01-Introduction to Bioinformatics(生物信息学国外教程2010版) PPT课件
第一课生物信息学概论
25
生物信息学当前的主要研究任务
生物信息学研究都有其特定的、不断创新 的方法学。以系统优化、软件并行化和数 据处理技术为主体的海量生物学数据处理 体系的建立将基于新的思路和设想。
26
生物信息学的特点
它是一门基于数据积累,尤其是原始数据 积累的科学。数据的获取是生物信息学发 展的保障和本源。生物信息学研究首先也 是基于实验数据的生产、管理和分析。因 此,生物信息领域的首要特点是生物学基 本数据收集的规模化,数据处理的程序化, 数据分析的专门化。
23
生物信息学当前的主要研究任务
蛋白质组学:
(1)蛋白质组图像数据处理,蛋白及其修饰鉴定
(2)构建蛋白质数据库,相关软件的开发和应用; (3)蛋白质结构、功能预测; (4)蛋白质连锁图。
24
生物信息学当前的主要研究任务
代谢组学:新陈代谢是由错综复杂的生化 代谢途径所构成的动态网络组成。要揭示 代谢的本质是一个长期的目标。但是,我 们可以从现有数据出发建立主要或特定代 谢途径的模型,如影响人类健康的常见代 谢疾病等。
ACGT
生物信息学基本概念
早在1956年,在美国田纳西州盖特林堡召开的首次 “生物学中的信息理论研讨会”上,便产生了生物信 息 学的概念。1987年,林华安博士正式把这一学科命名 为“生物信息学”(Bioinformatics)。被尊称为 “生物 信息学之父”。 生物信息学(Bioinformatics): (1)生物信息学包含了生物信息的获取、处理、储存、 分析和解释等在内一门交叉学科, (2)它综合运用数学、计算机科学和生物学的各种工 具进行研究, (3)目的在于阐明大量生物学数据所包含的生物学意
8. 生物信息分析的技术和方法研究
生物信息学导论精品PPT课件
2020/10/5
16
概述
➢ 生物信息学往哪里去
表18-1生物信息学的过去、现在和将来
二十世纪90年代 的生物信息学
当前的生物信息 学
未来的生物信息 学
2020/10/5
主要内容
大规模基因组学与蛋白质组学的实 验数据形成的一级数据库及其相应 的分析方法与工具
由一级数据库分类、归纳、注释得 到的基因组学与蛋白质组学二级数 据库 (知识库)及其相应的分析方法与 工具
细胞和生物体的完全计算机表示
目的 了解单个基因和蛋白 质的功能与用途
2020/10/5
12
概述
➢ 生物信息学的起源
DNA自动测序构成过巨大的冲击,因为它曾经是各种生物学数据高通 量产出的前沿阵地。像表达序列标签(ESTs),单核苷多态性(SNPs)都 和基因序列密切相关。随后发展的研究基因表达模式(profile)的DNA微 阵列技术、用于探测蛋白质相互作用的酵母双杂交系统、以及质谱技术极 大地让生命科学类数据库飞速膨胀。结构基因组学方面的新技术还不能大 规模地产生数据,但它们正在导致蛋白质三维结构数据的增加。
2020/10/5
14
概述
➢ 生物信息学往哪里去
尽管最近十年来,高通量检测技术与信息技术的结合让人们认识了大 量的基因和蛋白质,但是和物理学、化学相比较,生物学仍旧是一门不成 熟的学科,因为对于生命过程,我们无法根据一般性原理做出像卫星轨道 那样精确的预测。随着数据的不断膨胀和知识的积累,也借助于生物信息 学,这种情形很有可能发生改变。
生物信息学导论
Introduction to Bioinformatics
Email: Tel:
2020/10/5
1
生物信息学英文介绍
生物信息学英文介绍Introduction to Bioinformatics.Bioinformatics is an interdisciplinary field that combines biology, computer science, mathematics, statistics, and other disciplines to analyze and interpret biological data. At its core, bioinformatics leverages computational tools and algorithms to process, manage, and minebiological information, enabling a deeper understanding of the molecular basis of life and its diverse phenomena.The field of bioinformatics has exploded in recent years, driven by the exponential growth of biological data generated by high-throughput sequencing technologies, proteomics, genomics, and other omics approaches. This data deluge has presented both challenges and opportunities for researchers. On one hand, the sheer volume and complexityof the data require sophisticated computational methods for analysis. On the other hand, the wealth of information contained within these data holds the promise oftransformative insights into the functions, interactions, and evolution of biological systems.The core tasks of bioinformatics encompass genome annotation, sequence alignment and comparison, gene expression analysis, protein structure prediction and function annotation, and the integration of multi-omic data. These tasks require a range of computational tools and algorithms, often developed by bioinformatics experts in collaboration with biologists and other researchers.Genome annotation, for example, involves the identification of genes and other genetic elements within a genome and the prediction of their functions. This process involves the use of bioinformatics algorithms to identify protein-coding genes, non-coding RNAs, and regulatory elements based on sequence patterns and other features. The resulting annotations provide a foundation forunderstanding the genetic basis of traits and diseases.Sequence alignment and comparison are crucial for understanding the evolutionary relationships betweenspecies