在抛物线的顶点处取得最小值,就要看自变量m 的取值范围,从判别式入手.注:定义在某一区间的条件限制的二次函数最值问题,有下两种情形:(1)当抛物线的顶点在该区间内,顶点的纵坐标就是函数的最值;(2)当抛物线的顶点不在该区间内,二次函数的最值在区间内两端点处取得.【例4】甲、乙两个蔬菜基地,分别向A、B、C三个农贸市场提供同品种蔬菜,按签订的合同规定向A提供45吨,向B提供75吨,向C提供40吨.甲基地可安排60吨,乙基地可安排100吨.甲、乙与A、B、C的距离千米数如表,设运费为1元/(千米·吨).问如何安排使总运费最低?求出最小的总运费值.思路点拨设乙基地向A提供x吨,向B提供y吨,这样总运费就可用含x,y的代数式表示;因为100x0,45≤y+0≤≤x,所以问0≤题转化为在约束条件下求多元函数的最值.【例5】 某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示,该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为[500)1(41+-x ]元. (1)如果将该设备从开始投入使用到报废共付的养护与维修费及购买该设备费用的和均摊到每一天,叫做每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数; (2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问该设备投入使用多少天应当报废?思路点拨 在解本题时可能要用到以下数学知识点:对于确定的正常数a 、b 以及在正实数范围内取值的变量x ,一定有ba xb ax b x x a 22=≥+,即当且仅当bx xa =时,b x xa +有最小值ba2.注:不等式也是求最值的有效方法,常用的不等式有: (1)02≥a ; (2)ab b a 222≥+;(3)若0>a ,0>b ,则abb a 2≥+; (4)若0>a ,0>b ,0>x ,则babx xa 2≥+.以上各式等号当且仅当b a = (或bx xa =)时成立.学历训练1.当x 变化时,分式12156322++++x x x x 的最小值为.2.如图,用12米长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的长、宽各为 、 米. 3.已知实数a 、b 、c 满足0=++c b a ,6222=++c b a ,则a 的最大值为 .4.已知x 、y 、z 为三个非负实数,且满足523=++z y x ,2=-+z y x ,若z y x s -+=2,则s 的最大值与最小值的和为( )A .21 B .85 C .1 D .36 5.已知四边形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =4,S △COD =9,则四边形ABCD 的面积S 四边形ABCD 的最小值为( )A .2lB .25C .26D .36 6.正实数x 、y 满足1=xy ,那么44411y x +的最小值为( )A .21B .85C .1D .45 E .27.启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (万元)时,产品的年销售量将是原销售量的y 倍,且107107102++-=x x y ,如果把利润看作是销售总额减去成本费和广告费:(1)试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?(2)把(1)中的最大利润留出3万元作广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:元)收益(万0.55 0.4 0.6 0.5 0.9 l 元)如果每个项目只能投一股,且要求所有投资项目的,收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目.8.某市20位下岗职工在近郊承包50亩土地办农场,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩地所需职工数和产值预测如下表:作物品种每亩地所需职工数每亩地预计产值11100元蔬菜21750元烟叶31600元小麦4请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.9.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a 为l0m),围成中间隔有一道篱笆的长方形花圃,设花圃的宽为xm,面积为sm2.(1)求s与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由. 10.设1x 、2x 是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为 . 11.若抛物线1)1(2----=k x k x y 与x 轴的交点为A 、B ,顶点为C ,则△ABC 的面积最小值为12.已知实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的最大值为 ,最小值为 . 