2017_2018中考数学压轴题分类练习代数计算推理专题

合集下载

专题2 代数式问题-2018年中考数学压轴题精品练习(解析版)

专题2 代数式问题-2018年中考数学压轴题精品练习(解析版)

专题2 代数式问题-2018年中考数学压轴题精品练习(解析版)一、选择题1.(2017北京市,第7题,3分)如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A .﹣3B .﹣1C .1D .3 【答案】C .【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a 2+2a ﹣1=0变形即可解答本题.【解析】242a a a a ⎛⎫- ⎪-⎝⎭=2242a a a a --=2(2)(2)2a a a a a +--=a (a +2)=22a a +∵2210a a +-=,∴221a a +=,∴原式=1,故选C .点睛:本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 考点:分式的化简求值;条件求值.2.(2017四川省眉山市,第12题,3分)已知2211244m n n m +=--,则11m n-的值等于( ) A .1 B .0 C .﹣1D .14-【答案】C .点睛:考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0. 考点:分式的化简求值;条件求值.3.(2017四川省绵阳市,第12题,3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120 B .8461 C .840589 D .760421 【答案】C .点睛:此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题. 考点:规律型:图形的变化类;综合题.4.(2017临沂,第11题,3分)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n 的值是( )A .11B .12C .13D .14 【答案】B .【分析】根据小圆个数变化规律进而表示出第n 个图形中小圆的个数,进而得出答案. 【解析】第1个图形有1个小圆; 第 2个图形有1+2=3个小圆; 第 3个图形有1+2+3=6个小圆; 第 4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =(1)2n n +个小圆; ∵第n 个图形中“○”的个数是78,∴78=(1)2n n +,解得:n 1=12,n 2=﹣13(不合题意舍去),故选B .点睛:此题主要考查了图形变化类,正确得出小圆个数变化规律是解题关键.考点:规律型:图形的变化类;综合题.5.(2017德州,第12题,3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729【答案】C.点睛:本题考查的是三角形中位线定理、图形的变化,掌握图形的变化规律是解题的关键.考点:三角形中位线定理;规律型:图形的变化类.学科@网6.(2017山东省烟台市,第7题,3分)用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6D.3n+3【答案】D.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解析】∵第一个图需棋子3+3=6;第二个图需棋子3×2+3=9;第三个图需棋子3×3+3=12;…∴第n个图需棋子3n+3枚.故选D .点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.考点:规律型:图形的变化类.7.(2017湖北省十堰市,第9题,3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如123a a a ,表示123a a a =+,则1a 的最小值为( )A .32B .36C .38D .40 【答案】D .【分析】由a 1=a 7+3(a 8+a 9)+a 10知要使a 1取得最小值,则a 8+a 9应尽可能的小,取a 8=2、a 9=4,根据a 5=a 8+a 9=6,则a 7、a 10中不能有6,据此对于a 7、a 8,分别取8、10、12检验可得,从而得出答案.点睛:本题主要考查数字的变化类,根据题目要求得出a 1取得最小值的切入点是解题的关键. 考点:规律型:数字的变化类;最值问题.8.(2017重庆,第10题,4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A.73B.81C.91D.109【答案】C.【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.点睛:此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.考点:规律型:图形的变化类;综合题.9.(2017贵州省铜仁市,第10题,4分)观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064B.8065C.8066D.8067【答案】D.【分析】由①②③三个等式可得,减数是从1开始连续奇数的平方,被减数是从1开始连续自然数的平方的4倍,由此规律得出答案即可.【解析】4×12﹣12①4×22﹣32②4×32﹣52③…4n2﹣(2n﹣1)2=4n﹣1,所以第2017个式子的值是:4×2017﹣1=8067.故选D .点睛:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题. 考点:规律型:数字的变化类;有理数的混合运算.10.(2017贵州省黔东南州,第10题,4分)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a +b )20的展开式中第三项的系数为( ) A .2017 B .2016 C .191 D .190 【答案】D .点睛:此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 考点:完全平方公式;规律型;综合题.11.(2016四川省雅安市)已知231a a +=,则代数式2261a a +-的值为( ) A .0 B .1 C .2 D .3 【答案】B .【分析】直接利用已知将原式变形,进而代入代数式求出答案.【解析】∵231a a +=,∴2261a a +-=22(3)1a a +-=2×1﹣1=1.故选B .点睛:此题主要考查了代数式求值,正确将原式变形是解题关键. 考点:代数式求值;条件求值;整体代入.12.(2016威海)若2350x y --=,则2626y x --的值为( )A .4B .﹣4C .16D .﹣16 【答案】D .点睛:本题考查了代数式求值,整体思想的利用是解题的关键. 考点:代数式求值;整体思想.13.(2016日照)一个整数的所有正约数之和可以按如下方法求得,如: 6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=223⨯,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28; 36=2223⨯,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91. 参照上述方法,那么200的所有正约数之和为( )A .420B .434C .450D .465 【答案】D .【分析】在类比推理中,200的所有正约数之和可按如下方法得到:根据200=3225⨯,可得200的所有正约数之和为232(1222)(155)+++++,即可得出答案.【解析】200的所有正约数之和可按如下方法得到:因为200=3225⨯,所以200的所有正约数之和为(232(1222)(155)+++++=465.故选D .点睛:本题属于类比推理的问题,类比推理的一般方法是:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的猜想.解决问题的关键是认真观察、仔细思考、善用联想,探寻变化规律.考点:规律型:数字的变化类.学科@网14.(2016湖南省邵阳市)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .21y n =+B .2ny n =+ C .12n y n +=+ D .21n y n =++【答案】B .点睛:此题考查了数字规律性问题.注意根据题意找到规律2ny n =+是关键. 考点:规律型:数字的变化类.15.(2016重庆,第9题,4分)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A .43B .45C .51D .53 【答案】C .【分析】设图形n 中星星的颗数是a n (n 为自然是),列出部分图形中星星的个数,根据数据的变化找出变化规律“a n =2+1(1)(6)2n n -+”,结合该规律即可得出结论. 【解析】设图形n 中星星的颗数是a n (n 为自然是),观察,发现规律:a 1=2,a 2=6=a 1+3+1,a 3=11=a 2+4+1,a 4=17=a 3+5+1,…,∴a n =2+1(1)(6)2n n -+.令n =8,则a 8=2+1(81)(86)2-+=51.故选C . 点睛:本题考查了规律型中的图形的变化类,解题的关键是找出变化规律“a n =2+1(1)(6)2n n -+”.本题属于中档题,难度不大,解决该题型题目时,根据给定条件列出部分数据,根据数据的变化找出变化规律是关键.考点:规律型:图形的变化类.16.(2016黑龙江省牡丹江市)如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( )A .71B .78C .85D .89 【答案】D .【分析】观察图形可知,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n 个图形共有小正方形的个数为(n +1)2+n ,进而得出答案.点睛:本题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 考点:规律型:图形的变化类.17.(2015年浙江绍兴4分)下面是一位同学做的四道题:①ab b a 532=+;②6236)3(a a =;③326aa a =÷;④532a a a =⋅,其中做对的一道题的序号是( ) A .① B .② C .③ D .④ 【答案】D.【考点】合并同类项;幂的乘方和积的乘方;同底幂乘法和除法 .18.(2015年浙江绍兴4分)化简xx x -+-1112的结果是( ) A .1+x B .11+x C .1-x D .1-x x 【答案】A.【考点】分式的化简.【分析】通分后,约分化简:()()22111111111x x x x x x x x x +--+===+----.故选A.二、填空题19.(2017江苏省南通市,第17题,3分)已知x =m 时,多项式222x x n ++的值为﹣1,则x =﹣m 时,该多项式的值为 . 【答案】3.【分析】根据非负数的性质,得出m =﹣1,n =0,由此即可解决问题.【解析】∵多项式222x x n ++=(x +1)2+n 2﹣1,∵(x +1)2≥0,n 2≥0,∴(x +1)2+n 2﹣1的最小值为﹣1,此时m =﹣1,n =0,∴x =﹣m 时,多项式222x x n ++的值为m 2﹣2m +n 2=3.故答案为:3. 点睛:本题考查代数式求值,非负数的性质等知识、学会整体代入的思想解决问题是解题的关键. 考点:代数式求值;条件求值.20.(2017丽水,第13题,4分)已知21a a +=,则代数式23a a --的值为 . 【答案】2.【分析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.【解析】∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.点睛:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 考点:代数式求值;条件求值;整体思想.21.(2017四川省内江市,第22题,6分)若实数x 满足2210x x --=,则322742017x x x -+-= .【答案】﹣2020.点睛:本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.考点:因式分解的应用;降次法;整体思想.22.(2017四川省内江市,第24题,6分)设α、β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+= . 【答案】47.【分析】根据α、β是方程(1)(4)5x x +-=-的两实数根,得到α+β=3,αβ=1,根据完全平方公式得到α4+β4=47,于是得到结论.【解析】方程(1)(4)5x x +-=-可化为2310x x -+= ,∵α、β是方程(1)(4)5x x +-=-的两实数根,∴α+β=3,αβ=1,∴222=(+)2αβαβαβ+-=7,4422222=()2αβαβαβ++-=47,∴33βααβ+ =44αβαβ+=47,故答案为:47.点睛:本题考查了根与系数的关系,难度较大,关键是根据已知条件对33βααβ+进行变形. 考点:根与系数的关系;条件求值.23.(2017江苏省镇江市,第12题,2分)已知实数m 满足满足0132=+-m m ,则代数式21922++m m 的值等于 . 【答案】9.点睛:此题主要考查了代数式的化简求值,分式的通分,约分,解本题的关键是得出231m m =-. 考点:一元二次方程的解;条件求值.24.(2017天门,第8题,3分)若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为的值为( )A .﹣13B .12C .14D .15 【答案】B .【分析】根据一元二次方程解的定义得到22510αα--=,即2251αα=+,则2235ααββ++可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=52,αβ=﹣12,然后利用整体代入的方法计算.【解析】∵α为22510x x --=的实数根,∴22510αα--=,即2251αα=+,∴2235ααββ++=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程22510x x --=的两个实数根,∴α+β=52,αβ=﹣12,∴2α2+3αβ+5β=5×52+3×(﹣12)+1=12.故选B . 点睛:本题考查了根与系数的关系:若1x ,2x 是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a +=-,12cx x a=.也考查了一元二次方程解的定义.考点:根与系数的关系.25.(2017山东省淄博市,第14题,4分)已知α,β是方程2340x x --=的两个实数根,则23a αβα+-的值为 . 【答案】0.点睛:本题考查了根与系数的关系:若1x ,2x 是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a +=- ,12cx x a=.考点:根与系数的关系.26.(2017河北,第19题,4分)对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{min = ;若{}22min (1),1x x -=,则x = .【答案】2或-1.【分析】首先理解题意,进而可得min {{}22min (1),1x x -=时再分情况讨论,当x >0时和x ≤0时,进而可得答案.【解析】因为min { 当()221x x ->时,21x =,解得11x =(舍),21x =-; 当()221x x -<时,()211x -=,解得32x =,40x =(舍).点睛:此题主要考查了实数的比较大小,以及二次函数的性质,关键是正确理解题意. 考点:二次函数的性质;新定义;实数大小比较;分类讨论;解一元二次方程-直接开平方法.27.(2017浙江省杭州市,第16题,4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.(用含t 的代数式表示.) 【答案】302t-. 【分析】设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据三天的销售额为270元列出方程,求出x 即可.【解析】设第三天销售香蕉x 千克,则第一天销售香蕉(50﹣t ﹣x )千克,根据题意,得:9(50﹣t ﹣x )+6t +3x =270,则x =45027036t -- =302t -,故答案为:302t-.点睛:本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.考点:列代数式.学科@网28.(2017贵州省毕节市,第20题,5分)观察下列运算过程: 计算:1022221++++ . 解:设1022221++++= S ,① ①2⨯得113222222+++= S ,②②—①得1211-=S .所以,12222111102-=++++ . 运用上面的计算方法计算:=++++201723331 .【答案】2018312-.点睛:本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键. 考点:规律型:数字的变化类;综合题.29.(2017贵州省遵义市,第15题,4分)按一定规律排列的一列数依次为:23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是 . 【答案】299201. 【分析】根据按一定规律排列的一列数依次为:23,55,87,119,1411,1713,…,可得第n 个数为3121n n -+,据此可得第100个数.【解析】按一定规律排列的一列数依次为:23,55,87,119,1411,1713,…,按此规律,第n 个数为3121n n -+,∴当n =100时,3121n n -+ =299201,即这列数中的第100个数是299201,故答案为:299201.点睛:本题考查了数字变化类问题,解决问题的关键是找出变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法.考点:规律型:数字的变化类;综合题.30.(2017四川省巴中市,第19题,3分)===,…请你将发现的规律用含自然数n(n≥1)的代数式表达出来.=+n≥1).(n点睛:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并=+n≥1).(n考点:规律型:数字的变化类;规律型.31.(2017湖北省荆州市,第14题,3分)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个点.【答案】135.点睛:本题考查了图形的变化类问题,解题的关键是能够找到图形的变化规律,然后求解. 考点:规律型:图形的变化类;综合题.32.(2017湖北省黄石市,第16题,3分)观察下列格式:11111222=-=⨯ 111112112232233+=-+-=⨯⨯ 1111111131122334223344++=-+-+-=⨯⨯⨯ ……请按上述规律,写出第n 个式子的计算结果(n 为正整数) .(写出最简计算结果即可) 【答案】1nn +. 【分析】根据上述各式的规律即可求出第n 个式子的计算结果.点睛:本题考查数字规律问题,解题的关键是根据已给出的式子找出规律,本题属于基础题型. 考点:规律型:数字的变化类.33.(2017江苏省淮安市,第18题,3分)将从1开始的连续自然数按一下规律排列:…则2017在第 行. 【答案】45.【分析】通过观察可得第n 行最大一个数为n 2,由此估算2017所在的行数,进一步推算得出答案即可. 【解析】∵442=1936,452=2025,∴2017在第45行.故答案为:45.点睛:本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.考点:规律型:数字的变化类.34.(2017四川省乐山市,第15题,3分)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):⋅⋅⋅++⋅⋅⋅+++=n 32212121211.图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将利△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n ﹣2C n ﹣1C n 、….假设AC =2,这些三角形的面积和可以得到一个等式是 .【答案】23133333()()...()()...]244444n n -=+++++++.【分析】先根据AC =2,∠B =30°,CC 1⊥AB ,求得S △ACC 1进而得到×34,=2×23()4, =2×33()4,根据规律可知=2×13()4n -,再根据S △ABC =12AC×BC =12×2×∴23133333()()...()()...]44444n n -=+++++++.故答案为:23133333()()...()()...]244444n n -=+++++++.点睛:本题主要考查了图形的变化类问题,解决问题的关键是找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.考点:规律型:图形的变化类;综合题.35.(2017四川省凉山州,第26题,5分)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是 .【答案】5050.点睛:本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“a n =1+2+…+n =(1)2n n +”. 考点:规律型:数字的变化类;综合题.36.(2017山东省威海市,第16题,3分)某广场用同一种如图所示的地砖拼图案,第一次拼成形如图1所示的图案,第二拼成形如图2所示的图案,第三次拼成形如图3所示的图案,第四次拼成形如图4所示的图案…按照这样的规律进行下去,第n 次拼成的图案共有地砖 块.【答案】222n n +.点睛:本题考查规律题目、解题的关键是学会从特殊到一般的探究方法,属于中考填空题中的压轴题. 考点:规律型:图形的变化类;综合题. 37.(2017滨州,第18题,4分)观察下列各式:2111313=-⨯,2112424=-⨯2113535=-⨯ ……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________.【答案】2352(1)(2)n nn n +++ .【分析】根据所列的等式找到规律2(2)n n +=112n n -+,由此计算213⨯+224⨯+235⨯+…+2(2)n n +的值.【解析】∵2111313=-⨯,2112424=-⨯,2113535=-⨯[来源:学*,… ∴2(2)n n +=112n n -+,∴213⨯+224⨯+235⨯+…+2(2)n n + =1111111111123134512n n n n +++++-------++=11111212n n +--++=2352(1)(2)n n n n +++. 故答案为:2352(1)(2)n nn n +++.点睛:此题主要考查了数字变化类,此题在解答时,看出的是左右数据的特点是解题关键. 考点:分式的加减法;规律型;综合题.38.(2016黑龙江省绥化市)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a 1,第二个三角数记为a 2…,第n 个三角数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…由此推算a 399+a 400=. 【答案】1.6×105或160000.点睛:本题考查的是规律发现,根据计算a 1+a 2,a 2+a 3,a 3+a 4的值可以发现规律为21(1)n n a a n ++=+,发现规律是解决本题的关键.考点:规律型:数字的变化类;规律型.39.(2016广西贵港市,第18题,3分)已知a 1=1tt+,a 2=111a -,a 3=211a -,…,a n +1=11n a -(n 为正整数,且t ≠0,1),则a 2016= (用含有t 的代数式表示). 【答案】1t-.【分析】把a 1代入确定出a 2,把a 2代入确定出a 3,依此类推,得到一般性规律,即可确定出a 2016的值.【解析】根据题意得:a 1=1t t +,a 2=111t t -+=1+t ,a 3=111t --=1t -,4111a t=+=1t t +…,2016÷3=672,∴a 2016的值为1t -,故答案为:1t-.点睛:此题考查了分式的混合运算,弄清题中的规律是解本题的关键. 考点:规律型:数字的变化类.40.(2016四川省凉山州)若实数x满足210x --=,则221x x += . 【答案】10.点睛:本题考查代数式求值,解题的关键是明确题意,找出所求问题需要的条件. 考点:代数式求值;条件求值.学科@网41.(2016四川省广安市)我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()na b +(n =1,2,3,4…)的展开式的系数规律(按a 的次数由大到小的顺序):请依据上述规律,写出20162()x x-展开式中含2014x项的系数是 .【答案】﹣4032. 【分析】首先确定2014x是展开式中第几项,根据杨辉三角即可解决问题.【解析】20162()x x-展开式中含2014x项的系数,根据杨辉三角,就是展开式中第二项的系数,即﹣2016×2=﹣4032.故答案为:﹣4032.点睛:本题考查整式的混合运算、杨辉三角等知识,解题的关键是灵活运用杨辉三角解决问题,属于中考常考题型.考点:整式的混合运算;阅读型;规律型.42.(2016四川省绵阳市)如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.现用i A 表示第三行开始,从左往右,从上往下,依次出现的第i 个数.例如:1A =1,2A =2,3A =1,4A =1,5A =3,6A =3,7A =1,则2016A = .【答案】1953.【分析】根据杨辉三角中的已知数据,可以发现其中规律,每行的数的个数正好是这一行的行数,由题意可以判断A 2016在哪一行第几个数,从而可以解答本题.【解析】由题意可得,第n 行有n 个数,故除去前两行的总的个数为:(1)32n n +-,当n =63时,(1)32n n +-=2013,∵2013<2016,∴A 2016是第64行第三个数,∴A 2016=636221⨯⨯=1953,故答案为:1953. 点睛:此题考查数字排列的规律,解题的关键是明确题意,发现其中的规律,计算出所求问题的答案. 考点:规律型:数字的变化类;规律型. 43.(2016广西南宁市)观察下列等式:在上述数字宝塔中,从上往下数,2016在第 层. 【答案】44.点睛:本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.44.(2015·辽宁营口)如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1、A 2、A 3、…、A n -1为OA 的n 等分点,B 1、B 2、B 3、…、B n -1为CB 的n 等分点,连接A 1B 1、A 2B 2、A 3B 3、…、A n -1B n -1,分别交21y x n=(0x ≥)于点C 1、C 2、C 3、…、C n -1,当252525258B C C A =时,则n = .【答案】75.【考点】二次函数的性质;规律题45.(2015·黑龙江绥化)填在下面各正方形中的四个数之间都有一定的规律 ,按此规律得出a +b +c =__________.【答案】110【考点】规律题;代数式的应用46.(2015·湖南常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。

