形状记忆合金课件

合集下载

-ppt-形状记忆合金

-ppt-形状记忆合金

1、Ni-Ti形状记忆合金
基本特点:具有良好的力学性能,抗疲劳, 耐磨损,抗腐蚀。记忆效应优良、生物相容性 好等一系列的优点。但制造过程较复杂、价格
高昂。
用极薄的记忆合金材料
先在正常情况下按预定要求 做好,然后降低温度把它压 成一团,装进登月舱带上天 去。放到舱面上以后,在阳 光照射下温度升高,当达到 转变温度时,天线又“记” 起了自己的本来面貌,变成 一个巨大的半球形。

利用形状记忆合金也可以制作成消防报警装置及电器设备的保安
装置。当发生火灾时,记忆合金制成的弹簧发生形变,启动消防报警 装置,达到报警的目的。
SMA火灾报警器
在航天上,可用形状记忆合金制作航天 用天线,将合金在母相状态下焊成抛物面 形,在马氏体状态下压成团,送上太空后, 在阳光加热下又恢复抛物面形。此外,超 弹性合金作为机械储能材料也很有前景。
(2) 影响相变温度的因素
1)成分:是最敏感因素之一:Ni含量每增加0.1%,相变温度降低10℃。
2)第三元素: Fe、Co可降低Ms;Cu置换Ni可减少相变滞后,节约合金成 本;Nb使相变滞后明显增加;开发的宽滞后记忆合金。 3)杂质元素:碳、氢、氧等降低Ms。 4)时效温度、时效时间明显影响相变温度。
二、形状记忆效应的性质
马氏体相变
钢淬火变硬的现象
f.c.c.
b.c.c
马氏体相变晶体学模型
马氏体相变平面示意图
马氏体相变的基本特征
•无扩散切变型相变 •点阵不变平面应变 •固定取向关系 •马氏体片内具有亚结构
•相变具有可逆性
临界转变温度
☞马氏体相变与其他相变一样,具有可逆性。当冷却时,由高温母相变

②马氏体相变通过孪生(切变)完成,而不是通过滑移产生; ③母相和马氏体相均属有序结构

功能材料课件-形状记忆合金

功能材料课件-形状记忆合金

合金产生宏观变形 变形随之消失
变形在Ms以上进行 无双程记忆效应
形状记忆
形状记忆合金的应用
阿波罗11号——天线
机械应用
自控元件
形状记忆合金制成的水龙头上的温度调节装置
制作发动机 利用形状记忆合金在高温、低温时发生相变,
产生形状的改变,并伴随极大的应力,实现机械能、 热能之间的相互转换。
课堂练习 简述形状记忆效应的种类及其特点。
形状记忆合金可以分为三种: 镍钛系 铜系 铁系
其性能见P51 表5-2
镍钛系
基本特点:记忆效应优良、性能稳定、生物相容性好等 一系列的优点。但制造过程较复杂、价格高昂。
(一)Ti-Ni基记忆合金中的基本相和相变
母相是CsCl结构的体心立方晶体(B2)
铜系
基本特点:形状记忆效应好,价格便宜,易于加工制造, 但强度较低,稳定性及耐疲劳性能差,不具有生物相容 性。 主要合金:主要由Cu-Zn和Cu-Al两个二元系发展而来
Cu-Zn合金的热弹性马氏体相变温度极低,通过加入Al, Ge, Si, Sn, Be可以有效的提高相变温度,由此发展了的Cu-ZnX(X= Al, Ge, Si, Sn, Be )三元合金。加入其它组元进一 步提高性能(多元合金)
基于高分子材料中分子链的 取向与分布的变化过程
分子链的取向与分布可 受光、电、热、或化学 物质等作用的控制
SMP 可 以 是 光 敏 、 热 敏 、 电敏等不同的类型。
形状记忆高分子(shape memory polymer, 简称SMP) 热敏型SMP的工作机制
课堂练习 简述形状记忆效应的种类及其基本特点
基于非热弹性可 逆马氏体相变
Fe-Mn-Si Fe-Ni-Si Fe-Cr-Si-Mn-Co