13.如图,B 船在A 船的西偏北45°处,两船相距102km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度2倍,那么A 、B 两船的最近距离为 km .14.销售某种商品,如果单价上涨m %,则售出的数量就将减少150m,为了使该商品的销售金额最大,那么m 的值应该确定为 .15.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每 月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出 辆车(直接填写答案);(2)设每辆车的月租金为x(x ≥3000)元,用含x 的代数式填空:(3)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少元?16.甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式x p 51=,x q 53=.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润? 链接17.如图,城市A 位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半.问该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?未租出的车辆数租出的车辆数所有未租出的车 辆每月的维护费租出的车每辆的月收益18.设1x ,2x ,…n x 是整数,并满足: (1)21≤≤-i x ,n i ,2,1=; (2)1921=+++n x x x ; (3)9922221=+++n x x x .求33231n x x x +++ 的最大值和最小值.参考答案。
初中数学竞赛专题1-均值不等式的应用
初中数学竞赛专题1均值不等式的应用基础概念1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 例题解析【例1】求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x =-2∴值域为(-∞,-2]∪[2,+∞)【例2】求函数2y =的值域。
(2)t t =≥,则2y =1(2)t t t ==+≥ 因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。
因为1y t t=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。
七年级数学竞赛培训不等式组的应用
新课标七年级数学竞赛培训第16讲:不等式(组)的应用一、填空题(共9小题,每小题3分,满分27分)1.(3分)给出四个自然数a,b、c、d,其中每三个数之和分别是180、197、208、222,则a,b、c、d中最大的数是_________.2.(3分)若方程只有负数根,则a的取值范围是_________.3.(3分)若方程组的解是正数,则m的取值范围是_________.4.(3分)某化工厂2001年12月在制定2002年某种化肥的生产计划时,收集了如下信息:(1)生产该种化肥的工人数不能超过200人;(2)每个工人全年工作时数不得多于2100个;(3)预计2002年该化肥至少可售销80000袋;(4)每生产一袋该化肥需要工时4个;(5)每袋该化肥需要原料20千克;(6)现库存原料800吨,本月还需用200吨,2002年可以补充1200吨.根据上述数据,确定2002年该种化肥的生产袋数的范围是_________.5.大、中、小三个正整数,大数与中数之和等于2003,中数减小数之差等于1000,那么这三个正整数的和为6.(3分)已知a+b+c=0,a>b>c,则的取值范围是_________.7.(3分)适合方程的正整数x的值是_________.8.(3分)设x1,x2,x3,x4,x5,x6,x7为自然数,且x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,则x1+x2+x3的最大值是_________.9.(3分)正五边形广场ABCDE的周长为2000米.甲,乙两人分别从A,C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过_________分钟,甲、乙两人第一次行走在同一条边上.二、选择题(共7小题,每小题3分,满分21分)10.(3分)甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是11.(3分)设,,则P、Q的大小关系是()12.(3分)(2002•南京)某出租车收费标准是:起步价6元(即行驶距离不超过3千米需付6元车费),超过3千米后,每增加1千米加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x13.(3分)(2002•重庆)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B队的车,每辆车4人,车15.(3分)小林拟将1,2,…,n这n个数输入电脑,求平均数.