7.21代数与几何综合压轴题(第3部分)-2018年中考数学试题分类汇编(word解析版)

7.21代数与几何综合压轴题(第3部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.21 代数与几何综合压轴题【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年内蒙古鄂尔多斯市-第10题-3分)如图,直线y=﹣x+4与x轴、y轴分别交于D,C两点,P是直线CD上的一个动点,⊙A的圆心A的坐标为(﹣4,﹣4),半径为直线PO与⊙A 相交于M,N两点,Q是MN的中点.当OP=t,OQ=S,则S与t的函数图象大致为()A.B.C.D.【知识考点】一次函数图象上点的坐标特征;垂径定理.【思路分析】作辅助线,构建相似三角形,先证明AQ⊥MN,AO⊥CD,证明∠AOQ∽△POG,得,代入可得S=,是反比例函数,可得选项C、D不正确;根据特殊值t=2时,此时,直线OP过圆心A,此时Q与A重合,此种情况成立,可得结论.【解答过程】解:连接AO,并延长交直线CD于G,连接AQ,∵Q是MN的中点.∴AQ⊥MN,∵A的坐标为(﹣4,﹣4),∴直线AO:y=x,AO=4,∵直线CD:y=﹣x+4,∴AO⊥CD,∴∠AQO=∠OGP=90°,∵∠AOQ=∠POG,∴∠AOQ∽△POG,∴,当x=0时,y=4,当y=0时,x=4,∴OC=OD=4,∴OG=CD=2,∵OP=t,OQ=S,∴,S=,故选项C、D不正确;当OP=2时,即S=OQ=4,t=2,直线OP过圆心A,此时Q与A重合,此种情况成立,故选项B不正确;故选:A.【总结归纳】本题考查了圆和函数的综合题:熟练掌握直线与圆的位置关系、一次函数和反比例函数的性质等是解决问题的关键;运用相似三角形的判定与性质和勾股定理是解决几何计算常用的方法;对于综合题一般采用各个击破的方式解决.2.(2018年广西桂林市-第12题-3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(12,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.114b-≤≤B.514b-≤≤C.9142b-≤≤D.914b-≤≤【知识考点】坐标与图形性质;相似三角形的判定与性质.【思路分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【解答过程】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【总结归纳】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.3.(2018年江苏省苏州市-第10题-3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数kyx=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.C.6 D.12【知识考点】反比例函数图象上点的坐标特征;矩形的性质;解直角三角形.【思路分析】由tan∠AOD==可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.【解答过程】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【总结归纳】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.4.(2018年辽宁省葫芦岛市-第10题-3分)如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P 从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】在Rt△ABC中,利用勾股定理可求出AC的长度,分0≤x≤6、6≤x≤8及8≤x≤14三种情况找出y关于x的函数关系式,对照四个选项即可得出结论.【解答过程】解:在Rt△ABC中,∠BAC=90°,AB=6,BC=10,∴AC==8.当0≤x≤6时,AP=6﹣x,AQ=x,∴y=PQ2=AP2+AQ2=2x2﹣12x+36;当6≤x≤8时,AP=x﹣6,AQ=x,∴y=PQ2=(AQ﹣AP)2=36;当8≤x≤14时,CP=14﹣x,CQ=x﹣8,∴y=PQ2=CP2+CQ2=2x2﹣44x+260.故选:B.【总结归纳】本题考查了动点问题的函数图象以及勾股定理,分0≤x≤6、6≤x≤8及8≤x≤14三种情况找出y关于x的函数关系式是解题的关键.二、填空题1.(2018年江苏省淮安市-第16题-3分)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是.【知识考点】一次函数图象上点的坐标特征;正方形的性质.【思路分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【解答过程】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n C n D n的面积=()n﹣1,故答案为:()n﹣1.【总结归纳】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.2.(2018年辽宁省锦州市-第16题-3分)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为.【知识考点】规律型:图形的变化类;规律型:点的坐标;线段垂直平分线的性质.【思路分析】从特殊到一般探究规律后即可解决问题;【解答过程】解:由题意:正方形ABCA1的边长为,正方形A1B1C1A2的边长为+1,正方形A2B2C2A3…的边长为(+1)(1+),正方形A3B3C3A4的边长为(+1)(1+)2,由此规律可知:正方形A2017B2017C2017A2018的边长为(+1)(1+)2016.∴正方形A2017B2017C2017A2018的周长为4•(+1)(1+)2016=4•()2016•(1+)2017.故答案为4•()2016•(1+)2017.【总结归纳】本题考查规律型问题、解直角三角形、点的坐标等知识,解题的关键是学会探究规律的方法,属于中考常考题型.3.(2018年山东省潍坊市-第17题-3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则20192018A B的长是.【知识考点】弧长的计算;规律型:点的坐标;一次函数图象上点的坐标特征.【思路分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答过程】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【总结归纳】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.4.(2018年山东省济宁市-第15题-3分)如图,点A是反比例函数4yx=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是.【知识考点】一次函数图象上点的坐标特征;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】先用三角形BOC的面积得出k=①,再判断出△BOC∽△BDA,得出a2k+ab=4②,联立①②求出ab,即可得出结论.【解答过程】解:设A(a,)(a>0),∴AD=,OD=a,∵直线y=kx+b过点A并且与两坐标轴分别交于点B,C,∴C(0,b),B(﹣,0),∵△BOC的面积是4,∴S△BOC=OB×OC=××b=4,∴b2=8k,∴k=①∴AD⊥x轴,∴OC∥AD,∴△BOC∽△BDA,∴,∴,∴a2k+ab=4②,联立①②得,ab=﹣4﹣4(舍)或ab=4﹣4,∴S△DOC=OD•OC=ab=2﹣2故答案为2﹣2.【总结归纳】此题主要考查了坐标轴上点的特点,反比例函数上点的特点,相似三角形的判定和性质,得出a2k+ab=4是解本题的关键.5.(2018年四川省南充市-第16题-3分)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(32-,y1),(12-,y2),(12,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当1na=-时,△ABP为等腰直角三角形.其中正确结论是(填写序号).【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】利用二次函数的性质一一判断即可;【解答过程】解:∵﹣<,a>0,∴a>﹣b,∵x=﹣1时,y>0,∴a﹣b+c>0,∴2a+c>a﹣b+c>0,故①错误,若(﹣,y1),(﹣,y2),(,y3)在抛物线上,由图象法可知,y1>y2>y3;故②正确,∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,∴ax2+bx+c﹣t=0有实数解要使得ax2+bx+k=0有实数解,则k=c﹣t≤c﹣n;故③错误,设抛物线的对称轴交x轴于H.∵=﹣,∴b2﹣4ac=4,∴x==,∴|x1﹣x2|=,∴AB=2PH,∵BH=AH,∴PH=BH=AH,∴△PAB是直角三角形,∵PA=PB,∴△PAB是等腰直角三角形.故答案为②④.【总结归纳】本题考查二次函数的应用、二次函数与坐标轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.6.(2018年黑龙江省齐齐哈尔市-第17题-3分)在平面直角坐标系中,点A1)在射线OM上,点B3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依次规律,得到Rt△B2017A2018B2018,则点B2018的纵坐标为.【知识考点】规律型:点的坐标.【思路分析】根据题意,分别找到AB、A1B1、A2B2……及BA1、B1A2、B2A3……线段长度递增规律即可【解答过程】解:由已知可知点A、A1、A2、A3……A2018各点在正比例函数y=的图象上点B、B1、B2、B3……B2018各点在正比例函数y=的图象上两个函数相减得到横坐标不变的情况下两个函数图象上点的纵坐标的差为:①由已知,Rt△A1B1A2,…,到Rt△B2017A2018B2018都有一个锐角为30°∴当A(B)点横坐标为时,由①AB=2,则BA1=2,则点A1横坐标为,B1点纵坐标为9=32当A1(B1)点横坐标为3时,由①A1B1=6,则B1A2=6,则点A2横坐标为,B2点纵坐标为27=33当A2(B2)点横坐标为9时,由①A2B2=18,则B2A3=18,则点A3横坐标为,B3点纵坐标为81=34依稀类推点B2018的纵坐标为32019故答案为:32019【总结归纳】本题是平面直角坐标系规律探究题,考查了含有特殊角的直角三角形各边数量关系,解答时注意数形结合.7.(2018年黑龙江省大庆市-第18题-3分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.【知识考点】一次函数图象上点的坐标特征;一次函数图象与几何变换;直线与圆的位置关系.【思路分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答过程】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×,∵m>0,解得OD=,由直线与圆的位置关系可知<6,解得m<.故答案为:m<.【总结归纳】此题主要考查直线与圆的关系,关键是根据待定系数法、勾股定理、直线与圆的位置关系等知识解答.三、解答题1.(2018年内蒙古鄂尔多斯市-第23题-11分)如图①,直线132y x=-与x轴、y轴分别交于点B,C,抛物线过B,C两点,且与x轴的另一个交点为点A,连接AC.(1)求抛物线的解析式;(2)在抛物线上是否存在点D(与点A不重合),使得S△DBC=S△ABC,若存在,求出点D的坐标;若不存在,请说明理由;(3)有宽度为2,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.【知识考点】二次函数综合题.【思路分析】(1)利用待定系数法即可解决问题.(2)如图①中,作AD∥BC交抛物线于D,则S△ABC=S△BCD.求出直线AD使得解析式,构建方程组确定两点坐标即可.(3)设M(m,m﹣3),则N(m+2,m﹣2),可得P(m,m2﹣m﹣3),Q[m+2,(m+2)2﹣(m+2)﹣3],推出PM=m﹣3﹣(m2﹣m﹣3),NQ=m﹣2﹣[(m+2)2﹣(m+2)﹣3],当PM=QN时,点P,Q,M,N为顶点的四边形是平行四边形,由此构建方程即可解决问题.【解答过程】解:(1)由题意C(0,﹣3),B(6,0),把C(0,﹣3),B(6,0)代入y=+bx+c得到,解得,∴抛物线的解析式为y=x2﹣x﹣3.(2)如图①中,作AD∥BC交抛物线于D,则S△ABC=S△BCD.∵直线BC的解析式为y=x﹣3,A(﹣2,0),∴直线AD的解析式为y=x+1,由,解得或,∴D(8,5).∵直线AD交y轴于E(0,1),点E关于点C的对称点E′(0,﹣7),∴过点E′平行BC的直线的解析式为y=x﹣7,由,方程组无解,∴在直线BC的下方不存在满足条件的点D.∴满足条件的点D(8,5).(3)设M(m,m﹣3),则N(m+2,m﹣2),∴P(m,m2﹣m﹣3),Q[m+2,(m+2)2﹣(m+2)﹣3],∴PM=m﹣3﹣(m2﹣m﹣3),NQ=m﹣2﹣[(m+2)2﹣(m+2)﹣3],当PM=QN时,点P,Q,M,N为顶点的四边形是平行四边形,∴|m﹣3﹣(m2﹣m﹣3)|=|m﹣2﹣[(m+2)2﹣(m+2)﹣3]|,解得:m=2或2±2,∴满足条件的点M的坐标为(2,﹣2)或(2+2,﹣2)或(2﹣2,﹣﹣2).【总结归纳】本题属于二次函数综合题,考查了待定系数法,一次函数的应用,三角形的面积,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考压轴题.2.