and for identifying conserved regions within genomes. Bioinformatics algorithms, such as BLAST and multiple sequence alignment tools, are widely used for these purposes. These algorithms enable researchers to compare sequences quickly and accurately, revealing patterns of conservation and divergence that inform our understanding of biological diversity and function.Gene expression analysis is another key area of bioinformatics. It involves the quantification of thelevels of mRNAs, proteins, and other molecules within cells and tissues, and the interpretation of these data to understand the regulation of gene expression and its impact on cellular phenotypes. Bioinformatics tools and algorithms are essential for processing and analyzing the vast amounts of data generated by high-throughput sequencing and other experimental techniques.Protein structure prediction and function annotation are also important areas of bioinformatics. The structure of a protein determines its function, and bioinformatics methods can help predict the three-dimensional structure ofa protein based on its amino acid sequence. These predictions can then be used to infer the protein'sfunction and to understand how it interacts with other molecules within the cell.The integration of multi-omic data is a rapidly emerging area of bioinformatics. It involves theintegration and analysis of data from different omics platforms, such as genomics, transcriptomics, proteomics, and metabolomics. This approach enables researchers to understand the interconnectedness of different biological processes and to identify complex relationships between genes, proteins, and metabolites.In addition to these core tasks, bioinformatics also plays a crucial role in translational research and personalized medicine. It enables the identification of disease-associated genes and the development of targeted therapeutics. By analyzing genetic and other biological data from patients, bioinformatics can help predict disease outcomes and guide treatment decisions.The future of bioinformatics is bright. With the continued development of high-throughput sequencing technologies and other omics approaches, the amount of biological data available for analysis will continue to grow. This will drive the need for more sophisticated computational methods and algorithms to process and interpret these data. At the same time, the integration of bioinformatics with other disciplines, such as artificial intelligence and machine learning, will open up new possibilities for understanding the complex systems that underlie life.In conclusion, bioinformatics is an essential field for understanding the molecular basis of life and its diverse phenomena. It leverages computational tools and algorithms to process, manage, and mine biological information, enabling a deeper understanding of the functions, interactions, and evolution of biological systems. As the amount of biological data continues to grow, the role of bioinformatics in research and medicine will become increasingly important.。
11-Fungi(生物信息学国外教程2010版)
Page 700
Sequencing the S. cerevisiae genome
Génolevure project
Euascomycetae
Neurospora
Loculoascomycetae
Laboulbeniomycetae parasites of insects
Basidiomycota rusts, smuts, mushrooms
Chytridiomycota Allomyces
The genome was sequenced by a highly cooperative consortium in the early 1990s, chromosome by chromosome (the whole genome shotgun approach was not used).