当他认为输入完毕时,电脑显示只输入了(n﹣1)个数,平均数为35,假设这(n﹣1)个数输入无误,则漏输入的≤a≤≤a≤三、解答题(共13小题,满分102分)17.已知a1,a2,a3,a4,a5,a6,a7是彼此互不相等的正整数,它们的和等于159,求其中最小数a1的最大值.18.(8分)(2003•广州)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车相每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省最少运费为多少元?19.(8分)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币,请你据此设计兑换方案.20.(8分)某校为了奖励获奖的学生,买了若干本课外读物,如果每人送3本,还余8本;如果前面第人送5本,则最后一人得到的课外读物不足3本.设该校买了m本课外读物,有x名学生获奖,试解:(1)用含x的代数式表示m;(2)求出获奖人数及所买课外读物的本数.21.(8分)(2002•黑龙江)为了迎接2002年世界杯足球赛的到来,某足球协会举办了一次足球联赛,其记分规则及奖励方案如下表12场)时,A队共积分19分.(1)请通过计算,判断A队胜、平、负各几场;(2)若每赛一场,每名参赛队员均得出场费500元,设A队其中一名参赛队员所得的奖金与出场费的和为W(元),试求W的最大值.22.(8分)例题6:商业大厦购进某种商品1000件,销售价定为购进价的125%.现计划节日期间按原定销售价让利10%,售出至多100件商品,而在销售淡季按原定销售价的60%大甩卖,为使全部商品售完后赢利,在节日和淡季外要按原定价销售至少多少件商品?23.(8分)货轮上卸下若干只箱子,其总重量为10t,每只箱子的重量不超过1t,为保证能把这些箱子一次运走,问至少需要多少辆载重3t的汽车?24.(8分)(2002•浙江)为了能有效地使用电力资源,宁波市电业局从2002年1月起进行居民峰谷用电试点,每天8:00至22:00用电每千瓦时0.5 6元(“峰电”价),22:00至次日8:00每千瓦时0.28元(“谷电”价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.(1)一居民家庭在某月使用“峰谷”电后,付电费95.2元,经测算比不使用“峰谷”电节约10.8元,问该家庭当月使用“峰电”和“谷电”各多少千瓦时?(2)当“峰电”用量不超过每月总用电量的百分之几时,使用“峰谷”电合算(精确到1%).25.(8分)(2009•天水)为了保护环境,某企业决定购买10台污水处理设备.现有A、B 两种型号的设备,其中每台的价格、月处理污水量及年消耗费如右表:经预算,该企业购买(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)26.(8分)(2003•南通)某果品公司急需将一批不易存放的水果从A市运到B市销售,现(1)若乙、丙两家公司的包装、装卸及运输的费用总和恰是甲公司的2倍,求A,B两市间的距离;(精确到个位)(2)如果A,B两市的距离为s(km),且这批水果在包装、装卸以及运输过程中的损耗为300元/小时,那么,要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?27.(8分)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60克,60克,47克,现要配制浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?28.(8分)某企业有员工300人生产A种产品,平均每人每年可创造利润m万元(m为大于零的常数).为减员增效,决定从中调配x人去生产新开发的B种产品.根据评估,调配后继续生产A种产品的员工平均每人每年创造的利润可增加20%,生产B种产品的员工平均每人每年可创造利润1.54m万元.(1)调配后企业生产A种产品的年利润为_________万元,生产B种产品的年利润为_________万元(用含rn的代数式表示).若设调配后企业全年的总利润为y万元,则y 关于x的关系式为_________;(2)若要求调配后企业生产A种产品的年利润不少于调配前企业年利润的五分之四,生产B种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案?请设计出来,并指出其中哪种方案全年总利润最大(必要时运算过程可保留3个有效数字).(3)企业决定将(2)中的年最大总利润(m=2)继续投资开发新产品,现有六种产品可供品?请你写出两种投资方案.29.(8分)一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位.生产一个小熊要使用15个工时、20个单位的原料,售价为80元;生产一个小猫要使用10个工时、5个单位的原料,售价为45元.在劳力和原料的限制下合理安排生产小熊、小猫的个数,可以使小熊和小猫的总售价尽可能高.请用你所学过的数学知识分析,总售价是否可能达到2200元?。
初中数学用“不等式”解三角形内角问题专题辅导不分版本