(2018年广西桂林市-第26题-12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)根据待定系数法,可得函数解析式;(2)根据线段垂直平分线的性质,可得M在线段的垂直平分线上,根据勾股定理,可得答案;(3)根据相似三角形的判定与性质,可得F点坐标,根据解方程组,可得D点坐标,根据正切值,可得tan∠ABE=2,①根据待定系数法,可得BM,根据解方程组,可得E点坐标;②根据正切值,可得关于m的方程,根据解方程,可得答案.【解答过程】解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).【总结归纳】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段垂直平分线的性质得出M在线段的垂直平分线上;解(3)①的关键是利用正切值得出M点的坐标,又利用了解方程组;解②的关键是利用正切值得出关于m的方程.3.(2018年贵州省黔东南州/黔西南州/黔南州-第26题-16分)如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.(1)点P到达终点O的运动时间是s,此时点Q的运动距离是cm;(2)当运动时间为2s时,P、Q两点的距离为cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线kyx过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.【知识考点】反比例函数综合题.【思路分析】(1)先求出OA,进而求出时间,即可得出结论;(2)构造出直角三角形,再求出PE,QE,利用勾股定理即可得出结论;(3)同(2)的方法利用勾股定理建立方程求解即可得出结论;(4)先求出直线AC解析式,再求出点P,Q坐标,进而求出直线PQ解析式,联立两解析式即可得出结论.【解答过程】解:(1)∵四边形AOCB是矩形,∴OA=BC=16,∵动点P从点A出发,以3cm/s的速度向点O运动,∴t=,此时,点Q的运动距离是×2=cm,故答案为,;(2)如图1,由运动知,AP=3×2=6cm,CQ=2×2=4cm,过点P作PE⊥BC于E,过点Q作QF⊥OA于F,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,PQ=6,故答案为6;(3)设运动时间为t秒时,由运动知,AP=3t,CQ=2t,同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10cm,∴62+(16﹣5t)2=100,∴t=或t=;(4)k的值是不会变化,理由:∵四边形AOCB是矩形,∴OC=AB=6,OA=16,∴C(6,0),A(0,16),∴直线AC的解析式为y=﹣x+16①,设运动时间为t,∴AP=3t,CQ=2t,∴OP=16﹣3t,∴P(0,16﹣3t),Q(6,2t),∴PQ解析式为y=x+16﹣3t②,联立①②解得,x=,y=,∴D(,),∴k=×=是定值.【总结归纳】此题是反比例函数综合题,主要考查了勾股定理,待定系数法,构造出直角三角形是解本题的关键.4.(2018年贵州省铜仁市-第25题-14分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P 做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.【解答过程】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【总结归纳】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.5.(2018年贵州省遵义市-第27题-14分)在平面直角坐标系中,二次函数25 3y ax x c=++的图象经过点C(0,2)和点D(4,﹣2).点E是直线123y x=-+与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【知识考点】二次函数综合题.【思路分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答过程】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).【总结归纳】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.6.(2018年湖北省襄阳市-第25题-13分)直线332y x =-+交x 轴于点A ,交y 轴于点B ,顶点为D 的抛物线23234y x mx m =-+-经过点A ,交x 轴于另一点C ,连接BD ,AD ,CD ,如图所示. (1)直接写出抛物线的解析式和点A ,C ,D 的坐标;(2)动点P 在BD 上以每秒2个单位长的速度由点B 向点D 运动,同时动点Q 在CA 上以每秒3个单位长的速度由点C 向点A 运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t 秒.PQ 交线段AD 于点E . ①当∠DPE=∠CAD 时,求t 的值;②过点E 作EM ⊥BD ,垂足为点M ,过点P 作PN ⊥BD 交线段AB 或AD 于点N ,当PN=EM 时,求t 的值.【知识考点】二次函数综合题.【思路分析】(1)先由直线解析式求得点A 、B 坐标,将点A 坐标代入抛物线解析式求得m 的值,从而得出答案;(2)①由(1)知BD=AC 、BD ∥OC ,根据AB=AD=证四边形ABPQ 是平行四边形得AQ=BP ,即2t=4﹣3t ,解之即可;②分点N 在AB 上和点N 在AD 上两种情况分别求解. 【解答过程】解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=2,∴点A (2,0)、点B (0,3),将点A (2,0)代入抛物线解析式,得:﹣×4+4m ﹣3m=0,解得:m=3,所以抛物线解析式为y=﹣x 2+6x ﹣9,∵y=﹣x 2+6x ﹣9=﹣(x ﹣4)2+3,∴点D (4,3),对称轴为x=4, ∴点C 坐标为(6,0); (2)如图1,由(1)知BD=AC=4,根据0≤3t≤4,得:0≤t≤,①∵B(0,3)、D(4,3),∴BD∥OC,∴∠CAD=∠ADB,∵∠DPE=∠CAD,∴∠DPE=∠ADB,∵AB==、AD==,∴AB=AD,∴∠ABD=∠ADB,∴∠DPE=∠ABD,∴PQ∥AB,∴四边形ABPQ是平行四边形,∴AQ=BP,即2t=4﹣3t,解得:t=,即当∠DPE=∠CAD时,t=秒;②(Ⅰ)当点N在AB上时,0≤2t≤2,即0≤t≤1,连接NE,延长PN交x轴于点F,延长ME交x轴于点H,∵PN⊥BD、EM⊥BD,BD∥OC,PN=EM,∴OF=BP=2t,PF=OB=3,NE=FH、NF=EH,NE∥FQ,∴FQ=OC﹣OF﹣QC=6﹣5t,∵点N在直线y=﹣x+3上,∴点N的坐标为(2t,﹣3t+3),∴PN=PF﹣NF=3﹣(﹣3t+3)=3t,∵NE∥FQ,∴△PNE∽△PFQ,∴=,∴FH=NE=•FQ=×(6﹣5t)=6t﹣5t2,∵A(2,0)、D(4,3),∴直线AD 解析式为y=x ﹣3,∵点E 在直线y=x ﹣3上,∴点E 的坐标为(4﹣2t ,﹣3t+3), ∵OH=OF+FH , ∴4﹣2t=2t+6t ﹣5t 2, 解得:t=1+>1(舍)或t=1﹣;(Ⅱ)当点N 在AD 上时,2<2t≤4,即1<t≤,∵PN=EM ,∴点E 、N 重合,此时PQ ⊥BD , ∴BP=OQ , ∴2t=6﹣3t , 解得:t=,综上所述,当PN=EM 时,t=(1﹣)秒或t=秒.【总结归纳】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数的解析式、平行四边形的判定与性质、相似三角形的判定与性质等知识点.7.(2018年湖北省咸宁市-第24题-12分)如图,直线334y x =-+与x 轴交于点A ,与y 轴交于点B .抛物线238y x bx c =-++经过A 、B 两点,与x 轴的另一个交点为C . (1)求抛物线的解析式;(2)点P 是第一象限抛物线上的点,连接OP 交直线AB 于点Q .设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的数关系式,并求出PQ 与OQ 的比值的最大值;(3)点D 是抛物线对称轴上的一动点,连接OD 、CD ,设△ODC 外接圆的圆心为M ,当sin ∠ODC 的值最大时,求点M 的坐标.【知识考点】二次函数综合题.【思路分析】(1)根据直线解析式求得点A 、B 的坐标,将两点的坐标代入抛物线解析式求解可得; (2)过点P 作y 轴的平行线交AB 于点E ,据此知△PEQ ∽△OBQ ,根据对应边成比例得y=PE ,由P(m,﹣m2+m+3)、E(m,﹣m+3)得PE=﹣m2+m,结合y=PE可得函数解析式,利用二次函数性质得其最大值;(3)设CO的垂直平分线与CO交于点N,知点M在CO的垂直平分线上,连接OM、CM、DM,根据∠ODC=∠CMO=∠OMN、MC=MO=MD知sin∠ODC=sin∠OMN==,当MD取最小值时,sin∠ODC最大,据此进一步求解可得.【解答过程】解:(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线解析式为y=﹣x2+x+3;(2)如图1,过点P作y轴的平行线交AB于点E,则△PEQ∽△OBQ,∴=,∵=y、OB=3,∴y=PE,∵P(m,﹣m2+m+3)、E(m,﹣m+3),则PE=(﹣m2+m+3)﹣(﹣m+3)=﹣m2+m,∴y=(﹣m2+m)=﹣m2+m=﹣(m﹣2)2+,∵0<m<3,∴当m=2时,y最大值=,∴PQ与OQ的比值的最大值为;(3)由抛物线y=﹣x2+x+3易求C(﹣2,0),对称轴为直线x=1,∵△ODC的外心为点M,∴点M在CO的垂直平分线上,设CO的垂直平分线与CO交于点N,连接OM、CM、DM,则∠ODC=∠CMO=∠OMN、MC=MO=MD,∴sin∠ODC=sin∠OMN==,又MO=MD,∴当MD取最小值时,sin∠ODC最大,此时⊙M与直线x=1相切,MD=2,MN==,∴点M(﹣1,﹣),根据对称性,另一点(﹣1,)也符合题意;综上所述,点M的坐标为(﹣1,)或(﹣1,﹣).【总结归纳】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及相似三角形的判定与性质、三角形的外心、圆的有关性质等知识点.8.(2018年湖南省娄底市-第26题-10分)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.【知识考点】二次函数综合题.【思路分析】(1)根据点A、B、C的坐标,利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点D的坐标;(2)①过点F作FM∥y轴,交BD于点M,根据点B、D的坐标,利用待定系数法可求出直线BD 的解析式,根据点F的坐标可得出点M的坐标,利用三角形的面积公式可得出S△BDF=﹣x2+4x﹣3,再利用二次函数的性质即可解决最值问题;②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,则∠AEF1=∠DBE、∠AEF2=∠DBE,根据EN∥BD结合点E的坐标可求出直线EF1的解析式,联立直线EF1、抛物线的解析式成方程组,通过解方程组即可求出点F1的坐标,同理可求出点F2的坐标,此题得解.【解答过程】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,,解得:,∴抛物线的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)①过点F作FM∥y轴,交BD于点M,如图1所示.。

2018年中考数学压轴题100题精选

2018年中考数学压轴题100题精选

2018年中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t(4)当DE经过点C 时,请直接..写出t图16【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。

2018年中考数学总复习—常考压轴题专题汇总(共10个类型)

2018年中考数学总复习—常考压轴题专题汇总(共10个类型)

4. (浙江舟山 ) △ABC 中,∠ A=∠B=30°, AB= 2 3 .把 △ABC 放在平面直角坐标系
中,使 AB 的中点位于坐标原点 O(如图),△ABC 可以绕点 O 作任意角度的旋转. ( 1)当点 B 在第一象限,纵坐标是 6 时,求点 B 的横坐标;
2
( 2)如果抛物线 y ax2 bx c (a≠ 0的) 对称轴经过点 C,请你探究:
关系式,并直接写出自变量 x 的取值范围;
( 3)在同一平面直角坐标系中, 两条直线 x=m,x=n 分别与抛物线交于点 E,G, 与 (2)中的函数图象交于点 F,H.问四边形 EFHG 能否为平行四边形 ? 若能,求 m,n 之间的数量关系;若不能,请说明理由.
备用图
3. (江苏镇江 )在平面直角坐标系 xOy 中,直线 l1 过点 A(1,0)且与 y 轴平行,直线 l2 过 点 B(0, 2)且与 x 轴平行,直线 l1 与 l2 相交于点 P.点 E 为直线 l2 上一点,反比例 函数 y k (k>0)的图象过点 E 且与直线 l1 相交于点 F. x ( 1)若点 E 与点 P 重合,求 k 的值; ( 2)连接 OE、OF、EF.若 k>2,且 △OEF 的面积为 △ PEF 的面积 2 倍,求点 E 的坐标; ( 3)是否存在点 E 及 y 轴上的点 M,使得以点 M、E、F 为顶点的三角形与 △PEF 全等?若存在,求 E 点坐标;若不存在,请说明理由.
Q 的坐标;若不存在,说明理由; (3)在第一象限、对称轴右侧的抛物线上是否存在一点
R,使△ RPM 与△ RMB
的面积相等,若存在,直接写出点 R 的坐标;若不存在,说明理由.
y
P
C M
A O