Monday Nov. 23: Eukaryotic genomes (Chapter 18) Wednesday Nov. 25: Eukaryotic genomes (Chapter 18) Next Friday: Thanksgiving
Monday Nov. 30: Hongkai Ji Wednesday December 2: Al Scott Friday: lab on eukaryotes
About 70,000 fungal species have been described (as of 1995), but 1.5 million species may exist.
生物信息学 英文教科书
生物信息学英文教科书1. "Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins" (Third Edition) by David W. MountThis textbook provides a comprehensive introduction to bioinformatics, covering topics such as sequence analysis, genomics, transcriptomics, proteomics, and systems biology. It includes practical examples and exercises to help readers apply the concepts.2. "Introduction to Bioinformatics" (Second Edition) by Arthur M. LeskThis book offers a broad overview of bioinformatics, including sequence analysis, database searching, phylogenetic inference, and genome analysis. It also covers bioinformatics tools and techniques used in experimental biology.3. "Bioinformatics for Dummies" by John M. Walker and Todd W. J. DavisThis beginner-friendly guide introduces the fundamentals of bioinformatics in an easy-to-understand manner. It covers topics like sequence alignment, database searching, and phylogenetic trees, with a focus on practical applications.4. "Computational Biology: A Practical Introduction to Bioinformatics and its Applications" by Udit Sharma and Navdeep KaurThis textbook provides a comprehensive overview of bioinformatics, including sequence analysis, genome annotation, protein structure prediction, and biological networks. It includes real-life examples and case studies.These textbooks offer in-depth coverage of bioinformatics concepts and techniques, and they can serve as valuable references for students, researchers, and professionals in the field. The specific choice of a textbook may depend on the reader's background, level of expertise, and specific interests within bioinformatics.。
生命科学名著
生命科学名著以下是一些著名的生命科学名著:1.《进化论》(On the Origin of Species)- 查尔斯·达尔文(Charles Darwin)这是达尔文于1859年出版的著作,被视为进化生物学的里程碑。
他提出了自然选择理论,解释了物种的起源和多样性。
2.《细胞生物学》(The Cell: A Molecular Approach)- Geoffrey M. Cooper与Robert E. Hausman这是一本经典的细胞生物学教材,系统地介绍了细胞结构、功能和生物分子的组成。