形状记忆合金PPT课件

形状记忆合金PPT课件

LOGO
反之,如果升高温度,则转变就向相反 的方向进行,即马氏体逆转变为奥氏体,马氏体 片就缩小,甚至完全消失。在这种情况下,只要 马氏体界面上的共格性未被破坏,则马氏体片可 随着驱动力的改变而反复发生长大或缩小。具有 这种特征的马氏体称为“热弹性马氏体” 。
LOGO
高温 奥氏体相
降温 升温
低温 马氏体相(M)
LOGO
奥氏体相
加应力 卸载应力
马氏体相(M)
热弹性 超弹性
本质相同,都是由马氏体相变引起的
形状记忆机理总结
LOGO
形状记忆效应是由于合金中发生了热弹性或 应力诱发马氏体相变。
热弹性马氏体和应力诱发马氏体统称为弹性 马氏体。只有弹性马氏体相变才能产生形状记忆 效应。
LOGO
形状记忆合金的分类及性能
下经塑性变形为另一种形状,然后加热到高温相成为稳定状 态的温度时,通过马氏体逆相变恢复到低温塑性变形前的形 状的现象。
相→相变 马氏体
马氏体相变
回顾
LOGO
Байду номын сангаас
相:系统中具有确定成分和结构的部分叫做相。
材料的一个相具有不同于其他相的物理、化学特性。当系 统的外在约束条件(如温度、压力等)改变时,物相将发 生改变,相变的同时,材料的性能也发生改变。
应力诱发马氏体相变
LOGO
超弹性(superelasticity)变形
对母相状态的样品在Af温度以上施加外力, 随外力增加,样品首先发生遵循虎克(Hook)定律 的弹性变形。应力超过弹性极限后,随应力的缓 慢增加,样品的应变显著增加,在一定的应变范 围内卸载,应变会完全消失,如同弹性变形,但 其应变量远远超出通常意义上的弹性变形,称之 为超弹性变形。其实质与弹性变形不同。

第4章形状记忆合金精品PPT课件

第4章形状记忆合金精品PPT课件
其中,应力-应变关系表现出明显的非线性,这种非线性 弹性和相变密切相关,叫相变伪弹性(Transformation Pseudoelasticity),也叫超弹性。
2020/10/21
24
形状记忆合金发生超弹性变形的应力应变曲线
(Ms温度以上加载)
2020/10/21
25
形状记忆合金的相变伪弹性和热弹性马氏体相变在本 质上是同一现象。
60
40
20
0
270
290 310 330 350 温度/K
MS AS 275K
环境温度
2020/10/21Cu-34.1-Zn-1.8Sn合金Ms与拉伸应力的关系
23
相变伪弹性(超弹性)
产生热弹性M相变的形状记忆合金,在Ms温度以上由应力 诱发产生的M只在应力作用下才能稳定存在,应力一旦解除, 立即产生逆相变,回到母相状态,在应力作用下产生的宏观变 形也随逆相变而完全消失。
应力所加对象 不同:
前述(彼): 马氏体 此:奥氏体
施加应力前后
前述(彼): 无
有无M相变:
此:有
2020/10/21
22
当形状记忆合金受到的剪切分应力小于滑移变形或孪生变 形的临界应力时,即使在Ms之上也会发生应力诱发M相变,即 外部应力使相变温度上升。
应力/MPa 140
120
加载
100
卸载
80
2020/10/21
37
性能特点: 优点:制造加工容易,价格便宜,具有良好的记忆
性能,相变点可在一定温度范围内调节,不 同成分的Cu-Zn-A1合金相变温度不同。
缺点:强度较低,稳定性及耐疲劳性能差,不具有 生物相容性。
2020/10/21