2017-2018--中考压轴题汇编--1.2因动点产生的等腰三角形问题

2017-2018--中考压轴题汇编--1.2因动点产生的等腰三角形问题

2017-2018--中考压轴题汇编--1.2因动点产生的等腰三角形问题D例2 2017年长沙市中考第26题如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和1a(,)16两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1例3 2018年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB =6,AC=8,点D为边BC的中点,DE⊥BC 交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图例4 2017年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1例5 2017年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1例6 2017年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B . (1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O出发,以每秒1个单位长的速度,沿O—C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图11.2因动点产生的等腰三角形问题答案例1 2017年重庆市中考第25题如图1,在△ABC中, ACB=90°,∠BAC =60°,点E是∠BAC的平分线上一点,过点E 作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=23,求AB、BD的长;(2)如图1,求证:HF=EF.(3)如图2,连接CF、CE,猜想:△CEF 是否是等边三角形?若是,请证明;若不是,请说明理由.图1 图2动感体验请打开几何画板文件名“15重庆25”,拖动点E运动,可以体验到,△FAE与△FDH保持全等,△CMF与△CAE保持全等,△CEF保持等边三角形的形状.思路点拨1.把图形中所有30°的角都标注出来,便于寻找等角和等边.2.中点F有哪些用处呢?联想到斜边上的中线和中位线就有思路构造辅助线了.满分解答(1)如图3,在Rt△ABC中,∠BAC=60°,AC=23,所以AB=43.在Rt△ADH中,∠DAH=30°,AH=3,所以DH=1,AD=2.在Rt△ADB中,AD=2,AB=43,由勾股定理,得BD=213.(2)如图4,由∠DAB=90°,∠BAC=60°,AE平分∠BAC,得∠DAE=60°,∠DAH=30°.在Rt△ADE中,AE=1AD.在Rt△ADH中,2DH=1AD.所以AE=DH.2因为点F是Rt△ABD的斜边上的中线,所以FA=FD,∠FAD=∠FDA.所以∠FAE=∠FDH.所以△FAE≌△FDH.所以EF=HF.图3 图4 图5(3)如图5,作FM⊥AB于M,联结CM.由FM//DA,F是DB的中点,得M是AB 的中点.因此FM=1AD,△ACM是等边三角形.2又因为AE=1AD,所以FM=EA.2又因为CM=CA,∠CMF=∠CAE=30°,所以△CMF≌△CAE.所以∠MCF=∠ACE,CF=CE.所以∠ECF=∠ACM=60°.所以△CEF 是等边三角形.考点伸展我们再看几个特殊位置时的效果图,看看有没有熟悉的感觉.如图6,如图7,当点F落在BC边上时,点H与点C重合.图6 图7 如图8,图9,点E落在BC边上.如图10,图11,等腰梯形ABEC.图8 图9 图10 图11例2 2017年长沙市中考第26题如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和1a(,)16两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P 在抛物线上运动,可以体验到,圆与x 轴总是相交的,等腰三角形AMN 存在三种情况.思路点拨1.不算不知道,一算真奇妙,原来⊙P 在x 轴上截得的弦长MN =4是定值.2.等腰三角形AMN 存在三种情况,其中MA =MN 和NA =NM 两种情况时,点P 的纵坐标是相等的.满分解答(1)已知抛物线的顶点为(0,0),所以y =ax 2.所以b =0,c =0. 将1(,)16a 代入y =ax 2,得2116a =.解得14a =(舍去了负值).(2)抛物线的解析式为214y x =,设点P 的坐标为21(,)4x x . 已知A (0, 2),所以222411(2)4416PA x x x =+-=+>214x . 而圆心P 到x 轴的距离为214x ,所以半径PA >圆心P 到x 轴的距离.所以在点P 运动的过程中,⊙P 始终与x 轴相交.(3)如图2,设MN 的中点为H ,那么PH 垂直平分MN .在Rt △PMH 中,2241416PMPA x ==+,22411()416PH x x ==,所以MH 2=4.所以MH =2.因此MN =4,为定值.等腰△AMN 存在三种情况:①如图3,当AM =AN 时,点P 为原点O 重合,此时点P 的纵坐标为0.图2图3 ②如图4,当MA =MN 时,在Rt △AOM 中,OA =2,AM =4,所以OM =23. 此时x =OH =232+.所以点P 的纵坐标为22211(232)(31)42344x =+=+=+. ③如图5,当NA =NM 时,点P 的纵坐标为也为423+.图4图5考点伸展 如果点P 在抛物线214y x =上运动,以点P 为圆心的⊙P 总经过定点B (0, 1),那么在点P 运动的过程中,⊙P 始终与直线y =-1相切.这是因为:设点P 的坐标为21(,)4x x . 已知B (0, 1),所以222222111(1)(1)1444PB x x x x =+-+=+. 而圆心P 到直线y =-1的距离也为2114x +,所以半径PB =圆心P 到直线y =-1的距离.所以在点P运动的过程中,⊙P始终与直线y=-1相切.例3 2018年上海市虹口区中考模拟第25题如图1,在Rt△ABC中,∠A=90°,AB =6,AC=8,点D为边BC的中点,DE⊥BC 交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图动感体验请打开几何画板文件名“13虹口25”,拖动点P在射线AB上运动,可以体验到,△PDM 与△QDN保持相似.观察△PDF,可以看到,P、F 可以落在对边的垂直平分线上,不存在DF =DP 的情况.请打开超级画板文件名“13虹口25”,拖动点P 在射线AB 上运动,可以体验到,△PDM 与△QDN 保持相似.观察△PDF ,可以看到,P 、F 可以落在对边的垂直平分线上,不存在DF =DP 的情况.思路点拨1.第(2)题BP =2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF 时,根据相似三角形的传递性,转化为探求等腰三角形CDQ .满分解答(1)在Rt △ABC 中, AB =6,AC =8,所以BC =10.在Rt △CDE 中,CD =5,所以315tan 544ED CD C =⋅∠=⨯=,254EC =. (2)如图2,过点D 作DM ⊥AB ,DN ⊥AC ,垂足分别为M 、N ,那么DM 、DN 是△ABC 的两条中位线,DM =4,DN =3.由∠PDQ =90°,∠MDN =90°,可得∠PDM =∠QDN .因此△PDM ∽△QDN . 所以43PM DM QN DN ==.所以34QN PM =,43PM QN =.图 2 图 3图4①如图3,当BP =2,P 在BM 上时,PM =1.此时3344QN PM ==.所以319444CQ CN QN =+=+=. ②如图4,当BP =2,P 在MB 的延长线上时,PM =5.此时31544QN PM ==.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中,3tan 4QD DN QPD PD DM ∠===.在Rt △ABC 中,3tan 4BA C CA ∠==.所以∠QPD =∠C .由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ .因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CH C CQ=,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5图6考点伸展如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三角形,PB=PD.在△BDP中可以直接求解25BP .6例4 2017年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12扬州27”,拖动点P在抛物线的对称轴上运动,可以体验到,当点P落在线段BC上时,PA+PC最小,△PAC 的周长最小.拖动点M在抛物线的对称轴上运动,观察△MAC的三个顶点与对边的垂直平分线的位置关系,可以看到,点M有1次机会落在AC的垂直平分线上;点A有2次机会落在MC的垂直平分线上;点C有2次机会落在MA 的垂直平分线上,但是有1次M、A、C三点共线.思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),代入点C(0 ,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BH PH=,BO=CO,得PH=BH=2.BO CO所以点P的坐标为(1, 2).2(3)点M的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1, 1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6m=±.此时点M的坐标为(1,6)或(1,6-).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3 图4 图5例5 2017年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12临沂26”,拖动点P在抛物线的对称轴上运动,可以体验到,⊙O和⊙B以及OB的垂直平分线与抛物线的对称轴有一个共同的交点,当点P运动到⊙O与对称轴的另一个交点时,B、O、P三点共线.请打开超级画板文件名“12临沂26”,拖动点P,发现存在点P,使得以点P、O、B为顶点的三角形是等腰三角形思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.满分解答(1)如图2,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,23OC=所以点B的坐标为(2,23)--.(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4),代入点B(2,23)--⨯-.解得3--,232(6)aa=.所以抛物线的解析式为23323=--=-+.y x x x x(4)(3)抛物线的对称轴是直线x=2,设点P的坐标为(2, y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得23y=±.当P在(2,23)时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以22++=.解得1223y4(23)16==-.y y③当PB=PO时,PB2=PO2.所以2222++=+.解得23y=-.y y4(23)2综合①、②、③,点P的坐标为(2,23)-,如图2所示.图2 图3 考点伸展如图3,在本题中,设抛物线的顶点为D,那么△DOA与△OAB是两个相似的等腰三角形.由23323(4)(2)y x x x =--=--+,得抛物线的顶点为23(2,)D .因此23tan DOA ∠=.所以∠DOA =30°,∠ODA =120°.例6 2017年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B . (1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11盐城28”,拖动点R由B向O运动,从图象中可以看到,△APR 的面积有一个时刻等于8.观察△APQ,可以体验到,P在OC上时,只存在AP=AQ的情况;P在CA上时,有三个时刻,△APQ是等腰三角形.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8APR ACP POR CORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120tt -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图 2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况.此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1.我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中,3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQA AP∠=.因此2cos AQ AP A=⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6图7考点伸展当P 在CA 上,QP =QA 时,也可以用2cos AP AQ A =⋅∠来求解.。

7.21代数与几何综合压轴题(第1部分)-2018年中考数学试题分类汇编(word解析版)

7.21代数与几何综合压轴题(第1部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.21 代数与几何综合压轴题【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年重庆市A卷-第11题-4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4 D.5【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;菱形的性质.【思路分析】根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【解答过程】解:设AC与BD、x轴分别交于点E、F由已知,A、B横坐标分别为1,4∴BE=3∵四边形ABCD为菱形,AC、BD为对角线∴S菱形ABCD=4×AE•BE=∴AE=设点B 的坐标为(4,y ),则A 点坐标为(1,y+)∵点A 、B 同在y=图象上∴4y=1•(y+)∴y=∴B 点坐标为(4,) ∴k=5 故选:D .【总结归纳】本题考查了菱形的性质、应用面积法构造方程,以及反比例函数图象上点的坐标与k 之间的关系.2.(2018年河南省-第10题-3分)如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A B .2 C .52D . 【知识考点】动点问题的函数图象.【思路分析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD=,应用两次勾股定理分别求BE 和a .【解答过程】解:过点D 作DE ⊥BC 于点E ,由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2. ∴AD=a ∴∴DE=2当点F 从D 到B 时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【总结归纳】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.3.(2018年安徽省-第10题-4分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答过程】解:当0<x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.【总结归纳】本题考查动点问题函数图象、分段函数等知识,解题的关键是理解题意,学会构建函数关系式解决问题,属于中考常考题型.4.(2018年广东省-第10题-3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答过程】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【总结归纳】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题1.(2018年海南省-第18题-4分)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C 的坐标为.【知识考点】勾股定理;平行四边形的性质;垂径定理.【思路分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答过程】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【总结归纳】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题1.(2018年北京市-第28题-7分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【知识考点】圆的综合题.【思路分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答过程】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=1;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;(3)⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,由d(⊙T,△ABC)=1知此时t=﹣4;②当⊙T在△ABC内部时,当点T与原点重合时,d(⊙T,△ABC)=1,知此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2,∵AB=BC=8、∠ABC=90°,∴∠C=∠T3DM=45°,则T3D===2,∴t=4﹣2,故此时0≤t≤4﹣2;③当⊙T在△ABC右边时,由d(⊙T,△ABC)=1知T4N=2,∵∠T4DC=∠C=45°,∴T4D===2,∴t=4+2;综上,t=﹣4或0≤t≤4﹣2或t=4+2.【总结归纳】本题主要考查圆的综合问题,解题的关键是理解并掌握“闭距离”的定义与直线与圆的位置关系和分类讨论思想的运用.2.(2018年天津市-第25题-10分)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.【知识考点】二次函数综合题.【思路分析】(Ⅰ)将点A坐标代入解析式求得m的值即可得;(Ⅱ)先求出顶点P的坐标(﹣,﹣),根据∠AOP=45°知点P在第四象限且PQ=OQ,列出关于m的方程,解之可得;(Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)知H(2,4),过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,证△ADE≌△HAG得DE=AG=1、AE=HG=4,据此知点D的坐标为(﹣3,1)或(5,﹣1),再求出直线DH的解析式,将点P的坐标代入求得m的值即可得出答案.【解答过程】解:(Ⅰ)∵抛物线y=x2+mx﹣2m经过点A(1,0),∴0=1+m﹣2m,解得:m=1,∴抛物线解析式为y=x2+x﹣2,∵y=x2+x﹣2=(x+)2﹣,∴顶点P的坐标为(﹣,﹣);(Ⅱ)抛物线y=x2+mx﹣2m的顶点P的坐标为(﹣,﹣),由点A(1,0)在x轴的正半轴上,点P在x轴的下方,∠AOP=45°知点P在第四象限,如图1,过点P作PQ⊥x轴于点Q,则∠POQ=∠OPQ=45°,可知PQ=OQ,即=﹣,解得:m1=0,m2=﹣10,当m=0时,点P不在第四象限,舍去;∴m=﹣10,∴抛物线的解析式为y=x2﹣10x+20;(Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)可知当x=2时,无论m取何值时y都等于﹣4,∴点H的坐标为(2,4),过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,则∠DEA=∠AGH=90°,∵∠DAH=90°,∠AHD=45°,∴∠ADH=45°,∴AH=AD,∵∠DAE+∠HAG=∠AHG+∠HAG=90°,∴∠DAE=∠AHG,∴△ADE≌△HAG,∴DE=AG=1、AE=HG=4,则点D的坐标为(﹣3,1)或(5,﹣1);①当点D的坐标为(﹣3,1)时,可得直线DH的解析式为y=x+,∵点P(﹣,﹣)在直线y=x+上,∴﹣=×(﹣)+,解得:m1=﹣4、m2=﹣,当m=﹣4时,点P与点H重合,不符合题意,∴m=﹣;②当点D的坐标为(5,﹣1)时,可得直线DH的解析式为y=﹣x+,∵点P(﹣,﹣)在直线y=﹣x+上,∴﹣=﹣×(﹣)+,解得:m1=﹣4(舍),m2=﹣,综上,m=﹣或m=﹣,则抛物线的解析式为y=x2﹣x+或y=x2﹣x+.【总结归纳】本题主要考查二次函数综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质、全等三角形的判定和性质等知识点.3.(2018年重庆市A卷-第26题-12分)如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x 上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+12FO的最小值;(3)在(2)中,PH+HF+12FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)求出A、B两点坐标,即可解决问题;(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴J交BE于N.构建二次函数利用二次函数的性质求出满足条件的点P坐标,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,因为FK=OF,推出PH+HF+FO=PH+FH+Fk=PH+HK,此时PH+HF+OF的值最小,解直角三角形即可解决问题;(3)分两种情形分别求解即可;【解答过程】解:(1)由题意A(1,3),B(3,3),∴AB=2.(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴J交BE于N.∵直线BE的解析式为y=x,∴N(m,m),∴S△PEB=×2×(﹣m2+3m)=﹣m2+3m,∴当m=时,△PEB的面积最大,此时P(,),H(,3),∴PH=﹣3=,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,∵FK=OF,。

2018年中考数学必会压轴题汇总

2018年中考数学必会压轴题汇总

1.如图,抛物线y=ax2+bx+c〔a≠0〕经过A〔﹣1,0〕,B〔4,0〕,C〔0,2〕三点.〔1〕求这条抛物线的解析式;〔2〕E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?假设存在,试求出点E的坐标;假设不存在,请说明理由;〔3〕假设将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.2.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=﹣x2+bx+c与直线BC交于点D〔3,﹣4〕.〔1〕求直线BD和抛物线的解析式;〔2〕在第一象限的抛物线上,是否存在疑点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?假设存在,求出点M的坐标;假设不存在,请说明理由;〔3〕在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.3.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣9.〔1〕求证:无论m为何值,该抛物线与x轴总有两个交点;〔2〕该抛物线与x轴交于A,B两点,点A在点B的左侧,且OA<OB,与y轴的交点坐标为〔0,﹣5〕,求此抛物线的解析式;〔3〕在〔2〕的条件下,抛物线的对称轴与x轴的交点为N,假设点M是线段AN上的任意一点,过点M作直线MC⊥x轴,交抛物线于点C,记点C关于抛物线对称轴的对称点为D,点P是线段MC上一点,且满足MP=MC,连结CD,PD,作PE⊥PD交x轴于点E,问是否存在这样的点E,使得PE=PD?假设存在,求出点E 的坐标;假设不存在,请说明理由.4.如图,过A〔1,0〕、B〔3,0〕作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.〔1〕求抛物线的表达式;〔2〕点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?假设存在,求此时点M的横坐标;假设不存在,请说明理由;〔3〕假设△AOC沿CD方向平移〔点C在线段CD上,且不与点D重合〕,在平移的过程中△AOC与△OBD重叠局部的面积记为S,试求S的最大值.5.如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A〔4,3〕,O〔0,0〕,B〔6,0〕.点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M〔x,0〕,△PMN的面积为S.〔1〕求出OA所在直线的解析式,并求出点M的坐标为〔1,0〕时,点N的坐标;〔2〕求出S关于x的函数关系式,写出x的取值围,并求出S的最大值;〔3〕假设S:S△ANB=2:3时,求出此时N点的坐标.6.:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t〔s〕〔0<t<8〕.解答以下问题:〔1〕当t为何值时,四边形APFD是平行四边形?〔2〕设四边形APFE的面积为y〔cm2〕,求y与t之间的函数关系式;〔3〕是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?假设存在,求出t的值,并求出此时P,E两点间的距离;假设不存在,请说明理由.7.如图,抛物线y=ax2+bx+c〔a≠O〕与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为〔-2,0〕,抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)假设点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,假设存在,求出点F的坐标;假设不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,假设以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。