3.《分子生物学的自然》(The Nature of the Gene)- 第·马斯林克(D. Peter Snustad)与迈克尔·J. 鞠曲(Michael J. Simmons)这本书深入介绍了基因组的结构和功能,以及遗传学和分子生物学的原理。
4.《生物化学:分子机器与代谢通道》(Biochemistry: The Molecular Machinery of Life)- Roger L. Miesfeld与Megan M. McEvoy这是一本全面介绍生物化学的教材,涵盖了生物大分子的结构与功能,代谢途径和调节机制。
5.《逻辑生物学》(Logic of Life: A History of Heredity)- François Jacob这本书讲述了遗传学的历史发展,并探讨了基因表达和遗传信息在生物体内传递的原理。
6.《动物行为学原理》(Principles of Animal Behavior)- Lee C. Drickamer、Stephen H. Vessey和Elizabeth M. Jakob本书介绍了动物行为学的基本原理,从进化、神经生物学、生态学的角度解释动物种群、个体行为的机制。
7.《生物信息学导论》(Introduction to Bioinformatics)-Arthur M Lesk这本书介绍了生物信息学的基本理论和实践,包括序列分析、蛋白质结构预测、基因组学等方面。
生信分析基础知识书籍
生信分析基础知识书籍生物信息学(Bioinformatics)是生物学和信息学的交叉学科,旨在利用计算机科学和统计学的方法研究生物学中的信息并解决生物学问题。
随着高通量测序技术的发展,生物信息学在基因组学、转录组学、蛋白质组学和代谢组学等领域的应用越来越广泛。
对于想要了解和掌握生物信息学基础知识的人来说,一本好的生信分析基础知识书籍是必不可少的工具。
以下是几本推荐的生信分析基础知识书籍,希望对您有所帮助。
1. 《生物信息学:算法和应用》(Bioinformatics: Algorithms and Applications)作者:S. C. Rastogi这本书是一本经典的生物信息学教材,深入浅出地介绍了生物信息学的基本概念和算法原理。
包括序列比对、基因预测、蛋白质结构预测、基因表达分析等内容。
书中还提供了丰富的实例和案例分析,帮助读者更好地理解和应用生物信息学的方法。
2. 《生物信息学:基本概念与技术》(Bioinformatics: Concepts and Techniques)作者:Jamindar S. B.Hainaj这本书介绍了生物信息学的基本概念和技术,包括生物数据库的构建和管理、序列比对、蛋白质结构预测、基因表达分析等内容。
书中还包含了一些实例和案例分析,帮助读者更好地理解和运用生物信息学的方法。
3. 《生物信息学简介》(An Introduction to Bioinformatics)作者:Arthur M. Lesk这本书是一本全面介绍生物信息学的教材,涵盖了生物数据库的应用、序列比对、基因预测、基因表达分析等内容。
书中给出了大量的例子和案例,帮助读者更好地理解和应用生物信息学技术。
4. 《生物信息学导论》(Introduction to Bioinformatics)作者:Teresa Attwood这本书是一本全面介绍生物信息学的教材,内容包括生物数据库的构建和使用、序列比对、基因预测、蛋白质结构预测、基因表达分析等。
中国科技大学系列:《生物信息学》01省名师优质课赛课获奖课件市赛课一等奖课件
PSI-BLAST:位点特异性迭代BLAST PHI-BLAST:模式发觉迭代BLAST
基于序列信息研究分子进化
1.构建进化树,分析蛋白质旳超家族及亚家 族分类。
2.寻找Ortholog (直系同源物)或者Paralog (旁系同源物)。
3. 分子进化树旳构建措施:邻接法 (Neighbor-Joining), 最大简约法(Maximum Pasimony),最大似然性法(Maximum Likelihood),以及贝叶斯类算法(MCMC)。
4.构建进化树旳第一步:可靠旳多序列比对。
RNA二级构造旳预测
1. RNA分子中,如果存在重复且反向互补 ,则可以形成发卡结构。
2.数学知识:概率论与统计学等 3.算法及编程能力:JAVA, Perl/Python,
PHP+MySQL, …
生物信息学旳常用算法与措施
动态规划算法(Dynamic programming); 贝叶斯统计(bayesian statistic); 人工神经网络(ANNs); 马尔可夫模型和隐马尔科夫模型(HMM); 遗传算法(Genetic Algorithm); 蒙特卡洛措施(Monte Carlo); 模拟退火算法(Simulated Annealing); 支持向量机(SVM); …
1955年,Sanger与合作者分别对牛、猪和羊旳胰岛素蛋白质进 行了测序并做了序列上旳比较。-最早旳序列比对。