初中数学用“不等式”解三角形内角问题学习了不等式的知识后,灵活巧用它们,可帮我们顺利地解答一些与三角形的内角有关的取值问题。
例1. (2003年江苏省初二数学竞赛试题)△ABC 的内角中,∠A 最小,∠B 最大,且2∠B =5∠A ,则∠B 的取值范围是_____________。
解:由2∠B =5∠A ,得∠∠A B =25 因为∠A +∠B +∠C =180° 所以∠∠C B o =-18075因为∠A ≤∠C ≤∠B 所以2518075∠∠∠B B B o ≤-≤ 所以95180∠B o ≤,且125180B o ≥ 所以75°≤∠B ≤100° 例2. (1998年重庆市初三数学竞赛试题)三角形的三个内角分别为αβγ,,,且αβγαγ≥≥=,2,则有( )A. 3645o o ≤≤βB. 4560o o ≤≤βC. 6090o o ≤≤βD. 4572o o ≤≤β解:注意到αβγαγ++==1802o , 所以2180γβγ++=oγβαβ=-=-601312023o o ,因为αβγ≥≥ 所以120236013o o -≥≥-βββ 所以6043o ≤β,且53120β≤o 所以4572o o ≤≤β,应选D 。
例3. (2004年希望杯初二数学竞赛试题)△ABC 的三个内角∠A ,∠B ,∠C ,满足3∠A >5∠B ,3∠C ≤2∠B ,则这个三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形解:由3∠A >5∠B ,得∠∠∠A B B >>53 因为3∠C ≤2∠B ,∠∠B C ≥32所以∠∠∠∠A C C C >⨯=>533252所以∠A ,∠B ,∠C 中,∠A 最大。
因为∠∠,∠∠A B A C >>5352所以∠∠,∠∠B A C A <<3525所以∠B +∠C <∠A 因为∠A +∠B +∠C =180°所以18090o o A A A -<>∠∠,∠所以∠A 为钝角,△ABC 为钝角三角形,应选C 。
全国初中数学竞赛辅导(八年级)教学案全集第23讲 几何不等式
全国初中数学竞赛辅导(八年级)教学案全集第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l 上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P 在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB >∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC >2BD .又 CD >BC -BD ,所以BC +CD >2BD +BC -BD ,所以 CD >BD .从而命题得证.例8 在锐角△ABC 中,最大的高线AH 等于中线BM ,求证:∠B <60°(图2-144).证 作MH 1⊥BC 于H 1,由于M 是中点,所以于是在Rt △MH 1B 中,∠MBH 1=30°.延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH 为最ABC 中的最短边,所以AN=BC <AB ,从而∠ABN <∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC <60°.下面是一个非常著名的问题——费马点问题.例9 如图2-145.设O 为△ABC 内一点,且∠AOB=∠BOC=∠COA=120°,P 为任意一点(不是O).求证:PA +PB+PC >OA+OB+OC .证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为∠OAC 1=∠OBC 1=90°,∠AOB=120°,所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形. 设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1知所以 h=h a +h b +h c .这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1的高h ,这是一个定值,所以OA +OB +OC=h=定值.显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以PA +PB +PC >h=OA +OB +OC .这就是我们所要证的结论.由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD +AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD>CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。
初二上竞赛辅导资料第13讲 一次不等式组的应用