(2021年整理)2017_2018学年中考数学压轴题分类练习动点相似全等专题

(2021年整理)2017_2018学年中考数学压轴题分类练习动点相似全等专题

2017_2018学年中考数学压轴题分类练习动点相似全等专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017_2018学年中考数学压轴题分类练习动点相似全等专题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017_2018学年中考数学压轴题分类练习动点相似全等专题的全部内容。

动点相似(全等)专题1.如图,直线23y x c=-+与x轴交于点(3,0)A,与y轴交于点B,抛物线243y x bx c=-++经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,①点M在线段OA上运动,若以B,P,N为顶点的三角形与APM∆相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”。

请直接写出使得M,P,N三点成为“共谐点”的m的值.2.(2017四川省眉山市)如图,抛物线22y ax bx=+-与x轴交于A、B两点,与y轴交于C点,已知A(3,0),且M(1,83-)是抛物线上另一点.(1)求a、b的值;(2)连结AC,设点P是y轴上任一点,若以P、A、C三点为顶点的三角形是等腰三角形,求P 点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O、A重合),过点N作NH∥AC交抛物线的对称轴于H点.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.3.定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线33y=x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是3,3),点N3,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,3),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.4.(2017年湖北省宜昌市第24题)已知抛物线2y ax bx c =++,其中20a b c =>>,且0a b c ++=。

2018年全国中考数学压轴题精选1 精品

2018年全国中考数学压轴题精选1 精品

2018年全国中考数学压轴题精选11.(18福建莆田)动点、相似、轴对称、最值 如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1) 求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。

(注:抛物线2y ax bx c =++的对称轴为2b x a=-)2.(18甘肃白银等9市)动线、相似、分类讨论、最值如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t= 秒或 秒时,MN=21AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.3.(18广东广州)动面、相似、分类讨论、最值如图,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米 (1)当t=4时,求S 的值(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值4.(18广东深圳)特殊四边形存在问题、相切圆、动点、最值、直线与抛物线的位置 如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最5.(18贵州贵阳)二次函数的实际应用、最值某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(3分)(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3分)(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?(6分)6.(18湖北恩施)旋转相似、旋转全等、直角三角形的构造如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2.(4)在旋转过程中,(3)中的等量关系BD2+CE2=DE2是否始终成立,若成立,请证明,若不成立,7.(18湖北荆门)抛物线与圆、相似、直角的存在性问题、中点问题已知抛物线y =ax 2+bx +c 的顶点A 在x 轴上,与y 轴的交点为B (0,1),且b =-4ac . (1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C ,使以BC 为直径的圆经过抛物线的顶点A ?若不存在说明理由;若存在,求出点C 的坐标,并求出此时圆的圆心点P 的坐标;(3) 根据(2)小题的结论,你发现B 、P 、C 三点的横坐标之间、纵坐标之间分别有何关系?8.(18湖北荆州)动面、分段如图,等腰直角三角形纸片ABC 中,AC=BC =4,∠ACB =90º,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长;(2)是否存在某一时刻t 使平移中直角顶点C经过抛物线243y x x =++的顶点?若存在,求出t 值;若不存在,请说明理由;(3)直接写出....S 与t 的函数关系式及自变量t 的取值范围.第28题图B9.(18湖北天门)动点问题、三角形的存在性问题如图①,在平面直角坐标系中,A 点坐标为(3,0),B 点坐标为(0,4).动点M 从点O 出发,沿OA 方向以每秒1个单位长度的速度向终点A 运动;同时,动点N 从点A 出发沿AB方向以每秒35个单位长度的速度向终点B 运动.设运动了x 秒.(1)点N 的坐标为(________________,________________);(用含x 的代数式表示) (2)当x 为何值时,△AMN 为等腰三角形? (3)如图②,连结ON 得△OMN ,△OMN 可能为正三角形吗?若不能,点M 的运动速度不变,试改变点N 的运动速度,使△OMN 为正三角形,并求出点N 的运动速度和此时x 的值.10.(18湖北武汉)梯形面积的平分线、中心对称图形的特征如图 1,抛物线y=ax 2-3ax+b 经过A (-1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx-1(k≠0)将 四 边 形ABCD 面积二等分,求k 的值;(3)如图2,过点 E (1,-1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转 180°后得△MNQ (点M ,N ,Q 分别与 点 A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.(第24题图)11.(18湖北咸宁)动点、数形结合、“K ”字全等的构造、相似、最值 如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.(1) 当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2) 求正方形边长及顶点C 的坐标; (3) 在(1)中,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由. (4) 在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.12.(18湖南长沙)圆、弧长计算、圆周角定理、圆中直角三角形的构造及相似、等腰梯形 如图,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB=CD=DE=FA. (1)当∠BAD=75 时,求BC ⌒的长; (2)求证:BC ∥AD ∥FE ;(3)设AB=x ,求六边形ABCDEF 的周长L 关于x 的函数关系式,并指出x 为何值时,L 取得最大值.(第24题图①) (第24题图②)D13(18湖南益阳)新定义、圆与抛物线的切线我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.15.(18江苏连云港)新定义、同弧所对的圆内角周角外角的大小比较 我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);A AB B CC 80100 (第25题图1)(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄E F G H,,,(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由.16(18江苏南京)数形结合、一次函数的应用一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x,两车之间的距离.......为(km)y,图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?17.(18江苏南通)一次函数与反比例、平面直角坐标系中面积的求法、反比例的代数几何意义、对称性、平行线分线段成比例已知双曲线kyx=与直线14y x=相交于A、B两点.第一象限上的点M(m,n)(在A点左GF(第25题图2)(第28题)y侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴交x 轴于点D .过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.18.(18江苏宿迁)与圆相切、动点、最值 如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为)0,5(,顶点D 在⊙O 上运动.(1)当点D 运动到与点A 、O 在同一条直线上时,试证明直线CD 与⊙O 相切;(2)当直线CD 与⊙O 相切时,求OD 所在直线对应的函数关系式;(3)设点D 的横坐标为x ,正方形ABCD 的面积为S ,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.19.(18江苏泰州)数形结合、函数值大小的比较、不等式已知二次函数)0(21≠++=a c bx ax y 的图象经过三点(1,0),(-3,0),(0,23-)。

7.19代数压轴题(第1部分)-2018年中考数学试题分类汇编(word解析版)

7.19代数压轴题(第1部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.19 代数压轴题【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年天津市-第12题-3分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3【知识考点】二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】①由抛物线过点(﹣1,0),对称轴在y轴右侧,即可得出当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当x=1时y>0,可得出a+b>﹣c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>﹣3,由抛物线过点(﹣1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,综上可得出﹣3<a+b<3,结论③正确.此题得解.【解答过程】解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧,∴当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③∵当x=1时y=a+b+c>0,∴a+b>﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>﹣3.∵当a=﹣1时,y=0,即a﹣b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴﹣3<a+b<3,结论③正确.故选:C.【总结归纳】本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析三条结论的正误是解题的关键.2.(2018年重庆市A卷-第12题-4分)若数a使关于x的不等式组112352x xx x a-+⎧⎪⎨⎪-+⎩<≥有且只有四个整数解,且使关于y的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2【知识考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【思路分析】表示出不等式组的解集,由不等式有且只有4个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【解答过程】解:,不等式组整理得:,由不等式组有且只有四个整数解,得到0<≤1,解得:﹣2<a≤2,即整数a=﹣1,0,1,2,=2,分式方程去分母得:y+a﹣2a=2(y﹣1),解得:y=2﹣a,由分式方程的解为非负数以及分式有意义的条件,得到a为﹣1,0,2,之和为1.故选:C.【总结归纳】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.(2018年河北省-第16题-2分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【知识考点】二次函数综合题;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.【思路分析】分两种情况进行讨论,①当抛物线与直线相切,△=0求得c=1,②当抛物线与直线不相切,但在0≤x≤3上只有一个交点时,找到两个临界值点,可得c=3,4,5,故c=1,3,4,5 【解答过程】解法一:解:∵抛物线L:y=-x(x-3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式()32y x x cy x=--+⎧⎪⎨=+⎪⎩,得x2-2x+2-c=0△=(-2)2-4(2-c)=0解得c=1;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5故选:D.解法二:解析:抛物线y=-x(x-3)+c(0≤x≤3)可以看做y=-x(x-3)向上平移c个单位长度后的图象。

2018年中考数学挑战压轴题(含答案)(大全五篇)

2018年中考数学挑战压轴题(含答案)(大全五篇)

2018年中考数学挑战压轴题(含答案)(大全五篇)第一篇:2018年中考数学挑战压轴题(含答案)2017 挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t <2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE 与△FBG相似时,求BD的长度.第1页(共169页)3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB 交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE 时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.第2页(共169页)5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2AC上一点,联结DC(如图)(1)求BC的长;,点D 为弧(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.第3页(共169页)7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.,求AB,BD的长;第4页(共169页)9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD 的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.第5页(共169页)11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P 为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D 的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.第6页(共169页)因动点产生的直角三角形问题13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).第7页(共169页)因动点产生的平行四边形问题15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a (a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.第8页(共169页)17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A 在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP 的长.(3)在点P的整个运动过程中,第9页(共169页)①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N为顶点的四边形是平行四边形,求点N的坐标.第10页(共169页)21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,第11页(共169页)与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C 为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;第12页(共169页)(2)小明探究点P的位置发现:当P与点A或点C重合时,PD 与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB 于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE第13页(共169页)将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?第14页(共169页)29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP 的面积是否有最值?若有,求出该最值及相对应的m值. 31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究第15页(共169页)(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y= x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F 处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH 上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.第16页(共169页)33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c 与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.第17页(共169页)35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a (a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.第18页(共169页)37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B 出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C 的坐标,如果不存在,请说明理由.第19页(共169页)因动点产生的线段和差问题39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC 上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME 的延长线交于N,求线段BN长第20页(共169页)度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC 的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.,∠BAD=60°,且AB>4.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x 轴交于B、C两点第21页(共169页)(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R 是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在发现:的长与上且不与A点重合,但Q点可与B点重合.的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;第22页(共169页)探究:当半圆M与AB相切时,求(注:结果保留π,cos35°=的长.),cos55°=46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;第23页(共169页)②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.第24页(共169页)第25页(共169页)2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t <2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.第26页(共169页)∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P (0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].;QC.故当m=时,点Q到直线AB的距离最大,最大值为(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y 轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要第27页(共169页)求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=所以OT=解得t=1﹣AE=,OE=1,即Q″(﹣,3).﹣1,;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=∴a+a=,a=﹣1,TG=a,AP=,解得PT=∴OT=OP﹣PT=3﹣∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.第28页(共169页)2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE 与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO 与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB 与直角三角形BHA第29页(共169页)全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y 与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,∴△ADO≌△BHO (AAS),∴OH=OD,又∵OA=OB,∴AH=BD;。

2017-2018学年中考数学计算推理专题强化练习卷【精选】.docx

2017-2018学年中考数学计算推理专题强化练习卷【精选】.docx

计算推理专题1.以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知(4,0)M,A-,(0,2)B-,(0,4)P为折线BCD上一动点,内行PE y⊥轴于点E,设点P的纵坐标为.a(1)求BC边所在直线的解析式;(2)设22=+,求y关于a的函数关系式;y MP OPV为直角三角形,求点P的坐标.(3)当OPM2.如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线折叠,点B落在点D处,DC 与y轴相交于点E.矩形OABC的边OC,OA的长是关于x的一元二次方程212320-+=的两个根,x x>.且OA OC(1)求线段OA,OC的长;∆≅∆∆,并求出线段OE的长;(2)求证:ADE COE(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.3.(已知抛物线c 1的顶点为A (﹣1,4),与y 轴的交点为D (0,3). (1)求c 1的解析式;(2)若直线l 1:y =x +m 与c 1仅有唯一的交点,求m 的值;(3)若抛物线c 1关于y 轴对称的抛物线记作c 2,平行于x 轴的直线记作l 2:y =n .试结合图形回答:当n 为何值时,l 2与c 1和c 2共有:①两个交点;②三个交点;③四个交点; (4)若c 2与x 轴正半轴交点记作B ,试在x 轴上求点P ,使△P AB 为等腰三角形.4.在平面直角坐标系xOy 中,抛物线c bx ax y ++=2的开口向上,且经过点)23,0(A .(1)若此抛物线经过点)21,2(-B ,且与x 轴相交于点F E ,.①填空:=b (用含a 的代数式表示); ②当EF 的值最小时,求抛物线的解析式; (2)若21=a ,当10≤≤x ,抛物线上的点到x 轴距离的最大值为3时,求b 的值.5.已知抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论: ①抛物线过原点; ②4a+b+c=0; ③a ﹣b+c <0;④抛物线的顶点坐标为(2,b ); ⑤当x <2时,y 随x 增大而增大. 其中结论正确的是( )A .①②③B .③④⑤C .①②④D .①④⑤6.如图9,平面直角坐标系中O 是原点,OABC Y 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④OD =;其中正确的结论是.(填写所有正确结论的序号)7.如图,在平面直角坐标系中,已知直线()分别交反比例函数和在第一象限的图象于点,,过点作轴于点,交的图象于点,连结.若是等腰三角形,则的值是.8.如图,某日的钱塘江观测信息如下:按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离x (千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点)12,0(A ,点B 坐标为)0,(m ,曲线BC 可用二次函数:s=21125t bt c ++,(c b ,是常数)刻画. (1)求m 值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以48.0千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为48.0千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度)30(12520-+=t v v ,0v 是加速前的速度). 9.已知函数,,k 、b 为整数且.(1)讨论b,k 的取值.(2)分别画出两种函数的所有图象.(不需列表) (3)求与的交点个数.10.如图,已知抛物线28 5y ax x c=++与x轴交于,A B两点,与y轴交于C点,且(2,0),(0,4)A C-,直线1:42l y x=--与x轴交于D点,点P是抛物线285y ax x c=++上的一动点,过点P作PE x⊥轴,垂足为E,交直线l于点F.(1)试求该抛物线的表达式;(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH x⊥轴,垂足为H,连接AC,①求证:ACD∆是直角三角形;②试问当P点横坐标为何值时,使得以点,,P C H为顶点的三角形与ACD∆相似?。

2018年中考数学压轴题汇总

2018年中考数学压轴题汇总

2018年中考数学压轴题汇总2018.05一、计算题(共10题)1.化简: .2.(2017•盐城)先化简,再求值:÷(x+2﹣),其中x=3+ .3.(2017•鄂州)先化简,再求值:(x﹣1+ )÷,其中x的值从不等式组的整数解中选取.4.(2015•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:5.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.6.解方程:(1)(2)3x﹣7(x﹣1)=3+2(x+3)7.计算题:计算和分解因式(1)计算:﹣|﹣4|+2cos60°﹣(﹣)﹣1(2)因式分解:(x﹣y)(x﹣4y)+xy.8.已知x2+y2+8x+6y+25=0,求- 的值.9.若a、b、c都不等于0,且+ + 的最大值是m,最小值是n,求m+n的值.10.如果有理数a,b满足,试求的值。