《形状记忆合金》课件

《形状记忆合金》课件

2
存在的问题
如材料成本、可靠性和循环寿命等方面的挑战来自需要不断研究和改进。3
发展前景
形状记忆合金将在未来的科技进步中发挥重要作用,为我们的生活带来更多便利 和创新。
结语
形状记忆合金的重要性
它不仅是一种材料,更是未来科 技发展的重要组成部分,将引领 我们走向更智能、高效的未来。
发挥形状记忆合金的作用
《形状记忆合金》PPT课 件
欢迎参加本次《形状记忆合金》PPT课件!在这里,我们将探索这项未来科技 的定义、原理、特点,以及其在医疗器械、航天航空、汽车工业等领域中的 应用。
什么是形状记忆合金
形状记忆合金是一种具有记忆效应的材料,可以在受力变形后回复到其原始 形状。它的原理是基于相变的晶体结构变化,拥有独特的特点。
包括熔融法、固相法和合金化 方法等,每种方法都有其适用 场景和优缺点。
制备工艺流程
从原料的选择和预处理到形状 记忆合金的合成和后处理,需 要严谨的工艺流程和控制。
实验室制备实例
展示了形状记忆合金在实验室 中的成功制备实例,为进一步 研究和应用提供了基础。
形状记忆合金的未来发展
1
发展趋势
形状记忆合金将更加智能化和多功能化,结合其他材料和技术创新,应用领域将 不断扩大。
我们需要不断挖掘和应用形状记 忆合金的潜力,创造更多创新性 和实用性的产品和解决方案。
致谢
感谢您参与本次《形状记忆合金》 PPT课件,希望展示的内容能够 给您带来启发和收获。
形状记忆合金的应用
医疗器械
应用于支架、植入物等医疗设备,可提高患者的 治疗效果和舒适度。
汽车工业
在车身和发动机中应用,具有降噪、减振和节能 的优势。
航天航空

最新第6节 形状记忆合金课件ppt

最新第6节  形状记忆合金课件ppt

用作连接件,是形状记忆合金用量最大的一项用途。 下图是形状记忆效应应用最简单的例子—外部无法接 触部位的铆接。形状记忆合金可大量用于制作管接头, 连接方法是预先将管接头内径做成比待接管外径小 4%,在Ms以下马氏体非常软,可将接头扩张插入管 子,在高于As的使用温度下,接头内径将复原。
(a)成型(T>Af) (b)弯曲应变(T<M f) (c)插入(T<M f) (d)加热(T>Af工作温度)
双向记忆效应
具有双向记忆的合金,在一定温度区间,随温 度升降,材料将反复变形。
3、相结构
母相和马氏体均属有序点阵结构,这是左右马氏体相
变可逆性的重要因素。形状记忆合金母相的晶体结构
比较简单,如果不考虑原子差别,都是体心立方。
马氏体的晶体结构复
杂一些,大多为长周
期堆垛。同一母相转
变得到的马氏体可以
合金 Ag-Cd Au-Cd Cu-Al-Ni
Cu-Sn Cu-Zn Cu-Zn-X
(X = Si,Sn,Al) In-Ti Ni-Al Fe-Pt Mn-Cu Fe-Mn-Si
原子百分比 44/49 at.% Cd 46.5/50 at.% Cd 14/14.5 wt.% Al 3/4.5 wt.% Ni approx. 15 at.% Sn 38.5/41.5 wt.% Zn a few wt.% of X
母相与马氏体相界面可逆向光滑移动,这种转变是可
逆的,逆转变
完成后,不留 下任何痕迹,
(A) (B)
得到方位上和 以前完全相同
的母相。
A、B类马氏体相变的热滞后
相变时热滞后小,反映了相变驱动力(母相与马氏体 相的自由能差)小,界面的共格性好,使界面容易移 动。这种热滞后小、冷却时界面容易移动的马氏体相 变称为热弹性马氏体相变。冷却时驱动力增大,马氏 体长大,同时马氏体周围母相中产生的弹性能增加, 冷却停止,马氏体长大也停止,即热驱动力与弹性能 平衡,称之为热弹性平衡.热弹性马氏体与钢中的淬 火马氏体不一样,通常它比母相还软。