初二上数学竞赛辅导资料第十三讲一次不等式(组)的应用不等式(组)的应用主要表现在:作差或作商比较数的大小;求代数式的取值范围;求代数式的最值;列不等式(组)解应用题.列不等式(组)解应用题与列方程解应用题的步骤相似,关键是找出能够表示题目全部含义的一个或几个不等关系.例1.某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元?(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?例2.某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少?(2)有几种购买文化衫和相册的方案?哪种方案用于购买老师纪念品的资金更充足?例3.某人从A地乘出租车到B地,有两种方案.第一种方案:租用起步价10元,每千米为1.2元的汽车;第二种方案:租用起步价8元,每千米为1.4元的汽车.按出租车管理条例,在起步价内,不同型号的车行驶的里程是相等的,则从经济角度出发,此人从A地到B地应选择哪一种方案?例4.某钱币收藏爱好者想把3.5元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.例5.甲、乙、丙同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动.已知山坡长360米,甲、乙、丙的速度比是6:5:4,并且甲、乙、丙的下山速度都是各自上山速度的1.5倍.经过一段时间后,甲到达山顶看见乙正在离山脚却不到180米处下山.问:此时丙是上山还是下山?离山顶的距离是多少米?竞赛训练1.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2yx +元的价格卖完后,结果发现自己赔了钱,其原因是( ).A.x<yB.x>yC.y x ≤D.y x ≥2.韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,车队比B 车队少3辆车,若全部安排乘A 车队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 车队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A 车队有出租车( )辆.A.11B.10C.9D.83.若满足不等式137158<+<k n n 的整数k 只有一个,则正整数n 的最大值为( ). A.100 B.112 C.120 D.1504.一天,一群猴子去摘桃子.在分摘得的桃子时发现,如果每只猴子分4个,那么,还剩52个;如果每只猴子分6个,那么,有一只猴子分到桃子,但不够6个.则这群猴子所摘桃子的总数是 个.5.设x 1,x 2,...,x 7为整数,且x 1<x 2<...<x 6<7,又x 1+x 2+...+x 7=159,则x 1+x 2+x 3的最大值是 .6.一个盒子里装有红、黄、白三种颜色的球,若白球至多是黄球的21,且至少是红球的31,黄球与白球合起来不多于55个,则盒子中至多有红球 个.7.已知x 1,x 2,...,x 40都是正整数,且x 1+x 2+...+x 40=58,若x 12+x 22+...+x 402的最大值为A ,最小值为B ,则A+B 的值等于 .8.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客户,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅游团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是多少元?所住的三人间、双人间、单人间的间数依次是多少?9.为了进一步提高企业效益,某企业决定引入一条新的生产线,为些要将企业原有的100名职工派出一部分到新生产线工作.分工后,继续在原生产线从事生产的职工人均年产值可增加20%,而分派到新生产线工作的职工人均年产值为分配前人均年产值的4倍.如果分工后,原生产线的年总产值不少于分工前原生产线的年总产值;而新生产线的年总产值不少于分工前原生产线的年总产值的一半.(1)确定到新生产线的职工分派方案;(2)引入新的生产线后要使企业年总产值最大,求分派到新生产线的职工人数.10.设x 1,x 2,x 3,...,x n 是整数,并且满足:.....19...)3(;99...)2(;,...,3,2,1,21)1(332312122221的最大值和最小值求n n n x x x x x x x x x n i x +++=+++=+++=≤≤-11.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价八五折优惠.设顾客预计累计购物x 元(x>300).(1)请用含x 的代数式分别表示顾客在两家超市购物所付的费用; (2)试比较顾客到哪家超市购物更优惠?说明你的理由.12.通过电脑拨号上网的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上网的费用为电话费0.18元/3分钟,上网费为7.2元/小时.后根据信息产业部调整上网资费的要求,自1999年3月1日起,我市上网的费用调整为电话费0.22元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的规定,将每月上网的总费用y(元)表示上网时间x(小时)的关系式;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出.