1962年,鲍林提出分子进化旳理论,推测在人中可能存在 50,000~100,000个不同旳基因/蛋白质。-分子进化理论旳奠定。
1965年,Margaret Dayhoff构建蛋白质序列图谱 1970年,Needleman-Wunsch算法:全局优化比对。 1981年,Smith-Waterman算法开发:局部优化比对。 1990年,迅速序列相同性搜索工具BLAST旳开发
生物信息学学习心得
生物信息学学习心得第一篇:生物信息学生物信息学是上世纪90年代初人类基因组计划(hgp)依赖,随着基因组学、蛋白组学等新兴学科的建立,逐渐发展起来的生物学、数学和计算机信息科学的一门交叉应用学科。
目前生物信息学的研究领域主要包括基于生物序列数据的整理和注释、生物信息挖掘工具开发及利用这些工具揭示生物学基础理论知识等领域。
生物信息学作为新型交叉应用学科,可以依托本校已有的计算机科学、信息学、生物学和数学等学科优势,充分展现投入少、见效快、起点高的特色,推动学校学科建设和本科教学水平。
本实验指导书中的8个实验均设计为综合性开发实验,面向生物信息学院全体本科学生和研究生,以及全校对生物信息学感兴趣的其他专业学生开放。
生物信息学实验室将提供系统的保障,包括采用mail服务器和linux帐号管理等进行实验过程管理和支持。
限选《生物信息学及实验》的生物技术专业本科生至少选择其中5个实验,并不少于8个学时,即为课程要求的0.5个学分。
其他选修者按照课时和学校相关规定计算创新学分。
实验一熟悉生物信息学网站及其数据的生物学意义实验目的:培养学生利用互联网资源获取生物信息学研究前沿和相关数据的能力,熟悉生物信息学相关的一些重要国内外网站,及其核酸序列、蛋白质序列及代谢途径等功能相关数据库,学会下载生物相关的信息数据,了解不同的数据文件格式和其中重要的生物学意义。
实验原理:利用互联网资源检索相关的国内外生物信息学相关网站,如:ncbi、sanger、tigr、kegg、swissport、ensemble、中科院北京基因组研究所、北大生物信息学中心等,下载其中相关的数据,如fasta、genbank格式的核算和蛋白质序列、pathway等数据,理解其重要的生物学意义。
实验内容:1.浏览和搜索至少10个国外和至少5个国内生物信息学相关网站,并描述网站特征;2.下载各网站的代表性数据各10条(组)以上,并说明其生物学意义;3.讨论各网站适合做何种生物信息学研究的平台,并设计一个研究设想。
生物信息学简单介绍
作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区,同时阐明基
因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言 规律。在此基础上归纳、整理与基因组遗传信息释放及调控相关的转录普和
蛋白质普的数据,从而认识生物有机体的代谢、发育、分化、进化规律。
• 狭义:采用信息科学技术,借助数学、生 物学的理论、方法,对各种生物信息(包 括核酸、蛋白质等)的收集、加工、储存、 分析、解释的一门学科。
EMBL核酸序列数据库
• EMBL是欧洲生物信息学研究所(EBI) 维护的核酸序列数据构成,查询检索 可以通过因特网上的序列提取系统 (SRS)服务完成。
DDBJ数据库
• 日本DNA数据仓库(DDBJ)也是一个 全面的核酸序列数据库,与Genbank 和EMBL核酸库合作交换数据。使用 其主页上提供的SRS工具进行数据检 索和序列分析。
三大基因数据库之间的关系
GenBank
Public free Available via Internet
EMBLபைடு நூலகம்Data Library
DDBJ (DNA Data Bank of Japan)
这三个机构相互合作互通有无,数据库中的数据基本一致,仅在格式上有些差异, 但对某一特定序列的查询,三个数据库会给出一样的结果。这三个数据库的数据来源 于世界各国众多的研究机构和核酸测序小组以及科学文献。现在,用户可以通过互联 网将核酸序列数据提交给这三个数据库系统的任何一个。
• 基因的电脑克隆原理很简单,就是找到属于同一 基因的所有EST片段,再把它们连接起来。由于 EST序列是全世界很多实验室随机产生的,所以属 于同一基因的很多EST序列间必然有大量重复小片 段,利用这些小片段作为标志就可以把不同的EST 连接起来,直到发现了他们的全长,这样就可以 通过电脑克隆到一个基因。 • 如果这个基因以前未曾发现过,那它就是一个新 基因。 • 但是进行电脑克隆基因的程序设计复杂,计算量 巨大。
生物信息学简介
生物信息学简介一. 生物信息学诞生的历史必然性生物信息学(Bioinformatics)就其萌生而言,是一门相当古老的学科,因为早在计算机初创期的1956年就已经在美国田纳西州的Gatlinburg召开过首次“生物学中的信息理论讨论会”;而就其发展而言,却是一门相当年轻的学科,因为继20余年的沉默之后,只有伴随着八九十年代计算机技术的迅猛发展,它才同时得以获得自身的大发展。
无论从理论上来讲还是从现实情况来看,生物信息学的实质就是利用计算机科学和网络技术来解决生物学问题。