6形状记忆合金PPT课件

6形状记忆合金PPT课件
——这称为热弹性平衡状态。
24
热弹性马氏体箭状形貌的明场像
25
形状记忆合金马氏体数量随温度的变化
❖ 温度继续下降,马氏体相变驱动力增加,马氏体 又继续长大,也可能出现新的马氏体长大
❖ 温度升高,相变驱动力减小,马氏体出现收缩, 故称为热弹性马氏体
——相变为热弹性马氏体相变。
26
CuAlNi合金奥氏体基体中马氏体箭随冷却和加热而 生长和退缩
❖ 逆转变完成后,不留下任何痕迹,得到方位上和 以前完全相同的母相
22
非热弹性马氏体
热弹性马氏体
23
热弹性平衡
❖ 相变时热滞后小,反映了相变驱动力小,界面的 共格性好,使界面容易移动:
➢ 在低于Ms温度下,马氏体片形成以后,界面上的 弹性变形随着马氏体片长大而增大
➢ 长大到一定程度,弹性变形能及共格界面能等的 增加与相变自由能的减少相等,马氏体停止长大
❖ 1970年,人们又在成本更为低廉的CuAlNi中也发 现具有形状记忆现象,并明确这种现象是能够产 生热弹性马氏体相变的合金所共有的特性
❖ 1975年左右,FeMnSi及有些不锈钢也有形状记忆 功能,并在工业中得到应用
❖ 1975年至1980年左右,双程形状记忆效应、全程 形状记忆效应相继被发现
8
❖ 1948年,前苏联学者库尔久莫夫预测到某些具有 马氏体相变的合金会出现热弹性马氏体相变
❖ 1951年,美国的Read等人在Au-Cd合金的研究中 首次发现该合金具有形状记忆效应
❖ 随后,在In-Ti合金中也发现了形状记忆效应
7
❖ 1963年,美国海军武器试验室的Buehler博士等发 现Ni-Ti合金具有形状记忆效应
➢ 当某一变体在母相中形成时,产生某一方向的应 变场,随变体的长大,应变能不断增加

形状记忆合金PPT课件

形状记忆合金PPT课件

➢ 合金具有双程记忆效应是因为合金中存在方向性的应 力场或晶体缺陷,相变时马氏体容易在这种缺陷处形 核,同时发生择优生长。
➢ 通过记忆训练(强制变形)获得双程记忆能力:
✓ 先获得单程记忆效应,记忆高温相的形状;
✓ 随后在低于Ms温度,根据需要形状进行一定限度的可恢复变 形;
✓ 加热到As以上温度,试样恢复到高温态形状后,又降低到Ms 以下,再变形试件,使之成为低温所需形状;
利用形状记忆元件传感和驱动特 性制造上下自动转换的百叶板。 安装在排气口的形状记忆线圈随 排气温度变化进行收缩或张开, 和另一侧偏动弹簧一起完成双程 动作,自动控制百叶板运动。
经10万次以上的动作后证实,形 状记忆特性没有任何下降。
2021
空调百叶板 35
混水阀
利用形状记忆合金弹簧可以控制浴室 水管的水温,在热水温度过高时通过“ 记忆”功能,调节或关闭供水管道,避 免烫伤。
2021
31
➢ 应力诱发马氏体相变使弹性模量呈现非线性特性 ,即使应变增大,矫正力却增加很少,永久应变 远远小于不锈钢丝,在大变形范围内可持续释放 比其他材料更加恒定的矫正力。
NiTi合金牙齿矫形丝
2021
32
NiTi矫形丝不仅操作简便,而且疗效也好,可减 轻患者的不适感。
1980年,中国就开始研制NiTi合金矫形丝,北京 有色金属研究总院与北京口腔医院合作,研制出 NiTi合金牙弓丝,称为“中国NiTi牙弓丝”。
2021
15
2021
16
形状记忆处理
形状记忆合金的制备通常是先制备合金锭,之后 进行热轧、模锻、挤压,然后进行冷加工。
为把形状记忆合金用做元件,有必要使它记住给 定形状。
形状记忆处理(一定的热处理)是实现合金形状记 忆功能方面不可或缺,至关重要的一环。