“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.13.某商场用36万元购进A,B两种商品,销售完后共获利6万元,其进价和售价如下表:(1)该商场购进A,B两种商品各多少件?(2)商场第二次以原价购进A,B两种商品,购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次销售完后获利不少于81600元,B种商品最低售价为每件多少元?14.某家电生产企业根据市场调查分析,决定调整产品方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品的所需工时和每台产值如下表:问:每周生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少千元?15.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?。
七年级数学竞赛第17讲 不等式的应用
选择乙方案的总花费比甲方案便宜,x 至少为( )。
甲方案
乙方案
门号的月租费/元
400
600
MAT 手机价格/元
15000
13000
注意事项:以上方案两年内不可变更月租费
A.500
B.516
C.517
D.600
(2016 年台湾省中考题)
13.设 x1,x2,…x7 为自然数,且 x1<x2<…<x6<x7,又 x1+x2+…+x6+x7=159,求 x1+x2+x3 的最大值。 (安徽省竞赛题)
(“时代杯”江苏省中学数学应用与创新邀请赛试题)
17.设 x1,x2…,x2008 是整数,且满足下列条件: (1)−1≤xn≤2 (n=1,2,…,2008); (2)x1+x2+…+x2008=200; (3)x12+x22+…+x20082=2008; 求 x13+x23+…+x20083 的最小值和最大值。
果操作进行四次才停止,那么 x 的取值范围是
。
输入 x
是
×3
−2
>487
停
否
(全国初中数学竞赛题)
4.100 名少年运动员胸前的号码分别是 1,2,3,…,99,100,选出其中的 k 名运动员,使得他们的号码
数之和等于 2008,那么 k 的最大值是
。
(两岸四地少年数学精英邀请赛试题)
5.小马在体育场卖饮料,雪碧每瓶 4 元,汽水每瓶 7 元。开始时,他有 350 瓶饮料,虽然没有全部卖完,
问题解决:
例 1.若 a,b 满足 3a2+5|b|=7,s=2a2−3|b|,则 s 的取值范围是
初中数学竞赛辅导2篇
初中数学竞赛辅导初中数学竞赛辅导第一篇:整数的等式与不等式整数的等式与不等式是数学竞赛中常见的题型,掌握了解决这类题目的方法和技巧,对于提高数学竞赛的成绩非常有帮助。
接下来,我们将介绍一些常见的整数等式与不等式的解法。
一、整数的等式对于整数的等式,学生们需要根据题目的要求将其转化为相应的算式,然后进行解题。
以下是两个常见的例子:例子1:一个整数减去25等于150,求这个整数。
解法:设这个整数为x,根据题意可以得到以下等式:x - 25 = 150将等式两边都加上25,得到:x = 150 + 25 = 175所以,这个整数是175。
例子2:一个整数加上20等于-100,求这个整数。
解法:设这个整数为y,根据题意可以得到以下等式:y + 20 = -100将等式两边都减去20,得到:y = -100 - 20 = -120所以,这个整数是-120。
二、整数的不等式对于整数的不等式,学生们需要通过观察不等式的形式,进行代数运算并求解。
以下是两个常见的例子:例子1:一个整数减去5大于20,求这个整数。
解法:设这个整数为x,根据题意可以得到以下不等式:x - 5 > 20将不等式两边都加上5,得到:x > 25所以,这个整数是大于25的任意整数。
例子2:一个整数加上8小于15,求这个整数。
解法:设这个整数为y,根据题意可以得到以下不等式:y + 8 < 15将不等式两边都减去8,得到:y < 7所以,这个整数是小于7的任意整数。
以上是关于整数的等式与不等式的解题方法,希望对同学们在数学竞赛中的备考有所帮助。
第二篇:平面图形的性质与计算平面图形的性质与计算是数学竞赛中常见的考点,了解平面图形的性质以及掌握计算相关的方法和技巧,对于解决平面几何题目非常重要。
以下是一些常见的平面图形的性质与计算的内容。
一、平面图形的性质1. 直角三角形的性质:直角三角形的两条直角边的平方和等于斜边的平方,即勾股定理。
初中数学中的不等式及其应用
初中数学中的不等式及其应用概述:在初中数学中,不等式是一个重要的概念,它涉及到数值之间的大小关系。
不等式在解决实际问题时有着广泛的应用。
本文将详细介绍不等式的基本概念、性质以及一些常见的应用情况。
第一部分:不等式的基本概念和性质小标题:1.不等式的定义不等式是指两个或多个数之间的大小关系,常用符号包括“<”(小于)、“>”(大于)、“≤”(小于等于)和“≥”(大于等于)。
例如,对于两个实数a和b,若a<b,则可以表示为a<b。
小标题:2.不等式的性质不等式具有一些重要的性质,包括传递性、加法性和乘法性。
- 传递性:如果a<b且b<c,则a<c。
- 加法性:如果a<b,则a+c<b+c。