二、综合题(共40题)11.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.(2)若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第(1)问中EF 与BE、CF间的关系还存在吗?(3)若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?12.在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.13.如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.14.如图,等腰三角形△ABC的腰长AB=AC=25,BC=40,动点P从B出发沿BC向C运动,速度为10单位/秒.动点Q从C出发沿CA向A运动,速度为5单位/秒,当一个点到达终点的时候两个点同时停止运动,点P′是点P关于直线AC的对称点,连接P′P和P′Q,设运动时间为t秒.(1)若当t的值为m时,PP′恰好经过点A,求m的值.(2)设△P′PQ的面积为y,求y与t之间的函数关系式(m<t≤4)(3)是否存在某一时刻t,使PQ平分角∠P′PC?存在,求相应的t值,不存在,请说明理由.15.某公司试销一种成本为30元/件的新产品,按规定试销时的销售单价不低于成本单价,又不高于80元/件,试销中每天的销售量y(件)与销售单价x(元/件)满足下表中的函数关系.x(元/件)35 40 45 50 55y(件)550 500 450 400 350(1)试求y与x之间的函数表达式;(2)设公司试销该产品每天获得的毛利润为S(元),求S 与x之间的函数表达式(毛利润=销售总价﹣成本总价);(3)当销售单价定为多少时,该公司试销这种产品每天获得的毛利润最大?最大毛利润是多少?此时每天的销售量是多少?16.(2016•铜仁市)如图,抛物线y=ax2+bx ﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.17.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB .判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m <0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.18.如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E ,F 在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN 的包装盒,设AE=x (cm).(1)求线段GF的长;(用含x的代数式表示)(2)当x为何值时,矩形GHPF的面积S (cm2)最大?最大面积为多少?(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.19.若二次函数的图像记为,其顶点为,二次函数的图像记为,其顶点为,且满足点在上,点在上,则称这两个二次函数互为“伴侣二次函数”.(1)写出二次函数的一个“伴侣二次函数”;(2)设二次函数与轴的交点为,求以点为顶点的二次函数的“伴侣二次函数”;(3)若二次函数与其“伴侣二次函数”的顶点不重合,试求该“伴侣二次函数”的二次项系数.20.如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是________;(2)如果一级楼梯的高度HE=(8 +2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是________.21.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.22.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.23.(2016•张家界)已知抛物线y=a(x﹣1)2﹣3(a≠0)的图象与y轴交于点A(0,﹣2),顶点为B.(1)试确定a的值,并写出B点的坐标;(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;(3)试在x轴上求一点P,使得△PAB的周长取最小值;(4)若将抛物线平移m(m≠0)个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D 能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.24.综合题。

7.21代数与几何综合压轴题(第5部分)2018年中考数学试题分类汇编(山东四川word解析版)

7.21代数与几何综合压轴题(第5部分)2018年中考数学试题分类汇编(山东四川word解析版)

第七部分专题拓展7.21 代数与几何综合压轴题一、选择题1.(2018年山东省烟台市-第12题-3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A 出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C 方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】先根据动点P和Q的运动时间和速度表示:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,计算S与t的关系式,发现是开口向上的抛物线,可知:选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,计算S与t的关系式,发现是一次函数,是一条直线,可知:选项B不正确,从而得结论.【解答过程】解:由题意得:AP=t,AQ=2t,①当0≤t≤4时,Q在边AB上,P在边AD上,如图1,S△APQ=AP•AQ==t2,故选项C、D不正确;②当4<t≤6时,Q在边BC上,P在边AD上,如图2,S△APQ=AP•AB==4t,故选项B不正确;故选:A.【总结归纳】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.2.(2018年山东省东营市-第9题-3分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D 为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B. C.D.【知识考点】动点问题的函数图象.【思路分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答过程】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【总结归纳】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.3.(2018年山东省莱芜市-第11题-3分)如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】依据a和b同时向右移动,分三种情况讨论,求得函数解析式,进而得到当0≤t<1时,函数图象为开口向上的抛物线的一部分,当1≤t<2时,函数图象为开口向下的抛物线的一部分,当2≤t≤3时,函数图象为开口向上的抛物线的一部分.【解答过程】解:如图①,当0≤t<1时,BE=t,DE=t,∴s=S△BDE=×t×t=;如图②,当1≤t<2时,CE=2﹣t,BG=t﹣1,∴DE=(2﹣t),FG=(t﹣1),∴s=S五边形AFGED=S△ABC﹣S△BGF﹣S△CDE=×2×﹣×(t﹣1)×(t﹣1)﹣×(2﹣t)×(2﹣t)=﹣+3t﹣;如图③,当2≤t≤3时,CG=3﹣t,GF=(3﹣t),∴s=S△CFG=×(3﹣t)×(3﹣t)=﹣3t+,综上所述,当0≤t<1时,函数图象为开口向上的抛物线的一部分;当1≤t<2时,函数图象为开口向下的抛物线的一部分;当2≤t≤3时,函数图象为开口向上的抛物线的一部分,故选:B.【总结归纳】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.4.(2018年四川省泸州市-第11题-3分)在平面直角坐标系内,以原点O为原心,1为半径作圆,点P在直线y+过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C D【知识考点】切线的性质;一次函数图象上点的坐标特征.【思路分析】如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,先利用一次解析式得到D(0,2),C(﹣2,0),再利用勾股定理可计算出CD=4,则利用面积法可计算出OH=,连接OA,如图,利用切线的性质得OA⊥PA,则PA=,然后利用垂线段最短求PA的最小值.【解答过程】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴PA==,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA的最小值为=.故选:D.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质.5.(2018年四川省广安市-第8题-3分)下列命题中:①如果a>b,那么a2>b2②一组对边平行,另一组对边相等的四边形是平行四边形③从圆外一点可以引圆的两条切线,它们的切线长相等④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1其中真命题的个数是()A.1 B.2 C.3 D.4【知识考点】命题与定理.【思路分析】直接利用切线长定理以及平行四边形的判定和一元二次方程根的判别式分别判断得出答案.【解答过程】解:①如果a>b,那么a2>b2,错误;②一组对边平行,另一组对边相等的四边形是平行四边形,错误;③从圆外一点可以引圆的两条切线,它们的切线长相等,正确;④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1且a≠0,故此选项错误.故选:A.【总结归纳】此题主要考查了命题与定理,正确把握相关性质是解题关键.二、填空题1.(2018年山东省德州市-第18题-4分)如图,反比例函数3yx与一次函数y=x﹣2在第三象限交于点A,点B的坐标为(﹣3,0),点P是y轴左侧的一点,若以A,O,B,P为顶点的四边形为平行四边形,则点P的坐标为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】联立直线和反比例函数解析式可求出A点的坐标,再分以AB为对角线、以OA为对角线和以OB为对角线三种情况,利用平行四边形的性质可分别求得满足条件的P点的坐标.【解答过程】解:由题意得,解得或,∵反比例函数y=与一次函数y=x﹣2在第三象限交于点A,∴A(﹣1,﹣3).当以AB为对角线时,AB的中点坐标M为(﹣2,﹣1.5),∵平行四边形的对角线互相平分,∴M为OP中点,设P点坐标为(x,y),则=﹣2,=﹣1.5,解得x=﹣4,y=﹣3,∴P(﹣4,﹣3).当OB为对角线时,由O、B坐标可求得OB的中点坐标M(﹣,0),设P点坐标为(x,y),由平行四边形的性质可知M为AP的中点,结合中点坐标公式可得=﹣,=0,解得x=﹣2,y=3,∴P(﹣2,3);当以OA为对角线时,由O、A坐标可求得OA的中点坐标M(﹣,﹣),设P点坐标为(x,y),由平行四边形的性质可知M为BP中点,结合中点坐标公式可得=﹣,=﹣,解得x=2,y=﹣3,∴P(2,﹣3)(舍去).综上所述,P点的坐标为(﹣4,﹣3),(﹣2,3).故答案为:(﹣4,﹣3),(﹣2,3).【总结归纳】本题考查的是反比例函数与一次函数的交点问题,熟知反比例函数图象上点的坐标特点、平行四边形的判定与性质及中点坐标公式是解答此题的关键.2.(2018年山东省泰安市-第17题-3分)如图,在△ABC中,AC=6,BC=10,tanC=34,点D是AC边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.【知识考点】解直角三角形;函数关系式.【思路分析】可在直角三角形CED中,根据DE、CE的长,求出△BED的面积即可解决问题.【解答过程】解:(1)在Rt△CDE中,tanC=,CD=x∴DE=x,CE=x,∴BE=10﹣x,∴S△BED=×(10﹣x)•x=﹣x2+3x.∵DF=BF,∴S=S△BED=x2,故答案为S=x2.【总结归纳】本题考查解直角三角形,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018年山东省东营市-第17题-4分)在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.【知识考点】坐标与图形性质;轴对称﹣最短路线问题.【思路分析】要使得MB﹣MA的值最大,只需取其中一点关于x轴的对称点,与另一点连成直线,然后求该直线x轴交点即为所求.【解答过程】解:取点B关于x轴的对称点B′,则直线AB′交x轴于点M.点M即为所求.设直线AB′解析式为:y=kx+b把点A(﹣1,﹣1)B′(2,﹣7)代入解得∴直线AB′为:y=﹣2x﹣3,当y=0时,x=﹣∴M坐标为(﹣,0)故答案为:(﹣,0)【总结归纳】本题考查轴对称﹣最短路线问题、坐标与图象变换,解答本题的关键是明确题意,利用三角形两边之差小于第三边和一次函数的性质解答.4.(2018年山东省东营市-第18题-4分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是.【知识考点】规律型:点的坐标;一次函数图象上点的坐标特征.【思路分析】因为每个A点为等腰直角三角形的直角顶点,则每个点A的纵坐标为对应等腰直角三角形的斜边一半.故先设出各点A的纵坐标,可以表示A的横坐标,代入解析式可求点A的纵坐标,规律可求.【解答过程】解:分别过点A1,A2,A3,…向x轴作垂线,垂足为C1,C2,C3,…∵点A1(1,1)在直线y=x+b上∴代入求得:b=∴y=x+∵△OA1B1为等腰直角三角形∴OB1=2设点A2坐标为(a,b)∵△B1A2B2为等腰直角三角形∴A2C2=B1C2=b∴a=OC2=OB1+B1C2=2+b把A2(2+b,b)代入y=x+解得b=∴OB2=5同理设点A3坐标为(a,b)∵△B2A3B3为等腰直角三角形∴A3C3=B2C3=b∴a=OC3=OB2+B2C3=5+b把A2(5+b,b)代入y=x+解得b=以此类推,发现每个A的纵坐标依次是前一个的倍则A2018的纵坐标是故答案为:【总结归纳】本题为一次函数图象背景下的规律探究题,结合了等腰直角三角形的性质,解答过程中注意对比每个点A的纵坐标变化规律.5.(2018年山东省威海市-第15题-3分)如图,直线AB与双曲线kyx(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.【知识考点】反比例函数系数k的几何意义;反比例函数的性质;反比例函数图象上点的坐标特征.【思路分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答过程】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.【总结归纳】本题考查反比例函数的性质、三角形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(2018年山东省威海市-第18题-3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线12y x=于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线12y x=于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线12y x=于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线12y x=于点B4,…按照如此规律进行下去,点B2018的坐标为.【知识考点】一次函数图象上点的坐标特征;规律型:点的坐标.【思路分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答过程】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【总结归纳】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.7.(2018年四川省眉山市-第18题-3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,A点坐标为(﹣10,0),对角线AC和OB相交于点D且AC•OB=160.若反比例函数k yx(x<0)的图象经过点D,并与BC的延长线交于点E,则S△OCE:S△OAB=.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;菱形的性质.【思路分析】△OAB与△OCE等高,若要求两者间的面积比只需求出底边的比,由AO=10知需求CE的长,即求点E的坐标,需先求反比例函数解析式,而反比例函数解析式可先根据菱形的面积求得点D的坐标,据此求解可得.【解答过程】解:作CG⊥AO于点G,作BH⊥x轴于点H,∵AC•OB=160,∴S菱形OABC=•AC•OB=80,∴S△OAC=S菱形OABC=40,即AO•CG=40,∵A(﹣10,0),即OA=10,∴CG=8,在Rt△OGE中,∵OC=OA=10,∴OG=6,则C(﹣6,8),∵△BAH≌△COG,∴BH=CG=8、AH=OG=6,∴B(﹣16,8),∵D为BO的中点,∴D(﹣8,4),∵D在反比例函数图象上,∴k=﹣8×4=﹣32,即反比例函数解析式为y=﹣,当y=8时,x=﹣4,则点E(﹣4,8),∴CE=2,∵S△OCE=•CE•CG=×2×8=8,S△AOB=•AO•BH=×10×8=40,∴S△OCE:S△OAB=1:5故答案为:1:5.【总结归纳】本题主要考查反比例函数系数k的几何意义,解题的关键是根据菱形的性质求得其对角线交点D的坐标及待定系数法求反比例函数解析式.8.(2018年四川省内江市-第16题-5分)已知,A、B、C、D是反比例函数8yx(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是(用含π的代数式表示).【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】通过观察可知每个橄榄形的阴影面积都是一个圆的面积的四分之一减去一个直角三角形的面积再乘以2,分别计算这5个阴影部分的面积相加即可表示.【解答过程】解:∵A、B、C、D、E是反比例函数y=(x>0)图象上五个整数点,∴x=1,y=8;x=2,y=4;x=4,y=2;x=8,y=1;∴一个顶点是A、D的正方形的边长为1,橄榄形的面积为:2;一个顶点是B、C的正方形的边长为2,橄榄形的面积为:=2(π﹣2);∴这四个橄榄形的面积总和是:(π﹣2)+2×2(π﹣2)=5π﹣10.故答案为:5π﹣10.【总结归纳】本题主要通过考查橄榄形的面积的计算来考查反比例函数图象的应用,关键是要分析出其图象特点,再结合性质作答.9.(2018年四川省内江市-第25题-6分)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB 于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1= .﹣1【知识考点】一次函数图象上点的坐标特征;规律型:点的坐标.【思路分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT 1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S 2=,可得S 1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答过程】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S 1=,S2=,∴S 1+S2+S3+…+S n﹣1=(S△AOB﹣n)=×(﹣n×)=﹣.故答案为﹣.【总结归纳】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.10.(2018年四川省乐山市-第16题-3分)已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=.【知识考点】规律型:图形的变化类;一次函数图象上点的坐标特征.【思路分析】利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.(1)代入k=2,可得出d的值,利用三角形的面积公式可求出S2的值;(2)分别代入k=2、3、4、…、2018求出S2、S3、S4、…、S2018值,将其相加即可得出结论.【解答过程】解:当y=0时,有(k﹣1)x+k+1=0,解得:x=﹣1﹣,∴直线l1与x轴的交点坐标为(﹣1﹣,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),∴两直线与x轴交点间的距离d=﹣1﹣﹣(﹣1﹣)=﹣.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(﹣1,﹣2).(1)当k=2时,d=﹣=1,∴S2=×|﹣2|d=1.故答案为:1.(2)当k=3时,S3=﹣;当k=4时,S4=﹣;…;S2018=﹣,∴S2+S3+S4+……+S2018=﹣+﹣+﹣+…+﹣,=﹣,=2﹣,=.故答案为:.【总结归纳】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.11.(2018年四川省遂宁市-第15题-4分)如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数9 yx的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c 的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为.【知识考点】反比例函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;轴对称﹣最短路线问题.【思路分析】根据题意作出合适的辅助线,然后求出点B的坐标,从而可以求得二次函数解析式,然后求出点A的坐标,进而求得A′的坐标,从而可以求得直线A′B的函数解析式,进而求得与x轴的交点,从而可以解答本题.【解答过程】解:作点A关于x轴的对称点A′,连接A′B,则A′B与x轴的交点即为所求,∵抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),∴点B(3,3),∴,解得,,∴y=x2﹣4x+6=(x﹣2)2+2,∴点A的坐标为(2,2),∴点A′的坐标为(2,﹣2),设过点A′(2,﹣2)和点B(3,3)的直线解析式为y=mx+n,,得,∴直线A′B的函数解析式为y=5x﹣12,令y=0,则0=5x﹣12得x=,故答案为:(,0).【总结归纳】本题考查反比例函数图象上点的坐标特征、二次函数的性质、二次函数图象上点的坐标特征、最短路径问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.(2018年四川省攀枝花市-第16题-4分)如图,已知点A在反比例函数kyx(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE 的面积为4,则k=.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;直角三角形斜边上的中线.【思路分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO×AB的值即为|k|的值,再由函数所在的象限确定k的值.【解答过程】解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.又∵S△BEC=4,∴BC•EO=4,即BC×OE=8=BO×AB=|k|.∵反比例函数图象在第一象限,k>0.∴k=8.故答案是:8.【总结归纳】本题考查反比例函数系数k的几何意义.反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、解答题1.(2018年山东省滨州市-第26题-14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【知识考点】圆的综合题.【思路分析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【解答过程】解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.【总结归纳】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.2.(2018年山东省枣庄市-第25题-10分)如图1,已知二次函数23 2y ax x c=++(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数23 2y ax x c=++的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【知识考点】二次函数综合题.【思路分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x 轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S△AMN=S△ABN﹣S△BMN得出关于n的二次函数,根据函数解析式求得即可.【解题过程】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【总结归纳】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.3.(2018年山东省临沂市-第26题-13分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12 DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答过程】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【总结归纳】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度及勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.4.(2018年山东省日照市-第21题-13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【知识考点】二次函数综合题.【思路分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+ x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答过程】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【总结归纳】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.5.(2018年山东省菏泽市-第24题-10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y 轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.【知识考点】二次函数综合题.【思路分析】(1)根据题意可以求得a、b的值,从而可以求得抛物线的表达式;(2)根据题意可以求得AD的长和点E到AD的距离,从而可以求得△EAD的面积;(3)根据题意可以求得直线AB的函数解析式,再根据题意可以求得△ABP的面积,然后根据二次函数的性质即可解答本题.【解答过程】解:(1)∵抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),∴,得,∴此抛物线的表达式是y=x2+4x﹣5;。