形状记忆合金原理PPT课件

形状记忆合金原理PPT课件

2021
14
• 马氏体相变时在一定的母相面上形成新相马氏体,这个面称 为惯习(析)面,它往往不是简单的指数面,如镍钢中马氏体在 奥氏体(γ)的{135}上最先形成(图7)。马氏体形成时和母相
• 的界面上存在大的应变。
• 马氏体相变具有可逆性。当母相冷却时在一定温度 开始转变为马氏体,把这温度 标作Ms,加热时马氏体逆 变为母相,开始逆变的温度标为As。它们所包围的面积 称为热滞面积, 相变时的协作形变为范性形变时,一般 热滞较大;而为弹性形变时,热滞很小。像Au-Cd这类合 金冷却时马氏体长大、增多,一经加热又立即收缩,甚
马氏体
2021
11
变 形 的 三 种 形 式
图3-3 形状记忆效20应21的三种形式
12
Question:
F
上述弹簧是否属于记忆合金?
2021
13
• 补充知识:
• 马氏体最初是在钢中发现的:将钢加热到一定温度后经迅速冷却,得到的能使钢变硬、 增强的一种淬火组织。1895年法国人奥斯蒙为纪念德国冶金学家马滕斯,把这种组织 命名为马氏体。人们最早只把钢中由奥氏体转变为马氏体的相变称为马氏体相变。20 世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和 合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和 Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前 广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。

马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或
顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺

4形状记忆合金PPT课件

4形状记忆合金PPT课件
马氏体相变分三步进行
21
马氏体相变的G-T转变模型
{11}1 //1{1}0a',差1 110 //111a' ,差 2
3
形状记忆效应
❖形状记忆效应:固体材料在发生了塑性变形后, 经过加热到某一温度之上,能够恢复到变形前的 形状,这种现象就叫做形状记忆效应。
普通金属材料
形状记忆合金
4
形状记忆效应简易演示实验
初始形状
拉直
加热后恢复
5
形状记忆效应与马氏体相变
➢形状记亿效应是在马氏体相变中发现的 ➢马氏体相变中的的高温相叫做母相(P),低温相 叫做马氏体相(M) ➢马氏体正相变、马氏体逆相变。 ➢马氏体逆相变中表现的形状记忆效应,不仅晶 体结构完全回复到母相状态,晶格位向也完全回 复到母相状态,这种相变晶体学可逆性只发生在 产生热弹性马氏体相变的合金中。 ➢马氏体相变的临界温度:Ms、Mf、As、Af
形状记忆合金 Shape Memory Alloys
1
形状记忆合金概述
❖ 发展历史 ❖ 基本概念
形状记忆效应及其临界温度 热弹性马氏体相变 马氏体变体与自协作 应力诱发马氏体相变 相变伪弹性(超弹性)
2Hale Waihona Puke 形状记忆合金发展历史❖ 30年代,美国哈佛大学A. B. Greninger等发现CuZn合金在加热与冷却的 过程中,马氏体会随之收缩与长大
15
马氏体相变
❖马氏体相变的热力学持征 ❖马氏体相变机制的几个晶体学经典模型
Bain转变模型 K-S转变模型 西山转变模型 G-T转变模型
16
马氏体相变的热力学持征
❖相变得以进行需要驱动力,相变驱动力来自 于新旧两相的自出能差
❖马氏体相变时需要较大的驱动力。这主要是 由于相转变时的切变过程需要很高的塑性变 形能,用以产生浮凸,产生高密度位错或孪 晶等,同时,为了维持两相的共格,以及因 体积的变化会引起晶格的弹性畸变,导致较 大的能量提高。所以,马氏体相变的的驱动 力主要是为了克服相变时的切变阻力和变形 阻力,包括弹性变形和塑性变形。