它的诞生和发展是应时所需,是历史的必然,已经悄然渗透到生物科学的每一个角落,以至人们在意识到它的存在之前就已经离不开它了!二十世纪尤其是末期,生物科学技术的迅猛发展,无论从数量上还是从质量上,都极大地丰富了生物科学的数据资源,数据资源的急剧膨胀首先迫使我们不得不考虑寻求一种强有力的工具去组织他们,以利于对已知生物学知识的储存和进一步加工利用。
大量多样化的生物学数据资源中必然蕴含着大量重要的生物学规律,这些规律是我们解决许多生命之谜的关键所在,然而继续沿用传统手段以人脑来分析如此庞杂的数据实在是太勉为其难了!人们同样需要寻求一种强有力的工具去协助人脑完成这些分析工作。
可以说,伴随着二十一世纪的到来,生物科学的重点和潜在的突破点已经由二十世纪的试验分析和数据积累转移到数据分析及其指导下的试验验证上来,生物科学也正在经历着一个从分析还原思维到系统整合思维的转变。
那么,我们所寻求的那种强有力的数据处理分析工具就成为未来生物科学的关键所在;似乎是上帝的恩赐,伴随着生物科学这一需求的加剧,以数据处理分析为本质的计算机科学技术和网络技术同样获得了突飞猛进的进展,自然就成为生物科学家的必然选择,计算机科学技术和网络技术日益渗透到生物科学的方方面面,一门崭新的、正是如火如荼的、拥有巨大发展潜力的生物信息学也就悄然而坚定地发展和成熟起来了!可以说,历史必然性的选择了生物信息学——生物科学与计算科学的融合体——作为下一代生物科学研究的重要工具。
生物信息学概论-1资料文档
国际著名的生物信息中心
NCBI EBI HGMP ExPASy CMBI ANGIS NIG BIC
National Center for Biotechnology Information (US) European Bioinformatics Institute (EU) Human Genome Mapping Project Resource Centre (UK ) Expert of Protein Analysis System (Switzerland ) Centre of Molecular and Biomolecule (The Netherlands) National Genome Information Service (Australia) National Institute of Genetics (Japan) National Bioinformatics Centre (Singapore)
2001年2月16日《Science》封面
1999.7 第5届国际公共领域人类基因组测序会议,加快测序速度 2000 Celera公司宣布完成果蝇基因组测序
国际公共领域宣布完成第一个植物基因组——拟南芥全基 因组的测序工作
2000.6.26 公共领域和Celera公司同时宣布完成人类基因组工作草图 2001.2.15 《Nature》刊文发表国际公共领域结果 2001.2.16 《Science》刊文发表Celera公司及其合作者结果
相当于2800多本每本1000页每页1000字的“天书”
DNA序列数据增长趋势
各种分子生物学数据库及其增长情况
生物数据爆炸性增长:
01-Introduction to Bioinformatics(生物信息学国外教程2010版)
Grading
60% moodle quizzes (your top 6 out of 7 quizzes). Quizzes are taken at the moodle website, and are due one week after the relevant lecture. Special extended due date for quizzes due immediately after Thanksgiving and the New Year. 40% final exam Monday, January 10 (in class). Closed book, cumulative, no computer, short answer / multiple choice. Past exams will be made available ahead of time.
Outline for the course (all on Mondays)
1. Accessing information about DNA and proteins Nov. 15
2. Pairwise alignment
3. BLAST 4. Multiple sequence alignment
Literature references
You are encouraged to read original source articles (posted on moodle). They will enhance your understanding of the material. Readings are optional but recommended.