浙江2018中考数学真题分类汇编代数式和运算[解析版]

浙江2018中考数学真题分类汇编代数式和运算[解析版]

浙江省2017年中考数学真题分类汇编:代数式及运算(解析版)一、单选题(共7题;共14分)1、(2017•宁波)下列计算正确的是()A、B、C、D、2、(2017·衢州)下列计算正确的是()A、B、C、D、3、(2017·金华)在下列的计算中,正确的是()A、m3+m2=m5B、m5÷m2=m3C、(2m)3=6m3D、(m+1)2 =m2+14、(2017·台州)下列计算正确的是()A、B、C、D、5、(2017•宁波)要使二次根式有意义,则的取值范围是()A、B、C、D、6、(2017·丽水)化简的结果是()A、x+1B、x-1C、x2-1D、7、(2017•宁波)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形.在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个在大矩形的面积,则n的最小值是()A、3B、4C、5D、6二、填空题(共11题;共11分)8、(2017·嘉兴)分解因式:________.9、(2017•绍兴)分解因式:=________.10、(2017·金华)分解因式:________11、(2017·台州)因式分解:________12、(2017•温州)分解因式:m2+4m=________.13、(2017·丽水)分解因式:m2+2m=________.14、(2017·金华)若________15、(2017·丽水)已知a2+a=1,则代数式3-a-a2的值为________.16、(2017·衢州)二次根式中字母的取值范围是________17、(2017•湖州)把多项式因式分解,正确的结果是________.18、(2017•湖州)要使分式有意义,的取值应满足________.三、解答题(共4题;共30分)19、(2017·嘉兴)计算题。

专题30 代数几何综合问题-决胜2018中考数学压轴题全揭秘精品(原卷版)

专题30 代数几何综合问题-决胜2018中考数学压轴题全揭秘精品(原卷版)

一、选择题1.(2017四川省乐山市,第10题,3分)如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数xy 6=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B 'DE 处,点B '恰好落在正比例函数y =kx 图象上,则k 的值是( )A .52-B .211-C .51-D .241- 2.(2017四川省内江市,第11题,3分)如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332) B .(2,332) C .(332,32) D .(32,3﹣332) 3.(2017临沂,第14题,3分)如图,在平面直角坐标系中,反比例函数ky x=(x >0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,△OMN 的面积为10.若动点P 在x 轴上,则PM +PN 的最小值是( )A .62B .10C .226D .2294.(2017山东省威海市,第12题,3分)如图,正方形ABCD 的边长为5,点A 的坐标为(﹣4,0),点B 在y 轴上,若反比例函数xky =(k ≠0)的图象过点C ,则该反比例函数的表达式为( )A .x y 3=B .x y 4=C . x y 5=D .xy 6= 5.(2017新疆乌鲁木齐市,第10题,4分)如图,点A (a ,3),B (b ,1)都在双曲线3y x=上,点C ,D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A .52B .62C . 21022+D .82 6.(2017江苏省泰州市,第6题,3分)如图,P 为反比例函数ky x=(k >0)在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y =﹣x ﹣4的图象于点A 、B .若∠AOB =135°,则k 的值是( )A.2B.4C.6D.87.(2017甘肃省兰州市,第15题,4分)如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.2548.(2017甘肃省天水市,第10题,4分)如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B 出发,以3c m/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1c m/s的速度沿BA﹣AC 方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C .D .9.(2016山东省济南市)如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是AB 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB ﹣BE 向点E 运动,同时点Q 从点N 出发,以相同的速度沿折线ND ﹣DC ﹣CE 向点E 运动,当其中一个点到达后,另一个点也停止运动.设△APQ 的面积为S ,运动时间为t 秒,则S 与t 函数关系的大致图象为( )A .B .C .D .10.(2016山东省济宁市)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数48y x=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A .60B .80C .30D .4011.(2016广西梧州市)如图所示,抛物线2y ax bx c =++(a ≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x =﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC 、BC 、AD 、BD,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x<1时,y>0;③四边形ACBD是菱形;④9a﹣3b+c>0你认为其中正确的是()A.②③④B.①②④C.①③④D.①②③12.(2016浙江省湖州市)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4B.174C.32D.2513.(2015邵阳)如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C 点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y 与t的函数关系的图象是()A.B.C.D.14.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:43y kx=+与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA 上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.1215.(2015乐山)如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结P A、PB.则△P AB面积的最大值是()A.8 B.12 C.212D.172二、填空题16.(2017江苏省南通市,第18题,3分)如图,四边形OABC是平行四边形,点C在x轴上,反比例函数kyx=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.17.(2017浙江省温州市,第16题,5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.18.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.19.(2017金华,第16题,4分)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S (m2)(1)如图1,若BC=4m,则S= m2.(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.20.(2016四川省眉山市)如图,已知点A 是双曲线6yx=在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线kyx=上运动,则k的值是.21.(2016浙江省湖州市)已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P 向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数4yx-=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若127 9SS=,则b的值是.22.(2016浙江省衢州市)如图,正方形ABCD的顶点A,B在函数kyx=(x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)当k=2时,正方形A′B′C′D′的边长等于.(2)当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是.23.(2016湖北省鄂州市)如图,直线l:43y x=-,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3,…,按此做法进行下去,点A2016的坐标为.24.(2016福建省龙岩市)如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= .25.(2016辽宁省葫芦岛市)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线12y x=于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和12y x=于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为.(用含正整数n的代数式表示)26.(2016黑龙江省齐齐哈尔市)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的32倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大32倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC nB n的对角线交点的坐标为.27.(2015庆阳)如图,定点A(﹣2,0),动点B在直线y x=上运动,当线段AB最短时,点B的坐标为.28.(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P 是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.三、解答题29.(2017江苏省连云港市,第26题,12分)如图,已知二次函数23y ax bx =++(a ≠0)的图象经过点A (3,0),B (4,1),且与y 轴交于点C ,连接AB 、AC 、BC .(1)求此二次函数的关系式;(2)判断△ABC 的形状;若△ABC 的外接圆记为⊙M ,请直接写出圆心M 的坐标;(3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点A 1、B 1、C 1,△A 1B 1C 1的外接圆记为⊙M 1,是否存在某个位置,使⊙M 1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.30.(2017河南省,第23题,11分)如图,直线23y x c =-+与x 轴交于点A (3,0),与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B . (1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N . ①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.31.(2017浙江省台州市,第24题,14分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?32.(2017浙江省宁波市,第25题,12分)如图,抛物线21144y x x c =++与x 轴的负半轴交于点A ,与y轴交于点B ,连结AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D . (1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).33.(2017浙江省湖州市,第24题,12分)如图,在平面直角坐标系xOy 中,已知A ,B 两点的坐标分别为(﹣4,0),(4,0),C (m ,0)是线段A B 上一点(与 A ,B 点不重合),抛物线L 1:211y ax b x c =++(a <0)经过点A ,C ,顶点为D ,抛物线L 2:222y ax b x c =++(a <0)经过点C ,B ,顶点为E ,AD ,BE 的延长线相交于点F .(1)若a =12-,m =﹣1,求抛物线L 1,L 2的解析式; (2)若a =﹣1,AF ⊥BF ,求m 的值;(3)是否存在这样的实数a (a <0),无论m 取何值,直线AF 与BF 都不可能互相垂直?若存在,请直接写出a 的两个不同的值;若不存在,请说明理由.34.(2017浙江省绍兴市,第24题,14分)如图1,已知□ABCD ,AB ∥x 轴,AB =6,点A 的坐标为(1,-4),点D 的坐标为(-3,4),点B 在第四象限,点P 是□ABCD 边上一个动点.(1) 若点P 在边BC 上,PD =CD ,求点P 的坐标.(2)若点P 在边AB 、AD 上,点P 关于坐标轴对称的点Q ,落在直线1y x =-上,求点P 的坐标.(3) 若点P 在边AB ,AD ,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM ,过点G 作x 轴的平行线GM ,它们相交于点M ,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标(直接写出答案).35.(2017衢州,第24题,12分)在直角坐标系中,过原点O 及点A (8,0),C (0,6)作矩形OABC 、连结OB ,点D 为OB 的中点,点E 是线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB 上移动,设移动时间为t 秒.(1)如图1,当t =3时,求DF 的长.(2)如图2,当点E 在线段AB 上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan ∠DEF 的值.(3)连结AD ,当AD 将△DEF 分成的两部分的面积之比为1:2时,求相应的t 的值.36.(2017金华,第24题,12分)如图1,在平面直角组坐标系中,四边形OABC 各顶点的坐标分别为O (0,0),A (3,33)、B (9,53),C (14,0),动点P 与Q 同时从O 点出发,运动时间为t 秒,点P 沿OC 方向以1单位长度/秒的速度向点C 运动,点Q 沿折线OA ﹣AB ﹣BC 运动,在OA 、AB 、BC 上运动的速度分别为3,3,52(单位长度/秒),当P 、Q 中的一点到达C 点时,两点同时停止运动. (1)求AB 所在直线的函数表达式;(2)如图2,当点Q 在AB 上运动时,求△CPQ 的面积S 关于t 的函数表达式及S 的最大值;(3)在P 、Q 的运动过程中,若线段PQ 的垂直平分线经过四边形OABC 的顶点,求相应的t 值.37.(2017海南省,第24题,16分)抛物线23y ax bx =++ 经过点A (1,0)和点B (5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x =+ 相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N .①连结PC 、PD ,如图1,在点P 运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB ,过点C 作CQ ⊥PM ,垂足为点Q ,如图2,是否存在点P ,使得△CNQ 与△PBM 相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由.38.(2017天门,第25题,12分)如图,在平面直角坐标系中,四边形ABCD 的边AD 在x 轴上,点C 在y 轴的负半轴上,直线BC ∥AD ,且BC =3,OD =2,将经过A 、B 两点的直线l :y =﹣2x ﹣10向右平移,平移后的直线与x 轴交于点E ,与直线BC 交于点F ,设AE 的长为t (t ≥0).(1)四边形ABCD 的面积为 ;(2)设四边形ABCD 被直线l 扫过的面积(阴影部分)为S ,请直接写出S 关于t 的函数解析式;(3)当t =2时,直线EF 上有一动点,作PM ⊥直线BC 于点M ,交x 轴于点N ,将△PMF 沿直线EF 折叠得到△PTF ,探究:是否存在点P ,使点T 恰好落在坐标轴上?若存在,请求出点P 的坐标;若不存在,请说明理由.39.(2017湖北省十堰市,第25题,12分)抛物线2y x bx c =++与x 轴交于A (1,0),B (m ,0),与y 轴交于C .(1)若m =﹣3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上有一点E ,使103ACE ACD S S ∆∆=,求点E 的坐标; (3)如图2,设F (﹣1,﹣4),FG ⊥y 于G ,在线段OG 上是否存在点P ,使∠OBP =∠FPG ?若存在,求m 的取值范围;若不存在,请说明理由.40.(2017湖北省咸宁市,第24题,12分)如图,抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,其对称轴交抛物线于点D ,交x 轴于点E ,已知OB =OC =6.(1)求抛物线的解析式及点D 的坐标;(2)连接BD ,F 为抛物线上一动点,当∠F AB =∠EDB 时,求点F 的坐标;(3)平行于x 轴的直线交抛物线于M 、N 两点,以线段MN 为对角线作菱形MPNQ ,当点P 在x 轴上,且PQ =12MN 时,求菱形对角线MN 的长.41.(2017湖北省恩施州,第24题,12分)如图,已知抛物线2y ax c =+过点(﹣2,2),(4,5),过定点F (0,2)的直线l :y =kx +2与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)求抛物线的解析式;(2)当点B 在抛物线上运动时,判断线段BF 与BC 的数量关系(>、<、=),并证明你的判断;(3)P 为y 轴上一点,以B 、C 、F 、P 为顶点的四边形是菱形,设点P (0,m ),求自然数m 的值;(4)若k =1,在直线l 下方的抛物线上是否存在点Q ,使得△QBF 的面积最大?若存在,求出点Q 的坐标及△QBF 的最大面积;若不存在,请说明理由.42.(2017湖北省武汉市,第24题,12分)已知点A (﹣1,1)、B (4,6)在抛物线2y ax bx =+上.(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.43.(2017湖北省荆州市,第25题,12分)如图在平面直角坐标系中,直线334y x=-+与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.44.(2017湖北省荆门市,第24题,12分)已知:如图所示,在平面直角坐标系xOy中,∠C=90°,OB=25,OC=20,若点M是边OC上的一个动点(与点O、C不重合),过点M作MN∥OB交BC于点N.(1)求点C的坐标;(2)当△MCN的周长与四边形OMNB的周长相等时,求CM的长;(3)在OB上是否存在点Q,使得△MNQ为等腰直角三角形?若存在,请求出此时MN的长;若不存在,请说明理由.45.(2017湖北省襄阳市,第25题,13分)如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线24y ax bx =++过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设CP =t (0<t <10).(1)请直接写出B 、C 两点的坐标及抛物线的解析式;(2)过点P 作PE ⊥BC ,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE =∠OCD ?(3)点Q 是x 轴上的动点,过点P 作PM ∥BQ ,交CQ 于点M ,作PN ∥CQ ,交BQ 于点N ,当四边形PMQN 为正方形时,请求出t 的值.46.(2017湖北省鄂州市,第22题,9分)如图,已知BF 是⊙O 的直径,A 为⊙O 上(异于B 、F )一点,⊙O 的切线MA 与FB 的延长线交于点M ;P 为AM 上一点,PB 的延长线交⊙O 于点C ,D 为BC 上一点且P A =PD ,AD 的延长线交⊙O 于点E .(1)求证: BECE =; (2)若ED 、EA 的长是一元二次方程0552=+-x x 的两根,求BE 的长;(3)若MA =62,sin ∠AMF =13,求AB 的长.47.(2017湖北省鄂州市,第24题,12分)已知,抛物线23y ax bx =++(a <0)与x 轴交于A (3,0)、B 两点,与y 轴交于点C ,抛物线的对称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =12. (1)求抛物线的解析式及顶点D 的坐标;(2)求证:直线DE 是△ACD 外接圆的切线;(3)在直线AC 上方的抛物线上找一点P ,使ACD PAC S S ∆∆=21,求点P 的坐标; (4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.48.(2017湖北省随州市,第25题,12分)在平面直角坐标系中,我们定义直线y =ax ﹣a 为抛物线 2y ax bx c =++(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ; (2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 49.(2017黄冈,第24题,14分)已知:如图所示,在平面直角坐标系xoy 中,四边形OABC 是矩形,OA =4,OC =3,动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时,动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P 、点Q 的运动时间为t (s ).(1)当t =1s 时,求经过点O ,P ,A 三点的抛物线的解析式; (2)当t =2s 时,求tan ∠QP A 的值;(3)当线段PQ 与线段AB 相交于点M ,且BM =2AM 时,求t (s )的值;(4)连接CQ ,当点P ,Q 在运动过程中,记△CQP 与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.50.(2017湖北省黄石市,第25题,10分)如图,直线l :y =kx +b (k <0)与函数4y x=(x >0)的图象相交于A 、C 两点,与x 轴相交于T 点,过A 、C 两点作x 轴的垂线,垂足分别为B 、D ,过A 、C 两点作y 轴的垂线,垂足分别为E 、F ;直线AE 与CD 相交于点P ,连接DE ,设A 、C 两点的坐标分别为(a ,4a)、(c ,4c),其中a >c >0. (1)如图①,求证:∠EDP =∠ACP ;(2)如图②,若A 、D 、E 、C 四点在同一圆上,求k 的值;(3)如图③,已知c =1,且点P 在直线BF 上,试问:在线段AT 上是否存在点M ,使得OM ⊥AM ?请求出点M 的坐标;若不存在,请说明理由.51.(2017湖南省岳阳市,第24题,10分)如图,抛物线223y x bx c =++经过点B (3,0),C (0,﹣2),直线l :2233y x =--交y 轴于点E ,且与抛物线交于A ,D 两点,P 为抛物线上一动点(不与A ,D 重合). (1)求抛物线的解析式;(2)当点P 在直线l 下方时,过点P 作PM ∥x 轴交l 于点M ,PN ∥y 轴交l 于点N ,求PM +PN 的最大值. (3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.52.(2016四川省自贡市)抛物线()240y x ax b a =-++>与x 轴相交于O 、A 两点(其中O 为坐标原点),过点P (2,2a )作直线PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C (其中B 、C 不重合),连接AP 交y 轴于点N ,连接BC 和PC . (1)32a =时,求抛物线的解析式和BC 的长; (2)如图1a >时,若AP ⊥PC ,求a 的值; (3)是否存在实数a ,使12AP PN =,若存在,求出a 的值;若不存在,请说明理由.53.(2016山东省泰安市)如图,在平面直角坐标系中,抛物线2y ax bx c =++的顶点坐标为(2,9),与y 轴交于点A (0,5),与x 轴交于点E 、B . (1)求二次函数2y ax bx c =++的表达式;(2)过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的一点(点P 在AC 上方),作PD 平行与y 轴交AB 于点D ,问当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M 在抛物线上,点N 在其对称轴上,使得以A 、E 、N 、M 为顶点的四边形是平行四边形,且AE 为其一边,求点M 、N 的坐标.54.(2016山东省济南市)如图1,▱OABC 的边OC 在x 轴的正半轴上,OC =5,反比例函数my x=(x >0)的图象经过点A (1,4).(1)求反比例函数的关系式和点B 的坐标;(2)如图2,过BC 的中点D 作DP ∥x 轴交反比例函数图象于点P ,连接AP 、OP . ①求△AOP 的面积;②在▱OABC 的边上是否存在点M ,使得△POM 是以PO 为斜边的直角三角形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.55.(2016山东省济宁市)已知点P (0x ,0y )和直线y =kx +b ,则点P 到直线y =kx +b 的距离证明可用公式d =0021kx y b k-++计算.例如:求点P (﹣1,2)到直线y =3x +7的距离. 解:因为直线y =3x +7,其中k =3,b =7. 所以点P (﹣1,2)到直线y =3x +7的距离为:d =0021kx y b k -++=23(1)271k ⨯--++=210=105.根据以上材料,解答下列问题:(1)求点P (1,﹣1)到直线y =x ﹣1的距离;(2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线39y x =+的位置关系并说明理由; (3)已知直线y =﹣2x +4与y =﹣2x ﹣6平行,求这两条直线之间的距离.56.(2016广西河池市)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.57.(2016广西百色市)正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O 、P 、A 三点坐标; ②求抛物线L 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.58.(2016广西贵港市)如图,抛物线25y ax bx =+-(a ≠0)与x 轴交于点A (﹣5,0)和点B (3,0),与y 轴交于点C .(1)求该抛物线的解析式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使∠BAP =∠CAE ?若存在,求出点P 的横坐标;若不存在,请说明理由.59.(2016广西贺州市)如图,矩形的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(10,8),沿直线OD 折叠矩形,使点A 正好落在BC 上的E 处,E 点坐标为(6,8),抛物线2y ax bx c =++经过O 、A 、E 三点.(1)求此抛物线的解析式; (2)求A D 的长;(3)点P 是抛物线对称轴上的一动点,当△PAD 的周长最小时,求点P 的坐标.60.(2016内蒙古呼伦贝尔市,第26题,13分)如图,抛物线223y x x =-++与x 轴相交的于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A ,B ,C 三点的坐标和抛物线的对称轴;(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点(P 不与C ,B 两点重合),过点P 作PF ∥DE 交抛物线于点F ,设点P 的横坐标为m .①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.61.(2016内蒙古赤峰市)(12分)如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧 OB的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.62.(2016内蒙古赤峰市)(14分)在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.63.(2016吉林省)如图1,在平面直角坐标系中,点B 在x 轴正半轴上,OB 的长度为2m ,以OB 为边向上作等边三角形AOB ,抛物线l :2y ax bx c =++经过点O ,A ,B 三点. (1)当m =2时,a = ,当m =3时,a = ;(2)根据(1)中的结果,猜想a 与m 的关系,并证明你的结论;(3)如图2,在图1的基础上,作x 轴的平行线交抛物线l 于P 、Q 两点,PQ 的长度为2n ,当△APQ 为等腰直角三角形时,a 和n 的关系式为 ;(4)利用(2)(3)中的结论,求△AOB 与△APQ 的面积比.64.(2016天津市)在平面直角坐标系中,O 为原点,点A (4,0),点B (0,3),把△ABO 绕点B 逆时针旋转,得△A ′BO ′,点A ,O 旋转后的对应点为A ′,O ′,记旋转角为α. (1)如图①,若α=90°,求AA ′的长; (2)如图②,若α=120°,求点O ′的坐标;(3)在(2)的条件下,边OA 上 的一点P 旋转后的对应点为P ′,当O ′P +BP ′取得最小值时,求点P ′的坐标(直接写出结果即可)65.(2016四川省凉山州)如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;。