形状记忆原理及应用PPT课件

形状记忆原理及应用PPT课件

高耐热SMA
[ 2 31]
Cu-24Al-3Mn合金淬火态马氏体透射电镜衍衬像和电子衍射花样 _
(a)淬火态衍衬像; _ _ (b) [010]_ 晶带轴衍射斑; (c) [461] _ _ 晶带轴衍射斑;
_
_
(d)[231]晶带轴衍射斑;(e)[10151]晶带轴衍射斑;(f) [232]晶带轴衍射斑
母相与马氏体相变的晶体学可逆性与有序点阵具有密切的 关系,晶体学可逆性通过有序点阵的形成自动得到保障,在母 相→马氏体→母相的转变循环中,母相完全可以恢复原状。这 就是单程记忆效应的原因。上图中:a.将母相冷却到点以下进 行马氏体相变,母相的一个晶粒内会生成许多惯习面位向不同, 但在晶体学上是等价的马氏体,把这些惯习面位向不同的马氏 体叫做马氏体变体(Variant),马氏体变体一般有24种,由于相 邻变体可协调地生成,微观上相变应变相互抵消,无宏观变形; b.马氏体受外力作用时(加载),变体界面移动,相互吞食, 形成马氏体单晶,出现宏观变形;
宽滞后铜基记忆合金热收缩管接头的研制
SMA管接头应用原理
记忆管接头的优越性:
记忆管接头的优点: 用记忆管接头进行管道等的连接,具有装配 工艺简单、无污染等优点,在连接密集部件、 不可焊部件、人类不易达到区域的工程部件 (如深水工程、太空工程)、异种材料的连 接等方面更显示了其优越性。
传统铜基记忆合金管接头的缺点:
形状记忆原理 及应用
形状记忆合金(shape memory alloy)作为一种新型功能 材料已经被广泛使用。该合金可以认为是始于1963年美国海 军武器试验室(Naval Ordianace Laboratory)W.J.Buehler博 士的研究小组对TiNi合金的研究。他们发现TiNi合金构件因为 温度不同,敲击时发出的声音明显不同,这说明该合金的声 阻尼性能和温度相关。进一步研究发现,等原子比TiNi合金具 有良好的形状记忆效应。后来TiNi合金作为商品进入市场,给 等原子比的TiNi合金商品取名为NiTinol,后面的三个字母就是 该研究室的3个英文单词的第一个字母。目前形状记忆合金已 广泛应用于航空、航天、能源、汽车工业、电子、医疗、机 械、建筑、服装、玩具等各个领域。 形状记忆材料主要包括形状记忆合金、形状记忆陶瓷和形 状记忆聚合物,其记忆机制各不相同。本章将对与热弹性马 氏体相变有关的形状记忆效应做基础性介绍。