- 乘法性:如果a<b且c>0,则ac<bc;如果a<b且c<0,则ac>bc。
第二部分:不等式的应用小标题:1.简单不等式的解法简单的不等式通常可以通过观察和推理来解决。
例如,对于不等式3x+5>17,我们可以通过逐步计算得到x>4的解。
小标题:2.复杂不等式的解法复杂的不等式可能需要使用一些特定的解法。
例如,对于不等式(x-3)(x+2)<0,我们可以通过构造符号表来确定不等式的解集为(-∞,-2)∪(3,+∞)。
小标题:3.不等式在实际问题中的应用不等式在解决实际问题时有着广泛的应用。
例如,在最优化问题中,我们可以使用不等式来表示约束条件。
另外,在几何问题中,不等式也可以用来描述图形的特征。
第三部分:不等式的进一步应用和拓展小标题:1.绝对值不等式绝对值不等式是一类特殊的不等式,它涉及到数的绝对值。
解决绝对值不等式时,我们可以将其转化为一个或多个普通的不等式来求解。
小标题:2.不等式的证明不等式的证明是数学研究中的重要内容之一。
通过证明不等式的真实性,我们可以推导出更多有用的结论,并深入理解不等式的性质。
初中数学中的不等式应用
初中数学中的不等式应用在初中数学的学习中,不等式是一个重要的知识点,它不仅在数学领域有着广泛的应用,在我们的日常生活中也常常能看到它的身影。
不等式是用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个解析式所成的式子。
与等式不同,不等式可以表示两个量之间的大小关系的多样性。
在解决实际问题时,我们经常需要根据已知条件列出不等式来找到问题的答案。
比如,在购物场景中,如果我们有一定的预算,而商品有不同的价格和优惠活动,我们就可以通过不等式来确定我们能够购买的商品组合。
假设我们有 200 元预算,某件商品单价为 80 元,但有满 100 减 20 的优惠活动。
设我们可以购买 x 件该商品,那么花费就为80x,考虑优惠后实际花费为 80x 20 (80x÷100),要保证不超预算,就可以列出不等式 80x 20 (80x÷100) ≤ 200 ,通过解这个不等式,就能知道我们最多能购买几件商品。
在行程问题中,不等式也大有用处。
比如,已知甲、乙两地相距一定的距离,某人骑自行车的速度在一定范围内,规定在一定时间内到达。
设其速度为x 千米/小时,骑行时间为t 小时,两地距离为s 千米。
如果要求在 t 小时内到达,就可以列出不等式xt ≥ s ,从而求出速度的最小值。
再比如在分配问题中,假设要将一定数量的物品分配给若干个人,每个人至少要得到一定数量的物品。
设物品总数为 m ,人数为 n ,每人至少得到 k 个物品,那么就可以列出不等式m ≥ nk ,由此可以判断物品是否足够分配。
在生产活动中,不等式同样发挥着重要作用。
一家工厂在一定时间内生产某种产品,已知生产效率有一定的范围,要完成一定数量的订单。
设生产效率为 x 个/小时,生产时间为 h 小时,订单数量为 q 个,为了按时完成订单,就会有不等式xh ≥ q ,通过这个不等式可以确定生产效率的最低要求。
另外,在方案选择问题中,不等式也能帮助我们做出最优决策。
数学竞赛技巧解不等式的方法与技巧
数学竞赛技巧解不等式的方法与技巧不等式是数学竞赛中常见的题型,解不等式是考察学生对数学知识的掌握和解题能力的重要手段。
下面将介绍一些解不等式的方法与技巧,希望对广大数学竞赛爱好者有所帮助。
一、拆分、合并法在解不等式时,我们有时可以通过拆分和合并的方法将复杂的不等式化简成简单的形式。
拆分法:针对复杂的不等式,我们可以将其拆分成若干个简单的不等式,然后分别求解。
例如,对于不等式2x + 3 > 5x - 1,我们可以将其拆分成两个不等式2x + 3 > 5x - 1和2x + 3 < 5x - 1,再分别求解。
合并法:针对简单的不等式,我们可以通过合并的方法将其化简成更简单的形式。
例如,对于不等式2x + 3 > 5x - 1,我们可以将其化简为3 > 3x,再求解。
二、绝对值法对于带有绝对值的不等式,我们可以通过绝对值法求解。
首先,我们需要将绝对值中的参数拆分成两种情况,正数和负数。
然后,分别解得各自情况下的不等式,并取交集。
例如,对于不等式|2x - 1| > 3,我们可以将其拆分成两个不等式2x - 1 > 3和2x - 1 < -3,再分别求解,然后取交集得到最终解。
三、二次函数法对于一些复杂的二次不等式,利用二次函数的性质可以有效地求解。
首先,我们需要将二次函数转化为标准形式,即形如f(x) = ax² + bx + c的形式。
然后,通过绘制函数图像,分析抛物线开口的方向和与坐标轴的交点情况,得出不等式的解集。
例如,对于不等式x² + x - 2 > 0,我们可以将其转化为f(x) = x² + x - 2 > 0的形式,然后绘制函数图像,分析得出x > 1或x < -2,最终解为{x|x > 1或x < -2}。
四、倒置法倒置法是一种常用的解不等式的技巧。
它适用于那些具有对称性的不等式。
初中数学竞赛辅导(6)
初中数学竞赛辅导第六讲 一次不等式(组)的解法1、解不等式:()1273212-≥-++x x x 2、求不等式()()()261121131-≥--+x x x 的正整数解。
3、解不等式()()122113122+⎪⎭⎫ ⎝⎛-->+⎪⎭⎫ ⎝⎛+y y y y 。