7.19代数压轴题(第4部分)-2018年中考数学试题分类汇编(word解析版)

7.19代数压轴题(第4部分)-2018年中考数学试题分类汇编(word解析版)

第七部分专题拓展7.19 代数压轴题【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖北省随州市-第10题-3分)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个【知识考点】二次函数与不等式(组);二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c >0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答过程】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.【总结归纳】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解.也考查了二次函数图象与系数的关系.2.(2018年湖北省恩施州-第12题-3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【思路分析】根据二次函数的性质一一判断即可.【解答过程】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.【总结归纳】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.(2018年湖北省十堰市-第10题-3分)如图,直线y=﹣x与反比例函数kyx=的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数kyx=的图象于另一点C,则CBCA的值为()A.1:3 B.1:C.2:7 D.3:10【知识考点】反比例函数与一次函数的交点问题.【思路分析】联立直线AB与反比例函数解析式成方程组,通过解方程组可求出点A、B的坐标,由BD∥x轴可得出点D的坐标,由点A、D的坐标利用待定系数法可求出直线AD的解析式,联立直线AD与反比例函数解析式成方程组,通过解方程组可求出点C的坐标,再结合两点间的距离公式即可求出的值.【解答过程】解:联立直线AB及反比例函数解析式成方程组,,解得:,,∴点B的坐标为(﹣,),点A的坐标为(,﹣).∵BD∥x轴,∴点D的坐标为(0,).设直线AD的解析式为y=mx+n,将A(,﹣)、D(0,)代入y=mx+n,,解得:,∴直线AD的解析式为y=﹣2+.联立直线AD及反比例函数解析式成方程组,,解得:,,∴点C的坐标为(﹣,2).∴==.故选:A.【总结归纳】本题考查了反比例函数与一次函数的交点问题、两点间的距离公式以及待定系数法求一次函数解析式,联立直线与反比例函数解析式成方程组,通过解方程组求出点A、B、C的坐标是解题的关键.4.(2018年湖北省荆门市-第12题-3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点【思路分析】根据二次函数的性质一一判断即可.【解答过程】解:∵抛物线的顶点坐标(﹣2a,﹣9a),∴﹣=﹣2a,=﹣9a,∴b=4a,c=5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.【总结归纳】本题考查二次函数的性质、二次函数图象上的点的特征、抛物线与坐标轴的交点问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(2018年湖南省衡阳市-第12题-3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【知识考点】二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】利用x=﹣1时y=0得到a﹣b+c=0,利用抛物线的对称轴方程得到b=﹣2a,则3a+c=0,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.【解答过程】解:∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴x=﹣1时,y=0,即a﹣b+c=0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+c=0,所以①错误;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.【总结归纳】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2018年湖南省岳阳市-第8题-3分)在同一直角坐标系中,二次函数y=x2与反比例函数1yx(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.1 m【知识考点】反比例函数图象上点的坐标特征;反比例函数的图象;二次函数的图象;二次函数图象上点的坐标特征.【思路分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答过程】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.【总结归纳】本题考查二次函数图象的轴对称性,二次函数图象上点纵坐标相同时,对应点关于抛物线对称轴对称.二、填空题1.(2018年江苏省南通市-第18题-3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线1yx交于点P(x1,y1),Q(x2,y2),与直线AB交于点R(x3,y3),若y1>y2>y3时,则b的取值范围是.【知识考点】反比例函数与一次函数的交点问题.【思路分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答过程】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2或b>2,∴2<b<或x<﹣2故答案为:2<b<或x<﹣2.【总结归纳】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数计算推理专题
1.已知抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a ﹣b+c <0;
④抛物线的顶点坐标为(2,b );
⑤当x <2时,y 随x 增大而增大.
其中结论正确的是( )
A .①②③
B .③④⑤
C .①②④
D .①④⑤
2如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:
①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是
203;④OD =;其中正确的结论是 .(填写所有正确结论的序号)
3.如图,在平面直角坐标系x y O 中,已知直线y kx =(0k >)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作D x B ⊥轴于点D ,交1y x
=的图象于点C ,连结C A .若C ∆AB 是等腰三角形,则k 的值是 .
4.如图,某日的钱塘江观测信息如下:
按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离x (千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点)12,0(A ,点B 坐标为)0,(m ,曲线BC 可用二次函数:s=21125
t bt c ++,(c b ,是常数)刻画. (1)求m 值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以48.0千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为48.0千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头 1.8千米共需多长时间?(潮水加速阶段速度)30(125
20-+=t v v ,0v 是加速前的速度). 5.已知函数y kx b =+,k y x =
,k 、b 为整数且1bk =. (1)讨论b,k 的取值.
(2)分别画出两种函数的所有图象.(不需列表)
(3)求y kx b =+与k y x =
的交点个数.
6. 如图,已知抛物线285
y ax x c =++与x 轴交于,A B 两点,与y 轴交于C 点,且(2,0),(0,4)A C -,直线1:42l y x =--与x 轴交于D 点,点P 是抛物线285
y ax x c =++上的一动点,过点P 作PE x ⊥轴,垂足为E ,交直线l 于点F .
(1)试求该抛物线的表达式;
(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;
(3)如图(2),过点P 作PH x ⊥轴,垂足为H ,连接AC ,
①求证:ACD ∆是直角三角形;
②试问当P 点横坐标为何值时,使得以点,,P C H 为顶点的三角形与ACD ∆相似?
7.以菱形ABCD 的对角线交点O 为坐标原点,AC 所在的直线为x 轴,已知(4,0)A -,(0,2)B -,(0,4)M ,P 为折线BCD 上一动点,内行PE y ⊥轴于点E ,设点P 的纵坐标为.a
(1)求BC 边所在直线的解析式;
(2)设22
y MP OP =+,求y 关于a 的函数关系式;
(3)当OPM 为直角三角形,求点P 的坐标.
8.如图,在平面直角坐标系中,把矩形OABC 沿对角线AC 所在的直线折叠,点B 落在点D 处,DC 与y 轴相交于点E .矩形OABC 的边OC ,OA 的长是关于x 的一元二次方程212320x x -+=的两个根,且OA OC >.
(1)求线段OA ,OC 的长;
(2)求证:ADE COE ∆≅∆∆,并求出线段OE 的长;
(3)直接写出点D 的坐标;
(4)若F 是直线AC 上一个动点,在坐标平面内是否存在点P ,使以点E ,C ,P ,F 为顶点的四边形是菱形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.
9.(已知抛物线c 1的顶点为A (﹣1,4),与y 轴的交点为D (0,3).
(1)求c 1的解析式;
(2)若直线l 1:y =x +m 与c 1仅有唯一的交点,求m 的值;
(3)若抛物线c 1关于y 轴对称的抛物线记作c 2,平行于x 轴的直线记作l 2:y =n .试结合图形回答:当n 为何值时,l 2与c 1和c 2共有:①两个交点;②三个交点;③四个交点;
(4)若c 2与x 轴正半轴交点记作B ,试在x 轴上求点P ,使△PAB 为等腰三角形.
10.在平面直角坐标系xOy 中,抛物线c bx ax y ++=2的开口向上,且经过点)23
,0(A .
(1)若此抛物线经过点)21
,2(-B ,且与x 轴相交于点F E ,.
①填空:=b (用含a 的代数式表示);
②当EF 的值最小时,求抛物线的解析式;
(2)若21
=a ,当10≤≤x ,抛物线上的点到x 轴距离的最大值为3时,求b 的值.。

相关文档
最新文档