《形状记忆合金》PPT课件

《形状记忆合金》PPT课件

形状记忆合金的用途归纳
<1>汽车:后雾灯罩、手动变速箱的防噪音装置、燃 料蒸发气体排出控制阀;<2>电子设备:电子炉灶换 气门的开闭器、空调风向自动调节器、咖啡牛奶沸腾 感知器、电饭锅压力调节器、电磁调理器过热感知器、 温泉浴池调理器等;<3>安全器具:过热报警器、火 灾报警器、烟灰缸灭火栓等;<4>医疗方面:人工牙 根、牙齿矫正丝、导线等;<5>生活用品:自动干燥 库门开闭器、卫生间洗涤器水管转换开关、空调进出 口风向调节器、浴池保温器、玩具、路标方向指示转 换器、家庭换气门开闭器、防火挡板、净水器热水防 止阀、恒温箱混合水栓温度调节阀、眼镜固定件、眼 镜框架、胸罩丝、钓鱼线、便携天线、装饰品等.
形状记忆合金的分类
〔1〕单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢
复变形前的形状,这种只在加热过程中存在记忆效应
某些合金加热时恢复高温相形状,冷却时又能恢 复低温相形状,称为双程记忆效应. 〔3〕全程记忆效应
加热时恢复高温相形状,冷却时变为形状相
形状记忆效应与形状记忆合金
一般金属材料受到外力作用后,首先发生弹性 变形,达到屈服点,就产生塑性变形,应力消除后 留下永久变形.但有些材料,在发生了塑性变形 后,经过合适的热过程,能够回复到变形前的形 状,这种现象叫做形状记忆效应〔SME〕.
具有形状记忆效应的金属一般是两种以上金属 元素组成的合金,称为形状记忆合金〔SMA〕
在室温下用形状记忆合金制 成抛物面天线,然后把它揉成 直径5厘米以下的小团,放入 阿波罗11号的舱内,在月面上 经太阳光的照射加热使它恢 复到原来的抛物面形状.这样 就能用空间有限的火箭舱运 送体积庞大的天线了.
形状记忆合金的用途〔二〕
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马氏体在外力下变形成 某一特定形状,加热时 已发生形变的马氏体会 回到原来奥氏体状态, 这就是宏观形状记忆现 象,如右图所示。
图6 形状记忆效应 过程的示意图
形状恢复完全可逆需具备以下条件:
马氏体相变是热弹性的; 母相和马氏体呈现有序的点阵结构; 马氏体点阵的不变切变为孪生,亚结构为孪晶或
在TiNi合金中掺杂Au或Pt可以显著提高合金的相变温度,使之 成为高温形状记忆合金,加入Nb可以使相变热滞增大到140℃ ,而加入Cu后相变热滞则锐减至4 ℃。
另一方面,随着材料先进制备技术的飞速发展,纳米化处理也 越来越多地应用于形状记忆合金中。
形状记忆合金使用中的问题
形状记忆合金并不是无论承受怎样的变形只 要受热就能恢复原状,有时可残留永久变形。
☞中温处理是将轧制或拉丝加工后充分加工硬化的合 金成形成给定形状,在400-500℃温度下保温几分钟 到几小时,使之记住形状的方法。
此方法由于工艺简单而被广泛采用。
☞低温处理是在高于800℃的温度下保温后进行完全 退火,然后在室温下制成特定形状,在200-300℃ 的低温下保温一定时间,以记忆其形状的方法。
通过记忆训练(强制变形)获得双程记忆能力:
先获得单程记忆效应,记忆高温相的形状; 随后在低于Ms温度,根据需要形状进行一定限度的可恢复变
形; 加热到As以上温度,试样恢复到高温态形状后,又降低到Ms
以下,再变形试件,使之成为低温所需形状; 如此反复多次后,就可获得双向记忆效应。
TiNi合金全程记忆处理
形状记忆效应:具有一定形状的固体材料(通常是 具有热弹性马氏体相变的材料),在某一温度下( 处于马氏体状态Mf)进行一定限度的塑性变形后, 通过加热到某一温度(通常是该材料马氏体完全消 失温度Af)上时, 材料恢复到变形前的初始形状。
形状记忆效应原理
形状记忆合金在一定范 围内发生塑性变形后, 经加热到某一温度后能 够恢复变形,实质是热 弹性马氏体相变。
Fe基合金价格低,加工性能好,力学强度高,在应用方 面具有明显的竞争优势,但其形状记忆效应不是很好。
表2 TiNi合金与CuZnAl合金性能对比
合金类型
TiNi合金
CuZnAl合金
恢复应变
最大8%
最大4%
恢复应力
最大400MPa
最大200MPa
循环寿命 耐蚀性 加工性
105(ε=0.02) 107(ε=0.005)
为保持良好形状记忆特性,形变量不能超过 一定值。
循环使用次数少时,TiNi合金约为6%,CuZnAl 合金约为2%;
层错; 马氏体相变在晶体学上是可逆的。
随着形状记忆材料研究的不断深入,发现不完全 具备上述条件的合金也可以显示形状记忆效应。
温度场可以诱导形状记忆效应,磁场、应力场等 也可诱导马氏体相变,出现形状记忆效应。
Magnetic field
图7 传统热诱导形状记忆合金 图8 磁诱导形状记忆合金
形状记忆处理
形状记忆合金的制备通常是先制备合金锭,之后 进行热轧、模锻、挤压,然后进行冷加工。
为把形状记忆合金用做元件,有必要使它记住给 定形状。
形状记忆处理(一定的热处理)是实现合金形状记 忆功能方面不可或缺,至关重要的一环。
TiNi合金单程形状记忆处理
单程记忆处理方法有三种 中温处理 低温处理 时效处理
TiNi合金是目前形状记忆合金中研究最全面、记忆 性能最好的合金材料。
TiNi合金强度高、塑性大、耐蚀性好、稳定性好,具有 优异的生物相容性
在医学上的应用是其它形状记忆合金不能替代的
形状记忆合金的经济性是一个重要因素。
Cu基合金的记忆性能、耐蚀性能、力学性能等都比TiNi 合金差,但价格仅为TiNi合金的l/10,在性能要求不高、 反复使用次数少,特别是要降低成本的情况下使用;
良好
不良
102(ε=0.02) 103(ε=0.005) 不良,有应力腐蚀破