4、解不等式617612-+>-++x x x 。
5、已知()()()x x x -=---1914322,且9+<x y ,试比较y π1与y 3110的大小。
6、解关于x 的不等式a x a x 212332->-+。
7、已知a 、b 为实数,若不等式()0432<-+-b a x b a 的解为94>x ,试求不等式()0324>-+-b a x b a 的解。
8、解不等式()()⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥-+<-<-<-<2323252113242133521x x x x x x 。
9、解关于x 的不等式组()⎩⎨⎧+->+-<-821563x m x mx mx mx 。
答案:1、2≤x 。
2、x=1,2,3。
3、56>y 。
4、5>x 且6≠x 。
5、y π1>y 3110。
6、(1)23->a 时,1->a x ;(2)23=a 时,无解;(3)23-<a 时,1-<a x 。
7、41->x 8、4254<<x 。
9、(1)当m=0时,不等式无解;(2)当m >0时,m x m 41138<<; (3)当m <0时,m x m 38411<<。
训练:1、解下列不等式或不等式组:(1)()1273212-≥-++x x x (2)()()x x x x x 8355422--+-<-(3)()()⎪⎪⎪⎩⎪⎪⎪⎨⎧-<-≥--++<-++145.143522152233612x x x x x x x x 2、解下列关于x 的不等式或不等式组; (1)()[]m m x mx ++->--1132(2)b ax b ax 525+>-(3)()⎪⎩⎪⎨⎧->+->-432221x ax a x x 3、求同时满足不等式4326-≥-x x 和121312<--+x x 的整数解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导不等式的应用
1、已知01,0<<-<y x ,将2,,xy xy x 按由小到大的顺序排列。
2、若67890123455678901234=
A ,6789012347
5678901235=B ,试比较A 、B 大小。
3、若正数a 、b 、c ,满足不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<<+<<+<b c a b a c b a c
b a
c 41125352
32611,是确定a 、b 、c 的大小关系。
4、当k 取何值时,关于x 的方程()kx x -=+513分别有(1)正数解;(2)负数解;(3)不大于1的解。
5、已知2
351312x x x --≥--,求|3||1|+--x x 的最大值和最小值。
6、已知x 、y 、z 是非负实数,且满足03,30=-+=++z y x z y x ,求z y x u 245++=的最大值和最小值。
7、设a 、b 、c 、d 均为整数,且关于x 的四个方程()12=-x b a ,()13=-x c b ,()d x x d c =+=-100,14的的根都是正数,试求a 可能取得的最小值。
8、设p 、q 均为自然数,且15
11107<<q p ,当q 最小时,求pq 的值。
9、已知c b <,11+<+<<a c b a ,求证:a b <。
10、若自然数z y x <<,a 为整数,且a z
y x =++111,试求x 、y 、z 。
11、某地区举办初中数学联赛,有A 、B 、C 、D 四所中学参加,选手中,A 、B 两校共16名,B 、C 两校共20名,C 、D 两校共34名,并且各校选手人数的多少是按A 、B 、C 、D 的顺序选派的,试求各中学的选手的人数。
12、785035=⋅yz x ,其中5x 表示十位数是x ;个位数是5的两位数;yz 3表示百位数是3,十位数是y ,个位数是z 的三位数,试确定x 、y 、z 的值。
答案:
1、xy xy x <<2。
2、B A >。
3、a c b <<。
4、1-≥k 或3-≤k 。
5、最大值为4,最小值为11
33-。
6、最大值为130,最小值为120。
7、2433。
8、35. 9、略。
10、2,3,6。
11、A (7人);B (9人);C (11人);D (23人)。
12、x=2,y=1,z=4。
训练:
1、如果c b a <<,并且z y x <<,那么四个代数式(1)cz by ax ++;(2)cy bz ax ++;
(3)cz bx ay ++;(4)cy bx az ++中哪一个最大?
2、不等式()62410<++x x 的正整数解是方程()132+=-+a x x a 的解,求221a
a -的值。
3、已知|63||1||2|---++=x x x y ,求y 的最大值。
4、已知z y x ,,都为自然数,且y x <,当1998=+y x ,2000=-x z 时,求z y x ++的最大值。
5、若0>++z y x ,0>++zx yz xy ,0>xyz ,试证:0>x ,0>y ,0>z 。
6、只有两个正整数介于分数1988与n
n ++1988之间,则正整数n 的所有可能值之和是多少?。