Nov. 22
生物信息学bioinformatics(近完整版) Microsoft Word 文档 (2)1
一.什么是生物信息学?Genome informatics is a scientific discipline that encompasses all aspects of genome information acquisition, processing, storage, distribution, analysis, and interpretation. (它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。
)(The U.S. Human Genome Project: The First Five Y ears FY 1991-1995, by NIH and DOE)生物信息学是把基因组DNA序列信息分析作为源头,破译隐藏在DNA序列中的遗传语言,特别是非编码区的实质;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测。
生物信息学的研究目标是揭示“基因组信息结构的复杂性及遗传语言的根本规律”。
它是本世纪自然科学和技术科学领域中“基因组、“信息结构”和“复杂性”这三个重大科学问题的有机结合。
How to find the coding regions in rude DNA sequence?By signals or By contentsAmong the types of functional sites in genomic DNA that researchers have sought to recognize are splice sites, start and stop codons, branch points, promoters and terminators of transcription, polyadenylation sites, ribosomal binding sites, topoisomerase II binding sites, topoisomerase I cleavage sites, and various transcription factor binding sites. Local sites such as these are called signals and methods for detecting them may be called signal sensors.二.新基因和新SNPs的发现与鉴定大部分新基因是靠理论方法预测出来的。
生物信息学课件英文原版课件
• Introduction to Bioinformatics • Genomics • Proteomics • The Application of Bioinformatics in
Medicine • The Future Development of
The research field of bioinformatics
Summary: Research Field of Bioinformatics
Detailed description: The research fields of bioinformatics are very extensive, including genomics, proteomics, systems biology, evolutionary biology, epigenetics, etc. These fields of research all involve the acquisition, processing, analysis, and interpretation of biological data, as well as the role of these data in understanding biological processes and disease mechanisms.
pharmaceuticals. For example, in the field of medicine, genomics can be used to diagnose genetic diseases, predict drug responses, and personalize healthcare. In the field of agriculture, genomics can be used to improve crop and livestock varieties, increase yield and resistance.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Textbook
The course textbook has no required textbook. I wrote Bioinformatics and Functional Genomics (Wiley-Blackwell, 2nd edition 2009). The lectures in this course correspond closely to chapters.
The textbook website is: This has powerpoints, URLs, etc. organized by chapter. This is most useful to find “web documents” corresponding to each chapter.
I will make pdfs of the chapters available to everyone.
You can also purchase a copy at the bookstore, at (now $60), or at Wiley with a 20% discount through the book’s website .
Literature references
You are encouraged to read original source articles (posted on moodle). They will enhance your understanding of the material. Readings are optional but recommended.
Web sites
The course website is reached via moodle: /moodle (or Google “moodle bioinformatics”) --This site contains the powerpoints for each lecture, including black & white versions for printing --The weekly quizzes are here --You can ask questions via the forum --Audio files of each lecture will be posted here
01-Introduction to Bioinformatics(生物信息学国外
教程2010版) PPT课件
Who is taking this course?
• People with very diverse backgrounds in biology • Some people with backgrounds in computer
40% final exam Monday, January 10 (in class). Closed book, cumulative, no computer, short answer / multiple choice. Past exams will be made available ahead of time.
• To focus on the analysis of DNA, RNA and proteins • To introduce you to the analysis of genomes • To combine theory and practice to help you
solve research problems
--sequence alignment --gene expression --protein structure --phylogeny --homologs in various species
Computer labs
There are no computer labs, but the seven weekly quizzes function as a computer lab. To solve the questions, you will need to go to websites, use databases, and use software.
science and biostatistics • Most people (will) have a favorite gene, protein, or disease
What are the goals of the course?
• To provide an introduction to bioinformatics with a focus on the National Center for Biotechnology Information (NCBI), UCSC, and EBI
Themes throughout the course: the beta globin gene/protein family
We will use beta globin as a model gene/protein throughout the course. Globins including hemoglobin and myoglobin carry oxygen. We will study globins in a variety of contexts including
Grading
60% moodle quizzes (your top 6 out of 7 quizzes). Quizzes are taken at the moodle website, and are due one week after the ant lecture. Special extended due date for quizzes due immediately after Thanksgiving and the New Year.