不太好
记忆处理
较易
相当难
形状记忆效应
形状记忆合金的形状 记忆效应按形状恢复 情况可以分为三类:
单程形状记忆效应
冷却
双程形状记忆效应
全程记忆效应
图10 形状记忆效应的三种形式 (a)单程(b)双程(c)全程
由于在完全退火的软状态下进行加工,有利于合金记住 复杂形状或曲率很小的形状。
☞时效处理是一种在800-1000℃温度下固溶处理后进 行淬火,然后在400-500℃的温度下进行几小时时 效处理的方法。
只对Ni含量高于50.5at%的富Ni合金有效。
TiNi合金双程记忆处理
合金具有双程记忆效应是因为合金中存在方向性的应 力场或晶体缺陷,相变时马氏体容易在这种缺陷处形 核,同时发生择优生长。
(a)马氏体状态下未变形
(b)马氏体状态下已变形 (c)放入热水中,高温下恢复奥氏体状态,形状完全恢复
图11 单程TiNi记忆合金弹簧的动作变化情况
没再次放入热水后
图12 双程CuZnAl记忆合金花的动作变化情况
图13 TiNi合金的全程记忆效应(100℃-室温) 图14 TiNi合金的全程记忆效应(低温-100℃)
合金成分
呈现形状记忆效应的合金,其基本合金系就有10种 以上,如果把相互组合的合金或者添加适当元素的 合金都算在内,则有100种以上。
得到实际应用的只有Ti基合金、Cu基合金以及Fe基 合金。
其余合金则因为有些化学成分不是常用元素而导致 价格昂贵,或者有些只能在单晶状态下使用,不适 于工业生产。
全程记忆效应的出现是由于与基体共格的Ti11Ni14 析出相产生的某种固定的内应力所导致,
应力场控制了马氏体可逆相变的路径,使马氏体的可 逆相变按固定路径进行。
全程记忆处理的关键是限制性时效,必须根据需 要选择合适的约束时效工艺。
形状记忆合金的其他处理
改变合金成份的配方比例,可以调节记忆合金的唤醒温度。例 如在制造NiTi记忆合金时,如使两种成分对半掺,唤醒温度为 80℃,如把Ni的配合比例减少千分之一,而将Ti增加千分之一 ,则唤醒温度降为70℃,当NiTi之比为45.5∶54.3时,唤醒温 度恰巧是0℃。
相关文档
最新文档